A HOMOTOPY GROUP OF THE SYMMETRIC SPACE SO(2n)/U(n)

HIDEAKI ÖSHIMA

(Received February 1, 1983)

In [1] B. Harris calculated some homotopy groups of the symmetric space $\Gamma_n = SO(2n)/U(n)$. He determined $\pi_{2n+r}(\Gamma_n)$ for $-1 \le r \le 1$ and for r=3, $n \equiv 0 \pmod{4}$ except for r=1, $n \equiv 2 \pmod{4}$. For the last case he made a group extension

$$(1) 0 \to Z_2 \to \pi_{2n+1}(\Gamma_n) \to Z_{n1/2} \to 0$$

from the homotopy exact sequence of the fibration $\Gamma_n \to \Gamma_{n+1} \to S^{2n}$. The purpose of this note is to show that this extension splits.

Theorem.
$$\pi_{2n+1}(\Gamma_n) = Z_2 \oplus Z_{n!/2}$$
 if $n \equiv 2 \pmod{4}$.

Proof. If n=2, then the conclusion is obvious, by (1). Thus we will always assume that $n\equiv 2 \pmod{4}$ and $n\geq 6$.

The rotation group SO(m) and the unitary group U(m) are embedded, respectively, in SO(m+1) and U(m+1) as the upper left hand blocks. We embed U(m) in SO(2m) as the subset of matrices consisting of 2×2 blocks

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
.

The natural map $SO(2n-1)/U(n-1) \rightarrow SO(2n)/U(n) = \Gamma_n$ is a homeomorphism and will be used to identify these spaces. The inclusion map $SO(2n-2) \rightarrow SO(2n-1)$ then induces a map between the fibrations:

$$U(n-1) = U(n-1)$$

$$\downarrow j \qquad \qquad \downarrow$$

$$SO(2n-2) \rightarrow SO(2n-1)$$

$$\downarrow \qquad \qquad \downarrow p$$

$$\Gamma_{n-1} \stackrel{i}{\rightarrow} \Gamma_{n}.$$

Applying the homotopy functor $\pi_*(-)$ to this, we obtain a commutative diagram with exact columns:

$$\pi_{2n+1}(\Gamma_{n-1}) \xrightarrow{i_*} \pi_{2n+1}(\Gamma_n)$$

$$\downarrow 0 \qquad \qquad \downarrow \Delta$$

$$\pi_{2n}(U(n-1)) = \pi_{2n}(U(n-1))$$

$$\downarrow j_* \qquad \qquad \downarrow$$

$$\pi_{2n}(SO(2n-2)) \rightarrow \pi_{2n}(SO(2n-1))$$

$$\downarrow p_*$$

$$\pi_{2n}(\Gamma_{n-1}) \rightarrow \pi_{2n}(\Gamma_n)$$

$$\downarrow \pi_{2n-1}(U(n-1)) = \pi_{2n-1}(U(n-1)).$$

We already know all the groups except $\pi_{2n+1}(\Gamma_n)$ in the above diagram, as follows:

- (2) $\pi_{2n+1}(\Gamma_{n-1})=Z_{n!(24,n-2)/48}$. by (8.2) of [2];
- (3) $\pi_{2n}(U(n-1))=Z_{n!/2}$, by Lemma 1.6 of [3];
- (4) $\pi_{2n}(SO(2n-2))=Z_{12}$, by [3];
- (5) $\pi_{2n}(SO(2n-1))=Z_2$, by [3];
- (6) $\pi_{2n}(\Gamma_{n-1})=Z_{(24,n-2)/2}$, by (6.2) of [2];
- (7) $\pi_{2n}(\Gamma_n)=Z_2$, by [1];
- (8) $\pi_{2n-1}(U(n-1))=0$, by Lemma 1.4 of [3].

Here (a, b) denotes the greatest common divisor of a and b.

We use the following notations. For a finite abelian group G, G_{ev} and G_{od} denote the 2-primary and the odd components of G, respectively. For a homomorphism $f: G \rightarrow H$, $f_{ev}: G_{ev} \rightarrow H_{ev}$ and $f_{od}: G_{od} \rightarrow H_{od}$ are the restrictions of f to the appropriate busgroups.

By (5), (7) and (8), p_* is an isomorphism, so Δ is an epimorphism. It follows that Δ_{od} is an isomorphism, from (1) and (3), and that (1) splits if and only if Δ has a right inverse. Therefore (1) splits if and only if Δ_{ev} has a right inverse.

Let $n\equiv 2 \pmod{8}$. By (4), (6) and (8), the image of j_* , $Image(j_*)$, is Z_3 or 0, so ∂_{ev} is an epimorphism. Hence ∂_{ev} is an isomorphism, by (2) and (3). It follows that $(i_*)_{ev} \circ \partial_{ev}^{-1}$ is a right inverse of Δ_{ev} , so that (1) splits.

Let $n \equiv 6 \pmod{8}$. By (4), (6) and (8), $(Image(j_*))_{ev} = Z_2$. Hence, by (2) and (3), we have a commutative diagram with exact columns:

$$(Z_{n!/4})_{ev} \xrightarrow{(i_*)_{ev}} (\pi_{2n+1}(\Gamma_n))_{ev}$$

$$\downarrow \partial_{ev} \qquad \qquad \downarrow \Delta_{ev}$$
 $(Z_{n!/2})_{ev} = (Z_{n!/2})_{ev}$

$$\downarrow Z_2 \qquad \qquad 0.$$

Suppose that (1) does not split, that is, $\pi_{2n+1}(\Gamma_n)=Z_{n!}$. Then we can choose generators α , β and γ of $(Z_{n!/4})_{ev}$, $(\pi_{2n+1}(\Gamma_n))_{ev}$ and $(Z_{n!/2})_{ev}$, respectively, such that $\partial_{ev}(\alpha)=2\gamma$ and $\Delta_{ev}(\beta)=\gamma$. Since we can write $(i_*)_{ev}(\alpha)=4x\beta$ for some integer x, we have

$$2\gamma = \partial_{ev}(\alpha) = (\Delta_{ev} \circ (i_*)_{ev})(\alpha) = \Delta_{ev}(4x\beta) = 4x\gamma$$
.

Hence $2(2x-1)\gamma=0$. But this is impossible, because the order of γ is a multiple of 8. Therefore (1) splits. This completes the proof.

References

- [1] B. Harris: Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc. 106 (1963), 174–184.
- [2] H. Kachi: Homotopy groups of symmetric spaces Γ_n , J. Fac. Sci. Shinshu Univ. 13 (1978), 103-120.
- [3] M.A. Kervaire: Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan