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1. Introduction

A finite translation plane IT is represented in a vector space V(2n, q) of
dimension 27 over a finite field GF(g), and determined by a spread == {V/(0),
V(o) U{V(c)|lc €=} of V(2n, q), where = is a subset of the general linear
transformation group iGL(V(n, q)). Furthermore II is coordinatized by a
quasifield of order ¢".

In this paper we take a GF(g)-vector space in V(2n, ¢") and a subset =*
of GL(n, ¢"), and construct a quasifield. This quasifield consists of all ele-
ments of GF(q"), and has two binary operations such that the addition is the
usual field addition but the multiplication is defined by the elements of *,

2. Preliminaries

Let g be a prime power. For x & GF(q¢") put x=x©, 2=x"=x’ and
a®=x", =2, 3, ..,n—1. Then the mapping ¥—>x® is the automorphism of
GF(q") fixing the subfield GF(q) elementwise.

For a matrix a=(a;;)€GL(n, q") put &=(a;;). Let
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be an # X n permutation matrix. Set A={acsGL(n, ¢")|a=aw}.

Lemma 2.1. A=GL(n, q)a, for any a,=U. Furthermore let o be an nXn
matrix over GF(q"). Then acW if and only if
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and ay, ay, +++, a,_, are linearly independent over the field GF(q).

Proof. For any element 8 of GL(n, q), daty=08a,=8aw. Hence o, .
Conversely for any element a of U, aas'=awe a7 ' =aas'€GL(n, ) and so
aeGL(n, ¢)a,. Thus A=GL(n, g)ct,.

Let a=(a;,) be any element of A. Since @A=aw, ay3=a;, G;,=a;, ***, @; 4
=a,,, =1, 2, ---,n. Hence a;;=a¥i™", i=1,2, -, n, j=2, 3, -+, n. Further-
more since « is a non-singular matrix, ay,, a,, ‘-, 4, are linearly independent

over GF(q).
The converse is clear.

Lemma 2.2. If ac¥, then
4 a, ct Ay
a—l _ qf,l) qgl) eoe 6.19-)-1 EGL(”, qu).
a%ﬂ—l) aSn—l) ee asln_-ll)

Proof. Since a€, @=aw. Hence a'=w'a™’. Then the proof is
similar to the proof of Lemma 2.1.

Lemma 2.3. Let ac¥. Then GL(n, q)*={y=GL(n, ¢")|7=7"}.

Proof. For any §&€GL(n, q) §*=8=(8%)". Conversely let vyEGL(n, ¢")
with #=9°. Then v*'=§*""=y**"*"'=¢*”", Thus ¥*"&GL(n, q) and so
GL(n, 9)*={vEGL(n, ¢")|7=""}.

Since « is any element of 2, we denote GL(n, q)® by GL(n, ¢)*.

Lemma 2.4. Let v be an nxXn matrix over GF(q"). Then §=v° if and
only if
a aP; - afv
y=|a @ d
@y a2y - ag ).

Proof. Let v=(a;;) with ¥=%". Then

11812 A1 g Az2 033 Ay,
Q21422 """ G2y | _ | G230Q33°°" 43,
Ay18y32°°° Ay y Ay 2Q,3° a1,

Thus @; ;=a;_1j-1, %, j=1, 2, +-, n modulo n. Hence a{?=a;,;+j, 7, j=1,
2, +-+, n modulo 7, and so v has the required form.
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The converse is clear.
From Lemma 2.3 and Lemma 2.4 we have
Lemma 2.5.

a, aﬁ,‘ll oo a(ln_l)

@py @25 e afY

Let V(2n, q) be a vector space of dimension 2z over GF(g), and = be a
nontrivial partition of V(2n, q). If V(2n, q)=V @ W for all V, Wer with
V =W, then = is called a spread of V(2n, g). Then the component of = is
a n-dimensional GF(q)-subspace of V(2n, q) [1].

Let z be a spread of V(2n, ¢), then we can construct a translation plane
=(V(2n, g)) of order ¢" as follows [1]:

a) The points of z(V(2n, q)) are the vectors in V(2n, q).

b) The lines are all cosets of all the components of 7.

¢) Incidence is inclusion.

Conversely any translation plane is isomorphic to some z(V(2n, g)).

We may assume that V(2n, ¢)=V(n, ¢)®DV(n, q) is the outer sum of two
copies of V(n, q). Set V(o0)={(0, v)|veV(n, ¢)}, V(0)=A{(v, 0)|veV(n, q)}
and V(o)=A{(v, v°)|vEV(n, q)} for s&GL(V(n, q)). Then the followings hold
([6], Theorem 2.2, Theorem 2.3):

(I) Let # be a spread of V(2n, g) containing V(0), V(o). Then we
have:

a) If Ver and if V£V (0), V(c), then there is exactly one oc&
GL(V(n, q)) such that V=V(cs). Set Z={c|lcE€GL(V(n, q)), V(s)Ex} U {0}.
b) If u, vEV(n, q), then there is exactly one o in 3, such that ¥"=v.

c) If o, pEX and if o +p, then s —pEGL(V(n, g)).

(II) Conversely if a union X of a subset of GL(V(n, ¢)) and {0} satisfies
b) and c) of (I), then z={V(o0)} U {V(c)|oc €=} is a spread of V(2n, g).

3. Construction of quasifields

Let Q be a set with two binary operations 4 and o. We call Q(+4, ©) a
quasifield, if the following conditions are satisfied:

1) O(+) is an abelian group.

2) Ifa, b, c€Q, then (a+b)oc=aoc+boc.

3) ao0=0 for all a=Q.

4) For a, b= Q with a=0, there exists exactly one ¥ Q such that gox=b.
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5) For a, b, c€Q with a=b there exists exactly one x&Q such that
xoa—xob=c.

6) There exists an element 1=Q\ {0} such that lca=aocl=a for all acQ
(see [6] p. 22).

It is well known that an affine plane is a translation plane if and only if
it is coordinatized by a quasifield (see [4], Theorem 6.1). Using this result,
we give a new description of a quasifield.

After fixing a suitable basis in V(n, ¢), we denote a vector v of V(n, q) by
the form (%, %y, ***, x,-,), ¥;€GF(q). Let a be a fixed element of A in the
section 2. Then

ao a%l) cee a%""l)
al a(ll) e a(l"_l)
A =|.i0eeenes ceceees
.y APy e gV

n-1
Hence va=(x, x®, -, x*"N &V (n, ¢"), ng x;a;.
P

Conversely, let v* be a vector of V(n, ¢") of the form (x, x®, -+, x*™V),
x=GF(¢"). Since ay, ay, -+, a,_, are linearly independent over GF(q), x is uni-

quely represented by ay, 4y, ***, @, such that xz’ﬁ x;a;, x;=GF(q). Hence
i=0

V¥ =y, Xy, ++*5 X,-1) E V(n, ). Thus V(n, g)°={(x, x©, -+, x*V)|x& GF(¢")},
and V(n, q)* is a GF(q)-vector space isomorphic to V(n, g).

Set V(2n, ¢9)*={(uc, va)|u, vEV (n, ¢)}. Then similarly V'(2n, ¢)® is a
GPF(g)-vector space isomorphic to V(2n, g).

Denote a vector (x, @, -+, x#~V) of V(n, q)* by (x). Then any vector
of V(2n, q)® is denoted by ((x), (). The additive group of GF(q") is iso-
morphic to V(n, ¢)® under a mapping x— ((x). In this mapping the inverse
image of v*& V(n, ¢)” is denoted by .

Let M be any element of GL(n, q). Since by Lemma 2.5

%, 2Dy e xrD
e | T
Kooy K52y e afPTV
Xo
M? is uniquely determined by the first column afl . Hence we denote M*
Xo 9.%—1
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Let z={V(c0)} U{V(M)| M &3} be a spread of V(2n, q), where = is a
union of a subset of GL(n, ¢) and {0}. Set z"={V*(o0)} U {V*M®*)| M},
where V*(e0)={((0), ())I()EV(n, ) and V*M*)={((x), (x)M°)]
(HEV(n, 9%

Then since (va)M®=(vM)a, =” is a spread of V(2m, ¢)®. Hence =°
determines a translation plane, which is denoted by IT*. From now on we
may assume that a spread =” contains V*(1)={((x)), (x))|(x)€V(n, ¢)*} ([6],
Lemma 2.1).

For any two vectors (x)==(0)), (v) of V(m, ¢)®, there is a unique matrix
M?*e3” such that ()M =(y). Set (x)=(1)=(1, 1, --,1). Then any ele-

N
ment ¥ of GF(¢") uniquely determines M*= 3;‘) €3” such that (1)M*=(y).
y n~1.
s Yo
This implies y———go y;. Conversely M*= y ! |e=® uniquely determines
,’Y n—1

y&FG(q") such that (1)M*=(y) with y———’g ;. Hence we denote M®=
yo n-1 ’
J:) ! 1€=" by [y], where y=§ y;- Then a mapping GF(¢")—=" is a bijec-
Ya-1
tion under y—[y]. Hence Z*={[x]|x=GF(¢")}. In this mapping the inverse
image of M*==" is denoted by M*,
Let IT* be a translation plane with a spread z” defined in V(2n, ¢)®. If
a point of IT* is represented by ((x), () as a vector of V{(2n, ¢)*, then we
give a coordinate (, y), x, yEGF(q"), for this point. Then the set Q consist-
ing of all elements of GF(¢") coordinates the plane II, and Q 1s a quasifield
with the following two binary operations + and o:
(1) The addition + is the usual field addition. y
/\ 0
(2) The multiplication o is given by xoy=(x)[y], and if [y]= 3:)1 ,
then xo yz'ﬁ%lx(‘)y,.. Yu-1

Using this coordinate, we can write the lines of IT* as follows:

V*(m)-+k={(x, xom+k)| x€ GF(g")} U {(m)} ,
V*(oo)+k = {(k, )| yEGF() U (=)} ,
L = {(m)ImEGF(@"} U (=)}

Assume that 3* consists of ¢"—1 matrices of GL(n, ¢)® and 0. We call
=* a spread set of degree n over GF(q") if Z* has the following properties:
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Yo
2) Form=|% |e3* put f(m)=3 x. Then {B(m)|meZ*=GF().
y n—-1
Hence we may set m=[B(m)].
b) If m, m,e3* and if m,=+=m,, then m,—m,=GL(n, q)°.
Clearly for any vector (x)=(0)V(n, ¢)%, {(x)m|me=*}=V(n, g)*. Set

V*(e0) = {((0), (oM () EV(m, )},
V*(m) = {((%), (x)m)|(x)EV(n, g)°.

Then {V*(co0)} U {V*(m)|me=*} is a spread of V(2nm, ¢)”, and so defines a
translation plane IT*.

Conversely let Q be any finite quasifield with binary two operations -+
and o. The kernel of Q is the set K(Q) consisting of all elements 2=Q such
that (kea)ob=ko(acb) and ko(a-+b)=koa+kob for all a, b&Q. Then K(Q)
is a finite field, and Q is a K(Q)-vector space. Let K(Q) be of order ¢ and let
O be of dimension # over K(Q). Then M. Hall has proved the following
(3]):

Let V(2n, q)=Q®Q, the outer direct sum of two copies of the K(Q)-
vector space Q. If V(m)={(x, xom)|x&Q} and V(o0)={(0, x)|x=Q}, then
a={V(m)|meQU {oo}} is a spread of V(2nm, q). Furthermore the spread
set is 3= {(x—xom)|me Q}.

Hence the translation plane defined by # is coordinatized by Q. Thus
we have

Theorem 1. Let 3*={[x]|x=GF(q")} be a spread set of degree n over
GF(q"). Then we have a quasifield Q with two binary operations -+ and o
satisfying the followings:

(1) O=GF(q") as a set.

(2) The addition + 1is the usual field addition of GF(q").

(3) The multiplication o is given by xo y=((x/))Ev], where (x))=(x, x®, +--,
x*NeV(n, ¢") and [y]EZ*.

Furthermore any finite quasifield is isomorphic to some quasifield constructed
by the above method.

A quasifield Q with a spread set =* of degree n over GF(g") is denoted by
O(n, ¢", =*). Since (k)= (k, k, -+, k) for ke GF(q) in Q(n, ¢", 3*), kox=

/N N\ AN
(R)[x]=kx for any x&Q. Hence (koa)ob= ((ka)[b] = k(a)[b] = ko(acb) and
ko(a+b)=k(a+b)=ka-+kb=koa+kob. Thus GF(q) is contained in the kernel
K(Q) of Q(n, ¢", =¥).
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4. Examples

A quasifield is determined by the spread set. In this section we show
some spread sets of the known quasifields. To construct spread sets we need
a condition for two spread sets to define isomorphic quasifields or translation
planes.

First using the spread set, we prove the following Maduram’s Theorem.
From now on GL(n, q)® is denoted by G*.

Theorem A (D.M. Maduram [7]). Let Q,=Q(n, ¢", =¥F) and Q,=Q(n, ¢",
3¥). Then Q, and Q, are isomorphic if and only if there is N in G* and 0 in
Aut GF(q") such that 3% =N 7'S¥N and (1)N=((1).

Furthermore let f be the isomorphism from Q, to Q,, then f(x)z((x"/))\N and
[f(®)]=N ~[#]°N for x€ Q..

Proof. Let f be an isomorphism from Q, to Q,. Then f fixes GF(q)
as a set and so f induces an automorphism of GF(gq). Hence there is 6 in
Aut GF(q") such that f(k)=Fk® for any element & of GF(g). Then for acQ,

f(ka) = f(koa) = f(k)° f(a) = K'f(a) .

Let f be a mapping of V(n, ¢)® onto itself defined by f((x))=( f(x)))
for (x)eV(n, ¢)°. Then

A@)+() = f(a+2)) = (fx+9)) = (f(x)+A2))
= (fEN+ () = FEN+A(¥))
and for ke GF(q)

F((kx) = (f(Rx)) = (Kf(x)) = R(f(x)) = K°F((x)) -

Thus f is a non-singular semi-linear transformation of V(n, ¢)®.

Next let ¢ be a mapping of V(n, g) onto itself defined by ¢(v)=Ff(va)a .
Then clearly ¢(v,+v,)=¢(v,)+P(v;) and ¢(kv) =ikép(v). Thus ¢ is also
a non-singular semi-linear transformation of V(n, q). Hence there is N, in
GL(n, q) such that

¢((x11 MY xn)) = (xls “% xn)oNl
for (xy, +++, x,)€V(n, q). On the other hand set (x,, -, x,)a=(x)). Then
¢((x» RRE) xn)) = f(((x»)a—l .

Hence
(@) = (31, -+, %) Nocx .
By Lemma 2.1 a®*=N,a, N,&GL(n, q). Hence
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(x0) = (wy *++, %)% = (%, -+, %,)° N,

and so

(w1, -+, 2,)° = (@) 'Nz* .
Thus

A(@) = (#*)a*N7'Ner .
Set N=a 'N7!N,asG*. Then

J((x)) = (x*)N .
Since f((x))=(f(x))

(1) = (f1)) = A1) = ()N and flx) = ((x°§)\N .

Then since f(xoy)=f(x)of (y)=((f(x))/)\[f (y)]=((x"))/1\\f[f ()] and fi (x°y)=((x°y)){1\\f

=((x"))[/;']"N s (WINL(9)]=(a")[y]°N for any (x)& V(n, ).

Thus N[f(»)]=[y]°’N and so [f(y)]=N"'[y]’N for any y=Q,. Hence
we have ZF=N"S¥N.

Conversely let f be a mapping from Q; to Q, defined by f(x):((xo)/)}\/',
Then

/\ /\ /\
Faty) = (@+9)IN = N+ (YON = fiz)+1y)
and
A VAN /\
fxoy) = (x9N = (O)[y]PN = (#H)NN-"[y]'N .
Since SF=N"'S¥N,
Flwoy) = f(x)oN{y}N .
Furthermore
(LN-[y°N = ()[y]'N = ()N
On the other hand
(W(IN] = (5N
Hence
N-1[y]N = [()N]
and so
Flwoy) = F(x)e(yIN = f(x)of() .

Thus f is an isomorphism from Q, to Q,.
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Let =, and =, be two spreads in V(2n, q) both containing V(o). Let
II; and II, be translation planes defined by =, and #,. Then II, and II, are
isomorphic if and only if there is a non-singular semi-linear transformation in
V(2n, g) taking =, onto =, ([5], p. 82).

Let M(n, q) be the set of all nXn matrices over GF(g). Then all elements
of M(n, q)® have the forms as in Lemma 2.4. Using elements of M(n, ¢)* and
Aut GF(q"), we describe Sherk’s Theorem with the following extended form.

Theorem B (F.A. Sherk [8]). Let 11, and 11, be translation planes coordi-
natized by quasifields Q,=Q(n, ¢*, =¥) and Q,=Q(n, ¢", =F). Then II, and II,
are isomorphic if and only if there exist A, B, C and D in M(n, q)* and 0 in
Aut GF(q") with the following properties:

a) det(‘é g)#:().
b) Either

i) B=0, A=G* and Sf={A- (C+[m]’D)|[m]=¥}.
i) BeG* B-Des¥. Also, there is [m)E3¥ such that A-+[m,]’B=0.
For any [m]e S\ {[m,)}, A+[m’BEG* and (A+[m]’B)"Y(C+[m]’D) =3¥.

From now on we denote the operations of GF(¢") by + and -, and the
operations of a quasifield by + and o.

(I) Finite fields a
A quasifield Q(n, ¢", %) with Z*={[a]= 0 lacGF(¢")} is isomorphic to
GF(¢". 0

(II) Finite generalized Andre quasifields
Let O=0(n, ¢", =*) be a quasifield. If the mapping x—(xca)a™' is an
automorphism of GF(q"), then Q is called a generalized Andre quasifield.
Since koa=ka for k= GF(q), the automorphism x—(xoa)a™ fixes GF(q)
elementwise. Hence (xoa)a"‘:x"p(“) , p(a)e{0, 1, .-, n—1}. This yields
a4
xoa=x""a=xCq, Let [a]= % |. Then

Ap-1
BP0 ®@)
xoa = (x)[a] = 5‘_1, xPaq; = xCP®q .
P

Hence

g+ @O+ o (@ — @)@ w2, = 0

a
for all x&GF(q"). Therefore a;=0 if 7= p(a) and a,y=a. A matrix [El] with

an
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exactly one nonzero entry a;=a is denoted by [a(¢)]. Then the spread set is
Z*={[a]=[a(p(a)+1)]la=GF(¢")\ {0} } U {0}.

For instance, spread sets of generalized Andre quasifields Q(2, ¢, =*)
and Q(3, ¢, =*) are as follows. For x=GF(¢®) or GF(¢®) set N(x)=x'*? or
N(x)=x"*t7+" respectively.

(1) Q@2 4¢,2%)

S*=3FUSFU {0}, where Zf= {[a]zl:g], a+0} and S¥={[d]= [2:],

a=+0}. Moreover N(a,)%N(a,) for [a,]EZ¥ and [a,] =¥ since det([a,]—[a,])=
N(a))—N(a,) *0.
2) 96,9, 2%) a 0
S*=3FUSFUSFU {0}, where Z¥={[da]= {SJ’ a+0}, S¥={[a]= [8],
0

a=+0} and ZF={[a]= [0}, a*0}. Moreover if [a]EZ¥, [b]€ZF and i¥j,
a
then N(a) = N(b) since det ([a]—[b])=N(a)—N(b)=0.

(III) Finite Dickson nearfields

We call a quasifield Q a nearfield, if the multiplication of Q is associative,
ie. Q\{0} is the multiplicative group. Let O be a nearfield with a spread
set *. Then for any x€Q, xo(acb)=(x0a)ob. Then (x)[ach]=/(x)[a][d].
Thus we have [aob]=[a][5] and so [a][b]==*.

If a generalized Andre quasifield Q is a nearfield, then Q is called a

Dickson nearfield. In a Dickson nearfield Q(r, ¢", =*), let p be the mapping

defined in (II), i.e. xoa=x""“g,

Lemma 4.1. Let Q=0Q(n, q", 3*) be a Dickson nearfield. Then K=
{aeQ|acx=ax for all x€Q} is the subfield GF(q™) of GF(q") with n=mr.
Furthermore we have a Dickson nearfield Q'=Q(r, (q"), =*)as follows;

If [d=[dlla(p(@)+1)] in S*, then [a]=| a(PD11)] in 3%. Hence 0’
is identified with Q. l: ( m )j|

Proof. Let a, b€K. Then for any x€0Q, (a+b)ox=aox+box=ax-|bx
=(a+b)x and (aob)ox=ao(box)=a(bx)=(ab)x=(acb)x. Thus a+bcK and
acb=abeK and so K is a subfield of GF(¢"), say K=GF(q"). Then n=mr.
Let x€K and a€Q\{0}. Then xa=xoa=x""a. Hence x=x"" and so

@,

m, P2) .
p(@)=0 (mod m). Thus xca=x =x“""q  Hence if we take a rxr

matrix [a]’=a[(%+ 1)] and set S*' = {[a]'|a€ GF(¢")\{0}} U {0}, then we
can identify Q(r, (¢")", =¥) with Q(n, ¢*, =*).

Now we describe a theorem of E. Ellers and H. Karzl [2] using a spread
set.
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Theorem C (E. Eller and H. Karzel). Let Q(n, ¢", =*) be a finite Dickson
nearfield such that GF(q)={k<Q|kox=Fkx for all x€Q}. Then the following
hold:

1) Every prime divisor of n divides q—1.

2) If n=0 (moo 4), then q==3 (moo 4).

Furthermore the spread set 3* is as follows:

Let o be a generator of the multiplicative group (GF(q"), ) and set U=<w").

Then there is a positive integer t with (n, t)=1,

(GF(g"), -) = Ualg—1)(g—1)U.
If a€ 0!, then [a]=[a(i+1)].

Conversely by a theorem of H. Liineburg ([6], Theorem 6.4) we can con-
struct a Dickson nearfield as follows;

Assume that # and g satisfy the conditions 1) and 2) of Theorem C. Let
» be a generator of the multiplicative group GF(q") and (n, £)=1. Then

z*:"m]o'{[a(i+ D)]la€o'@-De DU} U {0}, where U=<w">.
i=

(IV) Quasifields of order 9

M. Hall has proved that there exist up to isomorphism exactly five quasi-
fields of order 9 ([3]). We prove this theorem using a spread set.

Theorem 2. There exist up to isomorphism exactly five quasifields with
the following spread sets.

3t = {ld = §|lecGFO),
o
st =0} (5o} [*6) [caer )

st - (2

S EIET 1 s i
where o is the root of f(x)=2"+1 in GF(9).

Proof. Q(1, 9, =*) is isomorphic to GF(9).

Next we construct Q(2, 9, *). Take an irreducible polynomial f(x)=
#+1 over GF(3), and let » and —w be the roots of f(x) in GF(9). Set
N(x)=x'"tB=ux* for x &€ GF(9). Then N(41)=N(4+w)=1, N(+-w+1)=—1 and

detl:Z]=N(a)—N(b).
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Lemma 4.2. 3* has the following properties:
1) Let [g]ez*, a, b0 and [6]62*' Then a—c or N(a—c)=N(a). If
[g} & *, then b=d or N(b—d)=N(b).
2) If [Z:IEE* and a, b+0, then a=-+1 or +ow—1.
3) If [2 &3\ {0}, then b—-+w-+1.
Proof. 1) Since det([g]——[g] )#0, N(a—c)#+N(b). Hence a=c or
N(a—c)=N(a). Similaly if [2] e3*, then b—d or N(b—d)—N(b).
2) Since [5]62*, a=1 or N(a—1)=N(a) by 1). Hence a=-+1 or

+o—1.
3) Since [é]ez* and det( [}J—[g’] )0, b=+ ot1.

We use this lemma frequently in the following proofs. By Lemma 4.2,
[—1], [@+1] and [w] have one of the following forms:

e
=[5 [, S 1] o1 or [ 21 )
el =[5} [o21 ] [oiler[*1"]
Case 1. [—1]=[_(1)].
1If [Z]ez* and a, b0, then a—-1 since det( [ﬂ—[—(ﬂ )=0. Thus

et 1) =[5} Lo Jor [t
ol =6} o1 or [t
(1.1) Suppose [w+1]= [m+1:|. Then [Q]GE >*\{0}. Furthermore if
[g]ez* and a, b0, then a=1. Thus S*C {[ ] [i :I:J[aEGF(9)}
(1.1.1) Suppose [w]=|:‘6’:| Then l::l:colil]eEE' Thus we have the

following spread set Z¥:

¥ = {[a] = [g]|ae-GF(9)}.
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Then Q(2, 9, =¥) is isomorphic to GF(9).
(1.1.2) Suppose [w]=[w11]. If': ]EE*\{O} then a=-41 or +o-+1.

Hence we have the following spread set Z§.

—YopL of 0 Plteotl]”
Since {[i“(’)—'_ l], [ :l:wl + J } is a conjugate class in G¥*, by Theorem A
0(2,9, =¥) is not isomorphic to any Q(2, 9, 3*) with Z*+3%.

(1.2) Suppose [m+1]=[m9rl]. Then 2*;{[8], [iﬂ, [i‘g :

Lot Pt
(1.2.1) Suppose [m]=l}ﬂ Then [ i(i:_}l_l)]qEZ*. Hence we have the

following spread set =¥

e IS

Then Q(2, 9, £%) is a Dickson nearfield.

(1.2.2) Suppose [m]=[m:_i]. Then

=10} [*0} [ Lwrnblaiin )

rae [ oo i [T LT 5]

— -1 —
[ ot 1] [m—?—l][ ot 1] [ ] and (1) [ ot 1] (1), the quasifield with
this spread set is isomorphic to GF(9) by T heorem A.

(13) Suppose [+ 11=[ "1 | Then =< ([g}[Fo}[ 1 oi1)

P e 2

(1.3.1) Suppose [w]= [ ! 1:|. Take I:“’+1:|EG*. Then [wii]“l
[“’—J[wﬂ] [wH] nd (1) [“’H] (1). Hence this case is included in
the case (1.1).

(1.3.2) Suppore [a)]=|:a:l_11i|. Then [ i(uf—l)] and I: :{:(wl—l)]q; =¥,

Hence we have the following spread set S¥.
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== (o} [Fo} [*5 Hlawia]r

Similarly to the case (1.1.2), {[i“(’)_ 1], |: :i:—c;-ll- 1]} is a conjugate class in
G* and so Q(2, 9, =¥) is not isomorphic to any Q(2, 9, *) with Z*+=3¥.

Case 2. [—1]= [ ﬂ
menzre Gl 2
a2 T2 ] hen

ot 11 ="} Jor [ ,71]
ol =7 or [}

(2.1) Suppose [w+1]=[‘°:}:l. Then Z*C{I: ] [(ﬂ [—(ﬂ,

I I Y} | | R o e

(2.1.1) Suppose [w]= [—1} Then z*C{[ ] B] [_‘(ﬂ,
I R N

[Q’E 1] )=0, we have the following spread set Z¥.

== o} [o M b

Since I:—é]eE =¥, the quasifield with =¥ is not isomorphic to any quasifield
with 3%, i=1, 2, 3, 4.

(2.1.2) Suppose [w] ——-l:w; ﬂ Then Z*C { [8], [(1):], [ 61], I:——a?— 1],
o) Lagth (P20} (2207 ] since (5 T -
e e 1 NN ke
[i_“jl—l} [ifglj }. Then [“‘;“]”E*[“%“}z? and ((1)) [“Z,“]

=((1). Hence the quasifield with this spread set is isomorphic to the quasifield
with 3F by Theorem A.

22) Suppose [o+11=[ , "1 | Thenz*< (][0} [0 "} 2,1 )
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Iy P 1l et 2

(2.2.1) Suppose [w]=[‘°1'1]. Then S*C {[8], [(1,] [“’31], [_ N +1],
L L s a5 L
der( [ |- [747 h=0 = =4[5} [o} [} [} [wTi)

L) e (2] st e [

Hence the quasifield with this spread set is isomorphic to the quasifield with =¥
by Theorem A.
—1

(222) Suppose [ol=[ 1] Then < 1[3], [] [*07] [LZ1)

—1 . . . .
[iﬁw }, which consists of seven matrices. Hence this case does not occur.

Case 3. [—1]= [—m“ 1}.

(O]

Since [‘1)]"1[““’“1}[‘1]}[“’;} and (1) [(1’] —((1), this case is reduced

@
to the case 2.

M. Hall has proved that there exist up to isomorphism exactly two trans-
lation planes of order 9 [3].
We prove this theorem using the spread sets 5F, i=1, 2, 3, 4, 5. Since

st ={[d+[ o]llest ={a+ ][Il esn=1 )@+ _ ) |Ilde

3%}, the translation plane coordinatized by the quasifield with =¥, i=2, 4 or
5 is isomorphic to the translation plane coordinatized by the Dickson nearfield
0(2, 9, =¥) by Theorem B.

(V) Hall quasifields

Let Q=0(2, ¢%, =*) be a quasifield. If Q satisfies the following condi-
tions, then Q is called a Hall quasifield [3]:

1) Let f(x)=a*—rx—s be an irreducible polynomial over GF(q). Every
element £ of O not in GF(q) satisfies the quadratic equation f(£)=0.

2) Every element of GF(q) commutes with all elements of Q.

Now we determine the spread set Z* of a Hall quasifield Q(2, ¢, =%*).

Theorem 3. Let w be the element of GF(¢) such that f(w)=wo’—rw—s=0.
Case 1. Assume that q is a power of 2. Then Z* consists of the following
matrices:

=[] forkeGRy),
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[aw-+b] = |:(a 1)o ﬁi:& gﬂ for a=0, where
7(a, b) = r~(as-+br+a”'f(h)) .
The multiplication in Q(2, ¢, =*) is as follows:

adw-+bd ifc=0

(aw+b)o(co+d) = { (bc—ad-+ar)w-+bd—ac™f(d) if ¢c*0.

Case 2. Assume that q is a power of an odd prime. Set A=w—w. Then
3* consists of the following matrices:

w=[§] s ke,

(% a—(a, b)))\—}—-é*r

(% a+7(a, b)))\.—% r+b
7(a, b) = (2a(r*+4s))7'f(b) .

The multiplication in Q(2, ¢, =*) is as follows:

adr+bd  if c=0
(bc—ad+-ar)A+bd—ac™'f(d) if ¢+0.

[ax+b] = for a=0, where

(an+b)o(cA+-d) = {

Proof. Case 1. ¢ isa power of 2.

Since flo)=o’+r0+s=0, o’=rw+s, o+o=r and wo=s. Set GF(¢)=
{aw+bla, b GF(g)}. Let [k]:[zgjrfif L ] for REGF(g). Since kow=ack
by the assumption 2), we have

kow = kw , N
wok = (o ﬁ>[3$i§'+k} = av*+k'o+aow+(k+k)D

= a(ro+5)+k o+tas+(k+ER")(r+o)
= (ar+k'+k+k)o+as+as+(k+R')r = (ar+k)o+(k+E')r.

Hence a—=0 and k—&’. Thus [k]=[§:l.

Let [a“’+b]=[(a+fz’;)w_*——|—bb’+b:}’ a=+0. Then

AN
(ao+b)e(aw+b) = (aw+b, aﬁ—l—b)[(a—l—z';’co_‘—_i—bb%—bf]

= aa'w’+ab'wo+a'bw+bb'+a(a-+a" Yoo+ a(b+b"Yo+b(a+a")o-+b(b+b’)
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= aa'(ro+s)+ab'w+a'bo-+bb'+a(a+a’)s+a(b+b")w+r)+-bla+a)o
+5(b+0")
= aa’ro+a’s+a(b+b" b
Then since f(aw-+b6)=0in Q,

aa'ro+a’s+a(b+b")yr+b*+arw-+br+-s
= (aa'r+ar)o+a*s+a(b+b")r+f(b) = 0.
Hence a’+1=0 and so a’=1. Furthermore b'=r"Y(as-+br+a'f(b)). Thus
_ +r Y as+br+-a'f(b))
[aw+8] = [(a—}— 1)$+b+r-l(as+br+a—y(b))] °

By computation, det[aw-+b]=s=+0, det([aw-+b]—[k])=f(k)=+0 and det([aew+-5]
—[a'w+b"])=(aa’)"Y((ab’+a'b)+(a+a")w)((ab'+a'b)+ (a+a")w) %0, where a,
a’#0. Thus we have a spread set.

Furthermore we have
A

(aw-b)e(ca-td) = (aot8)] 270 P 1 4]
= (bc+ad+ar)o-+bd+ac™f(d) , for ¢=*0..

Case 2. ¢ is a power of an odd prime.
Let A=0w—w®. Then A=—x and M=r*+4s. Set GF(¢®)={ar+bla, bE

GF(g)}. Similarly to the case 1, [k]:[g] for ke GF(g).

Let [an+8]=[(,_ A1)y ] a0, Then

”\

’ bl
(@ B)o(ar4-b) = (arn-+-b) [(a_a‘f);tj;b_b,]
= aa'\'+ab'A+a'br+bb'—a(a—a' )N —a(b—b")\+b(a—a’ YA +b(b—b")
= 2ab'\+(2aa’—a’) (P+-4s)+ b .

Then since flax+b)=0 in Q,

2ab'\+a(2a’ —a)(PP+4s)+ b2 —r(an+b)—s = 0.
Hence 2ab’—ar=0 so b’=-%r. Furthermore a(2a’—a)(r*+4s)+f(b)=0 so
a'=——(2a(r2—|—4s))"f(b)+%a. Set T(a, b)=(2a(r’+4s))"'f(b). Then we have

(—%—a—'r(a, b)))\.—}-—%—r }

ar+b] =
[ ] (_%_a_l_-r(a, b)>x+b—~%r
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By computation, det[ax+b]=—s=0, det([an+b]—[k])=f(k) =0 and det([an-b]
—[a'A+b']) = (2 (a—a')\+ab'—a'b—27'r(a—a'))(—2 Y (a—a')\ + ab’"—a'b—
27'%(a—a')) %0, where a, a’+0.

Furthermore we have

(an—+b)o(en+d) = (be—ad+ra)a+bd—ac™f(d) for ¢=0.
Moreover since A=2w—7, we have also
(aw+b)o(co+d) = (bc—ad-+ra)w+bd—ac™'f(d) for ¢=+0.

(VI) Walker quasifields
A quasifield Q=0(2, ¢, =*) with ¢g=—1 (mod 6) is called a Walker quasi-
field, if O has the following multiplication:

(aw+b)o(cotd) = (a(d—)+ be)o—+ac*+-bo,

where GF(¢?)={aw+b|a, be GF(q)} (see [4], p. 72).

Now we determine the spread set =* of a Walker quasifield. Since
=—1 (mod 6), f(x)=«?+3 is an 1rreducible polynomial over GF(q). Hence
let @ and —w be elements of GF(¢?) such that f(w)=f(—o)=w’+3=0.
. a'w+b'
Set [aw+b]_[(a_a,)m | Then
* ’ +bl
a'e
mo(am+b) = (a), —w [(a—a’)m—{—b—b'J
= a'&’+b'0—(a—a")e’—(b—b")w
= (20" —b)w+3(a—2a’).

On the other hand by the definition of the multiplication,
wo(aw+b) = (b—o— .

Hence 2b'—b=>b—a? so b'=b—%a2, and 3(a—2a’)=—%a3 so a’=%a—|—1—18a3.

Then we have

Furthermore by computation, we can show that {[aw+b]|a, b& GF(q)} satisfies
the condition of a spread set.
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(VII) Luneburg quasifields

A quasifield Q=0(2, (2**')%, =**) with 2s+1>1 is called a Luneburg
quasifield, if Q has the following multiplication:

(aw+-b)o(cw+d) = (a(c”+dd")+bo)w+ac+bd ,

where ¢ is the automorphism of GF(2%*") such that x”=**! for all x& GF(2**?)
and GF((2*")= {aw-+b|a, b GF(2**)}.

Now we determine the spread set =* of a Luenburg quasifield. Since
GF(2**") is a field extension of odd dimension of GF(2), f(x)=x"+x+1 is
an irreducible polynomial over GF(2%*'). Hence let  and @ be elements
of GF((2%*")?) such that f(w)=f(@)=0. Then o+o=1, vo=1 and w’=w+1.

Set [am—l—b]=[ @'otb’ :| Then

(a+a")o+b+0b’
o B — _/[\ a'w+b :|
(0] (dw+ )—~((t), (D) (a+a')co+b—|—b'
= a'e’*+b'w+(a+a" oo+ (b+b0")e
= (a'+b)o+a+b+b'.

On the other hand by the definition of the multiplication,
wo(aw+b) = (a°+bb")w+a .
Hence a’'=a°+b4-bb° and b'=>b. Thus we have

_ (@ +b+86")0+b
[ao+8] = (a—{—a"—i—b—{—)bcza)w )

Furthermore bty computation, we can show that {[aw+bd]|a, b GF(2**)}
satisfies the condition of a spread set.

Appendix. M. Matsumoto has showed the following:

A quasifield Q=0Q(2, ¢, =*) is a Hall quasifield if and only if =* con-
sists of {[k 0]|k=GF(q)} and a conjugate class of G* containing [6"], where
o is a element of GF(¢*)\GF(q).
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