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EmMmaNueL LESIGNE anp KarL PETERSEN

(Received July 31, 1989)

1. Introduction

T. Kamae has asked (personal communication) whether it is possible to
find a sequence (@;) of +1’s such that the sums

m+n

E ake—iko

k=m

stay bounded (for all integers m and 7z with #>0) for all 6&[—=, =) (with
the bound possibly depending on §). We show that there is no such sequence.
In fact, the only such real-valued sequences must be “essentially zero” in a
sense explained below.

This conclusion is reached by adopting a dynamical viewpoint, applying
the Spectral Theorem, and showing that every nonzero element of L?* must
have nonzero mean power at some frequency. This latter observation is
equivalent to the triviality of the intersection of all the spaces of “twisted
coboundaries” for a unitary operator.

2. Results

Suppose that a=(4,)R% is a doubly infinite sequence with the property
that

IS a6 <c(@)<co  for all mEZ, all 23>0, and all & [—7, 7).
k=m

Taking n=60=0, we see that a is bounded and so takes values in a compact
interval I. Let X denote the closure of the orbit of @ under the shift trans-
formation o in the compact metric space /2. Let x be a shift-invariant Borel
probability measure on X.

Given x€ X and a block B=b,---b, which appears in x, we can find a block
D=d,---d, in a such that |b,—d;| <1/(n+1) for i=0, ---,n. Consequently

|i} bee | <c(6)+1 forall 0.
=0

If Tg=goo for ge L¥(X, p) and f(x)=mx=x, for x€ X, we have then that
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||i," T*e #|[,<c(8)+1 for all @ and all >0.
k=0

We will see that this is impossible unless f=0 in L?. Since this cannot happen
for a sequence a which assumes only finitely many values, all nonzero, the original
question will be settled. For general sequences, the conclusion is that bounded-
ness against all @ is possible only if projection onto the central coordinate is 0
a.e. with respect to every invariant measure on the orbit closure X of the
sequence; that is, the only invariant probability measure on X is concentrated on
the fixed point 0°. In this case we say that the sequence (a,) is essentially zero.

Theorem. Let H be a Hilbert space and T: H— H a unitary operator.
For each n=1, 2, ---,0€[—n, ), and fE H let

Sif =3 e T,
b=
If sup||SSfll<oo for all 6, then f=0.

Proof. Applying the Spectral Theorem with common notations and con-
ventions, we may write

75 = " eraEQS,

S8f — S'ﬂz £+A=0) gE(\)f — S

1 _ein(h—o)

1T_gaa EM

o«
|

and

1 _em(A—o) 2

“ng“2 = S__l 1—ei-6

The following Lemma will show that such expressions cannot stay bounded for
any positive measure (such as »=|[|E( )f|[® if f=40 a.e.), thereby completing
the proof.

d||Ef[I*(N) -

Lemma. There is a constant C >0 such that if v is a positive measure on
[—m, m), n is a positive integer, >0, and
% | ]_pinr-0) |2

_1’ 1—ei®-0 | av(x),

4460) = - |

then v{0€[—n, 7): A,,(e)<5}<%

Proof. Let C, and C, be positive constants such that |a| <z implies that
Cila|<|1—é*| <C,|la|. Then

1—ein-0) [2
1—ei®-8 |

4,00)>L

SO+(¢/»)
n

dv(\) 2[%]%(6—%, 6+%) .

‘2

0—(n/n)
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Let £>0 and n>0, and let §=38(€)=v{0: A4,(d)<<€}. Suppose that §>0, since
otherwise we are finished. Choose a compact set KcC{f: A4,(0) <&} with

w(K)>8/2. There are 0, -, 8, K such that the intervals (e,,—i, 0,.+£)
n n

cover K and no more than two of them intersect at any point. Since the union
of these intervals is contained in (—27, 27), it follows that pz—” <8, and hence
n

p<4n. Therefore

wK) <5 s(6- %, 045 )<p[ ] Le<q[ S,
1

1
and §<8(C,/C,)%, proving the Lemma and hence also the Theorem.

Corollary 1. If v is a positive measure on [—n, &) and (n;) is an increas-
ing sequence of positive integers, then

1—¢inia-0) |2

(e dv(\N)>0  for v-almost all 6 .
—et A

. 1(*
lim sup — S
R TR

Proof. For each €>0, {6: lim sup 4,,(0)=0} c {9: 4,,(8)<€ for all large
enough j}, a set of measure less than €/C by the Lemma.

Corollary 2. Let H be a Hilbert space, T: H— H a unitary operator, and
O+feH. Then there exists a frequency 6 at which the “mean power” of f,
defined by

P(6) = lim sup L |53 e~ T2,
nroo n k=0
is positive.

Corollary 3. Let H be a Hilbert space and T: H— H a unitary operator.
For each 0€[—n, r) let

By = {e®g—Tg: g H}
be the space of “O-twisted coboundaries” for T. T, heno N By={0}.
e[n, 1)
Proof. If f&€By, then {||Sif||: n=1, 2, ---} is bounded.

RemMARK. As in [2], by considering fixed points of the operator Vg=
e~(f+Tg), one can show that in fact f €, if and only if {||SEf]|: n=1, 2,---}
is bounded. For further developments in this direction, see [1].

Corollary 4. As in [3], define the “spectral notch™ subshift 33 (r, 8) corres-
ponding to r>0 and [—n, ) to be the set of all those x& {—1, 1}Z for which
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m+n .
|3 we*|<r  forallmeZ and alln>0.
k=m

Then N U X(r, 0)=¢.

oc[-%,1) r>0
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