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Introduction. Let (Ω, A, μ) be a measure space, where A is a σ-ring
and μ is a σ-ίinite measure on A, (X, S, λ) a measure space and E a real
Banach space. We consider semi-constant-preserving contractive projections of
Lj(Ω, Ay μ, E) into itself. If (Ω, A, μ) is a probability space and £ is a strictly-
convex Banach space, then Landers and Rogge [2] proved that such operators
coincide precisely with the conditional expectation operators. If (Ω, A, μ) is a
probability space and E—LP(X, S, λ), where p=l or oo, then Miyadera [3]
and [4] proved that such operators coincide precisely with the conditional ex-
pectation operators under some additional conditions. In this paper we deal
with the case when (Ω, Ay μ) is a general measure space, where A is a σ-ring and
λ is a σ-finite measure on A. Substituting constant-preserving property by
semi-constant-preserving property we can prove theorems which are generali-
zations of characterization theorems in Landers and Rogge [2], Miyadera [3]
and [4].

1. Definitions and useful Lemmas. Let (Ω, A, μ) be a measure space,
A(μ)~{A^A; μ(A)<oo} and E a real Banach space with the norm || ||.
Note that E can be the class R of real numbers. Let N be the class of natural
numbers. For any A, B^A we write AdB if μ(A—B) = 0 aud A = B if
μ{(A-B) U (B—A))=0. A,B<ΞίA are said to be disjoint if μ(A Π 5 ) = 0 . We
suppose that μ is σ-ίinite, i.e., for any A^A there exists a sequence of sets
{An\ TzeiV} such that An<=A(μ) and A= U \An; n<=N}. For any . 4 E 4 we
denote by IA the indicator function of A and by A=0 we mean μ(A)=0. Let
L^Ω, Ay μy E) be the calss of E-valued Bochner integrable functions, which is a
Banach space with the norm || | | z defined by

L = \ \\f{ω)\\dμ for any / e Z ^ Ω , Ay μ, E).

For any / G L ^ Q , Ay μ9 E) we denote {ω;/(ω)φ0} by s(f) and for any linear
operator Q of L^Ω, Ay μ, E) into itself we denote S(Q) = {A^A(μ); there
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eixsts / e L ^ Ω , A, μ, E) such that Άds(Q(f))}. For the definitions and pro-
perties of Bochner integral, see Hille and Phillips [1].

DEFINITION 1. Let/eZ^Ω, A, μ, E). For a σ-subring B of A, a function
g is called the conditional expectation of/given B if g^L^Ω, B, μ, E), and

J gdμ= \ fdμ for any
B JB

where the integral is the Bochner integral. We denote by fB the conditional ex-
pectation of/ given B. For any φ^L^Ω, A, μ, R) we define φα eL^Ω, A> μ, E)
by (φa)(ω)=φ(ω)a for any ωGΩ and β G £ Then it is clear that (φά)B=φBa.

DEFINITION 2. Let P be a linear operator of LX(Ω A μ, £) into itself.
P is said to be contractive if

\\P\\ = sup{\\P(f)\\L;f<=L1(Ω,A,μ,E) and | |/| |L = 1}£1,

semi-constant-preserving if for any « G £ , £>0, A^S{P) there exists/eL^Ω, .A,
μ,, £) such that

and α projection if P o P = P , where (P<>P)(f)=P(P(J)) for any / ε φ , A, μ, £).

In this paper an operator P is said to satisfy Assumption 1 if
(1) P is a semi-constant-preserving contractive projection of L^Ω, A, μ, E)
into itself.

Lemma 1.1. Let B be a σ-subring of A. Then for any / ε L ^ Ω , A, μ, 2?)
^e conditional expectation fB of f given B exists uniquely up to almost everywhere
and the conditional expectation operator ( ) B satisfies Assumption 1.

Proof. Let / ε L ^ Ω , A, μ, £). If there exists B^B such that s(f)cB,
then by a theorem in Schwartz [5] fB exists uniquely up to almost everywhere
and I \fB\ \L ̂  I I/I \L and (/*)*=/* For an arbitray / €Ξ L^Ω, A, μ, E) there exists

such that

Clearly (IB-Cf){ω)=0 (a.e. ω) for any B^B. Since s(Icf)dC, there exists

t cfμ ί
JB JB

Therefore {Icf)B==fB- The uniqueness of fB is obvious from the properties of
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J \\f\\dμ^\ \\lcf\\dμ^\ ll(/c/)%*ll = J UFUdμ,

and hence ( ) B is contractive. Since s(f)dC,( ) B is a projection. Next we
are going to prove that ( ) B is semi-constant-preserving. Suppose that there

, A, μ, E) and A^A(μ) such that A<zs((f)B). Let U G £ Write

Bn= {ω; | | /*

then

s{fB) = UiB

For any positive number £ there exists n^N such that

\\a\\μ(A-Ba)<6.

Then

\\IA{IBa)B~IAa\\L = / I k n ^ -

We have proved that ( )B is semi-constant-preserving. Q.E.D.

Lemma 1.2. Suppose that P is a contractive projection of L^Ω, A, μ, R)
into istelf and 0^P(IA)(ω)^l (a.e.ω) for any A^A{μ). Then there exists a
σ-subring B of A such that P=( ) B .

For the proof see Wulbert [6].

Lemma 1.3. Suppose that P is a contractive projection of Z^Ω, A, μ, E)
into itself. Then Pis semi-constant-preserving and ΩGί(P) iff P is constant-
preserving in the sense used in \2\, [3] and [4], i.e., P(IQa)=Iaa for any a^E.

Proof. First we suppose that P(/Ωα)=/Qα for any « G £ . It is clear that
Ω G s(P). For any A (= s(P)

\\IAP(IQa)-IAa\\L = \\IAa-IAa\\L = 0 .

Therefore P is semi-constant-preservig.
Conversely we suppose that P is semi-constant-preserving and ΩGί(P) .

For any n^N there exists/nGLx(Ω, ^1, μ, E) such that

( 2 ) \\P(f.)-Iaa\\L<V».

Since P is contractive,

\\P(fn)-P{Iaa)\\L<\ln,

and hence by (2) and arbitrariness of n

P(IQa)=IQa. Q.E.D.
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In the remainder of this section we assume that Q satisfies Assumption 1.

Lemma 1.4. Let K, A<=Ξ A(μ), K\JA<= s(Q) and atΞE. Then

\\a-Q{IAa){ω)\\^\\a\\-\\Q{IAa){ω)\\ (a.e.ω) on K.

Proof. Since K\jA^s(Q) and Q is semi-constant-preserving, for any
£>0 there exists/eL^Ω, A, μ, E) such that

( 4 )

Since Q is a contractive projection, by using (4) twice we have

\\Q(f)-Q(IAa)\\L^\\Q(f)-IAa\\L

^S+\\IAQ{f)-IAa\\L+\\IAQ(f)\\L-\\IAa\\L+\\Ia.AQ(f)\\L

^26+\\IAQ(f)\\L~\\IAa\\L+\\I^AQ(f)\\L

=26+\\Q(f)\\L-\\IAa\\L

S2ε+\\Q(f)\\L-\\Q(IAa)\\L.

Therefore

( 5 )

Since

by (5) we get

( 6 ) \\

From (4) and (6) we get

\\Ixa-IκQ{IΛa)\\L&46+\\Iκa\\L-\\IκQ{IΛa)\\L.

Since 8 is an arbitrary positive number,

\\Iκa-IκQ(IAa)\\L = \\Iκa\\L-\\IκQ(IAa)\\L .

Therefore

\\a-Q(IAa)(ω)\\ = \\a\\-\\Q(IΛa){ω)\\ {a.e.ω) on K.

Q.E.D.

L e m m a 1.5. Let A^s(Q) and a^E. Then for any positive number 6

there exist/eL](Ω, A, μ, E) and B^s(Q) such that
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\\IAa-IBa\\L<£ ,

and

|| = \\a\\-\\Q(IBa){ω)\\ (a.e.ω) on s(Q(f)).

Proof. For any £>0we can choose a positive number δ such that 4δ<£.
Since Q is semi-constant-preserving, there exists / e / ^ Ω , A, μ, E) such that

( 7 ) \\IAQ{f)-IAa\\L<S

Write B=A Π s(Q(f)) Therefore

( 8) \\IΛ*-IB*\\L = \\lAa-IΛ

Since Q is contractive, by (8) and the triangle inequality

a)\\L+\ \Ia.MW Q(IA a)\\L

miBa-IAa\\L+\\Ia.sWf))Q{IAa)\\L

where the last equality comes from the fact that

\\iQ-s«Hf»Q(iAa)-Q(f)\\L = ll/o-.«κ/)

By the triangle inequality and the fact that Q is contractive,

SS+\\Q(IAa)-Q(f)\\L+\\Is(Q(f))Q{La)\\L-\\Q{f)\\L

^S+\\IAa-Q(f)\\L+\\IAa\\ι-\\Q(f)\\L.

By (7)

δ+\\IAa-Q(f)\\L+\\IAa\\L-\\Q(f)\\L

^38+\\IAQ(J)-Q(J)\\L+\\IAQ(f)\\L-\\Q{f)\\L=38<£.

We have proved that

and hence by (8)
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There exists a sequence {Kn\ n<=N} such that Kn<=A(μ) and s(Q(f))= U {Kn;
n(=N}. Since 5 U Kn <= s(Q) for any n <Ξ iV, by Lemma 1.4

)(α>)|| (a.e.ω) on i£Λ .

Therefore

\\a-Q(IBa)(ω)\\ = \\a\\-\\Q(IBa)(ω)\\ (a.e.ω) on s(Q(f)).

Q.E.D.

For any A^A(μ) let

ft = sup iμ(C)\ C GA, CC^4 and μ(C PιD) = 0 for any DEΞS(Q)} .

Then there exists E^A such that £ c A μ(£ Π D) = 0 for any D^s(Q) and
μ(E)^=k. We write NQ(A)=E. Clearly for any A<=A NQ(A) is unique up to
sets of measure zero. When just one operator Q is under discussion, we omit
the letter Q from symbols and write N instead of NQ.

Lemma 1.6. Let Any Bm^A(μ) for any n,m^N and U {An\
U {Bm; tn(ΞN}. Then U {N(An); n(ΞN} c U {N(BM);

Proof. For any », tnεΞNN(An) Π £ w Gil(μ), ΛΓ(̂ Λ) Π BwcJ5m and (N(An) Π
J Π D = 0 for any D e ί(Q), and hence ΛΓ(̂ 4M) Π Bm <zN(Bm). Therefore

U (N(An); n<=N} = U {ΛΓ(Λ) Π ^ ; n, meiV} c U

Q.E.D.

We can define N(A) for any ^4e^4, even if μ(A)=oo. Let ^4nG^4(At) such
that A=\J{AH; n<=ΞN} and let N(A)=\J {N(An); n£ΞN}. By Lemma 1.6
JV(iί) is independent of the choice of the sequence {An\ n^N}. For any / G
L^Ω, ^1, At, £) let N(f)=IN(s(f))fy then JV is a mapping of Lj(Ω, ^4, /̂ , E) into
itself.

Lemma 1.7. Let A,B(=A with AcB and f<= Z^Ω, A, μ9 E). Then
N(A)=N(B)ΠA, N(A)dN(B), N(N(A))=N(A) and N{s(f))=s(N(f)).

Proof. We can choose sequences {An\ n^N} and {Cm; m^N} such
that AnyOm<=A(μ) for any nym^N and A=\} {An\ n(=N} and B—A =
U {Cm ;m(=N}. By the definition of N we have N(B) Γ\A=(\J {N(An) U N(Cm)
n,ffieJV})rii4=U{iV(i4ll);»eiV}=JV(i4), and hence N(A)(ZN(B). Since
AΓ(^)C^, ΛΓ(JV(i4))=ΛΓ(i4)niV(iί)=JV(i4). N(f)=IN(s(f))f, and hence s(7V(/))
=iV(.(/)). Q.E.D.
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Lemma 1.8. The family {N(A); A^A} is a σ-subήng of A.

Proof. Let A, B, An(ΞA for any n<=ΞN and let C = U {An\ n^N} U A UB.
Since Λ B, A-BdC, by Lemma 1.7 iV(^)-ΛΓ(β)-(^nΛΓ(C))
(-4—J5)ΠiV(C)=iV(il-jB). U {An\ n^N}aC, and hence iV( U \AH;
U {Λ; ns=N} f]N(C)= U {ΛΠΛΓ(C); n£ΞN}= U {ΛΓ(Λ); ^eiV}. Q.E.D.

Lemma 1.9. 77z£ operator N of Z^Ω, ^1, ̂ , i?) into itself is a contractive
projection and | | /- iV(/) | |^ | | / |L/or anyf^L^ A, μ, E).

Proof. First we will show that N is a linear operator. Since s(af)=s(f)
for any/eL^Ω, A, μ, E) and αei? with αΦO,

iV(α/) - IN(s(af))af= aIN(s(f))f= aN(f).

For any/, G ^ Ω , 4̂, μ, £) let C = J ( / ) U<^). Since </), <^), s(f+g)(zC, by
Lemma 1.7 and the definition of N

N(f+g) = l

Next we are going to show that iV is a contractive projection. By Lemma 1.7

( 9 ) s(N(f)) = N(s(f)).

By (9) and Lemma 1.7

INm$(mN(f)

and hence ΛΓ is a projection.

and hence JV is contractive.

. Q.E.D.

We define an operator Q* of L^Ω, A, μ, £) into itself by Q*(/)=
(Q-Q°N)(f)=Q{f-N(f)) for any / G L ^ Ω , A, μ, £). Since ΛΓ is linear, Q*
is a linear operator.

Let C be a σ -subring of A and P the conditional expectation operator given
C. For any AEΞA and / G L ^ Ω , A, μ, £) we denote ί(P), Λ^P(^) and ΛΓp(/) by
s(( )C),NC(A) and Λ^c(/) respectively. Let Λc= ΦC{A); A<=A}y then by
Lemma 1.8 Ac is σ-subring of A. Note that for any D G i w e have D G S(P)
iff there exists C G C such that DdC.
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Lemma 1.10. Let C be a σ-subήng of A. Then

( )CoNc = Nco( γ

Proof. Let P = ( ) c and /eL^Ω, A, μ, E). By the definition of Nc for
any A<=A and £>£*(( ))c = s(P) we have ΛΓC(^4)ΠD = 0. D(Ξs(P) iff there
exists C^C such that D c C , and hence for any A^A and C e C

(10) iv c ( i i )nc = 0.

(Nc(f))c = (INc(g(f»f)c = 0, since by (10) iV c (</))nC=0 for any C G C .
s(fc)^C, and hence by (10) we have

Therefore

= 0 Q E D.

Lemma 1.11. Operators Q, Q* and N satisfy the conditions NoQ=zQ*oN=
0, Q*oQ=Q, Q*oQ*=Q* and s(Q)=s(Q*).

Proof. By the definition of N we have μ(N(s(Q(f)))=0, and hence

(11) NoQ(f) = INU(Q(f))Q(f) = 0.

By Lemma 1.9 N is a projection, i.e., N°N=N, and hence by the definition of Q*

Q*oN = (Q-QoN)oN = QoN-QoNoN = 0 .

By (11)

Q*oQ = (Q-QoN)oQ = QoQ-Qo(NoQ) = QoQ = Q ,

and hence

Q*oQ* = Q*o(Q-QoN) = (Q*oQ*)-(Q*oQ)oN= Q-QojV = Q* .

By the definition of Q* for any/eZ^Ω, A, μ, E)

(12) <?*(/) = Q(/-W))>

and by the preceding part of this lemma Q=Q*°Q, and hence

(13) Q(/) = 0 oO(/).

By (12) and (13) we have J ( Q ) = J ( Q * ) . Q.E.D.

Lemma 1.12. Q* w semί-constant-preservίng contractive projection and
Q{IAa)=Q*(IAa)for any AtΞs(Q*) and a^E.

Proof. Let « G £ , ε > 0 and A(Ξs(Q*). By Lemma 1.11 -4ej(0), and
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hence by the fact that Q is semi-constant-preserving we can choose

L^Ω, Ay μy E) such that

By Lemma 1.11

Q(f) = Q*°Q(f),

and hence

\\IAQ^Q(f)~IAa\\L<S.

Therefore Q* is semi-constant-preserving. Since A^s(Q), N(A)=0. There-

fore by Lemma 1.9

Q*(IΛa) = Q(IAa-N(IAa)) - Q(IAa).

L^II/IIL, and hence Q* is contractive.

By Lemma 1.11 Q*°Q*=Q*, and hence Q* is a projection. Q.E.D.

Lemma 1.13. For any A^A(μ) there exists a pairwise disjoint sequence

{An<Ξs(Q)\ n<aN} such that

Proof. Let k=sup{μ(C); O^A> CdA and there exists Cn^s(Q) for each

n<=N such that C c U {Cn\ n^N}}. Then there exist D G 4 and Dn<=s(Q) for

any n<=N such that DczA, Dc U {Dn; n^N} and μ(D)=k. By the definition

of k we have μ((A—D)Γ\E)=Q for any E^s(Q), and hence by Lemma 1.6 we

have A-D(zN(A). Therefore

A-N{A)aD(Z U {Dn; ntΞN} .

Write A^Anφ^UiDt i^n-l}). Since An EΞs(Q)y μ(Anf] N(A)) = 0.

Hence the sequence {An\ n^N} consists of pairwise disjoint elements of s(Q) and

A-N(A) = U {An; ntΞN} . Q.E.D.

In the remainder of this paper we assume that (5, X, λ) is a measure space,

where S is a cr-ring and λ is a measure on S> and for any ZG*Swe denote by Jκ

the indicator function of K. For any K,H^Swz write KczH'ή X(K—H)=0,

K=0 if \(K)=0. i£ and if are said to be disjoint if i£ Π^-=0. For any real-

valued measurable function a(x), b(x) on X we write a^b if α(Λ:)^δ(x) (a.e.x),

i.e., X({#; a(x)>b(x)})—0 and tf=δ if β(^)—δ(x) (a.e.x).

2. Lemmas for Z^-valued functions, where l<p<oo. Let λ be a

σ-finite measure on S. Throughout this section we assume that E=Lp(X> S,

λ, Λ)with l<p<ooy
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| |α|| = ( \\a(x)\pd\)1/p for any

and that Q satisfies Assumption 1. (See (1).)

Lemma 2.1. // a, b^E and ||α+ft|| = ||α|| + | |δ| |, then there exists a real
number k such that a=kb or b=ka.

For the proof see Yosida [7] pp. 33 and 34.

Lemma 2.2. Let A^s(Q), then there exists ψ^L^Ω, A, μ, R) such that

Q(IAa)=ψafor any a^E and 0^ψ(ω)^l (a.e.ω).

Proof. By Lemma 1.5 for any n^N there exist / e L ^ Ω , A, μ, E) and
B<=s(Q) such that

(14)

and

\\a-Q(IBa)(ω)\\ = | |α| |-| |Q(75α)(ω)|| (a.e.ω) on s(Q(f)).

Therefore by Lemma 2.1 there exists ψ ^ L ^ Ω , A, μ, R) such that

and

(15)

and hence by (14) we have

(16) \\Q(IAa)-ψna\\L<lln.

Since by (16) ψn is a Cauchy sequence, there exists ψGL^Ω, A, μ, i?) such that

(17) IIΨ-ΨJL-*O as n - > o o .

By (16) and (17) we have

Q(IAa) - ψα .

By (15) 0^-v/r(ω)^l (a.e.ω). Cleary ψ is independent of the choice of «
since Q is a linear operator. Q.E.D.

3. Lemmas for /^-valued functions. Let S be a σ-algebra and S(X)=
{K; KeίS and X(K)<oo}.

DEFINITION 3. A measure space (X, S, λ) is said to be Realizable if any
nonempty collection ^CiS^λ) has sup Φ G S , in the sense that for any K^°ίSy

\(K— supCl/^O and that if H^S and \(K—11^=0 for any ί E φ , then
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DEFINITION 4. We say that a measure space (X, S, λ) has the finite sub-
set property if for any K^S with λ(jK)>0, there is H<=S such that HczK
andO<λ(#)<oo.

DEFINITION 5. A class {f(x> K)\ K^S(\)} of real-valued 5-measureable

functions on (X> S, λ) is called a cross-section if f(x, K)=0 on Kc and for any

K, H<=S(\)JκnH(*W> K)=

Lemma 3.1. Suppose that a measure space (X, S, λ) is localizable. Then
for any corsssection {f{x, K); K^S(X)} there exists a real-valued S-rneasurable
function f such that Jκ(x)f(x)=f(xy K) (a.e.x)/or any K^S(\).

For the proof see Zaanen [8].

DEFINITION 6. Let T be a one-to-one transformation of (X, S, λ) into
itself. Then T is called a bounded measurable transformation if T is a measura-
ble transformation and there exists a positive number k such that \{T~\A))^
kX(A)ίor any A<=S.

DEFINITION 7. Let 3 be a class of bounded measurable transformations T
of X onto X such that T-\S(\) = S(\) for any Γ G S . Then (X, 5, λ, 3) is
said to be ergodic if AEΞS and \(AAT"\A))=0 for any Γ G 3 imply
or

Lemma 3.2. //" (JSΓ, 5, λ, 3) is an ergodic space, then for any bounded
measurable function f on X, f(pή=f(T(x)) for any T^3 imply that f(x)=const.

For the proof see Miyadera [3].

Throughout this section we assume that (X, S, λ, 2) is an ergodic localiza-
ble measure space with the finite subset property, E=Lι(X, S, λ, R) with the norm

for any

and Q satisfies Assumption 1. Let

E+ = {a; a(ΞE and a(x)^0 (a.e.x.)} .

For any αGfiwe write O^α if a^E+. For a real-valued measurable function
a(x), it is clear that a(T(x)) is also measurable, because of the measurability of
T. If, in addition, a(ΞE, then a(T(x))(ΞE. We shall write T(a)(x)=a(T(x))y

and remark that T can be regarded as a bounded operator of E into istelf in the
sense that there exists a real number k such that HTX̂ H ̂ &IMI for any
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DEFINITION 8. Let Q be a transformation of L^Ω, A, μ, E) into itself.
Then Q is said to be covariant under 2 if Q(ψT(a))(ω) = T(Q(ψ(a)(ω)) (a.e.ω)
for any ψGL^Ω, .A, μ, R), a<=E and

Lenma 3.3. Let A <Ξ s(Q) αwrf K <Ξ 5(λ).

(a.e.ω).

Proof. By Lemma 1.5 for an arbitrary positive real number £ there exist
^ίl, A, μ, E) and jBes(Q) such that

(18) ll

and

IIΛ-Q(/*Λ)(ω)ll = IIΛII-IIO(Vx)(ω)ll (a.e.w) on s{Q(f)).

By the definition of the norm || ||

(19) j I JK-Q(IBJK)(O>) I dx = j IΛI dx- 51 Q{lBJκ){ω) \ dx

(a.e.ω) on α s(Q(f)),

which shows that

(20) 0^Is(Q(f))Q(IBJκ)(ω)^Jκ (a.e.ω).

Since 6 is an arbitrary number, by (18) and (20) we have

(ω)^Jκ {a.e.ω). Q.E.D.

Lemma 3.4. Let A^s(Q). Suppose that Q is covariant under 3. Then
there exists ψ eL^Ω, A} μ, E) such that Q(IAa)=ψa for a^E and 0 ^
(a.e.ω).

Proof. Let C e A(μ). For any K <Ξ S(X) write

By Lemma 3.3 for any

(21)

By (21) for any K, HeS(X)

JKnHe(K)=JκnB{e(Kf]H)+e(K-H))=JκnHe(K f]H)

= JκnH(e(K ΠH)+e(H-K)) = JκnHe(H),

and hence {e(K)\ K^S(X)} is a cross section. By Lemma 3.1 there exists a
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real-valued ^-measurable function b on X such that

(22) Jκb = e(K) for any Ke=S(\).

Since Q is covariant under 3, for any Γ G 2

(23) Jτ~iM Γ(δ) = 2XΛ4) = Γ( j c Q(IAJκ)dμ)

= Jc T(Q{IJκ))dμ = j c Q(IAT(Jκ))dμ = Ĵ  Q(IJτ-Hκ))dμ

Since (JΓ, 5, λ, 3) is ergodic, by the definition 7 S(λ)=Γ"1(iS(λ)). i£ is an
arbitrary element of *S(λ), and hence (23) implies that JκT(b)=Jκb for any

By the finite subset property of (X, S> λ)

(24) T(b) = b .

By (21) and (22) b is a positive bounded function on X, and hence by Lemma
3.2 and (24) there exists a positive number &(C) depending on C and 4̂ but not
depending on K such that

b=Jxk(C).

Therefore for any C

Since μ is σ-finite, we can define a real-valued measure k on A by

Λ * ( C ) = ί Q{hJκ)dμ for any C e i .
»c

Note that this integral is the Bochner integral, and hence Jκk(C)^E. There-
fore 0^ft(C)<oo. Since k is absolutely continuous in the usual sense with
respect to μy there exists ψeL x(Ω, A, μ> R), which may vary with A, such that

k(C)= [ ψdμ for any
Jc

Thereof re for any C G A

= \ ψjκdμ ,
Jc

and hence

By Lemma 3.3 O^ ψ ( ω ) ^ ! (a.e.ω). Since k( ) is independent of the choice of
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Ky so is ψ. Any α e f can be approximated by a sequence of simple functions,

and hence we have for any « G £

Q{IAa) = ψa . t.Έ.Ό.

4. Lemmas for /^-valued functions. Throughout this section we
assume that E=Loo(X, 5, λ, R), for

and Q satisfies Assujption 1. Let

E+ = {a; a(=E and a(x)^0 (a.e.x)} .

Lemma 4.1. For any A^s(Q) and

and

JKQ(IAJK)(CO)£ΞE+ (a.e.ω).

Proof. For any arbitrary positive number S by Lemma 1.5 there exist
^Ω, Ay μy E) and B^s(Q) such that

(25)

and

\\JK-Q(IBJK)(<O)\\ = \\Jκ\\-\\Q(hJκ)(ω)\\ (a.e.ω) on s(Q(f)).

Therefore

(26) ll/.wW)Q(Wr)(ω)ll^l (a e ω)

and

(27) Ism/»JκQ(IBJκ)(«>)eE+ (a.e.ω).

By (25), (26) and (27) we have

(a e ω)

and

(a.e.ω).

Lemma 4.2. Lei ^4, B^s(Q) and AczB. Suppose that there exists a
pairwise disjoint class {K, L, M} such that \(K)>0 and λ ( L U M ) > 0 , where
L can be a set of measure zero. Then for any natural number k

(28) μ(B)^\ \\Q(IAJK) + JL+(-ί)kjM\\dμ-\ \\Q(IAJK)\\dμ.
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Proof. Since Q is semi-constant-preserving, for an arbitrary positive num-
ber δ there exist/, ^eL^Ω, A, μy E) such that

(29) H

and

(30) l

Write

(31) ε = \ \\Q(iJκ)\\dμ.

Ja-B

Therefore by (29), (30), (31) and the relation AdB

- t
Ja-B

JΩ-B

J
Ω-B

\\Q{iJκ)+Q(g)+{-iYQ(f)\\dμ

+\ \\Q(g)+(-i)kQ(fWμ-\ \\Q(g)+{-i)kQ(f)\\dμ-28-ε
JΩ-B JΩ-B

B

is( \\Q(iAjκ)+jL+(-mM\\dμ-4δ-ε.
JB

We have proved (28), since δ is an arbitrary number. Q.E.D.

Lemma 4.3 Let K and L be disjoint elements of S which are of positive

meaaure. Then for any A e s(Q)
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Proof. Suppose that there exists a positive real number £ such that

(32)

By Lemma 1.5 there exist / e L ^ Ω , A, μ, E) and B^A(μ) such that Bczs(Q(f)),

(33)

and

(34)

By (32) and (33)

(35)

By (34) and (35) we can choose C<=A(μ) such that C Cs(Q(f)),

(36)

and

(37)

By (37) and the definition of the norm || || there exist M^S and a natural
number k such that

(38) (-1)* J IcjMQ(IBJκ)dμ^E

and

(39) \\\lcJMQ(IBJκ)dμ\\>5ε.

BVCczs(Q(f)), and hence 5UCe*(Q) . By (36) we have

(40)

and

(41) [ \\Q(IBJκ)\\dμ<2ε.
JBC
[

B-C

K and M are disjoint, and hence by Lemma 4.2, (38), (39), (40) and (41)

BUC
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B\iC

\\i
BUC

)*( JMQ(IBJκ)dμ\\+μ(BUθ)-4€

>5£+μ(B\JO)-4e = μ(B\JC)+S,

which is a contradiction. Therefore

O. Q.E.D.

Lemma 4.4. Suppose that f.g^^L^Ω, A, μ, R),f(ω)^0, g(ω)^0 and
(ω)^0 (a.e.ω). Then we have

\ (gVh)dμ^ UfVh)+(fVg-g)+{fVg-f))dμ.

Proof.

= J ((fVh)+(fVg~g)+(fVg-f))dμ . Q.E.D.

DEFINITION 9. A class of subsets {K, L, M} is said to be a partition of
X'ή K, L and M are pairwise disjoint and X(K)>0, λ(L)>0, λ(M)>0 and

Lemma 4.5. Suppose that A e s(Q) and K^S. If we can choose L ,
such that X=K{JLΌM (a.e.x), λ(L)>0, λ ( M ) > 0 and λ(LflM)=O,
JL\) MQ{IAJκ)~®' {Note that K may be a set of measure zero,)

Proof. Suppose that

μ{W,\\JLQ{IAJκ)\\>m>^

Then there exist positive real numbers δ and £ such that

Let

F={ω;\\JLQ(IAJκ)\\>4S},

then μ(F)>3ε. By Lemma 1.5 there exist feL^Ω, A, μ, E) and B<=s(Q)
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such that Bas(Q(f)),

(42) \\IQ-.<QV»Q(IBJK)\\I<&

and

(43) \\Q(IBJK)-Q(IAJK)\\L<£8 .

By (42) we can choose C^A(μ) such that C ds(Q(f)) and

Let

D=U;\\JLQ(IBJK)\\>3S}.

Then by (43)

8μ(F-D)£\FJ\Q(IBJκ)-Q(IAJκ)\\dμ<εS,

and hence μ(F-D)<ε. Since μ(F)>36, μ(D)>2€. Therefore

(44)

Then by (42) and (44)

\\JLQ(IBJκ)\\dμ>6€S-εS = 5£δ .(
Jz>ns(O(/))

Let E=(D ΓΊ s(Q(f))) \JC(JB, then £ czs(Q(f)),

(45)

and

(46) \\IO-MIBJK)\\L<£B

By Lemma 4.2, Lemma 4.3 and (46) for any

(47)

^\ \\JMQ(IBJκ)+jM\\V\\JLQ(IBJκ)+(-WL\\dμ-ε8
v E

JLQ(IBJκ)dμ+(-\yμ(E)JL\\-2εδ
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-2£δ = μ(E)-2εδ,

where the last equation comes from the fact that M φ 0 and L φ 0 . There-
fore by Lemma 4.4, (47) and (45)

μ(E)+4e8^\\JLQ(IBJκ)+IEJL\\V\\JLQ(IBJκ)-IEJL\\dμ

which is a contradiction. Therefore

(48)

Similarly we can prove

(49)

By (48) and (49) we have

K) = O. Q E.D.

Lemma 4.6. Suppose that A^s(Q) and there exists a partition {K, L, M}
of X. Then there exists ψ^L^Ω, A, μ, R) such that 0^ψ(ω)^ί (a.e.ω) and
Q(IAa)=ψafor any

Proof. By Lemma 1.5 for any arbitrary number £ > 0 there exist
, A, μ, E) and B<=s(Q) such that

(50)

and

(51) \\Jχ-Q(IBJx)(a>)\\ = IIΛIHIQ(/*/x)(ω)|| (a e.ω) on s(Q(f)),

and hence

Q{hJx){ω) = \\Q{IBJx){co)\\Jx (a.e.x) on s(Q(f)),

which implies

(52) /I(β(/υQ{IBJX) = \\Q(IBJx)\\IsW/»Jx .

\\Q(IBJXWS(Q(/»
 e Li(Ω, A, μ, R), and hence by (50) and (52) there exists

-ψ eZ,i(Ω, A, μ, R) such that

(53)

By (51) 0^ψ(ω)^ί (a.e.ω). Let N<=S and λ(iV)>0. If X(K ΓlN)>0, then
by the assumption that {K, L, M} is a partition of X and Lemma 4.5 we have
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J»ΛKQ{IAJL) = 0, J^KQ{IAJM) = 0, JNnκQ(hJκ-N) = 0

and

Therefore by (53)

(54) Q{IAJNnκ) = JN*κQ{IAjNnκ) =

If λ(.K n^V)=0, then (54) is trivial. Similarly we can prove that

(55)

and

(56)

Therefore by (54), (55) and (56) we have Q{IAJN)=ΨJN
 a n d ψ is independent

of the choice of N. Since N is an arbitrary element of S and any « G £ can be
approximated by a sequence of simple functions, we have for any

Q(IAa) = ψa . Q.E.D.

5. Semi-constant-preserving contractive projections and condi-
tional expectations. In this section an operator Q is said to satisfy Assum-
tion 2 if

(57) for any A^s(Q) there exists ψ Έ i ^ Ω , A, μ, R) such that 0 ^ ψ ( ω ) ^ 1
(a.e.ω) and Q(IAa)=ψa for any aGE, where ψ is independent of the choice of a.

In Section 2, Section 3 and Section 4 we used the following conditions
(58), (59) and (60) respectively.
(58) E=LP(X, 5, λ, R), where 1 < £ < O O .

(59) E^=Lλ{X, S, λ, R), where (J\Γ, S, λ, 3) is an ergodic licalizable measure
space and Q is covariant under S.
(60) E=LOO(X, S, λ, i?) and there exists a partition {K, Ly M\ of X

If Q satisfies Assumption 1 (See (1).) and one of the conditions (58), (59)
and (60) is satisfied, then by Lemma 2.2, Lemma 3.4 and Lemma 4.6 Q satisfies
Assumption 2.

Lemma 5.1. Suppose that Q satisfies Assumption 1 and Assumption 2,
then for any ψ Gi^Ω, A, μy R) there exists φeL^Ω, A, μ, R) such that for any
aeίE

Q*(ψa) = φa

and

Φ(ω)^0 {a.e.ω) if φ(ω)^0 {a.e.ω).



CONDITIONAL EXPECTATIONS 401

Proof. It is sufficient to prove this Lemma for ylr—IA with A(=A(μ).
By Lemma 1.13 there exists a sequence {An\ n^N} of pairwise disjoint ele-
ments of s(Q) such that

A-N(A) = O{An\

By (57) for any n there exists φΛ^L1(Ω, A, μ, R) such that for any

Q(IAna) = φan .

Since Q is contractive,

IIΦJLNI = IIΦ,fl||^ll^.β
and hence

Therefore by writting φ = Σ ί φ n n<=N} we have φ^L^Ω, A, μyR). Q*(IAa)=
Ί±{Q{IAnά)\ n<=N}=φa for any a<=E. Q.E.D.

Lemma 5.2. // Q satisfies Assumption 1 and Assumption 2, then for any
/ G L ^ Ω , A, μ, E) there exists ψ^L^Ω, A, μ, R) such that ψ(ω)^0 (a.e.ω)
and s(Q*(ψa))lD s(Q*(f)) (a.e.ω) for any non-zero element a of E.

Proof. First we suppose that / is a simple function and f~IAχ

a\Λ VJ-Afiw
where Ai^A(μ)y AiΓiA—0 (i+j) and a^E for ι = l , 2, - , κ , By Lemma 5.1

there exists φ^Zr^ίl, A, μy R) for any i such that φ,(ω)^0 (a.e.ω) and Q*(IA.a?)

=Φiai. Let ψ=IAl\)...\jAn

 a n ( i β a n arbitrary non-zero element of E, then

<Q*(f)) = s(φ1a1+: +φnan)as(φ1a+

For an arbitrary / e J ^ Ω , A, yLt, £) and neiV there exists a simple function
/ . G i ^ Ω , -4, μ, £) such that

(58) ll/-/JL<i/».

In the preceding part of this proof we have proved that for any fn there
exists ψ^Gi^Ω, A, μ, R) such that

(59) s(

and

(a.e.ω).

Let ψ

Then

(60) *(G*(ψβ)) = U is(Q*(ψna)); n
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By (58), (59) and (60) and the fact that Q* is contractive

(61) ( \\Q*(J)\\dμ^\ \\Q*(J)\\dμ

Since ||Q*(/)(ω)||>0 for any ωe$(Q*(/))--ί(Q*(ψίi)) and n is an arbitrary
number, (61) implies that

)) = ° Q E D

Lemma 5.3. Suppose that Q satisfiw satisfies Assumption 1 and Assump-
tion 2 and An es(Q) = s(Q*) for any n<=N. // \J {AH; n(=ΞN}εΞA(μ), then

Proof. Since An<=s(Q*), by the definition of s(Q*) there exists / M e
LJUΩ, A, μ> E) such that AHds(Q*(Jn)). Therefore by Lemma 5.1 and 5.2 there
exist ψn, φ^eL^Ω, -4, μ9 R) and α G £ such that ψn(ω)^0 (a.e.ω), φ n(ω)^0
(a.e.ω), Q*(ψ»a)=φna and

where we can assume that | \ψn\ \L— 1/2W. Q* is contractive, and hence | \φn\ \L^ 1/2W.

Write ψ = Σ { ψ w ; wGiV} and φ=^]iφn; n<=N}. Then ψ, φςΞL^A,
μ> R) and

<Q*(ψβ)) = KΦ) = U W , ) ; w^iV} .

Therefore U {Λ; nEΞN} ds(Q*(ψa)). Since U {Λί n<=N}<ΞΞ A(μ), by the
definition of *(Q*) U{Λ weiV} G<Q*). Q.E.D.

The following lemma is more delicate than Lemma 5.1.

Lemma 5.4. Suppose that Q satisfies Assumption 1 and Assumption 2.
Then for any A^A(μ) there exists ψeZr^Ω, A, μ, R) such that 0 ^ ψ>(ω)^l
(a.e.ω) and Q*(IAa)=ψa for any a^E.

Proof. Let A^A(μ). Then by Lemma 1.13 there exists a sequence
{An\ n^N} such that An^s(Q) and

A-N(A)= {JiAn;

By Lemma 5.3 U {An\ n^N} ^s(Q), and hence

By Assumption 2 there exists ψ e L ^ Ω , 4 , μ, R) such that 0^i/r(ω)^l (a.e.ω)



CONDITIONAL EXPECTATIONS 403

and

Therefore

Q*(IAa) = Q(IA-N(A)a) = ψa . Q.E.D.

Lemma 5.5. If Q satisfies Assumption 1 and Assumption 2, then there

exists a σ-subring B of A such that

(i) Q*(f)=fB,

and

(iii) Q{f)^L^ B, μ, E) for any / G ^ Ω , A, μ, E).

Proof, (i) By Lemma 5.4 for any ψ G i ^ Ω , A, μ> R) there exists

4, μ, R) such that

Q*(ψa) = φα for any

and that 0 ^ φ ( ω ) ^ l (a.e.ω) if ψ = / ^ for some i4eA(/^). If we fix a, Q* can

be regarded as an operator of L^Ω, A, μ, R) into itself, which satisfies the

assumption of Lemma 1.2. Therefore there exists a σ-subring B of A such

that Q*(Λlra) = ψBa for any ψ G L ^ Ω j i , μ, i?) and any a^E. Since any

4, μ, £") can be approximated by simple functions, Q*(/)=/ β for any

(ii) It is sufficient to show that s(Q)=s(( )B). If A^s(Q) then there exists

4 , μ, £) such that

(62) Aczs(Q(f)).

By Lemma 1.11 and the preceding part of this proof

(63)

By (62) and (63) we have AEΞS(( ) B ) . On the other hand if Aes(( )B), then

there exists f^L^Ω,, A, μ, E) such that

(64)

By the definition of Q*and the preceding part of this Lemma

(65) /* = ρ

By (64) and (65) we have A<=s(Q).

(iii) Since Q(f)=Q*(Q(f))=Q(p), Q^eL^Ω, B, μ> E) Q.E.D.

Theorem 1. (i) If Q satisfies Assumption 1 and Assumption 2, then there
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exists a σ-subring B of A such that Q(f)=fB+Q(NQ(f))=fB+Q(NB(f)) for any
/ e Z ^ Ω , A, μy E).
(ii) If there exists a σ-subring B of A and a contractive linear operator P of
Litfl, ABy μ, E) into L^Ω, B, μ, E), then the operator defined by Q(f)=fB+
P(NB{f)) for any / e L ^ Ω , A, μy E) satisfies Assumption 1 and Assumption 2.

Proof, (i) By Lemma 5.5 and the definitions of Q*, NQ and NB there
exists a σ-subring B of A such that

Q(f) = Q*(f)+Q(NQ{f)) =f*+Q(NB(f)).

(ii) By the fact that P(f)^L1(Ω9 By μ, E) for any / e L ^ Ω , AB, μ, E) and
properties of operators ( ) B and NB and Lemma 1.10 we have

(66) ()»oP = P,

(67) NBoP = 0,

(68) ( )*oJV s =0,

and

(69) NB°( ) B = 0,

which imply that

(70) Q ° ( ) B = ( ) β o ( ) B + P O N B O ( ) B = ( ) B .

By (66), (67) and (69)

Q°Q(f) = (fB+P(NB{f)))B+P(NB{fB+P(NB{f))))

= fB+P(NB(f)) =

Therefore Q is a projection.
By (68) and the fact that ( ) B and P are contractive

β(s(/))/IL = II/IL >

and hence Q is contractive.
Next we are going to show that Q is semi-constant-preserving and satisfies

Assumption 2.
Let A^s(Q), a^E and £ > 0 . By the definition of s(Q) there exists
/ e L ^ Ω , ii, μ, £) such that iί c<Q(/)). By Lemma 5.5 Q(/)eLi(Ω, .B, ̂ , £),
and hence

(71)
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Conditional expectation operators are semi-constant-preserving, and hence by
(71) there exists geL^Ω,, A, μ, E) such that

(72) \\IAg
B-IAa\\L<ε.

By (70) and (72)

which implies that Q is semi-constant-preserving. Since by (71) and the defi-
nition of NB NB{IA a)=0,

Q(IAa) = {IAά)*+P{NB{IAa)) = {IAd)B = (IA)*a ,

and hence Q satisfies Assumption 2. Q.E.D.

6. /22-valued case. Let E=L00(X, 5, λ, R). If we cannot choose K, L
and M such that {K, L, M} is a partition of X, then E^R with the norm
I M | = | # | for x(ΞR or E^R2 with the norm \\(x, y)\\= \x\ V I y\ ϊov{x}y)^R\
If Es^R, then we can use Lemma 2.2. Therefore our next aim is to consider
the case when E^R2. Throughout this section we assume that E=R2 with the
norm ||(ΛT, y)\\= \x\V\y\ for (x, j )e i? 2 . Note that for any / E L ^ Ω , A, μy E)
there exist /jJjGLjfΩ, ^4, μ, R) such that /(ω) = (/i(ω), /2(ω)). Throughout
this section we assume that Q is a linear operator of /^(Ω, A, μ,, i?) into itself.

Lemma 6.1. Lέtf Q ίβrii/y Assumption 1 awrf ^Gί(Q). // ©((^, Λ))

(fvf2) and Q((IA, -IA))=(gl, g2), thenf1=f2,g1=~g2) O ^ / ^ ^ l (a.e.ω) and

0 ( ) l ( )

Proof. By Lemma 1.5 for any 6>0 there exist / e L ^ Ω , ^4, μ,, £) and
BeΞA(μ) such that Bds(Q(f)),

(73)

and

(74) | | (1,

= | | (1, 1)11-110(7,(1, l))(ω)|| (a.e.ω) on

Let {K h2)=IsWf))Q(IB(l, 1)). Then by (74)

| |(1, 1 ) - ^ , h2)\\ = | | (1, lJH-IKA,, Λ2)||,

and hence we have

I l -Λfω) I V 11-A2(ω) I = 1 - I ^(ω) | V | A2(ω) I ,

which shows that hx—h2, O ^ / ^ ω ) ^ ! (a.e.ω). Therefore by (73)
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\\{h,f2)-{Kh)\\L<e,

which shows that

/ 1 = = / 2 , OrS/Λω^l (a.e.ω),

since £ is an arbitrary number.

Similarly we can prove that gι=—g2 and O^g^ω)^!. Q.E.D.

If an operator Q satisfies Assumption 1, then by Lemma 6.1 we can define

linear operator Qx and Q2 of L^Ω, A, μ, R) into itself by

(75) W,/)
and

(76) W,-/)

Then by the definitions of Qx and Q2

(77) Q*(f, g) = (V2)Q*(f+2+f-g, f+g-σ-
= (ll2)(Q1(f+g)+Q2(f-g),

Lemma 6.2. Let Q satisfy Assumption 1. Then Qλ and Q2 are contractive

projections and for any A^s(Q) and £ > 0 there exist fyg^LJΩ, A, μ, R) such that

(78) \\iΛQi(f)-iA\\L<e

and

(79) WhQίg)-lA\\L<e.

In particular Qx and Q2 are serni-constant-preserving.

Proof. Let A^s(Q) and ε>0. By Lemma 1.1 Q* is a semi-constant-

preserving contractive projection, and hence Qx and Q9 are contractive projec-

tions and there exist/', g'^Lλ(Ω, A, μ,, R) such that

(80) Ui&*(f',g')-{iΛ,iΛ)\\L<ε.

By (77)

1 I Q1((f'+g')β)+Q2((f-g')β)-U V
JA

-Q2((f'~g')β)~i\dμ<ε,

which implies that
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and by writing f=(f'-\-g')/2 we have

(78) UiAQAf)-iA\\L<e.

Similarly we can prove that

(79) \\IAQ^)-IA\\L<S .

Clearly s(Q)=s(Q*)z>s(Q1)9 s(Q2), and hence by (78) and (79) Q, and Q2 are

semi-constant-preserving. Q.E.D.

Since Qλ and Q2 are operators of Lx{CLy A, μ, R) into itself we can use the

result of Section 1 and Section 2 for Qλ and Q2.

Lemma 6.3. Let Q satisfy Assumption 1. Then there exist σ-subrings

B and C of A such that for any jΈL^Ω, A, μ, R)

Q1(f)=fB,
W)=/c

and

NB(A) = NC(A) = NQ(A) for any

Proof. By Lemma 6.2 Qλ and Q2 are semi-constant-preserving contractive

projections of /^(Ω, A, μ, R) into itself, and hence by Lemma 2.2 and Theorem

1 there exist cr-subrings B and C such that for any/eL^Ω, A, μy R)

(81) Q 1 ( / ) =

(82) W)=
(83) NQl(f)

and

(84) iV,2(/) = ΛΓC(/).

Let A(Ξs(Q). By (78) and (79) for any n<=N there exist fn, g^L^Ω, A, μ, R)

such that

and

Therefore

and

Write ^ B = ^ Π ίίdC/.)). Then Λ G ^ J and
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(85) A= Ό{An;n<EΞN} (a.e.ω).

By Lemma 2.2 and Lemma 6.2 Q1 satisfies Assumption 1 and Assumption 2,

and hence by (85) and Lemma 5.3 A^s(Q1). Since A is an arbitrary element

of s(Q), we have proved that s{Q)ds(Q1). By the definition of Qλ and Lemma

l.llί(Q1)c:j(O*)=ί(Q). Therefore we have

(86)

Similarly we can prove that

(87) s(Q) = s(Q2).

By (86) and (87) togehter with (83) and (84) we have

(88) NQ(A) = NQl(A) = Nβ3(A) = N^A) = NC(A).

By Lemma 1.11 Q*oJV0=0, and hence by (75) and (76)

(89) Q^NQ = 0

and

(90) ρ2ojve = o.

By (81), (82), (88), (89) and (90)

Q1(f)=fB

and

QJJ) =f f o r a n y / e i i ( Ω , A, μ, R). Q.E.D.

By (77) and Lemma 6.3 we have

(91) Q*(f, g) = (Ψ)(fB+gB+fc-gc, fB+gB-fc+gc) •

Let us denote the operator, expressed in the right hand side of the above for-
mula, by F(Bf C).

Lemma 6.4. For any σ-subrίngs B and C with NB = NC the operator
F(B, C) satisfies Assumption 1.

Proof. It is clear that F(B, C)oF(B, C)=F(B, C), and hence F(B, C) is
a projection. Next we are going to show that F(B, C) is semi-constant-preserv-
ing. Let Ads(F{B> C)(f, g)) for some/, g^L^CL, A, μ, R) and a=(au a2)£ΞE.
Then by the definition of F(By C) we can choose sequences {Bn^B(μ)\
and {Cn^C(μ); n^N} such that

s(F(B, C)(f, g))d U {Bn; n^N} U {Cn; n

Then AdΌ{Bn;nζΞN}{J(Cn;nεΞN}. By the definition of Nc we have
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NC(A) Π Cn=0 for any n^N, and hence

Nc(A)c:U{Bn;nεΞN}.

Since NB(A)=NC(A), NB(A)=Nc(A)aU {Bn\ n<=N}. By the definition of
NB we have NB(A) f]Bn=0 for any n^N, and hence

(92) NC(A) = NB(A) = 0 (a.e.ω).

Therefore by (92) and the definitions of NB(A) and NC(A) for any S > 0 there
exist B<=B(μ) and 0<=C(μ) such that

(93)

and

(94) μ(A-O)<εl\\a\\.

By (93), (94) and the fact that IB{IBvC)
B=IB and Ic{IB^c)c=Ic w « have

\\IAF(B, C)(IBUCav / B uc« 2 )-/>i , «2)IL

= | | ( l/2)(/ 4 (7 s u c )> 1 +« 2 , a1+a2)+IA(IBUC)
c(a1~a2, -a.+a,))

-IA{aly a2)\\L

= 4 £ ,

and hence ^(-B, C) is semi-constant-preserving, since 6 is an arbitrary number.
Next we are going to show that F(B, C) is contractive. Since

forany *,

= (1/2) ̂

which shows that F(B, C) is contractive. Q.E.D.

Obviously L(Bf C)={F(By C)(f, g); ( / ^ J G L ^ Ω , Λy μy E)} is a normed

linear subspace of LX(Ω, A, μ> E)}.
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Theorem 2. Let Q be a linear operator of L^Ω, A, μ, E) into istelf. Then
Q satisfies Assumption 1 if and only if there exist σ-subrings B and C of A with
NB=NC (As a consequence AB~AC.) and a contractive operator P of LX(Ω, AB,
μ, E) into L(By C) such that for any /, ̂ G L ^ Ω , A, μ, R)

Q(f, g) = (ψ)(fB+gB+fc-gc, fB+gB-fc+gc)+P(NB(f, g)).

Proof. Suppose that Q satisfies Assumption 1. Then by Lemma 6.3 and
the definitions of Q* and NQ we have

(95) NB=NC = NQ

and

(%) W , g) = Q*(f, g)+Q(NQ(f, g))

= (Ψ)(fB+gB+fc-gc, fB+gB-fc+gc)+Q{N^f, g)) •

By (95) AB=AC> and hence

(97) NMg^L^An&E).

By Lemma 1.11 and Lemma 6.3 for any /, ̂ G L ^ Ω , A, μ,, R)

(98) Q{f, g) = Q*oQ(/, g) = F(B, C)oQ(f, g)(ΞL(B, C).

Denote by P the restriction of Q to Z^Ω, ABy μ, E), then by (96), (97) and
(98) P is a contractive operator of L^Ω, A> μ, E) into L(#, C) and

Q(f, g) = (i/2)(/ s+^+/ c-^ c, /*+£*-/c+£c)+P(ivB(/, ̂ )).

Conversely suppose that there exist σ-subrings B and C oί A with NB=NC

and a contractive operator P of L^Ω, Aβ, μ, £) into L(#, C) such that

. g) = F(B, C){f, g)+P(NB{f, g)).

Let A<=s(Q), a^E and £>0. Since JP(JB, C)°F(B, C)=F(B, C),

(99) F(B,C)(f,g) = (f,g) for any (f, g)^L(B, C).

Since P(/, g)eL{B, C), by (99) we have

(100) fT(B, C)°P = P .

By the definition of NB and Nc and the condition that NB=NC we have

iVBo( )c = iVco( f = 0 ,

iVco( )»=NBo( )»=0,

( )*oiVc = ( foNc = 0

and

( )C°NB=( foNc = 0,
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and hence by the definition and properties of F(B, C) and P we have

(101) NBoF(B, C) = NcoF(B, C) = 0 ,

(102) NBoP = NcoP=0

and

(103) F(B, C)oNB = F(B, C)oNc = 0 .

For convenience's sake we denote F(B, C) by F. By Lemma 6.4 and (100)

(104) FoQ = Fo(F+PoNB) = FoF+FoPoNB = F+PoNB = Q .

By (101), (102) and (104)

QoQ = FoQ+PoNBo(F+PoNB) = Q+PoNBoF+PoNBoPoNB = Q ,

which shows that Q is a projection. By (103) and the fact that F and P are
contractive we have

\\Q(f,g)\ΪL = \\F{f, g)+P°NB(f, g)\\L

= \\F((f, g)-Nύf, gfi+FoNJJ, g)+PoNB{f, g)\\L

£ \\F((f,g)-N^f,g))\\L+\\PoNJJ,g)\\L

which implies that Q is contractive. Next we are going to show that Q is semi-
constant-preserving. Let J e α ( Q ) , « £ £ and £>0. Then there exist/,
L,(Ω, A, μ, R) such that A<zs(Q{f, g)). By (104)

and hence A^s(F). By Lemma 6.4 there e x i s t / ' ^ ' G L ^ Ω , A, μ, R) such that

(105) \\IAF(ByC)(f',gr)-IAa\\L<£.

By Lemma 6.4 and (101)

QoF = (F+PoNB)oF = FoF+PoNBoF = F+0 = F,

and hence by (105)

\\IAQ(F(B,C)(f',g'))-IAa\\L<ε,

which shows that Q is semi-constant-preserving. Q.E.D.
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