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Introduction. Let (Q, A, x) be a measure space, where A is a o-ring
and p is a o-finite measure on A4, (X, S, \) a measure space and E a real
Banach space. We consider semi-constant-preserving contractive projections of
L,(Q, A, p, E) into itself. If (Q, A, p) is a probability space and E is a strictly-
convex Banach space, then Landers and Rogge [2] proved that such operators
coincide precisely with the conditional expectation operators. If (Q, A4, p)is a
probability space and E=L,(X, S, A), where p=1 or oo, then Miyadera [3]
and [4] proved that such operators coincide precisely with the conditional ex-
pectation operators under some additional conditions. In this paper we deal
with the case when (Q, A4, w) is a general measure space, where A is a g-ring and
A is a o-finite measure on A. Substituting constant-preserving property by
semi-constant-preserving property we can prove theorems which are generali-
zations of characterization theorems in Landers and Rogge [2], Miyadera [3]

and [4].

1. Definitions and useful Lemmas. Let (Q, A, ) be a measure space,
A(p)={4€A; p(4A)<oo} and E a real Banach space with the norm || ||.
Note that E can be the class R of real numbers. Let IV be the class of natural
numbers. For any 4, B€A we write ACB if uy(A—B)=0 aud A=1B if
w(A—B)U(B—A4))=0. A, B€A are said to be disjoint if (4 NB)=0. We
suppose that g is o-finite, i.e., for any A=A there exists a sequence of sets
{4,; neN} such that 4, A(u) and A=U {4,; nN}. For any A€ A we
denote by I, the indicator function of 4 and by A=@ we mean u(4)=0. Let
L(Q, A, u, E) be the calss of E-valued Bochner integrable functions, which is a
Banach space with the norm || ||, defined by

17l = [ If@)llan  forany feL(@ 4, u B).

For any f€L/(Q, A, u, E) we denote {w; f(w)=0} by s(f) and for any linear
operator @ of L,(Q, A, p, E) into itself we denote S(Q)={AEA(n); there
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eixsts feL,(Q, A, u, E) such that ACs(Q(f))}. For the definitions and pro-
perties of Bochner integral, see Hille and Phillips [1].

DerFINTION 1. Let fEeL(Q, A, u, E). For a o-subring B of A, a function
g is called the conditional expectation of f given B if g& L(Q, B, u, E), and

S gdu = S fdu for any BeB,
B B

where the integral is the Bochner integral. We denote by f? the conditional ex-
pectation of f given B. Forany ¢ €L,(Q, A, p, R) we define pacs L(Q2, A, u, E)
by (¢a)(w)=¢(w)a for any 0w and a=E. Then it is clear that (¢pa)B=¢Ea.

DEerFINITION 2. Let P be a linear operator of L,(Q A, u, E) into itself.
P is said to be contractive if

1P]| = sup{llP(f)ll.; fELAQ, A, p, E) and ||fll. =1} =1,

semi-constant-preserving if for any aE, €>0, A= s(P) there exists f& L (Q, A,
u, E) such that

HIAP(f)—IAa”L<8 ’
and a projection if PoP=_P, where (PoP)(f)=P(P(f)) for any feL(Q, A, u, E).

In this paper an operator P is said to satisfy Assumption 1 if
(1) P is a semi-constant-preserving contractive projection of L,(Q, A4, u, E)
into itself.

Lemma 1.1. Let B be a o-subring of A. Then for any f& L (Q, A, u, E)
the conditional expectation fB of f given B exists uniquely up to almost everywhere
and the conditional expectation operator ( )B satisfies Assumption 1.

Proof. Let feL/(Q, A, p, E). If there exists BEB such that s(f)CB,
then by a theorem in Schwartz [5] f2 exists uniquely up to almost everywhere
and ||fB||,<||f|l; and (fB)B=fB. For an arbitray f € L,(Q, A, u, E) there exists
C € B such that

[ flidn = sup | 1ifllan; BEBY .

Clearly (Ip_cf)(w)=0 (a.e. w) for any BeB. Since s(I.f)CC, there exists
(Icf)®. For any BEB

[ fin = dcftnt|,_fin = Lofin={, defin.

Therefore (If)®=fB. The uniqueness of fZis obvious from the properties of

(Icf)".
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fiisduz | 12efIdnz] 10 Zaul = {1214,

and hence ( )# is contractive. Since s(f)CC, ( )Zis a projection. Next we
are going to prove that ()% is semi-constant-preserving. Suppose that there
exist feL,(Q, A, u, E) and A= A(u) such that ACs((f)?). Let acE. Write

B, = {o; % o)l[>1/n} ,
then
s(f8) = U{B,; neN} .

For any positive number & there exists #E N such that

llallu(A—B,)<e .
Then
1 a(I5,0)%—14all, = Ill5,n aa—14all, = llallp(A—B,) <€ .
We have proved that ( )® is semi-constant-preserving. Q.E.D.

Lemma 1.2. Suppose that P is a contractive projection of L(, A, u, R)
into istelf and 0<P(I,)(w)=1 (a.e.w) for any A€ A(u). Then there exists a
o-subring B of A such that P=( )E.

For the proof see Wulbert [6].

Lemma 1.3. Suppose that P is a contractive projection of L(Q, A, u, E)
into itself. Then P is semi-constant-preserving and Q & s(P) iff P is constant-
preserving in the sense used in [2], [3] and [4], i.e., P(Iga)=1Iga for any a€E.

Proof. First we suppose that P(Iga)=Iga for any a=E. It is clear that
Qes(P). For any Aes(P)

Lo P(Iga)—14all, = |Ija—1,all, = 0.

Therefore P is semi-constant-preservig.
Conversely we suppose that P is semi-constant-preserving and Q & s(P).
For any nE N there exists f,€L,(Q, A, u, E) such that

(2) P(fs)—Taall.<1/n.
Since P is contractive,

IP(f,)—P(laa)ll<1/n,
and hence by (2) and arbitrariness of 7

P(lga)=Iga . _ Q.E.D.
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In the remainder of this section we assume that € satisfies Assumption 1.
Lemma 14. Let K, A= A(u), KUAEs(Q) and acE. Then
[la— QL 4a)(w)l|=|lal| —|Q(L,a)(w)I| (a.e.0) on K .

Proof. Since KUAEs(Q) and @ is semi-constant-preserving, for any
&>0 there exists f& L,(Q, A, u, E) such that

(4) ”IAUKQ(f)_IAUKa”L<8-

Since @ is a contractive projection, by using (4) twice we have

1Q(f) — QUL =1IQ(f)—1,all.
§“IAQ(f)'_IA a||L+]lIQ—AQ(f)I|L
S&+Ha-2Q(Nlz
SEHIL Q) —Laall .+ IILQUN . — I 4 all .+ 1Ha- 4 Q(f)l]
<26+, Q(F)le—Iall .+ a-1Q()IlL
=26+[1Q(N)lz—ILaall
S26+HQ(NI— 1R a)ll . -

Therefore
(5) 1Q(f)— QL4 a)ll =26 +IQ(N)ll.— QL a)ll.. -
Since
[Ha-xQ(f)—Ia-x QU4 a)l| . 2 a-x QUL — I a-x QL4 a)ll.
by (5) we get
(6) HxQ(f)—Ix QUAa) . =26+ Ik QU — Ik QU4 @)l -
From (4) and (6) we get
Hxa—I QU a)ll =46+ gall,—|lIx QL 4a)ll, -

Since € is an arbitrary positive number,

Hxa—IxQUa)ll. = [xall .~ IxQL4a)ll. -
Therefore

[la—Q(I 4a)()|| = llal|—||Q(4a)(w)I| (a.e.0) on K.
Q.E.D.

Lemma 1.5. Let A=s(Q) and acE. Then for any positive number &
there exist fe L (2, A, p, E) and Bes(Q) such that
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Bcs(Q(f))
i ya—1Izall, <€,
Hsepn QU a)—QULa)llL<E,
Ha-s@im @Uza)l <€,
and

lla—Qza)(w)ll = llall —llR(a)(@)ll  (a.c.0) on S(Q(F)).

Proof. For any £>0 we can choose a positive number 8 such that 46<&.
Since @ is semi-constant-preserving, there exists f €L, A, u, E) such that

(7) 11, Q(f)—L4all, <8 .
Write B=ANs(Q(f)). Therefore

( 8) 1 4a—1gall, = ”IAa—IAﬂs(Q(f))a“L
= L a=saen allz = Ha-sem 4 Q(f)—14a)ll . <8<E .

Since @ is contractive, by (8) and the triangle inequality

”Is(Q(f)) Qza)—Q(1,a)ll,
=soim @5 a0)—ILiam@Uaa)ll .41 a s QL4 d)l.
= ”IBa“IAa”L+”In—s(o(f))Q(IA a)ll.
<8+I{a-sem Q@Uaa)llL
=08+a-s@(pm QULaa)— QNN — QM) ,

where the last equality comes from the fact that

IHa-sa(m QULaa)— Q)2 = IHa-saim QULad) . +-1Q(f)Ilz -
By the triangle inequality and the fact that @ is contractive,
8+1a-s@m @4 @)—Q(N)ll— QNI
<0+a-sw@im @Uaa)— Q)+ Liairn QUad) L+ e QU . — QNI
<8+1Q(,a)— QNI+ seirn QU —1Q(F)II2
=8+|aa— Q)+ 4all . — 1Rl -
By (7)
3+ a—Q(N)l+ 1 Lall .~ Q).
S38+HNL Q) — QNI +HILLQNIL— Q) .=38<€.
We have proved that
Lo Q(I52)—Q(L4a)l[ . <38<E,
and hence by (8)
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a-s@in @Uza)ll, = [|QUza)— Lo QUza)ll,
<1QIza)—QLa)l|.+11Q(L4a)— Lo QU a)ll,
<|Ia—Iall,+35<8-+38<¢.

There exists a sequence {K,; n€ N} such that K, A(u) and s(Q(f))= U {K,;
neN}. Since BUK,e5(Q) for any nEN, by Lemma 1.4

lla—Q(I3a)(w) = llal|—1Q(z a)(w)I| (a.e.0) on K,, .
Therefore

lla—Q(Iza)(w)ll = llall—1IQ(za)(w)ll  (a.e.0) on s(Q(f)) .
Q.E.D.

For any A= A(u) let
k=sup {u(C); CeA,CcAand p(CND)=0 for any Des(Q)} .

Then there exists €A such that ECA, u(E ND)=0 for any Des(Q) and
uw(E)=k. We write No(4)=E. Clearly for any A=A Ny(A) is unique up to
sets of measure zero. When just one operator @ is under discussion, we omit
the letter @ from symbols and write N instead of Nj.

Lemma 1.6. Let A,, B,€A(u) for any n,meN and U{4,;nEN}C
U{B,; meN}. Then U{N(4,); neN}cC U{N(B,); mcN}.

Proof. Forany n, meN N(4,) N B, A(u), N(4,)N B, CB,, and (N(4,) N
B,)ND=¢ for any Des(Q), and hence N(4,) N B,,CN(B,). Therefore

U{N(4,); neN} = U{N(4,) NB,;n, meN}CU{N(B,); nEN} .
Q.E.D.

We can define N(4) for any A€ A, even if u(A)=co. Let 4, A(n)such
that A=U{4,; nEN} and let N(A)=U{N(4,); nEN}. By Lemma 1.6
N(A) is independent of the choice of the sequence {4,; nEN}. For any f&
L(Q, A, u, E) let N(f)=Iyyf, then N is a mapping of L,(Q, A, u, E) into
itself.

Lemma 1.7. Let A, BE A with ACB and f€ L, (Q, A, u, E). Then
N(A)=N(B)N A4, N(4)cN(B), N(N(A))=N(A4) and N(s(f))=s(]N(f)).

Proof. We can choose sequences {4,; n€ N} and {C,; m& N} such
that 4,, C,€A(u) for any n,meN and A=U{4,;neN} and B—A=
U {C,; meN}. By the definition of IV we have N(B) N A=(U {N(4,) UN(C,);
n, mEN})NA=U{N(4,); n& N} =N(4), and hence N(4A)C N(B). Since
N(A)C A, NN(A)=NA) NNA)=NA). N(f)=Iyip , and hence sN(f))
=N(s(f)). Q.E.D.
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Lemma 1.8. The family {N(A); A= A} is a o-subring of A.

Proof. Let 4, B, A, A for any n€N and let C=U {4,; n&N} UAUB.
Since A, B, A—BCC, by Lemma 1.7 N(4)— N(B)=(4 N N(C))—(BNN(C))=
(A—B)NN(C)=N(A—B). U{4,; neN}cC, and hence N(U {4,; neN})=
U{4,; neN} NN(C)=U{4,NN(C); neN}=U {N(4,); nEN}. Q.E.D.

Lemma 1.9. The operator N of L(Q, A, u, E) into itself is a contractive
projection and || f—N(|I,=I|fll, for any fEL(Q, A, , E).

Proof. First we will show that IV is a linear operator. Since s(af)=s(f)
for any fe L (Q, A, u, E) and a= R with a0,

N(af) = Incamof = alyionf = alN(f) .

For any f, g L(Q, A, p, E) let C=s(f)Us(g). Since s(f), s(g), s(f+g)<C, by
Lemma 1.7 and the definition of N

N(f+8) = Intr+en(f+8) = Inonstre(f+8) = Ino(fH+g)
= IN<c)f+IN(c)g = IN(c)ns(f)f+IN(C)ns(g>g = N(f)+N(g) .

Next we are going to show that N is a contractive projection. By Lemma 1.7

(9) S(V(f)) = N(s(f)) -
By (9) and Lemma 1.7

NoN(f) = IncaviemN(f) = Inwesiom N(f)
= InwmN(f) = Livin N(f) = N(f) ,

and hence N is a projection.

”N(f)HL = ||IN<s<f))f”L§“f||L )

and hence N is contractive.

Hf=NNHI = I f=Inseonfll =Sz - Q.E.D.

We define an operator @* of L\(Q, A, u, E) into itself by Q*(f)=
(Q—QN)(f)=Q(f—NC(f)) for any fEL(Q, A, pu, E). Since N is linear, @*

is a linear operator.

Let C be a o-subring of A and P the conditional expectation operator given
C. Forany A=A and feL,(Q, A, u, E) we denote s(P), Np(A) and Np(f) by
s(( )9), Ng(4) and N¢(f) respectively. Let Ag= {N¢(A4); A= A}, then by
Lemma 1.8 A¢ is o-subring of A. Note that for any DEA we have De s(P)
iff there exists C&C such that DCC.
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Lemma 1.10. Let C be a o-subring of A. Then
()°eNe = Ngo( )¢

Proof. Let P=( )¢ and feL,(Q, A, u, E). By the definition of N¢ for
any A€ A and Des(( ))°=s(P) we have Ne(A)ND=¢@. Des(P) iff there
exists C &C such that D C, and hence for any A€ A and C eC

(10) Ne(A)NC=9.

(NVe () =Ungemf)® =0, since by (10) Ne(s(f))NC=¢ for any C<C.
s(f¢)=C, and hence by (10) we have

Ne(s(f€)) = Ne(s(f) Ns(f€) = ¢ .
Therefore
Ne(f€) = INc(s(fc))fc =0. Q.E.D.

Lemma 1.11. Operators Q, Q* and N satisfy the conditions NoQ=Q*o N=
0, Q*oQ=Q, Q*-Q*=Q* and s(Q)=s(Q*).

Proof. By the definition of N we have u(N(s(Q(f)))=0, and hence
(11) NoQ(f) = Iycam@(f) = 0.
By Lemma 1.9 N is a projection, i.e., NoN=N, and hence by the definition of @*

Q¥ N = (Q—QoN)oN = QoN—QoNoN = 0.
By (11)

Q*oQ = (@—QoN)oQ = QoQ—Qo(NoQ) = QQ =@Q,
and hence

Q*oQ* = Q*(Q—QoN) = (Q*oQ*)—(Q*°Q)oN = Q—QoN = O*.

By the definition of @* for any f€L,(Q, A, u, E)
(12) Q*(f) = QUf—N(f)),
and by the preceding part of this lemma @=Q%Q, and hence
(13y Q(f) = Q*Q(f) -
By (12) and (13) we have s(Q)=s(Q%). QE.D.

Lemma 1.12. Q* is semi-constant-preserving contractive projection and
QI ,a)=Q*(I 1a) for any A=s(Q*) and acE.

Proof. Let acE, €>0 and Aes(Q*). By Lemma 1.11 Aes(Q), and
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hence by the fact that € is semi-constant-preserving we can choose f&
L(Q, A, u, E) such that

1L, Q(f)—L4all <€ .
By Lemma 1.11
Q(f) = Q*Q(f),

and hence
11, @*oQ(f)—1,all,<E .

Therefore @* is semi-constant-preserving. Since A€s(Q), N(A)=@. There-
fore by Lemma 1.9

Q*(I4a) = QU a—N(1,4a)) = QI,a) .

NQ*N.=1QU—NUNIL=ZIf—NN)IL=IIfll., and hence @* is contractive.
By Lemma 1.11 @*o@Q*=@Q*, and hence @¥* is a projection. Q.E.D.

Lemma 1.13. For any A€ A(u) there exists a pairwise disjoint sequence
{4,=5(Q); n N} such that

A—N(4) = U{4,; neN} .

Proof. Let k=sup{u(C); C€ A, C C A and there exists C,Es(Q) for each
neN such that Cc U {C,; neN}}. Then there exist DA and D, es(Q) for
any n€ N such that Dc 4, Dc U {D,; n&N} and u(D)=k. By the definition
of & we have u((A—D)NE)=0 for any E =5(Q), and hence by Lemma 1.6 we
have A—DcCN(4). Therefore

A—NA)cDc U{D,; nEN} .

Write 4,=AND,—U{D;;i=<n—1}). Since 4,<s(Q), n(4,NN(4))=0.
Hence the sequence {4,; n& N} consists of pairwise disjoint elements of s(Q) and

A—N()= U{4,;neN}. Q.E.D.

In the remainder of this paper we assume that (.S, X, \) is a measure space,
where S is a o-ring and \ is a measure on .S, and for any K &S we denote by Jg
the indicator function of K. For any K, H €S we write K CH if M(K—H)=0,
K=¢ if A(K)=0. K and H are said to be disjoint if K NH=@. For any real-
valued measurable function a(x), b(x) on X we write a<b if a(x)=<d(x) (a.e.x),
i.e., M({x; a(x)>b(x)})=0 and a=b if a(x)=>b(x) (a.e.x).

2. Lemmas for L,-valued functions, where 1<p<<oco. Let A be a
o-finite measure on S. Throughout this section we assume that E=L,(X, S,
A, R) with 1< p<<oo,
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llall = ( Sla(x)["dx)"" for any acE

and that @ satisfies Assumption 1. (See (1).)

Lemma 2.1. If a,bE and ||la+bl||=||al|+|b||, then there exists a real
number k such that a=kb or b=ka.

For the proof see Yosida [7] pp. 33 and 34.

Lemma 2.2. Let A=s(Q), then there exists yr= L,(Q, A, p, R) such that
QU 4a)=Ara for any acE and 0<+r(0)<1 (a.e.0).

Proof. By Lemma 1.5 for any N there exist feL(Q, A4, u, E) and
Bes(Q) such that

(14) Hsoirn QUza)—QULya)ll . <1/n,
and

lla—Q(Iza)(w)ll = llall—[IQUza)(@)ll  (a..0) on s(Q(f)) -
Therefore by Lemma 2.1 there exists ¥, & L,(Q, A, u, R) such that

Lio(;Q(pa) = yrua
and

(15) 0=y, (@)=1  (aco),
and hence by (14) we have

(16) 1QU @) —paall,<1/n.

Since by (16) +r, is a Cauchy sequence, there exists Jr& Ly(£2, A, u, R) such that

(17) =l >0 as m—> oo
By (16) and (17) we have

QI a) = ra .
By (15) 0=<+r(w)=1 (a.e.w). Cleary «r is independent of the choice of aEE,
since € is a linear operator. Q.E.D.

3. Lemmas for L-valued functions. Let S be a g-algebra and S(\)=
{K; K& S and (K )<<oo}.

DErFINITION 3. A measure space (X, S, \) is said to be licalizable if any
nonempty collection ¢}/ C . S(\) has sup €V S, in the sense that for any K eCp,
MK —sup V)=0 and that if H S and M(K—H,)=0 for any K C}’, then
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A(sup V—H,)=0.

DEerINITION 4. We say that a measure space (X, S, 1) has the finite sub-
set property if for any K &S with M(K)>0, there is H&.S such that HCK
and O<MH)<oo.

DerFINITION 5. A class {f(x, K); K&S(\)} of real-valued S-measureable
functions on (X, S, A) is called a cross-section if f(x, K)=0 on K° and for any

K, HeS(\) Jxaa(®)f(%, K)=Jkna(®)f(* H) (a.x).

Lemma 3.1. Suppose that a measure space (X, S, \) is localizable. Then
for any corss-section {f(x, K); K &S(\)} there exists a real-valued S-measurable
function f such that J¢(x)f(x)=f(», K) (a.e.x) for any K € S()\).

For the proof see Zaanen [8].

DerFINITION 6. Let T be a one-to-one transformation of (X, .S, \) into
itself. Then T is called a bounded measurable transformation if T is a measura-
ble transformation and there exists a positive number & such that (7T (4))=
k\(A) for any A< S.

DEerINITION 7. Let  be a class of bounded measurable transformations T
of X onto X such that 77 (S(A\)=S(A) forany T 9. Then (X, S, A, 9) is
said to be ergodic if A€.S and MAAT "'(4))=0 for any T' 9 imply A(4)=0
or M(4°)=0.

Lemma 3.2. If (X, S, \, 9) is an ergodic space, then for any bounded
measurable function f on X, f(x)=f(T(x)) for any T €9 imply that f(x)=const.

For the proof see Miyadera [3].
Throughout this section we assume that (X, S, A, 9) is an ergodic localiza-
ble measure space with the finite subset property, E=L,(X, S, A, R) with the norm

llall = Sla(x)[dx for any ac€E

and @ satisfies Assumption 1. Let
E* = {a; a€FE and a(x)=0 (a.e.x.)} .

For any a€E we write 0=a if acE*. For a real-valued measurable function
a(x), it is clear that a(7(x)) is also measurable, because of the measurability of
T. If, in addition, a€E, then a(T(x))€E. We shall write T(a)(x)=a(T(x)),
and remark that 7" can be regarded as a bounded operator of E into istelf in the
sense that there exists a real number & such that ||7(a)||<k||a|| for any a€E.
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DeFINITION 8. Let @ be a transformation of Ly(Q, 4, u, E) into itself.
Then @ is said to be covariant under 9 if Q(rT(a))(0) = T(Q(Y(a)(w)) (a.c.0)
for any v L\(Q, A, pu, R), acEand T€9.

Lenma 3.3. Let A=s(Q) and K& S(\). Then
0SQUJWSTx  (acaw).

Proof. By Lemma 1.5 for an arbitrary positive real number & there exist
feLy(Q, A, u, E) and Bes(Q) such that

(18) [ Lscoern @UsSx) — QUS| <<E

and

1T —QUsJe) (@)l = [ Jell=1Q(Je)(@)ll  (a.e.w) on s(Q(f)) -

By the definition of the norm || ||

(19) [1—ero@1an = {1 Jelar—{ 10U o)) 1
(a.e.0) on a s(@(f)),
which shows that
(20) 0= Lo QsJ)@=Jx  (a.c0).
Since € is an arbitrary number, by (18) and (20) we have
0SQULIN@ST:  (aew). QED.

Lemma 3.4. Let A=s(Q). Suppose that Q is covariant under <. Then
there exists r L\(Q, A, u, E) such that Q(Ia)=+ra for acE and 0= (0)=1
(a..0).

Proof. Let C€A(u). For any K & S(\) write
oK) = | QU.JdueE.
By Lemma 3.3 for any K &.S()\)
21 0=e(K)=Jxn(C).
By (21) for any K, H=.S(\)

JeantK) = Jran(e(K NH)+eK—H)) = Jxane(K NH)
= Jeau(K NH)+e(H—K)) = Jane(H),

and hence {¢(K); K=S(\)} is a cross section. By Lemma 3.1 there exists a
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real-valued S-measurable function & on X such that
(22) Jkb=¢K) forany KeSO).

Since @ is covariant under , for any T4
@) w6 = 10D = 7| QUin

=, r@UIan = | QurUndn = | QUiTr s
=Jrumb.

Since (X, S, A, 9) is ergodic, by the definition 7 S(A\)=T"(S(7\)). K is an
arbitrary element of S(\), and hence (23) implies that [ T'(b)=Jb for any K &
S(M\). By the finite subset property of (X, S, A)

(24) T(k)=b.

By (21) and (22) b is a positive bounded function on X, and hence by Lemma
3.2 and (24) there exists a positive number k(C) depending on C and 4 but not
depending on K such that

b= Jxk(C).
Therefore for any C € A(p)

[, QUL TR n = Tk(C).
Since y is o-finite, we can define a real-valued measure 2 on 4 by
Jek(C) = SC QU,Jo)dn forany CEA.

Note that this integral is the Bochner integral, and hence J,k(C)€E. There-
fore 0<k(C)<<oo. Since k is absolutely continuous in the usual sense with
respect to u, there exists J»&L,(Q, A, p, R), which may vary with 4, such that

k(C) = g rd forany CeA.
C
Thereofre for any C€ A
[ QUuTdn = vcdu,

and hence
QUaJx) =¥ Jk -
By Lemma 3.3 0=<+(w)=<1 (a.e.0). Since k( ) is independent of the choice of
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K, sois+r. Any a=E can be approximated by a sequence of simple functions,
and hence we have for any ac E

Q4a) = Va . tED.

4. Lemmas for L.-valued functions. Throughout this section we
assume that E=L (X, S, A, R), for acE

lall = ess. sup{|a(X)|; *€ X}
and @ satisfies Assujption 1. Let
E* = {a;acE and a(x)=0 (a.ex)} .
Lemma 4.1. For any Acs(Q) and K €S,
1R Jx)w)l=1 (a.e.0)

and
JxQUaJ)(@)EET  (aew).

Proof. For any arbitrary positive number € by Lemma 1.5 there exist
feL(Q, A, u, E) and Bes(Q) such that

(25) Mo @Us ) — a0l <E

and

1 Tx—QUpJx)(@)ll = I Jll—1QUsJ)(@)ll  (a.e.0) on s(Q(f)) .
Therefore

(26) e @UsJr)@)I=1  (ae.w)
and
27) Lo Jx QU k) (w)EE™ (a.e.0).

By (25), (26) and (27) we have
RUJ)I=1  (acw)

and
JKQ(IAJK)((D)GE+ (a.e.w).

Lemma 4.2, Let A, Bes(Q) and ACB. Suppose that there exists a
pairwise disjoint class {K, L, M} such that M(K)>0 and N(LUM)>0, where
L can be a set of measure zero. Then for any natural number k

@) B 10U+ Tt (Dl QUL ldn.
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Proof. Since @ is semi-constant-preserving, for an arbitrary positive num-
ber & there exist f, g L(Q, A, u, E) such that

(29) Q) ~La o<
and

(30) 12 Q(g) L]l <3 .
Write

(31) = lIQUJoldn.

Therefore by (29), (30), (31) and the relation ACB

MaJx+Ji (=1 Julld

w(B)

I
2( L Je+QE)+(—1/Qf)du—28
[ IL T+ Q@+l dp
- Igere@+H— i a—2s
=[ 1euuTo+e@+ (-1l dp
+{._1euso+e@+(—1euids
(I gere@+H—vQulidn—2s
2| 10U.J0+Q@+—11e()ldu
+[le@+(—1reulidn—_le@-+(—1yelldn—25—¢

SB QU4 Jx)+Q(g)+(—1)Q()ldp—28—¢
283 1QUT )+ T +H(— D ulld p—45—¢ .

We have proved (28), since § is an arbitrary number. Q.E.D.

Lemma 4.3 Let K and L be disjoint elements of S which are of positive
meaaure. Then for any Acs(Q)

(.00 =0.
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Proof. Suppose that there exists a positive real number € such that

(32) 1\ 1T wlI> 76

By Lemma 1.5 there exist f €L,(Q, A, p, E) and BE A(p) such that BCs(Q(f)),
(33) HLsom@UsJx)—QUaJ)ll<E

and

(34) - @UsT)llL<<E .

By (32) and (33)

(35) 1 Lo o QU Tl > 66

By (34) and (35) we can choose C' € A(u) such that C Cs(Q(f)),

(36) Ha-c QU Jx)ll.<2¢

and

(37) 1| ZeT.QUs Tl >se

By (37) and the definition of the norm || || there exist M €S and a natural
number k such that M C L,

(3%) (=1 [ IeJu QU T neB*

and

(39) 1| ZeJu@U T ull> 56 .

BU C cs(Q(f)), and hence BUC €5(Q). By (36) we have

(40) fo oo QU <2
and
(41) [, ez lldn<ze.

K and M are disjoint, and hence by Lemma 4.2, (38), (39), (40) and (41)

sBUOY={ 1L, Jct(1—4)ulld

2( IRUsJ =1 ulld 2
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2|, uQ@UsJ+(—1ulld u—2¢

2(, MeTuQUaT)+(— 1 ulldn—4e

2|1, JuQUsJ)d u-+(—1Vu(B U C)ull—4¢
=I(—1* | _Ju@Us o) ll+ (B C)—4e

>564 u(BUC)—46 = w(BUC)+¢,

which is a contradiction. Therefore

[ reuaan=0. QED.

Lemma 4.4. Suppose that f,g, h€L,(Q, A, pu, R), f(0)=0, g(w)=0 and
h(w)=0 (a.e.w). Then we have

[eviau< [ Vm+(Ve—g+(rVe—fldu.
Proof.

[evians|+1r-ghvians(rvieif—e)dn
=fwvmtrve-—a+tve—fian. QED.

DrrINITION 9. A class of subsets {K, L, M} is said to be a partition of
Xif K, L and M are pairwise disjoint and A(K)>0, A(L)>0, A(M)>0 and
KULUM=X (a.ex).

Lemma4.5. Suppose that Acs(Q)and K< S. If we can choose L, M€ S
such that X=KULUM (a.e.x), ML)>0, M(M)>0 and MLNM)=0, then
Jovu®UJx)=0. (Note that K may be a set of measure zero.)

Proof. Suppose that
p({o; 1 QULTII>05)>0.
Then there exist positive real numbers § and € such that
p({o; 1] QULJx)|[>48})>3¢ .
Let
F = {o; |].QUJx)lI>43} ,
then p(F)>3€. By Lemma 1.5 there exist fELy(Q, A, pu, E) and BEs(Q)
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such that Bcs(Q(f)),

(42) [Ha-sem @Us k)l <€8
and

43) Qs Jx)— QU Jx)l|. <8 .

By (42) we can choose C € A(u) such that C Cs(Q(f)) and

[a-c QU Jx)ll, <€ .
Let

D = {w; ”]LQ(IBJK)“>38} .
Then by (43)

suF—-D)= QU] —QUaSe)ldn<es,
and hence u(F—D)<€. Since u(F)>3€, u(D)>2¢. Therefore

(+4) [, 1@ ldn> 65
Then by (42) and (44)

[, o QU T > 6655 = 565 .
Let E=(DNs(Q(f)))UC UB, then E Cs(Q(f)),
(45) 1] Qs Jx)ll>5€8 .
and
(46) Ha-r QU Ji)ll <€ .

By Lemma 4.2, Lemma 4.3 and (46) for any ke N
#7) wB)={ s Js+Tut(— 1 ld
[ 10U+ TuH(~ 1ol n—e3
[ 13 Q@Us T+ Tull VI QU T+ (— 1l 63
2 | 1 QU T+ LTl VI QU T+ (— 1/ ] lld w263
[ 1730@sTe) e Julldi A | 172 @5 ) +H(— DL olld w—265

21 Ju QU T dn+ VIV I . QU5 T it (— V(BT 265
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= EV Ml AN(—1)*u(E) || —268 = pu(E)—2€8 ,

where the last equation comes from the fact that M =+@ and L=+@. There-
fore by Lemma 4.4, (47) and (45)

/L(E)+4«932S T QUs )+ 1]V QUsSx)—Ic ] lldp

=[ (7 QT+ Tz (Y565,

which is a contradiction. Therefore

(48) JL Q(IA]K) =0.
Similarly we can prove
(#9) JuQ,Jr) = 0.

By (48) and (49) we have

Jovu®@UaJx)=0. Q.E.D.

Lemma 4.6. Suppose that A= s(Q) and there exists a partition {K, L, M}
of X. Then there exists (= L\(Q, A, p, R) such that 0=+r(0)=1 (a.c.0) and
QI ,a)=+ra for any acE.

Proof. By Lemma 1.5 for any arbitrary number £>0 there exist f&
L(Q, A, u, E) and Bes(Q) such that

(50) (st @UsS x)—QUaS x)l|x<E

and

(B1)  IJx—QUsJx) @)l = [l J:lI—-IQUIsJ) (@)l  (ae.w)ons(Q(f)),
and hence
QI Jx)(w) = |1z ]x)()llJx (a.ex) on s(Q(f)),
which implies
(52) Lo Qs Jx) = Qs Jx) e Jx -

NQUs ) saisn € Ly (2, A, p, R), and hence by (50) and (52) there exists
e L,(Q, A, p, R) such that

(53) Q(IAJX) = ‘P‘fx .

By (51) 0=4r(w)=1 (a.e.0). Let NS and M(N)>0. If MK NN)>0, then
by the assumption that {K, L, M} is a partition of X and Lemma 4.5 we have
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JNnKQ(IA]L) =0, JNnKQ(IA]M) =0, ]NnKQ(IA]K—N) =0

and

Tx-wor@UaTnak) =0.
Therefore by (53)

(54 QUsJwnx) = JnoxQUaJvax) = JnaxQUaJx) = ¥ nax -
If MK NN)=0, then (54) is trivial. Similarly we can prove that

(55) QUsJwar) =¥Jnor
and
(56) QUuSwam) = VInou -

Therefore by (54), (55) and (56) we have Q(I,Jy)=+Jy and 4 is independent
of the choice of N. Since N is an arbitrary element of S and any a=E can be
approximated by a sequence of simple functions, we have for any ac E

QI 4a) = a. Q.E.D.

5. Semi-constant-preserving contracttve projections and condi-
tional expectations. In this section an operator @ is said to satisfy Assum-
tion 2 if
(57) for any AEs(Q) there exists Yy &L, (Q, A, u, R) such that 0 < r(0) <1
(a.e.w) and Q(I a)=njra for any aE E, where + is independent of the choice of a.

In Section 2, Section 3 and Section 4 we used the following conditions
(58), (59) and (60) respectively.

(58) E=L,(X, S, \, R), where 1<p<<oco.

(59) E=L\(X, S, A, R), where (X, S, A, 9) is an ergodic licalizable measure
space and @ is covariant under 4.

(60) E=L.(X, S, A, R) and there exists a partition {K, L, M} of X.

If Q satisfies Assumption 1 (See (1).) and one of the conditions (58), (59)
and (60) is satisfied, then by Lemma 2.2, Lemma 3.4 and Lemma 4.6 @ satisfies
Assumption 2.

Lemma 5.1. Suppose that Q satisfies Assumption 1 and Assumption 2,
then for any yEL(Q, A, p, R) there exists p=L\(Q, A, pu, R) such that for any
ackE

Q*(Yra) = ¢a
and

P(0)=0 (a.e.0) if $p(w0)=0 (a.e.0).
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Proof. It is sufficient to prove this Lemma for 4»=1I, with A€ A(u).
By Lemma 1.13 there exists a sequence {4,; n€N} of pairwise disjoint ele-
ments of (@) such that

A—N(A)= U{4,; nEN} .
By (57) for any #n there exists ¢, L,(, A, p, R) such that for any acE
Qs,a) = pa,
Since @ is contractive,

igallcllall = llpaall =4, all. = p(4,)lall,

and hence

2 {llgull; nEN = u(d) .

Therefore by writting ¢=>1{¢,; nE N} we have pL\(Q, 4, 1, R). Q*(a)=
2{Q(,,a); nEN}=da for any acE. Q.E.D.

Lemma 5.2. If Q satisfies Assumption 1 and Assumption 2, then for anmy
feL(Q, A, u, E) there exists &L, (Q, A, u, R) such that yr(0)=0 (a.e.00)
and s(Q*(\ra)) Ds(Q*(f)) (a.e.w) for any non-zero element a of E.

Proof. First we suppose that f is a simple function and f=1,a,4-+--+1,,a,,
where 4,€ A(p), A;NA;=0 (i +j)and a;€F for i=1,2, ---,n. By Lemma 5.1
there exists ¢, EL,(Q, A, p, R) for any 7 such that ¢,(w)=0 (a.e.0) and Q*(1 ,,a,)
=¢,a;. Letp=1I,y..y,, and a an arbitrary non-zero element of E, then

S(Q*(f)) = s(pat+++bna,) Cs($ra+ -+, a) = s(Q*(Yra)) .

For an arbitrary feL,(Q, A, u, E) and nEN there exists a simple function
f+EL(Q, A, u, E) such that

(38) f=fill<1/n.

In the preceding part of this proof we have proved that for any f, there
exists \Jr, EL(Q, A, u, R) such that

(59) s(Q*(f,) Cs(Q* (¥ a))
and

Yu(@)Z0  (2e0).
Let ¥ = {2 WllL)); nEN} .

Then
(60) $(Q*(yra)) = U {s(Q*(¥»a)); nEN} .
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By (58), (59) and (60) and the fact that @* is contractive

(61) (RO IQ*()ld

s(@*(£)) - U (s(Q*(f,)) ; nEN)

NQ*(f)—Q@*(flldn=Ilf~full i <1/m.

Ss(O*(f))—s(Q*(\Pa))

S s(@*(f)) - U {s(@*(f,)) ; nEN}

Since [|@*(f)(w)l[>0 for any wss(@*(f))—s(@*(yra)) and = is an arbitrary
number, (6}) implies that

W(S(QH()) —(@*(wa) = 0. QED.

Lemma 5.3. Suppose that Q satisfiw satisfies Assumption 1 and Assump-
tion 2 and A, = s(Q)=s(Q*) for any neN. If U{4,; n&N}cA(u), then
U {4,; neN} e5(Q)=s(Q*).

Proof. Since 4,=s(Q*), by the definition of s(@*) there exists f,&
L,(Q, A, p, E) such that 4,Cs(Q*(f,)). Therefore by Lemma 5.1 and 5.2 there
exist \r,, ¢, €L,(Q, A, u, R) and aFE such that Jr,(0)=0 (a.e.0), ¢,(0)=0
(a-e.0), Q*(Yr,a)=¢,a and

S(Q*(fﬂ)) CS(Q*(‘I"n a)) = S(t;b,,) ’

where we can assume that ||y,||,=1/2". @* is contractive, and hence ||,||, <1/2".

Write Y=33{yr,; nEN} and ¢=1{p,; nEN}. Then , p=Ly(Q, A4,
u, R) and

s(Q*(Wa)) = s(¢) = U {s(¢s); nEN} .

Therefore U {4,; nEN} Cs(Q*(yra)). Since U{4,;neN} < A(p), by the
definition of $(@*) U{4,; neN} s(Q*). Q.E.D.

The following lemma is more delicate than Lemma 5.1.

Lemma 5.4. Suppose that Q satisfies Assumption 1 and Assumption 2.
Then for any A< A(u) there exists & L\(Q, A, p, R) such that 0=+r(0)=1
(a.e.0) and Q*(1,a)=Apa for any acE.

Proof. Let A= A(un). Then by Lemma 1.13 there exists a sequence
{4,; nN} such that 4,5(Q) and

A—N(4)= U{4,; nEN} .
By Lemma 5.3 U {4,; n&N} &s(Q), and hence
A—NA)esQ).
By Assumption 2 there exists Y& L\(Q, A, pu, R) such that 0=+r(0)=1 (a.c.00)
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and
QU -y @) = ra .
Therefore
Q*(4a) = QUs-nya) = Ya. QE.D.

Lemma 5.5. If Q satisfies Assumption 1 and Assumption 2, then there
exists a o-subring B of A such that

@ Q*(f)=1r",

(ii) No(f) = Na(f)

and

(1if) Q(f)eL(Q, B, u, E) forany feL(Q, A, pu, E).

Proof. (i) By Lemma 5.4 for any y€L,(Q, A, p, R) there exists ¢E
L,(Q, A, p, R) such that

Q*(yra) = ¢pa  forany a€E,

and that 0<¢(w)<1 (a.c.0) if Y»=1, for some A= A(u). If we fix a, @* can
be regarded as an operator of L,(Q, 4, u, R) into itself, which satisfies the
assumption of Lemma 1.2. Therefore there exists a o-subring B of A such
that Q*(yra)=+Ba for any »=L,(Q, 4, u, R) and any a = E. Since any
fEL(Q, A, p, E) can be approximated by simple functions, @*(f)=f& for any
feL(Q, A, u, E).

(i) It is sufficient to show that s(@)=s(( )B). If A<s(Q) then there exists
fEL(Q, A, u, E) such that

(62) Acs(Q(f)) -
By Lemma 1.11 and the preceding part of this proof
(63) Q(f) = @*Q() = Q(f)®.

By (62) and (63) we have A<s(( )®). On the other hand if 4&s(( )B), then
there exists f €L,(Q, A, p, E) such that

(64) AcCs(f?).
By the definition of @*and the preceding part of this Lemma
(65) ff = Q*(f) = Q(f—No(f)) -

By (64) and (65) we have A&s(Q).
(i) Since Q(f)—QX(Q()=Q(f?), Qf)EL(, B, 1, E) QE.D.

Theorem 1. (i) If Q satisfies Assumption 1 and Assumption 2, then there
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exists a o-subring B of A such that Q(f)=fZ+QWINo(f))=fB+Q(Ng(f)) for any
fel(Q, A, u, E).

(ii) If there exists a o-subring B of A and a contractive linear operator P of
L(Q, A, u, E) into L (Q, B, p, E), then the operator defined by Q(f)=f2+
P(Ng(f)) for any f €L\(Q, A, u, E) satisfies Assumption 1 and Assumption 2.

Proof. (i) By Lemma 5.5 and the definitions of @*, Ny and Np there
exists a g-subring B of A such that

Qf) = @*(f/)+QWe(/)) = fF+QWNK/)) -

(ii) By the fact that P(f)eL(Q, B, u, E) for any feL,(Q, Ap, p, E) and
properties of operators ( )Z and Np and Lemma 1.10 we have

(66) ()%P=P,
(67) NgoP =0,

(68) ()PoNa=0,

and

(69) Npe( )P =0,

which imply that

(70) Qo( )% = ()Pe( )P+PoNpe( )" = ().

By (66), (67) and (69)

QoQ(f) = (fP+PWIN(f)))*+PNs(f*+P(Ns(/)))
= fP+P(N(f)) = Q(f) -

Therefore @ is a projection.
By (68) and the fact that ( )Z and P are contractive

NRUA)I=IfEl+INPW (=1 E—Ns(f))2l .+ IIP(Np(f)I]2
Sf=NpOI+INs()l:
=“Is(f)—NB(s(f))fllL+”INB(s(f))f”L = ||f”L y

and hence @ is contractive.

Next we are going to show that @ is semi-constant-preserving and satisfies
Assumption 2.
Let Aes(Q), acE and £€>0. By the definition of s(@) there exists
fEL(Q, A, p, E) such that ACs(Q(f)). By Lemma 5.5 Q(f)eL,(Q, B, u, E),
and hence

(71) AcsQ(f)) = (@) -
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Conditional expectation operators are semi-constant-preserving, and hence by
(71) there exists g L\(Q, A, p, E) such that

(72) 11,85 —14all.<E .
By (70) and (72)
11, Q") —1,all.<€,

which implies that @ is semi-constant-preserving. Since by (71) and the defi-
nition of Np  Np(I,a)=0,

QL4a) = (I4a)P+P(Np(l4a)) = (14a)? = (11)%a,
and hence @ satisfies Assumption 2. Q.E.D.

6. R’valued case. Let E=L.(X, S, )\, R). If we cannot choose K, L
and M such that {K, L, M} is a partition of X, then E =R with the norm
[l#||=|®| for xR or E==R? with the norm ||(x, y)||=|x|V | y| for (», y)ER
If E=R, then we can use Lemma 2.2. Therefore our next aim is to consider
the case when E=~R?. 'Throughout this section we assume that E=R? with the
norm [|(x, ¥)||=|x| V| y| for (x, y)eR?. Note that for any feL(Q, A, y, E)
there exist f,, f,€ L,(Q, A, p, R) such that flo)=(fi(w), fi(®)). Throughout
this section we assume that @ is a linear operator of L ,(Q, A, u, E) into itself.

Lemma 6.1. Let Q satisfy Assumption 1 and Ass(Q). If Q((14, 1,))=

(fv fo) and Q((Ly, —L1))=(8y, &), then fi=f» 8i=—8» 0=f(0)=1 (a.c.0) and
0= g(0)=1 (a.e.0).

Proof. By Lemma 1.5 for any £>0 there exist f €L,(Q, A, p, E) and
Be A(p) such that BCs(Q(f)),

(73) Hscaem @Is(1, 1))—Q(L4(1, D)<
and
(74) lI(1, 1)—Q(Is(1, 1))(e)Il

= [|(1, DII-IQUIx(L, D)@l  (a.e.w) on s(Q(f)) -
Let (hy, b3)=Iy00;@(I5(1, 1)). Then by (74)
(1, 1)— (A, A)I1 = 1I(L, DI—II(Ry RII,
and hence we have
[1—hyw) |V [1—hw)] = 1—|h(e)| V |h(o)] ,
which shows that hy=h,, 0<h(w)<1 (a.c.0). Therefore by (73)
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“(fl) fZ)_(hl) hl)”L<8 )
which shows that

fi=f, 0=f(0)=1 (aco),

since € is an arbitrary number.
Similarly we can prove that g)=—g, and 0=g(0w)=1. Q.E.D.

If an operator @ satisfies Assumption 1, then by Lemma 6.1 we can define
linear operator @, and @, of L,(Q, A, u, R) into itself by

(75) Q*(f, f) = (Q(f), €(f))
and
(76) Q*(fi—f) = (Qf),—Q:S)) -

Then by the definitions of €, and @,
(77) Q*(f, &) = (1/2)Q*(f+z+f—g f+g—(f—g))
= (112)(Quf+8)+Q:f—8), Qu(f+8)—QAf—2)) -

Lemma 6.2. Let Q satisfy Assumption 1. Then Q, and Q, are contractive
projections and for any A< s(Q) and €>0 there exist f, ge L\(Q, A, p, R) such that

(78) “IAQl(f)_IA”L<8
and
(79) [14QAg)—1L4ll.<E .

In particular Q, and Q, are semi-constant-preserving.

Proof. Let Aes(Q) and £€>0. By Lemma 1.1 @* is a semi-constant-
preserving contractive projection, and hence @, and @, are contractive projec-
tions and there exist f’, g'€L,(Q, A, u, R) such that

(80) 1L Q*(f', &) —La Ip)lIL<E .
By (77)

SA 1Q((f'+£)/2)+QL(f—&"2)—11V |Q((f +£")/2)
—((f'—¢")2)—-1ldu<e,

which implies that

[ 10qr+eyn—tlan<e,
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and by writing f=(f"+g")/2 we have

(78) Q) —Lall.<€.

Similarly we can prove that

(79) 114Qx(g)— 14l <€ .

Clearly s(@)=s(Q*)Ds(Q,), s(&,), and hence by (78) and (79) @, and @, are
semi-constant-preserving. Q.E.D.

Since @, and @, are operators of L,(Q, A, u, R) into itself we can use the
result of Section 1 and Section 2 for @, and Q..

Lemma 6.3. Let Q satisfy Assumption 1. Then there exist o-subrings
B and C of A such that for any f €L\(Q, A, u, R)

Q(f) =17,
QA(f) =f°
and
Ny(A) = No(A) = No(4) ~ for any A A(y).
Proof. By Lemma 6.2 @, and €, are semi-constant-preserving contractive

projections of L,(Q, A, u, R) into itself, and hence by Lemma 2.2 and Theorem
1 there exist o-subrings B and C such that for any f€L,(Q, A, u, R)

(81) Quf) = fP4+Q:(Ne,(f))
(82) Quf) = f°+QANo,(f))
(83) No,(f) = Nx(f)

and

(84) NoJf) = N(f) -

Let A=s(Q). By (78) and (79) for any nE N there exist f,, g,EL\(Q, A, p, R)
such that

4 Q(fr)—Lall:<1/n

and

14 QxAg)—Lall.<1/n.
Therefore

w(A—s(Q(f))<1/n
and

w(A—s(QAg.))<1/n.
Write 4,=ANs(Q,(f,)).- Then 4,€5(Q,) and
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(85) A= U{d,;nEN} (ae0).

By Lemma 2.2 and Lemma 6.2 @, satisfies Assumption 1 and Assumption 2,
and hence by (85) and Lemma 5.3 A=s(Q,). Since 4 is an arbitrary element
of 5(Q), we have proved that s(Q)Cs(Q,). By the definition of @, and Lemma
1.11 (@) Cs(@*)=s(Q). Therefore we have

(86) S(Q) = s(€)) -
Similarly we can prove that
(87) S(Q) = s(Q2) -
By (86) and (87) togehter with (83) and (84) we have
(88)  Ne(A) = No,(4) = Noy(Ad) = Ny(4) = No(4) .
By Lemma 1.11 Q*oNy=0, and hence by (75) and (76)
(89) Q,oNy, =0
and
(90) 0,0Ng = 0.
By (81), (82), (88), (89) and (90)
Q) =1"
and
Qf)=f¢ forany feL(Q, A, s, R). Q.E.D.
By (77) and Lemma 6.3 we have
1) Q*(f, &) = (L2)(fP+8"+f =&, fP+8"—f+£°) -

Let us denote the operator, expressed in the right hand side of the above for-
mula, by F(B, C).

Lemma 6.4. For any o-subrings B and C with Ng= N¢ the operator
F(B, C) satisfies Assumption 1.

Proof. 1Itis clear that F(B, C)oF(B, C)=F (B, C), and hence F(B, C) is
a projection. Next we are going to show that F(B, C) is semi-constant-preserv-
ing. Let ACs(F(B, C)(f, g)) for some f, g L,(Q, A, u, R) and a=(a,, a,)EE.
Then by the definition of F(B, C) we can choose sequences {B,&B(u); n& N}
and {C,&C(u); nE N} such that

s(F(B, C)(f, g))c U {B,; neN} U {C,; nEN} .
Then ACU{B,;neN}U{C,; neN}. By the definition of N, we have
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N¢(A)NC,=@ for any ne N, and hence
Ne¢(A)c U {B,; nEN} .

Since Np(A)=N¢(A), Ng(A)=Ng(A)c U {B,; n=N}. By the definition of
Ng we have Ng(A) N B,=@ for any & N, and hence

(92) Ng(A) = NgA) =0 (ac.w).

Therefore by (92) and the definitions of Ng(A4) and Ng(A) for any >0 there
exist Be B(u) and CEC(u) such that

(93) u(A—B)<é]|lal
and
(94) w(A—C)<&fl|all .

By (93), (94) and the fact that Iy(/5yc)B=1Ip and Io(I5yc)®=1; we have

HAF(B, C)I5ucay, Ipucar)—1x(a;, @)l
=[1(1/2)LaLsuc)*(a+ a5 at+ar)+14Ipuc) (@ —ar —ay+a))
—I(a), ar)llz
SNA/2)Lals(Lavc)B(@r+ay ayta)+1,1(Ipyc)%(a—ay —a+ay))
—I (@, a)|l.+2&
=|(1/2)(Lsls(ar+ @z ay+a))+141c(a,—ay —a+ay))—1,(a;, @)l +28
SN1/2)U sy +-az, a,+a2)+1s(0)—a, —ay+a5))—1 4(ay, @)l +4E
=4¢,

and hence F(B, C) is semi-constant-preserving, since € is an arbitrary number.
Next we are going to show that F(B, C) is contractive. Since

||V Iyl = (1/2)(Ix+y[+|x—y|)  forany x,yER,
IFB, C)(f, Ol = (1/2) | /24821 —g¢ | V | F5-+g2—F+£° | di
= 12) | (1 f=+gm 41 £~
< (1) [ (1 F+1+ 1 72
= (I 1Vig1dn = 1f, 9z

which shows that F(B, C) is contractive. Q.E.D.

Obviously L(B, C)={F(B, C)(f, g); (f, 8)€L,(Q, A, p, E)} is a normed
linear subspace of L,(Q, A, u, E)}.
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Theorem 2. Let Q be a linear operator of L\(Q, A, p, E) into istelf. Then
Q satisfies Assumption 1 if and only if there exist o-subrings B and C of A with
Np=Ng (4s a consequence Ag=Ag.) and a contractive operator P of LS, Ap,
u, E) into L(B, C) such that for any f, gL,(Q, A, p, R)

Qf &) = (12)(f*+8°+f°—g° [P+8"—f+8°)+PWNs(f, 8)) -

Proof. Suppose that @ satisfies Assumption 1. Then by Lemma 6.3 and
the definitions of @* and N, we have

(95) Np= N¢= N,
and

(96)  Qf, &) = Q*(f, §)+QNolf, £))
= (1/2)(fP+g5+f°—¢° fP+g5—f°+8°)+Q(N(f, 8)) -

By (95) Ap=A¢, and hence

(97) Nu(f, ©)eL(Q, Ag, u, E).
By Lemma 1.11 and Lemma 6.3 for any f, g&L,(Q, 4, p, R)
(98) Q(f, &) = Q*Q(f, &) = F(B, C)-Q(f, &) €L(B, C).

Denote by P the restriction of @ to L,(Q, Ap, u, E), then by (96), (97) and
(98) P is a contractive operator of L,(Q, A, u, E) into L(B, C) and

Qf, &) = (112)(fP+g"+/ =5, [P+8°—f*+&°)+ PN &(f 8)) -

Conversely suppose that there exist o-subrings B and C of A with Np=N,
and a contractive operator P of L,(Q, Ap, u, E) into L(B, C) such that

Q(f, &) = F(B, C)(f, &)+P(N&(1, 8)) -
Let A=s(Q), ac€E and €>0. Since F(B, C)oF(B, C)=F(B, C),

(99) F(B,C)f,g)=(f,g) forany (f,8)€L(B,C).
Since P(f, g)€L(B, C), by (99) we have
(100) F(B,C)oP=P.

By the definition of N and Ng and the condition that Np=N, we have
Npo( )= N¢o( )°=0,
Nego( )2 = Npo( )2=0,
()BoNg = ( )°Neg =0
and
()eNg=()%Ng=0,
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and hence by the definition and properties of F(B, C) and P we have

(101) NgoF(B,C) = N¢goF(B,C)= 0,
(102) NgoP = NgoP =0

and

(103) F(B,C)cNp = F(B,C)cNs;=0.

For convenience’s sake we denote F(B, C) by F. By Lemma 6.4 and (100)
(104) FoQ = Fo(F+PoNg) = FoF+FoPoNp= F+PoNp=@Q.
By (101), (102) and (104)

QoQ = FoQ+PoNgo(F+PoNg) = @+ PoNgoF-+PoNgoPoNy = Q,

which shows that @ is a projection. By (103) and the fact that F and P are
contractive we have

IQ(f, &Il = IF (f, &)+PNx(f, 8l
= [[F((/, §)—Na(f, 8)+FNg(f, §)+FPNp(f, g)li.
= IF((f, &)—Ne(fs DI+ IPNu(f, &)l
= I/, &)—Na(f, Ol +1IN(f, &l = I(f, &Iz,

which implies that @ is contractive. Next we are going to show that @ is semi-
constant-preserving. Let A€a(Q), a€E and €>0. Then there exist f, g&
L(Q, A, u, R) such that AcCs(Q(f, g)). By (104)

AcCs(Q(f, 8) = s(F=Q(f, 2)) ,
and hence A€s(F). By Lemma 6.4 there exist f', g'€L\(Q, A, p, R) such that
(105) L F(B, C)f', g )—1L4all.<E.
By Lemma 6.4 and (101)

QoF = (F+PoNp)oF = FoF+4+PoNgoF = F+0=F,
and hence by (105)
ILQEFEB, C)f', &) —14all.<E,

which shows that @ is semi-constant-preserving. Q.E.D.
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