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Expansiveness is a very important notion for the investigation of chaotic
behaviors in dynamical systems. Let (X, d) be a compact metric space and f:
X—X be a homeomorphism. We say thta f is expansive with expansive constant
¢>0 if for each pair (x, y) of distinct points of X there is an integer & Z such
that d(f"(x), /*(y))>c.

The dynamics we are interested in dealing with are expansive homeomorphi-
sms on compact surfaces. The following is one of the results related to our
investigation. Any compact orientable surface with positive genus admits an
expansive homeomorphism (T. O’Brien and W. Reddy [18]).

The notion of pseudo-Anosov was introduced by W. Thurston [21], in
order to classify diffeomorphisms of compact surfaces up to isotopy. A pseudo-
Anosov diffeomorphism is an expansive homeomorphism which is a diffeomor-
phism except at finitely many points (singular points), and it is an Anosov dif-
feomorphism if it is on the 2-torus. The notion of pseudo-Anosov can be well
defined for homeomorphisms to admit differential structures so that the homeo-
morphisms become pseudo-Anosov diffeomorphisms (A. Casson and S. Bleiler
[1]). Pseudo-Anosov diffeomorphisms have been studied by many people, for
example, A. Fathi, F. Landenbach and V. Poénaru [3], M. Gerber and A. Katok
[5], M. Gerber [4], J. Lewowicz [12], ]J. Lewowicz and E. Lima de Sa [14]
and so on.

A question arises naturally as to whether compact surfaces admit expansive
homeomorphisms which are not pseudo-Anosov homeomorphisms. For the
question we shall give an answer as follows.?

Theorem 1. Every expansive homeomorphism of a compact surface must be
pseudo-Anosov.

This is a result announced in [10]. After this theorem is established, by
using Euler-Poincaré’s formula and Kneser’s Theorem (cf. [3,7]), we can give
an answer to a problem (raised by Hedlund) of whether expansive homeomorphi-
sms exist on compact surfaces. The precise statement is as follows (announced

in [9]).

1) J. Lewowicz [13] obtained the same result by a different method.
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Theorem 2. There exist no expansive homeomorphisms on the 2-sphere, the
projective plane and the Klein bottle.

As constructed in [18], every compact orientable surface of positive genus
admits a pseudo-Anosov diffeomorphism. Recently R. Penner [19] gave ex-
amples of pseudo-Anosov diffeomorphisms on compact non-orientable surfaces
(for example, the connected sum of two Klein bottles) by generalizing Thurston’s
construction.

1. Definitions and Preliminaries

Throughout this paper, “surface’” will mean a connected, two dimensional,
C*= Riemannian manifold without boundary and a compact surface will be de-
noted by M. The natural numbers, the real numbers and the complex numbers
will be denoted by N, R and C respectively.

For peN let z,: C—C be the map which sends = to 2. We define do-
mains 9, (p=1, 2, --+) of C by

9, = {z€C: |Re 2| <1, |Im 2| <1},
9D, =nmf(D,) and D, ==;(D,).

It is easily checked that z,: 9,—~9), is a p-fold branched cover for every
pEN. Denote by A, and €V, the horizontal and vertical foliations on 9,
respectively. We define a decomposition ., (resp. <)) of ), as the projection
of 4, (resp. V) by m,: D,—>9),, and define a decomposition %, (resp. €/,) of
9, as the lifting of 9, (resp. <V,) by =z, D,—~9D),.

A decomposition F of M is called a C° singular foliation if every LESF
is path connected and if for every x&M there are p(¥)EN and a C° chart ¢,:
U,—C around x such that

(1) @) =0,

(2) ¢x(Ux)=Qp(x)7

(3) o, sends each connected component of U,N L onto some element of
H ) unless U,NL=¢ for LS.

Let & be a C° singular foliation on M. Each element of & is called a
leaf and equipped with the leaf topology. 'The number p(x) is called the number
of separatrices at x. We say that x is a regular point if p(x)=2, and x is a sing-
ular point with p(x)-separatrices if p(x)==2. Since M is compact, obviously the
set S of all singular points is finite. We denote by RF the C° foliation on
M\S obtained by taking singular points away from each leaf of &F. For ma-
terials of C° foliations on surfaces, the reader may refer to G. Hector and U.
Hirsch [7]. If every leaf of RS is dense in M, then &F is called minimal. We
say that F is orientable (resp. transversally orientable) if RF is orientable (resp.
transversally orientable).
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A subset 4 of M is an arc (resp. open arc) if there is a C° embedding 4 from
a compact (resp. open) interval I of R into M such that A(I)=A. Let F and S
be as above. An arc 4 is a called a transversal of & if the interior of A4 is con-
tained in M\ S and if for every x4\ S there is a C° chart @,: U,—C around x
as above such that P,og, is injective on U,N A where P, denotes the projection
from C onto the imaginary axis.

Let A, and A4, be transversals of F. We say A;==A4, if there is a continuous
map H: [0, 1]X [0, 1]=M such that Hy=H |, 111y and H,=H |y 13« are home-
omorphisms from [0, 1] X {0} onto 4, and from [0, 1] X {1} onto A4, respectively,
and such that if LES then H™(L)=BX|0, 1] for some BC[0, 1]. Let 4: [0, 1]

x {0}—[0, 1] x {1} be the homeomorphism which sends (¢, 0) to (¢,1). When
A,=A4,, the homeomorphism H,ohoH5': A;—A, is called a projection along the
leaves.

A transverse invariant measure y, for F is a collection {u,: A4 is a transversal}
of finite Borel measures on all transversals of & such that p,| »=p, if A'CA
and such that p,oh=p, if h: A;>A, is a projection along the leaves. A
measured C° foliation (F, u) is a C° singular foliation F equipped with a trans-
verse invariant measure w.

We denote by H(F) the set of all transverse invariant measures for <. For
{pa}, it EMIF) and a>0, we write {u, }+{v b ={us+vs} and a{u,}=
{ap,}. Then M(F) is closed with respect to these operations. Let f: M—M
be a homeomorphism. Then f sends & to a C° singular foliation F'. If 4’ is
a transversal of &’ then f7(4’) is a transversal of &#. Hence we can define a
map fu: H(F)>HE) by fuluar)=uacf '} Clearly fu(au-+bv)=afu(u)+
bfx(v) for p, vE M(F) and a, b>0.

When f sends F to F' (f(F)=F") and fu(u)=p', we write f(F, u)=
(CAYTE

Let & and G’ be C° singular foliations on M. We say that F is transverse
to F' if F and &' have the same number p(x) of separatrices at all x&M and if
every x& M has a C° chart ¢,: U,—C such that

(1) @«(x)=0,

(2) ¢z(Ux)=g)ﬁ(1)’

(3) . sends each connected component of U,N L onto some element of
A yry unless U, N L=¢ for LEZTF,

(4) o, sends each connected component of U,N L’ onto some element of
CY s unless U,NL'=¢ for L'eF".

Let & and &' be transverse C° singular foliations on M, and let S be the
set of all singular points. If A is an arc in a leaf of F (resp. &) and the in-
terior of A is contained in M\ S, then it is easily checked that A is a transversal
of F' (resp. &).

A homeomorphism f of M is called pseudo-Anosov if there are a constant
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A>1 and a pair (Z°, u°) and (", u*) of transverse measured C° foliations with
the number of separatrices at each singular point greater than 2 and with every
finite Borel measure of y° and of x“ non-atomic and positive on all non-empty
open sets such that

AF w) = (F A1), [T 6 = (F ).
(This means that f preserves the transverse C° singular foliations F* and F*; it
contracts all arcs in the leaves of F° by A ™" and it expands all arcs in the leaves
of F* by \).
It is no difficult to check that every pseudo-Anosov homeomorphism is ex-
panvive.

Let f be a homeomorphism of a compact metric space (X, d). For x&€X
we define the stable set W*(x) and the unstable set W*(x) by

Wix) = {yeX: d(f'(*), () >0 as n— oo},
Wix) = {yeX: d(f(x), f(y) =0 as n—> —oo}
and put
G = {W(x): x&€X} (oc=s,u).

Then &7 is a decomposition of X and f(F7)=F7. If X is a compact surface
and f is pseudo-Anosov, then it is easily checked that every leaf L of the as-
sociate C° singular foliation ° coincides with W?(x) for all xL, that is,
=97, :

For the proof of Theorem 1 we prepare the following

Proposition A. Let f: M—M be an expansive homeomorphism. Then F5
(o=s, u) have the following properties;

(1) <5 is a C° singular foliation,

(2) every leaf W7(x)EF; is homeomorphic to L,={z€C: Im(z**)=0} for
some p=>2,

(3) s is transverse to F,

4) 7 is minimal.

If Proposition A is established, then the transverse invariant measures u°
for F7 (o=s, u) and the stretching factor A>>1 of f are obtained from the follow-
ing proposition. These facts prove Theorem 1.

Proposition B. Let f: M—M be a homeomorphism and let F* and F* be
transverse C° singular foliations on M. If f(F°)=S%" and F° is minimal for c=
s, u, then there are a constant \>>0 and transverse invariant measures u° for F°
(o=s, u) with every finite Borel measure of u° non-atomic and positive on all non-
empty open sets such that fu(u’)=\"" p* and fo(u")=nu".
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As above let X be a compact metric space. For x&X and €>0 we put

By(x) = {yeX: d(x, y)<&},
Ufx) = {yeX: d(x, y)<€},
Se(x) = {yeX:d(x,y) =&} .

If in particular X is a compact surface, for £>0 small enough B,(x), U,(x) and
S¢(x) are a disk, an open disk and a circle respectively. In the case when X is
generally connected and locally connected, by using Theorem 2.4 of [6, p. 95]
we may assume that B,(x) is connected for all x& X and &>0.

Let f: X—X be a homeomorphism. For xX and £€>0 we define the
local stable set W(x) and the local unstable set Wi(x) by

Wi(x) = {yeX: d(f'(%), ()<, n=0},
Wix) = {yeX: d(f'(%), () <& n<0} .
Obviously W;(x) is a closed subset of X for o=s, u.

Let f: X— X be expansive with expansive constant ¢>0. Then it is checked
that for every £>>0 there is N>0 such that

(L) FPWixn)CWe(f'(x), [ Wix)CW(f (%))
for all >N and all x= X (see R. Maii¢ [15]). Hence
(1) W@ =YW, W= U S W)

for all x X and all 0<€<c.

For the proof of Proposition A, we will need to investigate the topological
structures of Wi(x) (c=s,u). To do this, we require that W;(x) is connected.
It is difficult to directly verify, however, whether W7;(x) is connected even if X
is a compact surface, and so we restrict our attention to the connected com-
ponent of x in W5 (x), which is denoted by C“(x).

The following proposition will play an important role in the proof of Pro-
position A.

Proposition C. Let f: X—X be an expansive homeomorphism. If X is non-
trivial, connected and locally connected, then for every £>0 there is §>0 such
that for all x& X

Si(x)NCe(x) £ d (o =5,u).

2. Proof of Proposition C
Before we start the proof of Proposition C, we prepare several lemmas.
Let (X, d) be a compact metric space as before and denote by C(X) the
set of all non-empty closed subsets of X.
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Lemma 2.1 ([2, p. 439]). If X is connected and A=C(X) with A+ X, then
every connected component of A intersects the boundary of A in at least one point.

The Hausdorff metric for C(X) is defined by
H(A, B) = inf {£>0: N(4)DB, N(B)DA} (4, BE(C(X))

where N,(A4) denotes the &-neighborhood of 4 in X. The following result is
well known.

Lemma 2.2 ([11, p. 45]). C(X) is a compact space under H.
As before let f: X—X be a homeomorphism and W’(x) (c=s, u) be defined
for f.

Lemma 2.3. Let £€>0 be arbitrary. Suppose that a sequence {x;};cn of X
converges to x.= X, and that a sequence {B;};cn of C(X) converges to B.=((X).
If B;,CWy(x;) for all ic N(o=s, u), then B.C Wq(%.).

Proof. We give the proof for o=s. Let z&B.. Since B;—B.., there is
a sequence {y;};en With y,€B; for all &N such that y,—z as 7—oco. Since
B;C W;(x;), we have that d(f"(x;), f*(y;))<& for all n>0. Since ¥,—~x and y,—
2, it follows that d(f"(x..), f*(2))<& for all #>>0. 'This means that &€ W}(x..),
and therefore B.C W§(x.). The conclusion for o=u is also obtained.

The above lemma is generalized as follows.

Lemma 2.4. Let {x;},en, Xw, {B;};en and B.., be as in Lemma 2.3. Then
the following hold;

(1) i fU(B)SB(f"(x:)) for all 0<n<1 and all i€ N, then B,C W(x..),

(2) if f(B;)TB(f "(x;)) for all 0<n<i and all i€ N, then B.C Wy(x.).

Proof. This is very similar to the proof of Lemma 2.3 and so we omit the
proof.

Hereafter we assume that f: X—X be expansive with expansive constant
c¢>0.

Lemma 2.5 ([14]). Suppose that 0<€<c/2. Then there exists 0<3<¢&
such that

(1) if d(x,y)<8 and e<max {d(fi(x), fi(y)): 0<i<n} <2¢, then d(f"(x),
f{)=3,

(2) i d(x,y)<8 and E<max{d(f(x), fi(y)): —n<i<O0} <2¢, thend(f *(x),
[ y)=s.

The following is easily obtained from Lemma 2.5.

Lemma 2.6. For 0<&<c[2, let 0<8<E be as in Lemma 2.5. Suppose
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that A is a connected subset of X and that xA. Then the following hold,

(1) if ACBy(x), F(A)NSFi(x))%  for some 0<i<n and f(A)C Byu(f'(x))
for all 0<i<n, then f"(A) N Ss(f*(x)) £,

(2) if ACBy(x), fi(A)NS(fi(x)) = for some —n<i<O0 and fi(4)C
Boo(fi(x)) for all —n<i<O, then f~*(4) N Sy(f"(x)) + ¢-

Lemma 2.7. For 0<€<c¢/[2, let 0<8<E be as in Lemma 2.5. Let {x;};cz
be a sequence of X and let A(x;) denote the connected component of x; in Bs(x;) N

I By (fi(x;)) for all i Z.  Then the following hold,
(1) if for a sequence {j} of Z with j— oo

lim x; = &, and lim A(x;) = A,
jre jroe

then A.C Wi(xw),
(2) if for a sequence {j} of Z with j—>—oo

lim #; =% and lim A(x;) = A_.,

jr—o jr-o
then A_.C Wi(%_o).

Proof. First we prove (1). Since A(x;) CBy(x;), we have A..C By(x..), and
hence A CBy(¥.). To obtain (1), assume that A.d Wi(x.). Then by the de-
finition of W§(x..) there is k>0 such that f*(A.)d By(f*(x.)). Take E<A<L2E
such that f*(A.)dE B,(f*(%.)). Since A.C Bg(x.), there is 0<<k, <k, such that
Fi(Ae)CUy(fi(%w)) for all 0<i<k,—1 and fA(A.) G Uy (f*1(%)). Since x;—>x.,
and A(x;)—>A., we can find />k, such that f{(A(x;)) CB\(fi(x;)) for all 0<i<
ki—1 and fh(A (%)) & Bo(f*1(x1))-

Let 4,, denote the connected component of x; in

(A ) N Bo(f1(%2))] -
Then we have
21 (A CB(fi(%)) (0<i<k).

Since f*(A(x;)) is connected and f*1(A(x;)) & Bo(f*1(x;)), it follows from Lemma
2.1 that

(2.2) Fi(Ai) N S(fir(x)*0 -

For tk>k, define A, as the connected component of x, in f~*[f¥(4,.) N
B/(f*#))]l. Then

A(x,)DAleAklﬂD see DAkD oo
and by (2.1) it is easily checked that
(2.3) FA)CB\(fi(x)) (0<i<k).
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Now we claim that f*(4,) N Ss(f¥(x,))3 0 for k>k,. Indeed, if 4,34,
then f*(A,_,)EB(f*(»;), and hence f*(4,)N S.(f*(x;))+=0 (see Lemma 2.1).
Since 0<<8<¢, we have f*(4,) N Sy(f*(x;))+=0. For the case when A,=4,_,,
put f,=min {i: A;=A,}. Clearly k,<iy<<k. If i{;==F,, then fio(4,) N S.(f(x,))
+0 by (2.2). If 4>k, then 4; = 4; _,, and hence f'o(4,) N S,(fio(x))=*=0. In
any case, ffo(A) N S fio(x;))==0. Since A(x;))DA,, it is clear that A4,C By(x)).
Combining these facts and (2.3), by Lemma 2.6 (1) we obtain f*(4,) N Ss(f*(x;))
+@. Therefore the above claim holds.

Since I>k,, consequently f*(4,)N Ss(f'(x,))=+@®, which contradicts 4,C
A(x;). Therefore (1) holds. In the same way, we obtain (2).

Lemma 2.8. If X is non-trivial, connected and locally connected, then for
all 0<&e<¢/2 and all xe X

int Wo(x) =0 (o =s,u)
where int W (x) denotes the interior of Wy (x) in X.

Proof. If the proof is given for o=u, then the conclusion for o=s is
obtained in the same way. Thus we give the proof only for o=u. Fix 0<€<
¢/2and x&X. Let 0<<6<¢€ be as in Lemma 2.5. To show the case of o=u,
assuming that yeint Wi(x)=+=@, we can take 0<<y<§ such that B,y(y)Cint
W¥x). Then we claim that for every 0<<7 < there is #>>0 such that f" B,(2)
DBy f"(2)) for all zCBy(y). 1If this is established, then we can derive a con-
tradiction as follows. Since X is non-trivial and connected, we see easily that
for k>0 there are 0<»<v and p,CBy(y) (i=1,2, :--, k) such that B,(p;)N
B,(p;,)=0 fori=j. The claim ensures the existence of #>>0 such that f* B,(p;,)D
Byn(f*(p)) for i=1,2, -+, k. Hence Byu(f(p) N Bon(f*(p) =0 for i1,
which means that X contains mutually disjoint k& balls with radius §/2. Since k
is arbitrary, this contradicts that X is compact.

To conclude the lemma, it only remains to prove the above claim. Assume
that the claim does not hold. Then we can take 0<<y<v such that for every
n>0 there is 2,&By(y) such that f" B,(2,)DBsu(f"(2,). Let A(z,) denote
the connected component of 2, in By(z,) N f~" Byu(f"(2,)). Since >8 and
B;(f"(2,)) is connected, by using Lemma 2.1 we can check easily that A(z,)N
S,(2,)*0. By Lemma 2.2 there is a subsequence {z,;} of {2,} such that z,,—
2.EBy(y) and A(z,;)>A.EC(X) as n;—>oco. Then A, NS, (z..)F0.

On the other hand, A.C Wj(z..) by Lemma 2.7 (1). Since 0<<%<r and
2.E€By(y) and since By(y)C Wi(x), we have that B,(z.)CWi(x) and hence
Wi(z.) N Wi(x)DA.NB,(2.). Since 0<€<c¢/2, by expansiveness W;(z.)N
W¥(x)={2.}, and hence A. N B,(2.)={2.}. This contradicts that AN S,(2..)
#@. Therefore our claim holds.

Proof of Proposition C. Since C;(x) C Cy(x) for 0<&<E’, it is sufficient to
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give the proof for 0<<¢<c/4. Let 0<<6<¢ be as in Lemma 2.5. We prove the
case of o=s. To do this, fix x&X and put x(?)=f(x) for £>0. Then there is
a subsequence {j} of {7} such that x(j) converges to some x.EX as j—co.
Since int W3y(x.)=0 by Lemma 2.8, for 0<<%#<8 we can take m,>0 such that
f™ By (%) & Byo(f "™ (%)). Then m,—>co as »p—0. Choose j,>m, with
d(x(f,), ¥.)<%/2. 'Then the diameter of f~"» B,(x(j,)) is greater than 26. Hence
there is 0<n,<j, such that f~*B,(x(j,)) CBe(*(j,—1)) for all 0<i<m,—1 and
J 7 By(x(j)) & Be(%(jn—1))-

For 0<k<1, let Ay(x(i—Fk)) denote the connected component of x(7—K) in

By(x(i—k)) N[ By(x(@—k+1)) N+ Nf T+ Be(w(i—1)) N f~* By((2)) -

By the choice of n, we ee easily that A, (x(j,—n,)) contains the connected
component C(x(j,—n,)) of x(j,—n,) in By(x(j,—n,)) O f "™ B,(x(j,). Since
B,(x(j,)) is connected and f~" B,(x(j,)) & Be(x(j,—,)), we have by Lemma 2.1
that C(x(j,—n,)) N Se(x(j,—n,)) =0, and therefore A(0) N Sy(x(j,—n,)) =@ where
A(O):Anr,(x(]n_nn))

For £>0 define A(k) as the connected component of x(j,—n,—k) in
f(A(k—1))N B(x(j,—n,—k)). Then it is easily checked that

(2.4) Fi(AG,—m))CB(x(2)) (0<i<j,—1),
(2.3) F(A(j,—n,)) CBy(%(ji)) -

We claim that f{(A(j,—n,)) N Se(x(2))=F@ for some 0<i<j,—n, Indeed, let
FUA(G,—n,)) N S(x(2))=0 for all 0<i<j,—n,. Since A(j,—n,)is the connected
component of x(0) in f~Y(A(j,—n,—1)) N B,(x(0)), by using Lemma 2.1 we have
that A(jn_nﬂ):f_l(A(jn_nn—1))' Hence f(A(]ﬂ_nn)):A(]n—nv_l) and by
induction f(A(j,—n,))=A(j,—n,—1) for all 0<i<j,—n,. Hence fin~"™(A(j,—
n,))=A(0), contradicting A(0) N S¢(x(j,—n,))*+@. Therefore the claim holds.

Combining this claim, (2.4) and (2.5), it follows from Lemma 2.6 (2) that
AG—n) N Sy(x) 0. Since A(j,—m)C Ay, (¥(0)=A;, (x) by (24) and (2.5),
consequently Aj (x) N Sy(x) = 0.

Since j,— oo as —0, by Lemma 2.2 we can take a subsequence {j;} of {j,}
such that Aj(x) converges to some A..&C(X) as j;—>oo. Then A, N Sy(x)+0
by the above result and A., is connected because so is Aj;(x). By the definition
of Ajr(x), fi(Ajr(x)) CBy(f(x)) for all 0<i< j;, and hence A..C W;(x) by Lemma
2.4 (1). Hence A.CC*(x), and therefore C3(x) N Sy(x)=E 0.

3. Local connectedness of C;(x).

The aim of this section is to prove the following

Proposition 3.1. Let f: X—X be an expansive homeomorphism with expan-
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sive constant ¢>0. If X is a compact surface, then C7(x) (o=s, u) are locally con-
nected for all k€ X and all 0<E<c/2.

Proof. Fix x€X and 0<€<¢/2. Let §>0 be as in Proposition C. To
obtain the conclusion for o=s, assume that C$(x) is not locally connected. Then
we can take yEC;(x) and >0 small enough with ¢¥<§/2 such that the con-
nected component of y in Cj(x) N By(y) does not contain C$(x) N By(y) for all
A>0. Denote by K the set of all connected components of C:(x)N By(y).
Since C;(x) is connected, it follows from Lemma 2.1 that K N Sy(y)=@ for all
KeX.

Fix 0<t<y and put S={KeX: KNB,(y)+¢}. Then by the choice of
y and v it is easily checked that & is an infinite set. Hence there is a sequence
{K;}ien of § with K;N K;=@ for i==j such that K; converges to some K.&
C(Cy(#) N By(y)) as i—>o0 (Lemma 2.2). Since each K; is connected, so is K..
Hence K., is contained in a connected component of Ci(x) N By(y). Therefore
we may assume that K; N K..=@ for all iEN.

Since X is a compact surface and v is small enough, T=By(y)\U,(y) is an
annulus bounded by circles Sy(y) and S,(y). Since K;N Sy(y)=*0, we take a;&
K;NSy(y). Denote by L; the connected component of a; in TN K;. Since K;
is connected and K; N B,(y)=+0, there is b;=L; N S(y)=+ 0 (Lemma 2.1). Since
K;NK;=¢@ for i=j, it is clear that L;N L;=@, a;%a; and b,%b;. By Lemma
2.2 we have that ¢;—>a..€ Sy(y), b—b..=S\(y) and L,~L.C(T) as i— oo (take
subsequences if necessary). Then a..,, b.eL.. Since L,CK;, clearly L.CK...
Since K;N K..=@, we have that L; N L..=@, a;=+a., and b;=b...

Without loss of generality, we can choose the arcs @; a.. in Sy(y) jointing
a; and a., such that

3.1) A0, R0 A0 2+ Ba; A 2+

(take a subsequence of {a;};cn if necessary). In the same way, choose the arcs
b; b.. in Sy(y) jointing b; and b., such that

(3.2) bboRbbuD v 20,52

Since a;—>a. and b,—b.., we have that diam (g; a..)—0 and diam (b; b..)—0 as
i—>oco.,

Since L;, L;,, and L., are connected and mutually disjoint, it is checked that
the orientation of a; a., from a; to a., must coincide with that of b; b.. from b; to
b... Indeed, we can take mutually disjoint connected neighborhoods N;, N,
and N, of L;, L;,, and L.. in T respectively. Then there are an arc 4; in N;
jointing a@; and b; such that A4, intersects Sy(y) (resp. S,(y)) only at a; (resp. b;),
and an arc 4., in N, jointing a.. and .. such that 4., intersects Sy(y) (resp. S;(y))
only at a. (resp. b.). Since N;NN,.=@, obviously 4;NA.=@. Hence T\
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{4;UA.} is decomposed into two connected components U, and U, Since
a;1,€ U, U U,., we may assume a,,, € U,. If the orientation of ¢; a.. differs from
that of §, b.., then b, €U, by (3.1) and (3.2). In this sase, every arc in Ny,
jointing a;,, and b,,, must intersect A; or A.., which contradicts that N;, N;,, and
N., are mutually disjoint. Therefore the orientation of a; a.. must coincide with
that of b; b...

Since L; is connected, we can take z;€L; for 1>2 such that d(y, 2;)=t+
(y—1)/2. Since L;CK;C Cy(x), obviously z;& Ci(x) N Cy(z;), and hence C5(x) N
Ci(2;)={z;} by expansiveness. Since 2;&L; ,UL;,, and L;_,UL;,,CC:(x), we
have that (L;_,UL;,) N Ci(2;)=0, and so (L;_, U L;4,) N (Ci(2;) UL;)=0. Hence
there are connected neighborhoods N;_;, and N;,, of L;_; and L,,, in T respec-
tively such that N,_,, NV;,; and C%(2;) U L; are mutually disjoint. We can take an
arc 4;_, in N;_, jointing a;_, and b;_, such that 4;_, intersects Sy(y) (resp. S¢(¥))
only at a;_, (resp. b;_,), and an arc 4;,, in N,,, jointing a,,, and b;,, such that
A, intersects Sy(y) (resp. Sy()) only at a;,, (resp. b;,,). Then A4;_,, A;,, and
C%2;)U L; are mutually disjoint. Denote by «a;_, a,,, the subarc of a;_, a.. joint-
ing a;_, and a;,,, and by b;_, b;,, the subarc of b;_, b.. jointing b;_, and b;,,.
Then

I'=4,,U4;,Ua;_,a;,U b;_y by

is a simple closed curve. From the relation between the orientations of 4;_, a..
and b;_, b.., it follows that T" bounds a disk D in 7. Then L;CD by (3.1) and
(3.2). Since ;€ L; and ;€ T, we see that 2; is an interior point of D.

Since ¥ <§/2 and C¥(z;) is connected, we have by Proposition C that Sy(y)
NC¥=;)=+0, and hence TNC¥z;)=*0. Since (4;.,UA;1)NCi(=;)=0, it is
clear that

Ci(z)Na;ya; 0 or Co(x)Nbiy by 0.
Without loss of generality, we may assume that
w,ECH(R)Na;_ aF0 (122).

Since diam (a; a..)—0, we see easily that w,—a.. as i—>c0. Since 2;€L; and
L,—L.., we have that 2; converges to some 2..& L., as i— oo (take a subsequence
if necessary). Then d(y, 2.)=t+(y—12)/2. Since w;=C¥(s;), it follows from
Lemma 2.3 that a.€Wy(z..). Since a..,, 2. L..C K..CC;i(x), we obtain by ex-
pansiveness that a.=2., which contradicts that a.=Sy(y). Therefore Ci(x) is
locally connected. In the same way, the conclusion for o=u is obtained.

4. Preliminary discussions

In this section we shall investigate the topological structure of C;(x) (which
denotes the connected component of x in W(x)).
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As before let (X, d) be a compact metric space and f: X—X be an expansive
homeomorphism with expansive constant ¢>0.

Lemma 4.1. For every 0<&<c there exists §>>0 such that
W3(x) N By(x) = W°(x) N By(x) (o = s, u)
for all xe X.
Proof. This is similar to that of Lemma V of [15].

Lemma 4.2. Let 0<E<c/2 and let A and B be non-empty subsets of X.
If Wix)NWi(y)=*=0 for all x€A and y=B, then Wi(x)NWi(y) consists of
exactly one point a(x,y) and a: AX B—X is a continuous map.

Proof. Since 0<<€<¢/2 and ¢ is an expansive constant, W(x) N W¥(y) must
consist of exactly one point. To show that a: 4 X B—X is continuous, assume
that a sequence {(x;, ¥;)};en of AX B converges to (¥, y)€AXB, and put ;=
a(x;, ;). Then there is a subsequence {2;} of {2;} such that z; converges to
some 3,EX as j—>oco. Since z;&W;(x;), it follows from Lemma 2.3 that 2.
W:(x). Inthe same way, we have that 2. W¥(y), and therefore z.=a/(x, y).
This shows that « is continuous.

Hereafter, let M be a compact surface and f be an expansive homeomorphism
of M with expansive constant ¢>0.
Fix xeM and 0<€<c¢/2. The s-(u-)direction is written by o for simplicity.

Lemma 4.3. CJ(x) is arcwise connected and locally arcwise connected.

Proof. From Proposition 3.1 and Theorem 5.9 of [6], it follows that C?(x)
is a Peano space. Hence the conclusion is obtained (Theorem 6.29 of [6]).

Lemma 4.4. For each pair (y, 2) of distinct points of Cq(x) there exists a
unique arc jointing y and 2 in Cq(x).

Proof. The existence of arcs follows from Lemma 4.3. We prove the
uniqueness of the existence for o=s. To do this, assume that there are two arcs
jointing y and 2 in Ci(x). Then we can find a simple closed curve " in C}(x).
Let 0<<€'<c/2 be a small number such that By(w) is a disk for all we M, and
choose 0<<r<&’ such that fB,(w)C B.(f(w)) for all weM. By (1.1) there is
N>0 such that f"(Wi(x))C W;(f"(x)) for all #>N. Since T'CCs(x)C Wi(x)
and W;(f"(x))CB,(f"(x)), we have that f(I")CB,(f"(x)) for all n>N. Since
B,(f¥(x))is a disk and f¥(T") is a simple closed curve in B,( f¥(x)), we see that f¥(T")
bounds a disk D in B,(f¥(x)). Now we claim that f{(D)CB,(f¥*/(x)) for all
1>0. Indeed, by the choice of 7, we have f(D)C B (f¥*!(x)). Since f¥*{(T)C
B,(f¥*!(x)) and f¥+Y(T") is the boundary of f(D), it follows that f(D)C B,(f"*'(x))
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and by induction f{(D)C B,(f¥*/(x)) for all £>2. The claim was obtained. But
this implies that D C W;(f"(x)), thus contradicting Lemma 2.8 since 0<r<&'<
¢/2. 'Therefore an arc jointing y and 2 in C¥(x) is unique. The conclusion for
o=u is also obtained.

Let y and 2 be distinct points of C;(x). We denote by o (y, 2; , §) the
arc from y to = in C;(x) (Lemma 4.4). Since Cj(x)CC?;(x), we have
a(y, 2; %, 8)=a(y, 2; %,¢/2). For simplicity we omit & in o(y, 2; ¥, &) and
write

o (3,55 %) = o (9, 2; %, €)
We denote by IC’(x) the union of all open arcs in Cj(x) and define
BCY(x) = CUNUICI(x) U {}) -
That x belongs to IC(x) will be proved later on (Lemma 4.13).
Lemma 4.5. BC{(x)+¢ and
4.1) Ci(x)= U o(x,b;x).

bEBC(x)
Proof. Since Cj(x)=2 {x} by Proposition C, we take yeC’(x)\ {x} and de-
fine

S = {o(x, 2; x): (%, y; x)Co(x, 2; x)} .

Obviously & is an ordered set with respect to inclusion. By Zorn’s lemma
there is a totally ordered subset &, such that each element of S\&, is not upper
bound of &,. Denote by L the union of all elements of S,. Then yeL.

It is enough to prove that L=o(x, b; x) for some b=C;(x). Indeed, by
the choice of &, b&BCq(x) and so BC¢(x)=%@. Since yeL=c(x,b; x) and y
is taken arbitrarily, (4.1) holds.

Let €U be the set of all injective continuous maps from [0, 1) to Cg(x) and
define

U, = {a€eU: a(0) = x, ([0, 1)) L} .

Then we claim that for every a €U, there is o (x, 2; x) €S8, such that ([0, 1))
Co(x, 2; x). Indeed, if this is false, we can take a..€U, such that for every
a(x, 2; x) €8, there is [0, 1) satisfying a..(t)E o (x, 2; ¥). Since a.([0, 1))C
L, we have a.(t)eL and so there is o (x, w; x) =S, such that a.(t)Eo (%, w; x).
Since &, is totally ordered, it follows that o(x, 2; ) Co(x, w; x). Since a.(0)
=ux, we have by Lemma 4.4 that «a.([0, f])Da(x, 2; ), and hence a.([0,1))D
o(x, 2; x). Since o(x, 2; x) is arbitrary in S, a.([0, 1))=L. Hence there is a
sequence {2;};en of L such that o(x, 2;; ¥)S o (%, 2;4,; x) for all iEN and L=
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U o(x, 2;; x). Obviously there is a subsequence {z;} of {2;} such that z; con-
ieN

verges to some 2. ECq(x). We write J=o (%, 2..; ¥) N L when 2..%x, and J={x}
when 2.=x. Then it is checked that J&L. Indeed, if not, then z.#x and
J=L. Hence LCo(x, 2.; x). Since L=a.([0, 1)), obviously L& o (%, 2} %),
contradicting that L is the union of all elements of S,. Therefore ISL.

Combining this fact and Lemma 4.4, we see that J is either an arc or one
point set. Hence J %o (%, 2;; x) for some /EN. Since o (x, 2;; x)20(%, 2;; x)
for j>I, by using Lemma 4.4 we can check that o (2., 2;; %) 20 (2, 2;; %) for
j>1, and so

diam (o (2., 2;; ) >diam (o (2., 25 ¥))>0.

Since 2;—>2., as j—> oo, this contradicts the fact that Cj(x) is locally arcwise con-
nected (Lemma 4.3). Therefore the above claim holds.

Since L C7(x), there is a countable subset G of L such that the closure G
of G in C¢(x) contains L. Then we can construct « €U, such that a([0, 1))D
G, because L is the union of elements of the totally ordered set &, By the
above result there is o (¥, b; x) €S, such that «([0, 1))Ca(x, b; x). Then GC
o(x,b; x). Since LCG and o(x, b; x)CL, we have easily that L=o (%, b; x).
The proof is completed.

Lemma 4.6. Let A be an arc in C7(x). If x is an end point of A, then
there exists b= BCq(x) such that AC o (x, b; x).

Proof. Let y be another end point of A. Since yeC7(x), by Lemma 4.5
there is b BCq(x) such that y=o(x, b; x). Then the conclusion is obtained
by Lemma 4.4.

Let a,b and ¢ be points of Cg(x) such that a+b and ad=c. We write
a(a,b; x)~o(a,c; x) if o(a,b; x)No(a,c; x)2{a}. In this case, o(a, b; x)N
o (a, c; x) is a subarc of both o (a, b; x) and o (q, ¢; x) (Lemma 4.4). Hence “~”
is an equivalence relation on {o(x, b; x); b BC;(x)}. We define

Pe(x) = 4 [{o(x, b; x): be BC{(x)}/-]
where #[-] denotes the cardinal number of -.

Lemma 4.7. P{(x)=P%,(x) (remark that & is chosen such that 0<&<c/2
as promised before).

Proof. Using Lemma 4.1, we can find >0 such that W{(x) N By(x)=
72(x) N Bs(x). Let C be the connected component of x in Wz(x) N By(x).
Then Cc C¢(x) N Bs(x) and hence C is the connected component of x in Cz(x) N
By(x). Since Wg(x) N Bs(x)=W7,(x) N Bs(x), it is easily checked that C is the
connected component of x in C¢.(x) N By(x). Therefore the connected compo-
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nent of x in C¢(x) N By(x) coincides with that of x in C7(x) N Bs(x). Combining
this fact and Lemma 4.6, we see that P{(x)=P{ ().

As above let x&M and o=s, u. Since Pg(x) is independent of £(0<€<c/2)
by Lemma 4.7, we omit & and write

P°(x) = P%(x) .

Now we define

Sing?(f) = {x&M: P°(x)>3} .
Lemma 4.8. Sing°(f) is a finite set (o=s, u).

Proof. We give the proof for o=s. If this is done, then the conclusion
for o=u is obtained in the same way. Let ¢ be an expansive constant for f as
before and fix 0<€<c¢/6 small enough. Let 0<8<& be as in Proposition C
and Lemma 2.5. To show that Sing®(f) is finite, let A be the set of points
xe M with the property that C(x) contains distinct three points a,, a,, a; such
that

S ay; ) o0 s ars 8) (kD)
s(rya;2) N Ss(x) =0 (B=1,2,3).

Then it follows from Lemma 4.6 that A C Sing*(f).

First we show that #[A]>#[Sing’(f)]. Let x&Sing’(f). Then P*(x)>3.
By the definition of P*(x) there are a,&C:(x) (k=1, 2, 3) such that s(x, a; x)2¢
s(%, a;; x) for k=1 and s(x, a;; x)CBy(x) for k=1,2,3. Since 0<<6<E<Lc/6,
we can find m, >0 such that f~[s(x, a;; x)]CBy(f (x)) for 0<i<<m, and
fme[s(w, ap; x)]EBe(f~™*(x)). Let A*(m,) denote the connected component of
fme(x) in f~™k[s(x, a,; )] N Be(f~™#(x)). Then we can see easilyt tha A¥(m,)
is an arc in Cj(f~™¢(x)) such that f~"¢(x) is an end point, and that A*(m,) N
Se(f " (%)) * 0.

For i>m, define A%i) as the connected component of f7)(x) in
Y (A¥E—1)NB(fY(x)). As above the result obtained for A*(m,) is established
for A7) (i>m,), that is, A*®) is an arc in C*(f~'(x)) such that f~'(x) is an end
point.

Since A¥(m,) N So(f™(x))=£@, it is easily checked that fi™7(4*z)) N
Se(f(x))=£0 for some j with m,<j<i. Note that f{(A¥7)) Cs(x, ar; x) CBy(x).
Combine these facts and Lemma 2.6 (2). Then we see that A7) N Ss(f~(x)) =+
@ for i>m,. Since s(x, a; x)2¢s(x, a;; x), obviously A*iz) AXi) for k=l
We write m,=max {m;, m,, ms} for simplicity. Then we have that fi(x)eA for
i>m,.

Hence an injection from Sing’(f) to A is defined as follows. For x&
Sing*(f) consider the orbit O(x) of x by fand put S= U Oy x). Obviously
Sing*(f)cS. For x&Sing®(f) we define Fesing™
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E(fitx)) =fix) (#=0) if xePer(f),
[ (E<0)

E(fi(x)) = {fmo(x) (i=0) if xe&Per(f)
frm ) (E>0)

where Per(f) denotes the set of all periodic points of f. Then the right hand
sides of the above relations belong to A and £: S—A is an injection, from
which an injection from Sing’(f) to A is obtained. Hence we have #[A]>
#[Sing’(f)].

To obtain that Sing’( f) is finite, we assume that this is false. Then A is an
infinite set by the above result. Hence we can take p& M such that A N Us,(p)
is infinite. Applying Zorn’s lemma, we can choose a subset Ay of AN Uy(p)
with the properties that if x, yE A, and x= y then Ci(x) N C(y)=0, and that if
xE[A N Usu(p)]\A, then there is yE A, such that Ci(x) N Cs(y)=+=@. Then one
of the following must hold;

(I) A, is infinite,

(IT) A, is finite.

In any case we can derive a contradiction as follows.

Case (I). Since A, is infinite and A,C Uy,(p), there is a sequence {x;};en
of A, with x;==x; for 7==j such that x; converges to some x..E By,(p) as i—>oo.
Since AgCA N Usy(p), obviously x,& AN Usyu(p). By the choice of A we can
take a,€ C:(x;) (k=1, 2, 3) such that s(x;, ai; x;)2¢s(x;, ai; &;) for k=1 and such
that af €S;,(p) and s(x;, ai; x;) C By (p) for k=1, 2, 3. Since § is small enough,
Ssp(p) is a circle, and hence {aj}i., cut Sy,(p) in three open arcs.

We claim that if 7==j then {aj}i., is contained in an open arc of Sy;(p)\

: ) 3 ) . ) .
{aj}3.,. Indeed, write 3,= ;.U s(x;, aks x;).  Since s(x;, ai; x;)2¢s(x;, ars x;),
=1

we see easily that 5, is a trident curve with end points @} (k=1, 2, 3). Since
x;%x;, by the choice of A,, Ci(x;) N Ci(x;)=0@ and hence =, N=,;=@. Since Z;
and 3; are in a disk By,(p), we have that 3; is contained in a connected compo-
nent of By,(p)\X;, from which the claim is obtained.

Let I(k=1, 2, 3) be the open arcs in which {ai}i., cut Ssu(p). By the
above result {af}i.,C I, for all ;%1 where k(?)=1,2 or 3. We take the mini-
mal arc 4; in I, such that 4,0 {aj}i... Let A;,NA;=*@ forizj. Then 4;,C
L. Since {ai} is contained in an open arc of S;;(p)\{ai}i-. by the above
result, it is eas,ly checked that there is an implication between 4; and 4;. Note
that {ai}i., cut 4, in two open arcs J} and J%. If A,C A, then either 4;C J;
or A;C Ji must hold. Consequently we have proved that there is a family
{4;,} 7-1 such that one of the following cases holds.

(a) A;,NA4;,=0 for I+m
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(b) A, CJi, or A, CJi  for IEN.

Since A; is a miniaml arc such that 4;D {ai};.,, we may assume that end points
of A; are a} and a4}, and write af ai=A,. Since ajEai ai, we denote by a} a}
the subarc in af a} jointing af and a5. The notation aj a} is also defined. Then
the interiors of a} a} and a} a} are equal to J} or J? respectively. Under these
notations, without loss of generality we can rewrite the cases (a) and (b) as fol-
lows:

(I.) aiaiDaiaj=¢  for i=*j,
(Ip) at aioait aitt forall 1eN.

We can assume that the orientation of ai a} from ai to ai coincides with that
of aj a3 from aj to a; for all ¢ (by taking a subsequence of N if necessary).

Case (1,). Since x,E Uy,(p) and as €.Sy(p), we can take z;Es(x;, ab; x;) N
Sasp(p)*0 for ieN. By Lemma 2.2 there are a.&S5u(p), 2..E Sys(p) and
A..€C(Byy(p)) such that a}, 2; and s(x;, ai; x;) converge to @.., 2., and A., as
i— oo respectively (take a subsequence if necessary). Since a}, 2;E5(x;, ab; x;),
we have d.,2.EA.. Since s(x;, as; x;)C Wi(x;) and x,—>x.., A..C Wi(x..) by
Lemma 2.3 and therefore a.., 2. Wi(x.).

On the other hand, let 3; be as above. Then I, is a trident curve in the
disk By(p) with end points aj(k=1, 2, 3). Since z;Es(x;, a3; x;) T, C W),
by expansiveness C¥(2;) N ;= {=;}. Since § is as in Proposition C and z;&
Sass(p), we have that C¥(2;) N Syp(p)+0. Note that a=af ai. Then we can find
w,€C¥2;)Nal ai+@. By (I,) it is easily checked that diam (a} a3)—0 as i—oco.
Since w;, ajEai a} and aj—a.., clearly w; converges to a.. is i—>o0. Since w;E
Ci(=;) and z;—=z., by Lemma 2.3 we conclude that a.e W;(2..). Since d., 2.E
W;i(x..), by expansiveness a.==2., thus contradicting that a..&S;,(p) and 2.

Ssa/s(?)'

Case (I,). Write T=DB;,(p)\Usu(p). Then T is an annulus bounded by
circles Sy (p) and Ssp(p). Since x;,E Uyy(p) and ai €Sy (p), there are bie
s(x;, ak; %) N Ss(P) (€N and k=1, 2, 3) such that s(bj, a; x;)CT. By Lemma
2.2 we can find a.€Ss(p), b. €Ssp(p) and A..€C(T) such that aj, bj and
s(bi, aj; x;) converge to a.., b.. and A, as i—> oo respectively. Clearly a.., b.EA...
Since s (b, ai; x;)C Wi(x;) and x,—x.., we have by Lemma 2.3 that A.,C W¥(x..).

By (I,) we have a.Eala} and a..=ai, a5. As above let aa’ denote the
subarc of ai a; jointing @ and a’ for a, a’Eaj a3. By using the relation between
the orientations of a} a} and ai ai, we have that a}Ea.. ai(i EN), and then

(4.2) a.aidDa.aiDa.qait ! Da.qayt' (VIEN).

In the same fashion, we can choose the arcs in Sy, (p) such that
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4.3) b. biDb. biDb. b3t Db bi* (ViEN).

Since a;E€S;,(p) and b5E.S,,(p), there is 2;E5(b3, ab; x;) N Sspe(p)E O for all
ieN. Since § is as in Proposition C, it follows that C%(2;) N Ss(p)+0. Com-
bining this fact, (4.2) and (4.3), by expansiveness we have that

CHz)Nas* ai£0 or CUz)Nbi* bi=+0.

Without loss of generality, we assume that w, & C%(2;) Nai*' ai==¢ for all iEN.
Since aj—>a.., diam (aj*! a3)—0 as i— o by (4.2) and hence w; converges to a.. as
i—>oo, Since 2;ESy(p), 2; converges to some 2., & Sss(p) as i—>cc0 and then
2. EA.. since 2;Es(a3, ab; x;) and s(b, ab; x;)—>A... Since w;EC%(z;), we have
a.EWi(2.) (Lemma 2.3). Since a., 2. € A. and A.,C W;(x..), by expansiveness
a..=2., thus contradicting that a..& S;,(p) and 2. & Sss(P).

Case (IT). Since A, is finite and A is infinite, by the choice of A, we can
take yE A, and a sequence {x;},cx of A with x;4=x; for 3= such that Cj(x;)N
Ci(y)=+0 for all ieN. Then Ci(x;)CCi(y) for all ieN. Since x;EA, by
the choice of A we can take aj=C:(x;) (=1, 2, 3) such that s(x;, a}; x;) > s(x;,
aj; x;) for k=1l and a;€8;,(p) for k=1,2,3. Let K={ai: iEN, k=1, 2, 3}.
If K is finite, then {ai}i..={ai}i., for some i==j. In this case, there are two
arcs in C3,(y) jointing x; and x;, which contradicts Lemma 4.4 since 0<<36<c/2.
Hence K must be infinite, and so there are a subsequence {x;} of {x;} and a
sequence {a’} of K with a'#a" for 41’ such that x, and &' converge to some
% € Bs/(p) and some a., € Syp(p) as i—> oo respectively. Then .., 4. C3,(y)
because x;, a'€C3(y). Since C3y(y) is locally arcwise connected by Lemma 4.3,
there are arcwise connected neighborhoods U and V' of x.. and a.. in Cj,(y) such
that U N V=0, respectively. Then x,, x,€U and d’, @’ €V for sufficiently
large I and I’ with /=/’. 'This implies the existence of two arcs in C3,(y) joint-
ing x; and x;». But this contradicts Lemma 4.4.

Lemma 4.9. Let xeM and o=s,u. If P°(x)>3, then x&Per(f).

Proof. Assume that P(x)>3 and take 0<<&<¢/2. Since fW:(x)C
Wi(f(x)), clearly fCi(x)CCi(f(x)) and so by Lemma 4.6, P°(f(x))>3. Induc-
tively P°(fi(x))=3 for all :>2, and therefore by lemma 4.8, x&Per(f). We
obtain also that P*(x)>3 implies x&Per( f).

Lemma 4.10. For every x&M, P°(x) is finite (o=s, u).

Proof. Fix 0<€<c/2 and let 0<<8<¢& be as in Lemma 2.5. Assume that
P?(x) is infinite for some xM. Then x=Per(f) by Lemma 4.9. Now we
write

B = {b&BC3(x): o (x, b; x) N Ss(x) =+ G} .
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Since P°(x) is infinite and x&Per(f), as the first part of the proof of Lemma 4.8
we can prove that there is an infinite subset B’ of B such that o(x, d,; x)¢
o (x, by; x) for b, b, B’ with b,=b, (use Lemma 4.6). Since Cj(x) is locally
arcwise connected by Lemma 4.3 and B’ is infinite, there is an arcwise connect-
ed subset U of C3(x) such that diam (U)<<§ and U contains distince points b, b,
of B’. Hence o(x,b;; x) Uo(x, by; x)CU by Lemma 4.4. Since o(x, b;; x)N
Ss(x)== 0, we have that diam(U)>3$, thus contradicting diam(U)<8.

Let xeM and 0<<€<¢/2 and let yeCy(x)\ {x}. We say that y is a branch
point of Cg(x) if there are distinct points 4, a, of BC{(x) such that o (x, a;; x) N
o(x, a,; x)=o(x,y; x). Noet that o(x,y; x)So(x,a;; x) ((=1,2). We obtain
in proving the following lemma that if y is a branch point of C¢(x) then ye
Sing"(f)-

Lemma 4.11. For x&M and 0<&<c/4, CI(x) has at most one branch
point (o=s,u). If P°(x)>3, then Cq(x) has no branch points.

Proof. Assume that y is an branch point of C;(x). Since C3(y)DCq(x),
by Lemma 4.6 we see that P°(y)>3. Therefore y=Per(f) by Lemma 4.9 and
so every branch point of C;(x) is a periodic point. By this fact and (1.1), we
obtain that C;(x) has at most one branch point. The conclusion of the second
statement is easily obtained in the same way.

Lemma 4.12. For x&M and 0<&<c[4, BC;(x) is a finite set (c=s, u).
Proof. The conclusion is easily obtained from Lemmas 4.10 and 4.11.
Lemma 4.13. For every xM, P°(x)>2 (o=s, ).

Proof. If the proof is given for o=s, then the conclusion for o=u is
obtained in the same way and so we prove the case of o=s. Since BC}p(x)=0
by Lemma 4.5, obviously P°(x)>1 for all x&M. Hence it is enough to show
that P*(x)==1 for all x& M.

Assume that there is x& M such that P°(x)=1. Then by using Lemma 4.11
we can find 0<<36<c/4 such that C3,(x) is an arc, and then C3,(x)=s(x, 2; x)
where {2} =BCj,(x). Since C§(x)C C3,(x), Ci(x)=s(x,y; x) for some ye&
s(x, z; x).

Let 0<26<¢& be as in Proposition C. Then we can take acs(x,y; x) N
S(x)== 0 and b= Cy(x) N S5(x)== @ such that s(x, a; x)\ {a} C Us(x) and u(x, b; x)\
{b} C Us(x), i.e., L=s(x, a; x) Uu(x, b; x) intersects Sy(x) only at a and b. Since
s(x, a; x) Nu(x, b; x)={x} by expansiveness, L is an arc in By(x), and so Bj(x) is
cut in two components U, and U, by L.

Now we claim that there are g&s(x, a; x)\ {x, a} and ¢;€ U;(i=1, 2) such
that ¢,, ¢, €C%(q) and u(q,, ¢,; ¢) C Us(x). Indeed, take pes(x, a; x) with d(x, p)
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=38/2. Then s(x,a; x) N Csu(p)={p} by expansiveness. If weu(x,b; x)N
Ci(2)=*0, then we Wi(x) N Wi(p) and so x, peWi(w). Since pEs(x,a; x)C
Ci(x), by expansiveness x=p, which contradicts d(x, p)=8/2. Hence u(x, b; x)
N Cs,(p)=0, and therefore L N C},(p)={p}. Combining this fact and Propo-
sition C, we have that U, N Cy,(p)=+0 or U,N C%,(p)=+0, 7,e., one of the follow-
ing three cases holds:

I ¢€UnCiy(p)+0 (=1,2),
(H) UNCsu(p)=0 and U,N Cgﬂ(?) *0,
(IIT) U,NCiu(p)*+0 and U,NCh(p)=0.

For the case (I), the above claim holds since ¢,, ¢, C%,, CC¥(p) and u(qy, g,;
q)CC4(p)C Us(x). For the case (II), we take a sequence {p;};en of U, such
that p; converges to p as i—co. By Lemma 2.2, Cj,(p;) converges to some
A.eC(M) (take a subsequence if necessary) and then peA. C Cj,(p) by
Lemma 2.3. By using Proposition C, we have {p} S A.. and hence A.N U,==0.
So ¢,€U,N Ci(p:1) +0 for sufficiently large /&N with d(p, p;)<8/10 and then
u(P1, §25 P1) CByayan(p) CUs(x). Combining this and the fact that p,e U, and
¢,€U,, we can find g&[s(x, a; x)\{x, a} 1 Nu(p;, ¢ p1)*F0. Since Ci,u(p)C
C%(q), obviously p;, ¢, C%(q) and u(p,, ¢,; p1)=u(P1, ¢:; ). Therefore the above
claim holds for (II). In the same way, we obtain that the above claim holds also
for (III).

Take g=s(x, a; x)\ {x, a} and ¢;€ U;(=1, 2) as in the above claim. We
note that gu(qy, g,; ¢). Since 28 is chosen as in Proposition C, there are
t,=Sy(x) N Ci(g:) (i=1, 2) such that s(q;, ¢;; g;)\{t;} CUs(x). By expansiveness
it is easily checked that

(@t @)NS(@t; ) =0,
$(qu 2 @) Nu(q, 25 9) = {ai}»
$(g2 t; @) Nu(q, 425 @) = {4} -

If ¢, £, is an arc in Sg(x) jointing ¢, and £,, then we have that

T =t Us(q, ;5 ¢) Un(q, 25 9 Us(ge 125 ¢2)

is a simple closed curve in By(x). Since s(x,q; x)Cs(x, a; x)\ {a} C Uy(x),
obviously Si(x) N's(x,q; xX)=@. By expansiveness s(g;, t;; ¢;) N s(x,9; x)=0
(=1, 2) and u(q,, ¢;; 9) N s(x, g¢; x)={q}, and therefore I" N s(x, g; x)={q}.

Ler D be the disk in By(x) bounded by I'. Then we can assume that
s(x, g; x) C D (retake the arc ¢, ¢, in Sy(x) if necessary). Since I'N s(x, ¢; x)={q},
there is a neighborhood U of s(x, g: x) in D such that UNT' Cu(q,, ¢,; q). Since
s(x, g5 x) C Ci(x)=s(x, 2; x), by expansiveness s(x,2;x) N u(q,, ¢; 9) = {q}.
Hence there is a neighborhood U’ of s(x, 2; x) in M such that U contains the
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connected component V of s(x, g; x) in DNU’. Then s(x, g; x)=s(x, z; x)N V.
We claim that there is a conneated neighborhood W of s(x, g; x) in D such that
WcVand Cyw)C U’ for all weW. Indeed, if this is false, then we can find a
sequence {w;};ey of D such that Cj(w;)E U’ for all &N and w; converges to
some w.,Es(x, g; x) as i—>c0., By Lemma 2.2, C;(w;) converges to some A, &
C(M) as i—>oo and then A.CW(w.) (by Lemma 2.4). Since

W. E5(%, 4; ) CTs(x, a; x)Cs(x, y; x) = Ci(x) ,

obviously Wi(w.) CWie(x). Therefore A..C W35, (x) and so A.CCs(x)=s(x, 2;
x), contradicting that Cj(w;)d U’ for all i&N and U’ is a neighborhood of
s(x,2; ) in M. Therefore the conclusion is obtained.

Since W C.D C By(x), by Proposition C there is e € .Sy(x) N C3(w) == for every
weW. Since I' is the boundary of D, it follows that s(w, e; w) NT'#+=@. Hence
there is tEs(w, e; w) T such that s(w, t; w)CD. Since weW, we have that
s(w,t;w)cU’. By the choice of V, s(w, t;w)CV cU. Since UNT Cu(q,, ¢,;
q), we have that t €u(q,, ¢,; ¢) and therefore C3(w) Nu(qy, ¢:; g)F 0.

Now we write

W;= {weW\s(x, q; x): C;(w)Nu(g,q:;9)+ 0 (E=1,2).

Then W, U W,=W\s(x, ¢; x) as we saw above. It is checked that W, N W,=@.
Indeed, let weW,N W,+=@. Then Ci(w)Nu(q, ¢; 9= {q} by expansiveness.
Hence s(w, g; w)C V. Since g=s(x,y; x)=Ci(x) and g Cj(w), we have that
Co(w) CCsy(x)=s(x, 2; x), and so s(w, ¢; w)Cs(x, 2; x). Since s(x,2; )N V=
s(x, g; x) we have that s(w, ¢; w) Cs(x, ¢; x), thus contradicting we W;, There-
fore W, N W,=4.

We claim that W; is closed in W\s(x, ¢; x) for =1, 2. Indeed, take a
sequence {w;};enx of W, such that w; converges to some w.. € W\s(x, g; x) as
i—>oco. Then there are ¢, C(w;) Nu(g, ¢;; 9) (EN) and e..€ Cy(w..) Nu(qy, g25
q). By Lemma 4.2, e; converges to e., as i—>oco0. Hence e..€u(q, ¢;; g) and so
w..& W,, which means that W, is closed in W\s(x, ¢; x). We obtain also that
W, is closed in W\s(x, d; x).

Since W is conneated, so is W\s(x, ¢; x) and hence W;=W\s(x, ¢; x) for
i=1 or 2 by the above results. Without loss of generality, we may assume that
W,= W\s(x, g; x). Then for w €u(q, ¢;; 9)\{g} there is a sequence {w;};en
of W, such that w; converges to w as i—oco. Since w; W), there is ¢;&C3(w;)
Nu(g, ¢,; 9)+0 for every icN. By Lemma 4.2, ¢; converges to some e.E
u(q, q;; q) as i—oo. Since e;€Wi(w;), we have e, W3(w) by Lemma 2.3.
Since e.., weEu(q, ¢:; 9), by expansiveness e.=w, thus contradicting that e.&
u(q, ¢:; 9) and weu(q, ¢; 9\{¢}. The conclusion for o=s was obtained.

Lemma 4.14. For every 0<8<c/4 there exists 0<<8 <& such that
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Ss(x)No(x,b; x)F0 (o =s,u)
for all x&M and all be BC(x).

Proof. By Lemma 4.1 there is 0<<d <& such that WZ,(x) N By(x)=W3(x) N
By(x). 'To obtain the conclusion, assume that o (x, b; x) C Uy(x) for some x&M
and beBC;(x). Then there is 0<<y<<3 such that o (x, b; x) CU,(x). Since be
C;(x), we have C7(b) C C7¢(x) and hence CZ(b) N Bs_4(b) C C3o(x) N Bs_y(d). Since
B;_y(b) © By(x) and x and b are jointed by the arc o(x,d; x) in Uy(x), the con-
nected component of b in C3,(x) N Bs_y(b) is contained in that of x in CZ,(x) N
By(x). Since W3(x) N By(x)=W¢(x) N Bs(x), we see easily that the connected
component of x in C3,(x) N Bs(x) coincides with that of x in Cj(x) N By(x).
Therefore the connected component of b in C(d) N Bs_y(d) is contained in that
of x in C;(x)NBs(x). Therefore P°(b)=1, which contradicts Lemma 4.13.
The proof is completed.

For 0<€<c¢/4, let 0<8<E be as in Lemma 4.14. By Lemma 4.11 for
xEM we can take 0<<&(x)<<8/2 small enough such that C7(x) N By,)(x) has no
branch points (o=s, %), and define then

(44) Seo(®) = {a€Se(%) N Co(x): o (x, a5 x)\{a} C Uy (%)} -
We note that S,(x) is a circle for every x& M.
Lemma 4.15. For every x&M, #[S; (,(x)]=P°(x) (c=s, ).
Proof. The conclusion is easily obtained from Lemmas 4.6 and 4.14.

Lemma 4.16. For every x&M, S;,(x) is a finite set with at least two
points (o=s,u). Let I;(1<i<I) be the open arcs in which S(x)3(x) cut Secz(x).
Then every yeESi,(x) is contained in some Iic{lj: 1<i<I}. Choose from
St (x) another point different from y. Then the point is not comtained in the
same I{. Exchanging s and u, one has the same result.

Proof. The first staement is obtained from Lemmas 4.8, 4.13 and 4.15.
Since S%,)(¥) CC;(x), by expansiveness S} ()N St(¥)=0 and hence each
point of S%.)(x) is in some Ii. 'To obtain that distinct two points of Si(,(x)
are not in the same I}, assume that there are distinct points a, b S¥,,(x) such
that a, b1} for some i. We denote by ab the subarc in I} jointing a and b.
Then it is easily checked that

I'=abUu(x,a; x) Uu(x, b; x)

is a simple closed curve in By,y(x), and so it bounds a disk D in B,(x). Put
= U s(x, 2;x). By the definition of S},)(x), we have that 3 C By,)(x) and

zesgc_g)(x)

S, intersects Se(,)(*) only at Si(,)(x). Since abC I3, by expansiveness %N T'= {x}
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and SN (D\T)=@. For &(x)/2 choose y>0 as in Lemma 4.14. Since 3N D=
{x}, there is a neighborhood U of 3, in B,(,(x) such that U N DcCB,,,(x). Since
SN (D\I')=@, we can take a sequence {x;};,.nx of D\I" with d(x, x;)<<y/4 such
that x; converges to x as i—>oco. Then by Lemma 2.2, C;(,.(*;) converges to
some A, &C (M) as i— oo (take a subsequence if necessary). Since A, C
Ceap(%) C Uy y(%), we have that A, C3 and hence C(,(x;) CU for sufficiently
large I. Since v is as in Lemma 4.14, by Lemma 4.13 there are g, a,€
Cseop(x1) N Syp(x) such that s(x;, ay; x;) 0os(xy, a5 %;).  Since Ci(,yp(%) CU and
UNDcCBy,(x), it follows that a;, a,éD. Hence s(x;, a; %) N T+ 0(k=1, 2)
and since s(x;, a5 %;) CC(o0(#1) C Ugsy(%), we have

s(x, @y %) N [u(x, a; x) Uu(x, b; x)]+=0 (k=1,2)
which contradicts expansiveness.

Lemma 4.17. P’(x)= P*(x) for all x& M.
Proof. The conclusion is easily obtained from Lemmas 4.15 and 4.16.

Lemma 4.18. Let 0<&<c/8. For every x&M there exists 0<np<<E(x)
such that if

yeEB,(x)\ U o(x,a;%x) (c=-s,u)

aESg(x)(x)

then Cq(y) is an arc.

Proof. Using Lemmas 4.8 and 4.13, we can find 5,>>0 such that P?(y)=2
for all ye B, (x)\{x}. If the lemma is false, for nE N there is

YEByn(®\ N a(x,a; %)
aesg'(,)(x)

such that C;(y,) is not an arc. Since P°(y,)=2, C;(y,) has a branch point 2,
and then z,&Sing”(f). By Lemma 4.8, we can assume that 2,==2 for all nEN.
By Lemma 2.2 there is a subsequence {n} of N such that C;(y,) converges to
some A.€C(M) as n—>oco. Since y,—x, A.CC{(¥) by Lemma 2.4. Since
z=2,EC;(y,), obviously z&A.. and so 2=C;(x). Hence x=C5%(2). Since
2EC;(¥,), ¥2EC2:(2). Since 0<<26<c/4, we note that C3,(2) is a finite uniion
of arcs (lemmas 4.5 and 4.12). Since y,—x, there is an arc 4, in C3,(2) with
sufficiently small diameter such that y,, x4,. Since 2EC;(x), C3,(2) CC34(x)
and so 4,CC3(x). By Lemma 4.1 it is easily checked that 4,CC;(x). Hence
A4,c U o(x,a; x), thus contradicting the choice of y,.

nESgC x)(x)

5. Proof of (1), (2) and (3) in Proposition A
In this section we shall give the proof of (1), (2) and (3) of Proposition A.
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As before let f: M—M be an expansive homeomorphism with expansive con-
stant ¢>0. Fix 0<€<¢/8.

For x& M let P°(x) (o=s,u) be as in §4. By Lemma 4.17, P(x)=P*(x)
and so we define

px)=P°(x) (oc=s,u).

By Lemmas 4.10 and 4.13 we have that 2<p(x)<<oo for all x& M.
Next, let x M. Then we can construct a C° chart @,: U,—C as follows:

Construction of U,. Let &(x)>0 be as in §4 and define S;,)(x) (c=s, u)
as in (4.4). Then S7(,(x) is a subset of a cirlce Sy,)(x). Since #[S;.,)(*)]=
p(x) by Lemma 4.15 and 2<p(x)<<oo, we have that S7(,)(x) cut Sy,(¥) in
p(x) open arcs I7(1<{<P(x)). From Lemma 4.16 it follows that

€ 20
Sen(®)C U It, Siax)c UIi.

Since #[S; ) (x)]=p(x) (c=s, u), we see by Lemma 4.16 that S$.)(x) N I¥ is ex-
actly one point ai and Sj(,)(x) NI} is exactly one point a} for every 1<i<p(x).
Since each I7 is an open arc of Sy(,)(x)\ S (s)(*), we may assume that the boundary
points of I{ are a} and a4}, and that the boundary points of % are a¥_, and a¥,
where aj(,y,1=a] and ag=aj,). Then {ai} UIiU {ai..} and {af_,} UI%U {a’}
are arcs of Syy(x), and so we denote them by aj ai,, and af_, a respeatively.
Obviously at<ajai., and aisa?_, af for 1<i<p(x). We denote by ai a¥ the
subarc of af aj,; jointing af and ai. The notation a} ai,, is also defined.

By the definition of S;(,)(x) (c=s, #) we have that the arc o (x, 47; x) is con-
tained in a disk By(,(x) and it intersects Sg(,)(x) only at a} for 1<i<p(x). Since
s(x, af; x) Nu(x, af; x)={x} by expansiveness, it follows that

T = aj @t Us(x, a}; x) Uu(x, af; )

is a simple closed curve in By,(x), and so I'{ bounds a disk Dj in Byy(x).
Also we have that

T = ai ais1 Uu(x, ai; x) Us(x, ajsr; X)

bounds a disk Df in By, (x). Since p(x)>2, obviously DiNDi=u(x,a¥; x)
and DY N Di,1=s(x, ais1; x) for 1 << p(x).

Let 0<p<<€(x) be as in Lemma 4.18. For 1<i<p(x), take and fix y;E
s(x, a}; x) such that 0<d(x,y,)<. Then C%(y,) is an arc, and so we denote its
end points by b,(1) and b;(2). Lemma 4.13 ensures that y,=+b,(k) (k=1,2).
Since 0<<€(x)<<8/2 and & is as in Lemma 4.14 (see §4), it follows that u(y;, b;(k);
) N Seny(%) =0 for k=1, 2, and hence we can find c;(k)su(y;, bi(R); y;) (k=1, 2)
such that u(y;, ¢;(R); ;) CBey(®) and u(y;, ci(k); ¥:) N Secn(x)={c;(k)}. Since
y:Es(x, ai; x) and y;#x, by expansiveness it is easily checked that



ExpaNsivE HOMEOMORPHISMS 141

(5.1) {u(x, at_1; x) Uu(x, at; )} Nu(y;, ci(k); ) =0 (k=12).
Combining (5.1) and the fact that D?_; UDj is a disk in By,)(x) bounded by

ai—yaiDaiatUu(x, ai-r; x) Uu(x, af; x),

we see that u(y;, ¢(k); y;,) CD%_, UD; for k=1,2. By expansiveness, u(y;, ¢;(k);
y)Ns(x, ai; x)={y;}, and therefore u(y;, c,(k); y;) (k=1,2) are contained in
D%_, or Di respectively.

We deal with the case u(y;, ¢,(1); y;)CDf_;. In this case, by using Lemma
4.16 it is easily checked that u(y;, c;(2); y;,)CD;i. Note that ¢;(k) €Sy (x) (k=
1,2). Then we have that c;,(1)=4af_, a and ¢;(2)=a; a.

Choose z;€u(x, at; x) (1<i< p(x)) such that 0<d(z;, x)<5. Then C(z;)
is an arc. In the same way as above, we can find d;(k)eC{(2;) (k=1, 2) such
that d,(1)Ea; a¥ and s(z;, d;(1); 2;)CDj, and such that d;(2)Ea’ ai.. u(2;, di(2);

z;)C Dt

We claim that if d(2;, x) is sufficiently small, then
(5.2) $(=s, di(1); 2:) Ny, €l(2); 3:)*0,
(5.3) $(2:, di(2)5 2) N (Yivas €i41(1)5 Yin) F0

Indeed, u(y;, c/(2); ¥;) cuts Di in two components Di(—) and Dji(-+) because
u(y;, ¢i(2); ¥;) is contained in D{ and it intersects T'§ only at two poonts y;, ¢;(2).
Since ¢;(2)€a; a¥, it is clear that af ¢;,(2)\ {c;(2)} and ¢,(2) a?\ {c(2)} is contained
in D{(—) or Di(+) respectively, where 4 ¢; (2) and ¢; (2) a% denote the subarcs of
ai ai. Hence c,(2) af\{c,(2)} c Di(+) whenever a; ¢;(2)\ {c,(2)} € Dj(—).

To show the above claim, assume that d;(1) &c;(2) af even if d(x, 2;) is small
enough. By Lemma 2.2 there is a sequence {z;} such that d,(1) and s(z;, d;(1);
;) converge to some d.<c,(2) a¢ and some A.&C(Dj) as z;—>x, respectively.
Then A.CWi(x) by Lemma 2.3, and so A.cCC¢(x). Since x, d.€A.,, it fol-
lows that s(x, d..; x) CA.. Since A.C Dj, obviously s(x, d..; x)cD;j. Combin-
ing this and the fact that d..eEs(x, af; x), we see that s(x, a}; x) Cs(x, dw; X).
Since d..E¢,(2) a¥, this implies that s(x, d..; x) intersects #(y;, ¢;(2); ¥;) in at least
two points, thus contradicting expansiveness. Therefore d;(1)=a; c;(2)\ {ci(2)}
whenever d(z,, x) is small enough, i.e., d(1)€Di(—). Since z;€Dj(+), (5.2)
holds. (5.3) is also obtained.

For 1<i< p(x), take and fix 2;Eu(x, a¥; x) such that (5.2) and (5.3) hold.
Expansiveness ensures that the left sides of (5.2) and (5.3) are exactly one point
w;(—) and w;(+) respectively. It is clear that

Ji=s(x, ;5 ) Un(y;, wi(—); ;)
Us(2;, wi(—); 2;) Uu(x, 255 x)

is a simple closed curve in Di. Hence J{ bounds a disk R{ in D{. In the same
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way, we obtain that
Ji = u(x, 2;5 x) Us(z;, wi(+); =)
Us(Yirr, wi(+);5 Yir1) US(X, Yieas )

bounds a disk R} in D}. For 1<i< p(x), we write

Ui = R\ {u(yi, wi(—); y:) Us (=i, wi(—); 29)}

Ut = R\ {s(z;, wi(+); 2) Us(Yirr, wi(+); Yir1)} -

Cx x

And define U,= U (U5U U%). Since'U (R§URS) is a disk and its boundary is

U (31, ()3 9 Us(a 0(—); 2)
U s(zi, wi(+); 2) U (Yian, w(+)5 Yisa)] 5

it follows that U, is an open disk which contains the point x. This U, is our
desire.

For p>2 let 9,, 9, and &V, be as in §1. To construct ¢,: U,—~C, we
define the coordingates of 9, with respect to 4, and €V, as follows. Let Ry:
C—C denote the rotation which sends 2 to e'%z, and write

Hj = Ryeiioyys([0, 1), Vi = R,(H})

for 1<i<p. Then
PR b
L'=UH, and L= U Vi
i=1 i=1

are the elements of %, and €1, through 0&C respectively. We denote by 9} ;
the closed subset of 9, which is enclosed with H} and ¥}, and by 9} ; the clos-
ed subset of 9, which is enclosed with ¥} and H}*'. Clearly

9,= 0 (D409,
hiNDy i =Vi, Dy:NDhisi=H*' (1<i<p).

Let (2, 2,)€H;x V}. Then the element of €/, through 2; and the element of
4, through 2, intersect in exactly one point (2, 2,)€ 9} ;. It is easily check-
ed that

ab: HixVy— D (1<i<p)
are homeomorphisms. By the same fashion we can define homeomorphisms

Qi VixHi" — @5, (1<i<p).
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Construction of ¢,: U,~C. Let 1</<p(x). In the same way as in
Construction of U,, for yEs(x, y;; x) we can find ¢,(k) € Cy(y) (k=1, 2) such that

u(y,c(1); »)CRIZ, u(y,c(2); ¥)CRE,
u(y, 6(1); ¥) N8 (20, wina(+)5 2i1) = {e,(1}
u(y, ¢(2); )N s (25 wi(—); %) = {6(2)} -
And also for z€u(x, 2;; x) we can find d,(k)=C(z) (k=1, 2) such that
s(2,d(1); R)CR}, s(2,d(2); 2)CRY,
$(#, dy(1); 2) Nu(ys, wi(—); yi) = {d(1)}
(2, d,(2); ) Nu(Yivr, wi(+); Yir1) = {d:(2)} .
Let (y, 2)Es(x, y;; ) Xu(x, 2;; ). Then it is easily checked that
W) N We(2)2 Cy(y) N Ce(=)
2u(y, 6(2); ¥)Ns(2, dy(1); )+ 0 .

Hence W'(y)NW;(2) is exactly one point by expansiveness and the point is
penoted by ai(y, 2). Since u(y, ¢,(2); y) and s(2, d(1); =) are contained in Rj,
we have a{(y, 2) R}, and therefore

ai: s(x, yi; x)Xu(x, 2;5 x) > R (1<i< p(x))

are defined. By Lemma 4.2 and expansiveness af is continuous and injective.
It is clear that

ai(y, )=y if y&s(x,y;%),
ai(x, 2) ==z if zeu(x, z;x).
Since ai(y;, 2;)=w;(—), we have that
ai(s(x, y:; x) X {z:}) = s(z;, wi(—); =) »
ai({yit Xu(x, 2;; %)) = u(y, wi(—); ) »

and hence a} sends the boundary of s(x,y;; x) Xu(¥, 2;; x) onto the boundary
of R{. Since R; is a disk and «f is continuous, the image of «} coincides with
R;. Since «f is injective, consequently «f is a homeomorphism.

For 1< < p(x), we write

E; = [s(x, yi5 )\ {y:} ] X [u(x, ;5 )\ {2} ]
and define
Bi = aflEf: E; - U;.

In the same way as above, we have that if (2, y)€u(x, 2;; ) Xs(%, Yis1; X)
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then Wi(2) N Wi(2)={ai(z,y)} CR%. Hence homeomorphisms
s (s, 235 %)X 5(®, Jinr ¥) > RE (1< < p())
are obtained such that
ai(z, x) ==z if zeu(x, 2;; x),
aixy)=y if yEs(% %),
ai(u(x, 25 %) X {Yin}) = #(Pirp, wi(+)5 Vi) »
ai({zi} X5 (%, Yivr; %)) = s(2;, wi(+); 23) -

So we write
Ef = [u(x, ;5 2\ {z:}]X[s(%, Yit15 ©)\{Viz1}],
and define
B = af| g B4 —> Ut (1<i<p()).

For 1<i<p(x), let gi:s(x, i 2\{y;}—>Hj» and gi: u(x, 2;; x)\{2;}—
V' be homeomorphisms, and define

ri:Ui—= Dh,i, 18Ut —> Dieny.i
by
i = alo(gixg (B,
i = ajo(gixgi)o (B!

respectively. Then it is easily obtained that r7(1<i< p(x), o=s, #) are homeo-
morphisms with the following properties:

Vilosnwr = Yilosnoys Vilovaus,, = Yislowaos,, -
Therefore we can define a map @,: U,—~9D,, by
Pelor =i (I<i<p(x), o =s,4).
Obviously @, is a homeomorphism which sends x to 0. This g, is our desire.

Now we define S={x=M; p(x)>3}. Since p(x)=P7(x) (c=s, u), we re-
mark that S=Sing°( f) where Sing”(f) is as in §4.

Proof of (1), (2) and (3) in Proposition A. For x&M, write
()
L, x) = U [s(x 55 )\ {yid],

(s, %) ="U [u(®, 25 9\ =]
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Obviously L°(x, x) CCq(x)CW,(x) (o=s,u). By the construction of ¢, it is
easily checked that

(54) P (L'(%, %)) = Ly, (L%, %)) = Ly

for all x& M.
Let x&M and 1<i<p(x). For z€u(x, 2; x)\ {x, 2;}, write

L'(x, 2) = Bi([s(x, yis )\ {pi} X {=}) U B ({=z} X [s(%, yis; ®)\{Yisak) -

Then by the definition of B7(o=s, ) we have that L'(x, 2)CCi(z)CWi(z). By
the construction of g, it is obtained easily that @, sends L*(x, 2) onto an ele-
ment of J,,. Combining this fact and (5.4), we see that @ ({L'(x, 2); zE€
L*(x, x)})=H ») and hence

(5.5) U= U Lx2) (disjoint union).
zeL¥%(x,1)
Since L'(x,2)CW}(2), by (5.5) and expansiveness it follows that L(x, )=
U,NW(2) for all z&L¥(x, x).
Let yes(x, y;; x)\ {2, y;} (1<i<p(x)) and write

L¥(x, y) = Bi-a([u(%, 2i-15 2\ {1} ]} {y}) U Bi({x} X [u(=, 2;5 #)\{=}]) -

Then L*(x,y)CWi(y). In the same way as above, we have that ¢ ({L*(x, y);
yEL(x, )} =%V, and hence
(5.6) U,= U L%xy) (disjoint union)
YEL (x,2)
and Lz, y) = U,NWi(y) for all ye L(x, x).

As in Proposition A, let L,= {2 C; Im 2#?=0} (p=>2). We show that for
x=M and o=s, u there are p>2 and an injective continuous map j;: L,—~>M
such that j(L,)=W?(x). To do this, take a finite subset 4 of M such that
{U,; ac A} is a covering of M. Obviously ScA. Let 0<p<<2€ be a Lebes-
gue number of {U,; ac4}. For x&M choose a(x)= A such that By(x) CU,,).
Then a(x)=x if x&€S. Let x&M and put

M°(a(x), x) = Uyny N W3e(x) (o= s,u).
Then we have
(5.7) Wix) = U N Wi CM(a(5),2) (o =s,4).

By (5.5) and (5.6) there is we L%(a(x), a(x)) such that x&L" (a(x), w) where
o'=s (reps. o'=u) if c=u (resp. o=s). Since L (a(x), w)=U,, N W (), it
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is easily checked that L™ (a(x), w) C M" (a(x), x). Combining this fact, (5.5) and
(5.6), by expansiveness we obtain that L% (a(x), w)=M""(a(x), x).
By (1.2) we have that

(58)  W@=UfTWALE), W= U W),
and by (1.1) there is #,>0 such that

fro(M(a(x), x)) CW( [ (),

Fro(M (a(x), %)) CW(f (%)) -
So we put g=f" and write

Su(x) = g7 [M (a(g"(x)), £"())] »

u,(%) = g" [M*(a(g™"(x)), g7"(x))] -
Then from (5.7) and (5.9) it follows that

(5.9)

(5.10) (%) C g7 g™ (%)) Csn(®)
(5.11) U (%) C " W(g™"(%)) Ciths(x)
and therefore by (5.8)

(5.12) W) = U ou(®) (0 =51).

Let x&S. Since S is finite, we can assume that x is a fixed point of g.
Since a(x)=x, it follows that M?(a(x), x)=L"(x, x), and hence o,(x) is home-
omorphic to L, for all #>0. By (5.10), (5.11) and (5.12) we can construct an
injective continuous map j3: L,,,—M such that j3(L,))=W°(x). Lety&S and
let x&W(y). Then W(x)=W?°(y). Hence a bijective continuous map j;:
L,,,—W?(x)CM is obtained. Let x& M\ ygs W*(y). Thenit is easily checked

that M*(a(g"(x)), g"(x)) is an open arc for all #>0. Hence by (5.10) and (5.12)
we can construct an injective continuous map j§: L,—M such that j3(L,)=W?(x).
In the same way, for x& M\ U W*(y) the map ji: L,—W*(x) is obtained.

ryes

Therefore W°(x) (=s, u) are path connected.

To obtain that F7(o=s, u) are C° singular foliations, it is enough to show
that for x, y& M every connected component of W?(x) N U, is of form L°(y, ).
We give the proof for o=s.

Let weWi(x)NU,. By (5.7) there is 2 L*(y, y) such that we L(y, 2).
Since L'(y,2)CW3i(z), there is n,>0 such that g"(L*(y, 2))C W;p(g"(w)).
Since we W*(x), we can assume g"y(w)& W ,5(g"1(x)). 'Then we have

UL (y, %) CWi(g"(x)) -
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Since
Wi(g"(x)) C M'(a(g"(x)), g"(x)) (by (5.6)),

by the definition of s, (x) we have L(y, 2) Cs, (x). Since s, (x) C W(x), L(y, 2)
CWr:(x). Hence there is a subset {2,},ea of L*(y, y) such that

W@ U, = U Ly, 2).

Since L(y, 2,) is either an open arc or homeomorphic to Lk, (ji) (L'(y, 24))
is open in L, where ji(L,)=W*(x). Note that L(p, 2,) (A\EA) are mutually
disjoint (by (5.5)). Hence {2} ca is at most countable, and therefore each
L’(y, 2,) is a connected component of W*(x) N U,. It is obtained also that each
connected component of W*(x) N U, is of form L*(y, 2). Therefore F(oc=s, u)
are C° singular foliations and S is the set of all singular points of &7.

By the definition of j; we see that the toploogy of W?(x) induced by j; coin-
cides with the leaf topology. Hence each W?(x) is homoemorphic to L, (p=>2).
As we saw above, @, sends L(x, 2) onto an element of ., and ¢, sends
L*(x, 2) onto an element of CV/,,,. Therefore &} is transverse to &7}.

6. Proof of (4) in Proposition A

Let & be a C° singular foliation on M and let .S be the set of all singular
points of F. We recall that RF denotes the C° foliation on M\S obtained by
taking singular points away from each leaf of &. A simple closed curve T of
M\S is called a closed transversal of R if all subarcs of T are transversals of <F.
Let A be a connected subset of a leaf of RF. Clearly there is L& such that
AcL. If seLNS=0@and if s is a boundary point of 4 in L, then we say that
A leads to s.

As before let f: M—M be an expansive homeomorphism and let Fj=
{W(x): x&M} (oc=s,u). From the results of §5 it follows that &7} satisfies
all of (1), (2) and (3) in Proposition A. Hereafter let .S be the set of all sigular
points of F7. Define RFF as above. For the proof of (4) in Proposition A
we prepare the following

Lemma 6.1. Suppose that Fj(o=s,u) are orientable. If T is a closed
transversal of RF; (resp. RFY), then T intersects each leaf of RF; (resp. RLY) in
at least one point.

For x&M\S let L7(x) denote the leaf of RF} through x(oc=s,u). By
Proposition A(2) we have that each L?(x) is homeomorphic to B. Suppose that
7 (0=s, u) are orientable. Then an order relation for L°(x) is defined as fol-
lows. Lety, zeL’(x). We say y<, 2 if either y=z or the arc in L°(x) from y
to 2 has the same orientation as that of L7(x). When y<, 2 and y=z, we write
y<eq 2.
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For x& M\ S we define

Li(x) = {yeL’(x): x<,y},
Li(x) = {yeL’(x): y<, x} .

For y, ze L?(x) with y<, 2 we define

(¥, 2] = {wel(x): y<,w<,2}
and write

[J’, 2,’), = {y: 2],\{2‘} ) (y’ z]a- = [y: z]c\{y} )
(9 2)e = 3, 2]\ {3, 2} .

We call here intervals in leaves such subsets.

Lemma 6.2. Let I and I’ be intervals in leaves of RF; and let cl(I) and
cl(I') denote the closures of I and I' in the leaves of F; respectively. Suppose
that cl(I) is compact. If h: I-1' is a map which sends xE I to h(x)&E L (x) such
that (x, h(x)],N1'={h(x)} and if in particular h is a homeomorphism, then cl(I’)
is compact and there is a continuou map H: [0, 11X [0, 1]—=M satisfying H([0, 1]X
{0})=cl(I) and H([0, 11X {1})=cl(I’) such that for every x&M

(1) H (W) =[0,11xXA4 for some AcC[0,1],
(2) HY(W*(x)) = Bx[0,1] for some BcC]O0,1].

Exchange s and u. Then the same statement holds.

Proof. Fix acl. We first consider a subinterval J of I satisfying the fol-
lowing:

(@) as],

(b) there is a continuous map @;: JX [a, A(a)],—~M\S such that

) eixa)=x (x€]),

2) eray)=y (y€la h(a)l.),

(3) @s(x, +)is a homeomorphism from [a, A(a)], onto [, A(x)], for all x& J,

(4) for every L& RF; there is AC[a, h(a)], such that @7 (L) = Jx 4.
Let & be the set of subintervals of / which obey the above properties. Since
RTF; is transverse to RF ¥, we have S=+=0 (cf. [7, p. 35]).

For J€& let @; and @’ be as in (b). Then it is checked that ¢;=¢7.
Indeed, let z: R*—>M\S be the universal cover. Denote by RF7 (o=s, u) the
lifts of RF by = and let L°(x) be the leaf of RF; through x&R?. Since each
leaf of RF7 is homeomorphic to R, we have that z: L°(x)—>L°(z(x)) is a
homeomorphism for all x&R?. Fix acn~'(a). Since JCL*(a) and [a, A(a)],C
L*(a), we let
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J=@lza) (), 4= (zlte) ([ ha).).

Then z|3: J— J and | 5: A— [a, h(a)], are homeomorphisms. Let @; and &/
(: Jx[a, k(a)],— R?) be the lifts of @; and @’ by = such that @;(a, a)=5’(a, a)
=a, respectively. Then zo@,(JX {a})=¢;(JX {a})=] cL’(a). Since ac
@;(J X {a}), it follows that @,(Jx {a})CL*(@), and hence @;(Jx {a})=]. In
the same way, we have @7(Jx {a})=]. For x& ] it is easily checked that

”I7°¢](x)a) = q—JI(x)a):x: ”lioq_),f(x’a)’

Since 7| 7 is a homeomorphism, we have that @;(x, a)=&%(x, a). In the same
fashion, we have that @;(a, y)=¢’(a, y) for all yE[a, h(a)],.
Since

7o ¢3]( {x} X [a, h(a)],,) = ¢J( {x} X [a) h(d)]“)
= [x, h(x)],C L'(x),

clearly @;({x} X[, h(a)].) CL*@;(x, @). Also P(Jx {y})CL(P;(a,5)), and

hence
P;(x, y) EL (P (x, @)) N L(P;(a, y))

for all (x, y)& JX[a, h(a)],- In the same way, we have
P7 (%, 9) L9 (x, @) N L (P} (a, 3))

for all (x, y)e JX[a, h(a)],. Note that the left hand sides of above relations are
one point sets respectively (cf. [7, p. 66]). Since @,(x, @)=} (x, a) and P,(a, y)
=®’(a, y), we conclude that @,(x, y)=5%(x, y), and therefore gp;=gp7.

By the above result we see that & is inductive, and hence there is a maxi-
mum J.. of §. We can check that J.=1I. Indeed, let b€ J.. Since RF} is
transverse to RFY}, there are a connected neighborhood K of b in 7 and a con-
tinuous map rgx: KX [b, A(b)],—M\S such that

(1) Yx(xb) =2 (x€K),
@ vxby)=y (yElb b)),
(3) +rk(x, +) is a homeomorphism from [, A(6)], onto [x, A(x)],
forall xeK,
(4) for every Le RF; there is AC[b, h(b)], such that ¥z (K) = KxA4.

We define yr: K X [a, h(a)],—~M\S by

‘P‘(x’ y) = ‘I"K(x’ ?’Iu(b» y))

Then it follows that y»=g;_on (K N J.)X[a, k(a)],. Since J.. is a maximum
of &, we have K C J.. Hence J. is open in I. In the same way, we obtain
that J. is closed in I, and therefore J.=1I. By this result we can take a con-
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tiniuous map @: IX[a, A(a)],—M\S such that

1) pwa=x (eI,

@ o=y (ylah@),

(3) o(x, +) is a homeomorphism from [a, k(a)], onto [x, h(x)],

forall xel,

(4) for every L& RF; there is A C[a, h(a)], such that /(L) = Ix 4.

By (1) and (3) we have that ¢(x, h(a))=Ah(x) for all x&1. Hence @(IX {h(a)})=
II-

Hereafter, let I be homeomorphic to [0, 1) for simplicity.

It is easily proved that cl(@(IX {y})) is compactf or all y<[a, h(a)l,.
Indeed, assume that there is b&[a, £(a)], such that cl(@ (I X {b}) is not compact.
Then @(IX {b})=L5(b)U {b} and L5(b) leads to no singular points. Hence
@ (I x {b}) has the recurrent property, and so we can find x, ¥’ with x=x’
such that (x, A(x)], N (%", A(x")],= @, thus contradicting.

By the above result, for all y&[a, A(a)], we can take a boundary point ¢, of
@I X {y}) in the leaf of F} such that c,&Ep(IX {y}). Define @': c/(I)X
[a, h(a)]"—M by

¢’ I Ixla,n(a)] = P ?I(C) .y) =& (yE [a’ h(a)])

where ¢/(I)=1 U {c}. Since &} is transverse to &} it is easily checked that ¢’
is continuous and for all x&M there are ACcl(I) and BC[a, h(a)] such that
@' " (Wi(x))=cl(I)X A and @' (W*(x))=BX[a, h(a)],. Since @(IX {h(a)})=
I, clearly @'(cl(I) X {h(a)})=cl(I’), and hence ¢/(I") is compact. Let g°: [0, 1]—
cl(I)and g“: [0, 1]—[a, A(a)], be homeomorphisms and define H: [0, 1] X [0, 1]—
M by H(x,y)=@'(g°(x), £(y)). Then H satisfies all the properties in Lemma
6.2.

Proof of Lemma 6.1. Let I" be a closed transversal of RF?, and define

S = {xeM\S: L'(x)NT==0} .

Then &S is open in M\S. Clearly L(x)CS whenever x&S. To obtain the
conclusion, it is enough to prove S=M\S. To do this, assume that SSM\S.
Then there is a transversal T of &} in a leaf of RF% suchthat 72T NS+ and
TNIT'=@. LetIbe aconnected component of 7'N S and a be a boundary point
of Iin T. Since & is open in M\ S, obviously a& S and so L'(a) N T'=4.

Claim 1. L’(a)#=W?(a), that is, L’(a) leads to a singular point.

Proof. By retaking the orientation of RF} if necessary, we can assume that
a is the least upper bound of I. Take and fix x;,&I. Then [x,,a),CICS.
Since L’(x,) NT'=#=@, clearly either L} (x,) N T'==@ or Li(x,) NT'==0.

From now on we deal with the case L:(x;)N #@. Since L'(e¢)NT'=¢ and
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I" is a closed transversal of RF}, there is x,& (%, a, such that L5 (x,) N\T'=0 and
Li(x)NT'#0 for all xE[x), x,),. Since TNT'=@, we can define v: [x,, x,),—T
by (x)& Li(x) and (x, ¥(x)]l,NT={y(¥)}. Then it follows that ¢ is continuous
and locally injective.

We first prove that o can be extended to a continuous map from [, x,],
to I".  If this is false, then [x,, x,), covers infinitely I" through v, and so there is
a decomposition

[xv %)y = [V ¥2)u U [V2y ¥3)u U - U [Vor Yir)u U (01 = %)

such that «: [¥;, ¥;41),—T is a bijection for all f&N. Clearly v(y,)=v(x).
From the definition of v it follows that y,&L:(v(x,)). Hence we can take the
maximum y;, of {y;}7-1 in L(v(x,)). Then (y;, v (%)l N [%}, x,).=¢. Hence
it is checked that (x, v (x)]s N [%1, %;),=0 for all &€ [y;, Yig+1)u- Indeed, let

A= {xE [yio) yioﬂ)u: (x: 'y(x)]s n [xh xz)u + ¢} .

and suppose that (A=4@. Then there is the greatest lower bound = of . {. If
(w, ¥ (w)]; N [%1, x,), @, then w=+y;. In this case, we have that x, & (w, v (w)],,
and hence (w, ¥(w)], N (%, %), 0. Since RF; is transverse to RF ¥, there is a
neighborhood K of w in (y;,, ¥ij+1)« such that (x, ¥(x)],N [x,, x,),3=0 for all
xeK. This contradicts that w is the greatest lower bound of ., and therefore
(w, v (w)]; N [%1, %,),=0. Since L5 (x)NT=0, (w, v(w)]N [x, x;),=@. Hence
we can find a neighborhood K of x in [y;, ¥:,+1)s such that (x, o (x)], N [x,, x2),=
@ for all x K, thus contradicting. Therefore A=0.

Combining the above result and the fact that «o: [y;, y;+1),—T is bijective,
we see that (x, ¥ (%)];, N [Yig Yigt1)uF 0 for all ¥E[y; 41, #2).. Hence there is a
map a: [Yiyer %)= [Viep %2), Such that a(x)&L3(%) and (¥, & (x)], N [Figy %2)u=
{a(x)}. Let a(y;)#y;, for all j>5,+41, then a([Vij+1, %2)s) S(Yigr X2)u- Since
RF; is transverse to RF, it follows that a: [¥; 41, %5)u —> [¥i,» X;). 1S continuous.
If a(y;)=y;, for some j>i,+1, then a(y;)=+y;, for all z>j. In this case, we
have that o([V+1, %)) C(¥ipr %2)", and hence a: [;41, %2),—>[ Y, *2)u is continu-
ous. In any case, we can find 7,>7,+1 such that a: [y;,, x,),—>[;,, %2), is con-
tinuous.

Note that « is locally injective. Then we have that a: [y;,, %2)s=>[¥is %2)u
is a C° embedding, and therefore it is extended to a&: [y;,, #,],—>[¥ip 2], Since
the diagram

(04
[yi" xz)u -_—> [yio’ xz)u

')’\P/'Y

commutes and I" is covered infinitely by [«;,, #,),, we conclude that & (x,)=x,.
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Combining this result and Lemma 6.2, we can find a simple closed curve in
W*(x,), which contradicts Proposition A(2). Therefore « is extended to a map
¥: [%y, %,),—T.

By using Lemma 6.2, we see that 7(x,)& W?(x,). Let [, be the arc in W*(x,)
jointing x, and ¥(x,). Since L5(x,) NT'=0, we have L{(x,) S/, and so there is a
singular point s, in /,. To obtain the conclusion of Claim I, assume L‘(a)=
W®(a). Then we have x,%a, and so [x,, x,], 5 [%,, @),. Hence L(x,) N T =0,
and therefore L:(x,) NT'+=@. Let 2, be the maximum of L:(x,) NT in LI(x,),
and take the arc 4, in W*(x,) jointing s, and 2,. Then x,&4, and 4,NT={z,}.

By repeating the above argument, we can find a sequence {x;}7.. in [x,, @),
with x;<, x; for i<j and a family {4;} of arcs in leaves of &} such that
x,€4;, A;NT consists of one point 2; and end points of 4; are 2; and a singular
point. Since S is finite, {4;} must be a finite set, which contradicts that {x;}
is infinite. Therefore the conclusion of Claim I was obtained.

Since S is finite, we can find £>0 such that g=f* fixes all singular points
and it preserves every leaf of RF; and of RF% which leads to a singular point.
Let L°(x) lead to a singular point p(o=s,u). Then L°(x)CW°(p). By the
definition of W?(p) we haev that g"(x)—p as n— oo if o=s, and that g"(x)—p
as n——oo if o=u.

Now we take a transversal 7' of &} in a leaf of RF* such that 7'22T'NS
@ and T'NT=@. Let I’ be a connected component of 7'N S and a be a
boundary point of I’ in 7”. By retaking the orientation of RF* if necessary,
we may assume that a is the greatest lower bound of I’. By Claim I, L’(a) leads
to a singular point (say, s(a)). Hence one of L5(a) or Li(a) leads to s(a).
Without loss of generality, we may assume that L:(a) leads to s(a). Then L (a)
has the recurrent property. Hence we can find a transversal T of &} in a leaf of
RF% with TNT'=@ such that L(¢)N T has an accumulation point b in T.
Then there is a sequence {x;};en of L3(@) N T such that

X< X5 X3 <+

and «; converges to b in T as i—oco. By taking subsequence if necessary, we
have one of the following two csaes:

(A) Xy <]y X<y X3y 0 <y b ’

(B) b<u e <u x3<u x2<u xl .
We consider the case of (A). Since a is the greatest lower bound of I’ in T,
for i N we can take the connected component I; of SN T such that x; is the

greatest lower bound of /;. If y; denotes the least upper bound of I;, then
I, is expressed as I;=(x;, ¥;),.

Claim 11. y,L5(y,) forall ieN
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Proof. Since x, €& &, obviously L3 (x,) N [%,, ¥,),= {x;}. Since RF; is trans-
verse to RF ¥, we can find 2 & (x,, y,], satisfying the following: for all x&[x,, 2),
there is a(x) € L5 (x) such that (x, a(x)], N [*3 y,).={a(x)}. Let 2.&(x,, 3], be
the least upper bound of such points 2. Then we have the map a.. from [x,, 2..),
to [x,, ,), such that (x, a.(*)], N [%,, ;). ={a@«(*)}. It is easily checked that «..
is a C° embedding. Hence «.. is extended t0 @&.: [%;, 2w],—>[%2, ¥2],- Using
Lemma 6 2, we see that @..(2..) € W*(2..), and hence there is an arc / in W*(2.)
which joints 2. and &.(2.). If ! contains a singular point p, by Lemma 6.2
there is g&[x,, x,], such that L%(q) leads to p. Then L%(g)\{q} €S. Let g:
M—M be as above. Clearly g"(q)= L%(q)\ {¢} €S for some n<<0. Since L(x,)
(=L%(a)) leads to s(a), we have that g"(q) € g"(L*(x,))=L"(»,), which contradicts
L(x)NS=@. Therefore / contains no singular points, and s0 &«(2.)E L5 (2.).
Note that z.=y, or 2.€1,. In the case when 2.1}, we have that @.(2.)E 1,
which contradicts the choice of 2., and hence 2.=y,. Obviously 2.&S and so
Ao(2)=Y,. Therefore y,&L5(y,). Inductively we obtain y,&L’(y,) for i N.

Since L:(a) leads to s(a) and x, € L’ (a), L:(x,) leads to s(a). Hence we can
take the arc 4 in W*(x,) jointing s(a) and x,.

Since y, is a boundary point of I, L°(y,) leads to a singular point (say,
s(y,) by Claim I. Claim II ensures that L3(y,) has the reccurent property, and
hence L:(y,) leads to s(y,). Let B denote the arc in W*(y,) jointing s(y,) and y,.

Note that y,S. Then (%, y,].NLi(y)=0 and so (¥, y].NB={y}.
Since &} is transverse to &%, it follows that there is (2, x,],C A4 such that if x&
(2, x,], then (x, B(x)], N B={B(x)} for some B(x)L%(x). Let U.CA be the
maximum of such intervals (2, »,],, Then we have the map B.: U.—>B such
that (%, Bu(®)], N B={B.(x)} forallx€ U,. Since B.(U.)CTB\{s(y,)}, itis eas-
ily checked that 8., is a C° embedding. Suppose that L:(x,)2 U.. Then U.=
(%) %], for some 2..EL:(x,), and hence B. is extended to B.: [2, x| —~>B. If
Be([2= #,];) B, then the arc [ in W*(2.,) jointing 2.. and B..(%.) must contain a
singular point p. In this case g"(2..) converges to p as n——oco. By Lemma 6.2
we have that g"(2.)€S for <0 small enough, which contradicts that f*(2..) &
L*(x,) and L’(x) N S=@. Therefore Bu([2=, ¥;];)=DB, and s0 2.E W*(B(2.))=
W*(s(y,)). Hence g"(2.) converges to s(y,) as n— — oo, and we see by Lemma
6.2 that g"(2.) €S for n<<0 small enough, which is a contradiction. Therefore
U.=L:(x%,).

By this result 8. is extended to 8~: A—B. By Lemma 6.2 it follows that
s(a) and B.(s(a)) are in W*(s(a)). Hence g"(B.(s(a))) converges to s(a) as n—
—oo, and therefore g"(B.(s(a)))€S for n<0 small enough. But g"(L*(y,))=
L*(y,), which contradicts L°(y,) N S==@. Therefore the conclusion of Lemma
6.1 was obtained.

Proof of (4) in Proposition A. Let z’: N—>M\S be a finite cover such that
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the lifts QA’}' (o=s, u) of RF7 by n’ are orientable and a lift of f by =’ exists (cf.
[7, p. 17]). And let z: M—M be the branched cover induced from z’. Then
the lifts F§ (c=s, u) of F§ by = are orientable because QZS—’f:ﬂA’}', and we can
take a lift f: M—M of f by .

Let W{(x) (c=s, u) denote the local stable and unstable sets for f. If §>0
is small enougn, then for all x&eM

n(Wi#) = Wi(z(x)) (o=s,u),

which implies that Wi(x) N W¥(x)={x}. Hence f is expansive. By using this
fact it is easily checked that F7=3F7 for o=s, u.

To show that F} is minimal, let [ be an arc in a leaf of RF% Since Fi=
T F7(I) has the recurrent property if <0 enough small. Since & is orientable,
we can construct a closed transversal T' of RF} by deforming f*(I) along the
leaves of R (cf. [7, p. 52]). By Lemma 6.1, T intersects every leaf of RF} in
at least one point, and hence so does f"(!). Therefore / intersects every leaf of
RF;. Since [ is arbitrary, we see that &} is minimal, and therefore so is 3.
The conclusion for o=u is also obtained.

7. Proof of Proposition B

As before let H(SF) denote the set of all transverse invariant measures for a
C° singular foliation <. For the proof of Proposition B we establish the fol-
lowing

Lemma 7.1. Let F be a C° singular foliation on M. If &F is orientable
and transversally orientable and if F is minimal, then the following hold;

(1) M(F) is non-trivial,

(2) if pEMF) is non-zero, then every finite Borel measure of p is non-
atomic and positive on all non-empty open sets,

(3) there is an injective map k from H(F) into a finite dimensional Euclidean
space such that

k(sp+tv) = sk(u)+tk(v)
for p,ve HM(F) and 5, t>0.

Proof. Let S be the set of all singular points of & and define RT as
before. For x&M\S let L(x) be the leaf of RF through x. Since & is mini-
mal, it follows that each L(x) are homeomorphic to R. Since & is orientable,
we can give an order<for L(x) in the same way as in §6. Then the intervals
L,(x), L_(x), [y, 2) and (y, 2] of L(x) are defined (see §6).

Take and fix a transversal T of F with TN S=¢@ such that the end points
a, b of T are not in same leaf of RF and they are not in leaves of RF which
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lead to singular points. Hereafter, we identify T with [0, 1] for simplicity.
Let us define

D= {xT: L,(x)NT = ¢} .

Since & is minimal, it is clear that if x&D then L,(x) leads to a singular point.
Hence L,(x) N Ly(y)=0 for x,yeD with x#y. Combining these and the fact
that S is finite, we see that D is finite. By the choice of 4 and b, it follows
that DN {a, b} =0.

Define v: T\D—T by y(x)L5(x) and (%, y(x)]N T={y(x)}. Then v is
injective. Since L_(a) and L_(b) intersect T, we have that a, bey(T\D).
Hence v ({4, b})ND=¢@. Since D is finite and y~'({a, b}) consist of two
points, F=D U y~!({a, b}) is finite, and hence F cuts T in finitely many subint-
ervals I}, I,, ---, I,,. 'Then 7|, is continuous. Since 7 is injective, we have that
7];,1s a C° embedding for all 1 <7 <.

Let cey™'({a,b}). Then ceD. Hence we can take i(c)e{l, 2, -+, m}
such that ¢ is a boundary point of Iy, and |, v is 2 C° embedding. For
simplicity, denote I;,y U {c} by I;,). Then we have

(7.1) T\D = I,ULU--UI, (disjoint union).

Since v is injective, clearly y(I;) Ny (I;)=@ for i=j.

Let b(Z) be the least upper bound of I;(1<i<m). If b(i)eD, then we
write I;=1I;U {b(¢)}. If not, then we write I;=1I;, Combining (7.1) and the
fact that {a, b} N D=@, we see that

T=I1LULU--UlI, (disjoint union).

Since 7|, is a C° embedding, it is extended to a C° embedding «;: I,—>T. Let
b(i)eD. As we saw above, L,(b(7)) leads to a singular point. This implies that
L_(v;(b(2))) leads to the same singular point. Since & is transversally orientable,
we have that v,(b()) is the least upper bound of v,(I;). Since v;(Z;)Nv,(I;)=0
for i=j, y{(I;)Nv;(I)=0. Consider the set D'={xeT: L_(x)N T=0} and
the map o': T\D'—T defined by ¢y'(x)L_(x) and [y'(x), x) N T={y'(x)}.
Then we see that '(T\D")=T\D and ¢'=«"!, and therefore

T = o (I)Uyy(IL)U+ Uw,(,) (disjoint union).

Define ¥: T—T by |7,=; for all 2. By the above results ¥ is a bijection
and ¥|7(i=1,2, .-+, m) are C° embeddings. We note that F=DUy~'({a, b})
coincides with the set of all discontinuous points of 7 and that ¥"(x)& F for all
x&F and all e Z with n=0. Since & is minimal, it is easily checked that ¥ is
minimal.

Let SHM(T) be the set of all finite Borel measures on T and define
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MHT) = {usM(T): pis §-invariant}.
Claim 1. My(T) is non-trivial.

Proof. Let C(T) be the set of all real valued continuous functions on 7.
Then C(T) is a Banach algebra with norm

€1l = sup |E(x)] -
Take and fix x,€ T, and define for n>1 and £ C(T')

n—1

K(§) = - S ().

-

Then K,: C(T)—R is a continuous linear map such that K,(1)=1 and K,(£)>0
if £(x)>0 for all x&T. By Riez representation theorem, there is a Borel pro-
bability measure w, on T such that

K(®) = |edu Esc(n).

There are a subsequence {u,;} and a Borel probability measure x on T such
that

[gdm,~|ean Eecy.
If £, Eo7~'eC(T), then

(72) (gan="eran

since | K,,(£o7)—K,,(£)| =%1§o~;"f(xo)—g(x)| S%llsll .

To obtain that y is §-invariant, we first check that p is non-atomic. To do
this, assume that x({y})>0 for some yeT\F. We can take /&N such that
lu({y})>1. Since ¥"(x)&F for xF and n+0, we can assume that ¥ (y)eF
foralli>0. Take §,€C(T)(n=1,2, ---)such that §,(y)=1 and §,— 1, (n—co)
where 1, denotes the characteristic function. Then there is N>0 such that
8,077 C(T) for all w>N and 0<i<I/—1. By (7.2) we have

[8.au = {8,071 an (0<i<i-1)
and hence by Lebesgue convergence theorem
Sl,,, dy — S 1yov idy (0<i<I—1).

which implies that u({y})=u({¥/(3)}). Hence u({7(y): 0<i<I—1})=lu({3})
>1, a contradiction. Therefore u({y})=0 for all y&T\F. Next, assume that
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w(F)>0. Take £,eC(T)(n=1,2, --+) such that £,| =0 and &,— 15 as n—>o0.
Then &,047'C(T) and £,07 "> 1png¢). By (7.2) we have

S Endu = S Eno7 tdu
and hence
[ 1re do = { 1r50er i

which implies that 0<p(F)=u (¥(F)). Since ¥(F)CT\F, we have u(7(F))=
0, a contradiction. Therefore u(F)=0 and so p is non-atomic.

Let £,€C(T) (n=1,2, -++) be as above. Then §,&, (£,£)o¥7 'eC(T) for
EeC(T). By (7.2) we have

[ e an = [ Ep)ev du
and hence
[ 1ie 80 = [ (trr o7 .
Since y is non-atomic, we have
[ean = eorran ecqry,
which implies that 4 is J-invariant. The proof of Claim I is completed.

Recall that T is expressed as the disjoint umion of subintervals [;(1<i<m).
We define ¢: Hy—R" by

«(p) = (u(L), (L), -+, p(Ln)) -
Then it follows that
t(spttv) = se(p)+te(v)
for p, ve M(F) and s, £>0.
Claim 11. ¢ is injective.
Proof. It is enough to show that if ¢(u)=1¢(v), then p=v». To do this, let
P = {I, n7(1,,): 1<, i,<m} .

Then each element of & is a subinterval subinterval of 7" and &* is a decomposi-
tion of T. So we write P*={],, J», ***, Jon} where each index of J; obeys the
order of T. Then it is easily checked that for 1<j<2m, K;=J,U J,U--U J;
is the union of elements of {I;}7., or of elements of {y(I)}™,. Since u is ¥-
invariant, u(I;)=pu(¥(l;)) for 1<i<m, and hence
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w(K) = p(L)+ul)++uli)

for some 1< <L <---<l;<m. Since ¢(p)=t(»), it follows that u(K;)=»(K})
for 1< j<2m, and therefore

w(l) =»{J) (1<j<2m).

Next we write

P = {Ji,NT(J5): 1<y, j2<2m}
= {1;10'7(],-2)0'72(1,-3)2 1<4), 15, 1,<m} .

Then we can easily prove that u(I)=v(I) for all I& %P3 Inductively, letting

P = {L,NTT)N - NTNL): 1<i<m (I1=1,2, -, m)},
we have that

(7.3) p)=v(I) P n>1).
Note that the set of all boundary points of elements of P" coincides with
F,=FUyF)U--U¥yYF).

Since ¥ is minimal, we have that F.,= U F, is dense in T. Therefore every

n=1

open set of T is expressed as a disjoint union of at most countable elements of

U " Combining this result and (7.3), we obtain p=uv.

Claim 1I1. There is a bijection 7: My—> M(F) such that

7(sp+tv) = st(u)+1i7(v)
for p,ve My and s, t>0.

Proof. Let A be a transversal of &. We can choose a finite decomposi-
tion {4;}i.. of 4 and a family {T;}%., of subintervals of T such that there is
a projection 4;: A;—I; along the leaves for 1<i<n. Indeed, let x4 be a re-
gular point. Since L,(x) or L_(x) lead to no singular points, we may assume
that L,(x) leads to no singular points. Then there is t(x)&L.(x)N T\ {a, b}
since & is minimal. Since A4 is a transversal of &, it follows that there is a
projection along the leaves which maps a neighborhood of x in 4 onto a neigh-
borhood of #(x) in 7. For the case when x4 is a singular point, take a trans-
versal A} of F with A,CM\S such that there is a projection along the leaves
which maps 4; onto a neighborhood of x in 4. Then we can find a projection
along leaves which maps a neighborhood of x in A4 onto a subinterval of T.
Therefore we can choose a finite decomposition {4;};., of 4 and a family
{T;}%.1 of subintervals of 7" which satisfy our desire.
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Since each h;: A;,—T; is a homeomorphism, for u& M5(T) we can define
a finite Borel measure u, on 4 by

Ha = §M|T,-°hi-

Since p is y-invariant, it is checked that u, is independent of the choice of
({43}, {T:}, {h;}). Indeed, let & be a projection along the leaves from a subarc
A’ of A onto a subinterval 7" of T. Then a=h;| 4;na°(h|4,n4)"" is a projec-
tion along the leaves which maps a subinterval #(4;NA4’) onto a subinterval
hi(A;NA’). By the definition of ¥ we can find a finite set E of 2(4;NA’) such
that if J is a component of A(4;NA’)\E then a|; is equal to ¥"|; for some
neZ. Since y is -invariant, we have

wlrokl -1y = pals-1)

and so
:U'Ih(A,-nA’)\thI(A;nA’)\h‘l(E) = M4 [ (4;=4a”)\b~YE) -

Since p and p, are non-atomic, we have

:U’lh(A,-nA’)ohlAmA’ = ll’AlA;nA’

which means that the definition of u, is independent of the choice of ({4},
(T}, {hi}).

We next show that {u,: A is a transversal} is a transverse invariant measure
for F. To do this, let A and B be transversals of & and let #: A—B be a pro-
jection along leaves. 'Then we can take decompositions {4,}7., of 4 and {B;}%.,
of B such that #(4;)=B;(1<i<n) and such that for 1<{<n there is a projec-
tion f; (resp. g;) along the leaves which maps A4; (resp. B;) onto a subinterval of
T. Clearly g;oh| 4,of 7' is a projection along leaves for 1<i<n. By the defini-
tions of p, and pp, we see that | 4, =(uglp,)ok| 4, and therefore u,=pgoh.

Define 7: M5— M (F) by

7(u) = {u,: A is a transversal} .
Then 7 satisfies all the properties in Claim III.
By Claims II and III there is an injection k from % (<) to R"™ such that
k(su+tv) = sk(u)+tk(v)

for p,ve M(F) and s,¢>0. Hence Lemma 7.1(3) holds. Lemma 7.1(1) is
obtained from Claim I. Note that if y& 9, is non-zero then u is non-atomic
and positive on all non-empty open sets. Then Lemma 7.1(2) is easily checked.
The proof of Lemma 7.1 is completed.
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Proof of Proposition B. Let us take a p-fold branched cover z: M—M
(p=1, 2, or 4) such that the lifts F°(c=s, u) of F° are orientable and there is
a lift f: M—M of f. Clearyl f preserves F°. Since F° is minimal, it follows
that & are minimal.

By Lemma 7.1(3) there is an injective map k: H(F°)—R" for some m>1
such that k(su-+tv)=sk(u)+tk(v) for u, v&e HM(F°) and s,t=>0. Clearly the
image V of k is a convex cone of R”. Define fi: V=V by fi=Fkofok™
Then f4 is continuous. Note that ' N S™ ! is a disk where S”~! denotes the
unit sphere of R”. By Brouwer’s fixed point theorem, the map V' N S* 'V N
S™~! which sends x to fi(x)/||f4(x)|| (||-|| denotes the Euclidean norm) has a fixed
point. This ensures the existence of p'E HM(F°) such that fyu(m")=r'7 for
some A*>0. We can find also 7*€ M(F*) such that fy(m*)=\" " for some
A“>0. By Lemma 7.1(2) every finite Borel measure of %' and of %" is non-
atomic and positive on all non-empty open sets.

Let A° be a transversal of F° and take all lifts A3, -+, 43 of A° by n: M—
M. Then we define a finite Borel measure u, s on A4° by

par = Bao(w| z) 7'+ +wazo(z | 55) 7" -
By homotopy lifting property we have that

{w4,: A’ is a transversal of F°}

is a transverse invariant mesaure for F°. Since fi(@ )=\ ', we see that

f+(p)=N\ u’. For o=u we obtain the same one. Clearly every finite Borel

measure of p° and of x* is non-atomic and positive on all non-empty open sets.
Since f preserves F° and F*, we can show that A A“=1. Indeed, let R

be the family of RC M with the following property: there is a C° embedding

Hp: [0, 11X [0, 1]—M with Hg([0, 1] [0, 1])=R such that

(1) if L'’ then Hz'(L")=[0, 1]x 4 for some AC[0, 1],

(2) if L“€9™* then Hz'(L*)=BXx[0, 1] for some BcC[0, 1]. Since ¥ and F*

are transverse, it is easily checked that R generates the Borel o-field of M.

For Re R we let

R’ = H([0, 1]x {0}), R*= Hg({0} x[0, 1])
and define y: R—R by
p(R) = p'(R)- p*(R’) .

Then g is extended to a finite Borel measure x on M. Obviously y is positive
on all non-empty open sets. Since f preserves F° and F*, f(R)e R for all
Re R, and hence
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u(f(R) = p’(f(R))*) u*((f(R)))
= p'(f(R)) p*(f(R"))
= A* (R N (R
=22 u(R).

Therefore yof=A°A* u on Borel o-field. Since u is finite, we have A’ A*=1.
The proof of Proposition B is completed.
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