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Introduction. Let P,(c) denote the complex projective n-space en-
dowed with the Kihlerian metric of constant holomorphic sectional curvature
¢>0. We consider an n-dimensional complete totally real submanifold M of
P,(c) with parallel second fundamental form o. The first named author [6]
reduced the classification of such submanifolds to that of certain cubic forms
of n-variables, and he classified completely those without Euclidean factor
among such submanifolds. (Note that such a submanifold is always locally
symmetric.)

In this note we shall give another way of the classification of these sub-
manifolds. Let DcC"*' be a symmetric bounded domain of tube type re-
alized by the Harish-Chandra imbedding. We imbed the Shilov boundary
M of D into the hypersphere S?**!(c/4) of the radius 2/v/ ¢ with respect to a sui-
table hermitian inner product of C**'. Let M CP,(c) be the image of M under
the Hopf fibering z: S***!(¢/4)—P,(c). Then M is an n-dimensional complete
totally real submanifold with parallel second fundamental form (Theorem
2.1), and conversely such a submanifold is obtained in this way (Theorem
3.1). The crucial point in the argument is that M CP,(c) has the parallel se-
cond fundamental form if and only if M=7:"1(M)CS2"“(0/4-) has the parallel
second fundamental form (Lemma 1.1). Thus we may use the classification

(Ferus [3], Takeuchi [10]) of submanifolds in spheres with parallel second
fundamental form.

As an application, we give a characterization of an n-dimensional compact
totally real minimal submanifold M of P,(c) with ||o|P=n(n+1)c/4(2n—1).
(Recall that ||o||*<n(n+1)c/4(2n—1) implies =0. cf. Chen-Ogiue [1].) Such
a submanifold M is unique and nothing but the flat isotropic surface M§C Py(c)
with parallel second fundamental form constructed in Naitoh [5] (Theorem

4.5).

1. Hopf fiberings

Let R**! be the real Cartesian (n-1)-space with the standard inner pro-

*) Partially supported by the Yukawa Foundation.
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duct <, >. For a constant k>0, we denote by S"(k) the hypersphere of R"*!
with the radius 1/v/ % endowed with the Riemannian metric g induced from
<

Now we fix a positive integer m and a constant ¢>0, and denote by P,,(c) the
complex projective m-space P,(C) endowed with the Kihlerian metric g of
constant holomorphic sectional curvature ¢. We regard the complex Cartesian
(m-+1)-space C™*' as a Euclidean (2m--2)-space by the inner product: <{z,w)>
=Re'zw for z,weC™*. Then the Hopf fibering z: S**!(c/4)— P,(c) defined
by #(2)=[z], [¢] being the point of P,(C) with the homogeneous coordinate
2, is a Riemannian submersion in the sense of O’Neill [7]. The complex
structure tensors on C"*! and P,(C) are denoted by J. We write S=S*"*(¢/4).
Define a unit normal vector field v for the imbedding S—C"*! by v, =(\/"¢ [2)g
for g€, and put V,=R(Jv,) and

H, = {zeC"*; {2,¢> =<2, Jv,> =0}

for g€S. Then the subbundles V(S)= ) sV, and H(S)=|J,esH, of the
tangent bundle 7S of S are the vertical and the horizontal distributions for
the Riemannian submersion 7, respectively, and thus we have an orthogonal
Whitney sum: T'S=V(S)@P H(S). The complex structure J on C"*! leaves
each H, invariant and J,|H, corresponds to J., on P,(C) under the linear
isometry zy: H,—Ty,P,(c). For a vector field X on S, its V(S)-component
and H(S)-component will be denoted by X and A4X, respectively. If ZX=
X (resp. #X=X), X is said to be vertical (resp. horizontal). If X is horizontal
and projectable to a vector field X, on P,(C), it is called the horizontal lift of
X and denoted by X=4./. X,,. The Riemannian connections of .S and P,(c)
are denoted by VS and V, respectively. Let 4 and T be the fundamental
tensors for the Riemannian submersion z defined in O’Neill [7]. Then we
have T'=0, since each fibre of the Hopf fibering = is totally geodesic in S.
For such a Riemannian submersion we have the following identities:

(1.1) V§iX = AViX,
(1.2) ViV =A,V+0Uviv,
(1.3) ViV = 4V§Y+A4,Y

for horizontal vector fields X,Y and a vertical vector field ¥ on S. If further
X=4. X, and Y=4.. Y, then we have

(14) H4ViX=A4,V,
(1.5) JV%Y = é.l. VX,Y* .

The fundamental tensor A for our Hopf fibering = is given by
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(1.6) Ax(Jr)= (V¢ [2)JX,
(1.7) AxY = (V¢ [2KX,JYD]v

for horizontal vector fields X,Y on S. For these identities (1.1)~(1.7), we
refer the reader to O’Neill [7].

Now let f:(M,g)—P,(c) be an isometric immersion of a Riemannian mani-
fold (M,g) into P,(c). The complex structure and the connection on the pull
back f~1T(P,(C)) induced from J and ¥ are also denoted by J and ¥. Let M
be the total space of the pull back f~'S of the principal U(1)-bundle z: S—
P,(C). The U(1)-bundle map f : M—> S which covers f is also an immersion, and
so we may define a Riemannian metric ¢ on M in such a way that f: (M, 8)—Sis
an isometric immersion. Then the projection z: (M, 8)—(M,g) is also a Rieman-
nian submersion with 7'=0. Note that we have an orthogonal Whitney sum:
F-YTS)=f"V(S)®f "H(S). The connection on f(TS) induced from V* on
TS and the complex structure on f‘lH(S) induced from J on H(S) are also
denoted by VS and J, respectively. We define V(M):f“V(S), which is the
vertical distribution for the Riemannian submersion z: (M,8)—>(M,g). Then
the section Jv of V(S) induces a section of V(M), which will be also denoted
by Jv. Furthermore, regarding TM as a subbundle of f“(TS), we define
H(M)—_—TM n f‘lH(S), which is the horizontal Adistribution for . Thus we
have an orthogonal Whitney sum: TM=V(M )GBH(M) The second fun-
damental forms of f: (M,g)— P,(c) and f: (M g)— S will be denoted by o and
&, respectively.

The isometric immersion f:(M,g)— P,(c) is said to be totally real if
{J(T M), T,M>={0} for each peM. This is the case if and only if

(1.8)  <JH,(M), H(M)> = {0}
for each g& M, where H,(M) denotes the fibre of H(M) over g.

Lemma 1.1. Let f:(M,g)—P,(c) be a totally real isometric immersion
and f: (M, $)— S the isometric immersion induced from f in the above way. Then

1) fis minimal if and only if f is minimal,

2) (M,g) is complete if and only if (M, 3) is complete;

3) f(M) is not contained in any complex hyperplane of P,(C) if and only
if f(M) is not contained in any real hyperplane of C™**;

4) Both V(M) and H(M) are parallel subbundles of TM, i.e., they are in-
variant under the parallel translation of (1\2’, 8) along -any curve of M;

5) Assume that the linear span Ny(M) of o(T ,M, T M) is contained in J(T ,M)
for each peM. Then, o is parallel if and only if & is parallel.

Proof. We shall prove first the following: Let V and V denote the Rieman-
nian connections of (M,g) and (M, g), respectively. Let X,Y be vector fields on
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M which are horizontal lifts of vector fields Xy, Y, on M, respectively. Then
(1.9) V¥V =4l VY,
(1.10) &6(X,Y) = 4.lo(X,,Y4);
(L11) Vi(Jv) = OV(J»);
(1.12) 8(X,Jv) = (V ¢ [2)]X;
(1.13) VX =0;
(L.14) Vp(Jr) = 0;
(1.15) &(J»,Jv)=0.

We have
VXY = HViY+A,Y by (1.3)
= AViY+(V ¢ [2KX,JY>Jv by (L7)
= HVSY = 4L Y, by (1.8), (1.5).

This implies (1.9), (1.10). We have

Vi) = A:(Jo)+OVi(J) by (1.2)
= (V¢ [2)JX+VUVZ(Jv) by (1.6) .
This together with (1.8) implies (1.11), (1.12). We have
ViX = HV5X = Ax(J?) by (1.1), (1.4).

Thus, by (1.6) we obtain
(1.16) Vi, X=(¢[2)JX.

This together with (1.8) implies (1.13). The equalities (1.14), (1.15) follow
from V5,(Jv)=0.

1) Let'n and % denote the mean curvature vectors of f and 1, respec-
tively. Let dim M=n and so dim M=n+1. For an arbitrary g€ M, choose
an orthonormal basis {x,,--,%,} of H,,(M ) and put ¥, =myx;, 1<i<n. Extend
each x;, to a vector field X;, on M and let X;=4... X;,. Then, by (1.10),
(1.15) we have

(n+1)h, = 23i-1 6(X, Xi)o+6(Jv, Jv),
= St (il oKy Kig)), = o),
This implies the assertion 1).

2) This follows from the compactness of the fibre U(1) of =.
3) Assume that f(M) is contained in a real hyperplane of C™*', Then
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there exist a€C""— {0} and kR and that {f(M),ad>={k}. Take a point
g M and let ‘(f(g))a=re”"% so that k=rcos$. For each s=e" < U(1),
0= R, we have

k = <{f(ge),a> = <f(g)&,a> = Re{!(f(g))ag}
= Re(re” "16+0) =y cos(p+0) .

We have therefore r=0, and hence <f(M),a>= {0}. Now for each £ U(1)
we have <f(M),aE>=<f(M)§,a>=<f(M§),a>= {0}. Thus f(M) is contained
in the complex hyperplane {[z]€P,(C); ‘za=0} of P,(C). If conversely f(M)
is contained in a complex hyperplane {[z]€P,(C); ‘za=0}, acC™**— {0}, then
f(M) is contained in the real hyperplane {zxC™*!; {z,a>=0} of C™*!,

4) Equalities (1.11), (1.14) and (1.9), (1.13) imply that V(M) and H(M)
are invariant, respectively, under the covariant differentiation by any vector
field on M. Thus the assertion 4) follows.

5) Let V* and V* be the normal connections on the normal bundles NM
and NM, respectively, and let V* and V* be the coveriant derivations on T*M®
T*MQNM and T*M@ T*M@N M respectively, where 7*M and T*M denote
the cotangent bundles. Let X,Y,Z be the horizontal lifts of vector fields X,
Y4, Z4 on M, respectively. Then

(a) (V*6)(Jo, Jv, Jv) = Vi (Jv, Jv)—24(V 1 (J), Jv)
=0 by (1.15), (1.14) .

(b) (V*6)(X, Jv, Jv) = Vxé(Jv, Jv)—26(Vx(Jv), Jv)
= —26(UVz(Jv), Jv) by (1.15), (1.11)

=0 by (1.15).
(V*6) (Jo, X, Y) = Vis(X,Y)—6(V1X,Y)—6(X, V., Y)
= Vie(X,Y) by (1.13).

Here 6(X,Y)=4..0(X4,Y ) by (1.10). Therefore we have
Vie(X,Y) = (V¢ [2)]J6(X,Y) = (V¢ 24l Jo(X 4, V),

since (1.16) holds also for the horizontal lift X of a vector field X, on P,(C).
Now the assumption Ny(M)C J(T,(M)) implies that Jo(X,,Y) is tangent to
M, and hence V$,6(X,Y) is tangent to H(M). Thus V44(X,Y)=0, and
hence

() (V*6)(Jr,X,Y)=0.
Moreover, by (1.9) ,(1.10) we have

(V*8) (X,Y,Z) = V56(Y,2)—6(VxY,Z)—6(Y,VZ)
= V3$8(Y,Z)—4hl.o(V .Y, Z3)—hdo(Y 4, Vi Zy) -
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Here 6(Y,Z)=4..0(Y 4,Z4) by (1.10), and thus V36(Y,2)=4.LVz.0(Y4,Zy)
by (1.5). Therefore V38(Y,Z)=4.LV%,0(Y 4, Zy). Thus we obtain

(d) (V*6)(X,Y,Z) = 4l.(V*¢) (X, Yoo Zy) -

Now (a), (b), (c), (d) imply the assertion 5), since V*4 is symmetric trilinear
in virtue of the Codazzi equation. q.e.d.

2. Shilov boundaries of symmetric bounded domains of tube type

We fix a positive integer # and a constant ¢>0. Let us consider an ob-
ject 9=(Dy,++*,Dy; ¢y, +,¢,), $= 1, where

(i) D;, 1=i<s, is an irreducible symmetric bounded domain of tube
type, and =; dim¢g D;=n+-1;

(ii) ¢;, 1=<i<s, is a positive constant, and ; 1/¢c;=1/c.
We shall associate to such an object b a totally real isometric imbedding f:
(M,g)—P,(c) of an n-dimensional complete connected Riemannian manifold
(M,g) with parallel second fundamental form.

Let D=D, X --- X D, be the direct product of the D;’s, 1<i<s. It is also
a symmetric bounded domain of tube type. Note that dime D=n-1 in virtue
of (). The identity component G of the group of holomorphisms of D is semi-
simple and with the trivial center. Therefore it is identified with the group of
inner automorphisms of g=Lie G, the Lie algebra of G, and hence it is also
identified with a closed subgroup of the group G¢ of inner automorphisms of
the complexification g¢ of §. Fix a point o€D and put

K = {¢=G; ¢po = o} , f=Lie K.
Then the subspace
b= {Xeg; B(X,T) = {0}

of g, where B denotes the Killing form of g¢, is invariant under the adjoint
action of K, and it is identified with the tangent space 7,D of D at 0. Let H
be the unique element of the center of ¥ such that ad H|p coincides with the
complex structure J of D on p=T,D. Then the complexification P, of P is
decomposed to the direct sum: po=p¢+p¢ of K-invariant subspaces p§ defined
by

e = {XEpe; [H,X] = £V—1X}.
Note that the linear map ¢: p—p¢ defined by «(X)=(1/2) (X—V'—1[H, X]) is

a K-equivariant C-linear isomorphism of (p,]) onto p¢. Denoting by =
the complex conjugation of g, with respect to the compact real form g,=

t+V/—1p, we define a K-invariant hermitian inner product (, ) on b¢ by
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(X,Y),=—B(X,7Y) for X,Yep;. We define then a K-invariant inner pro-
duct {, > on p§, regarded as a real vector space, by <X,¥Y>=2kR(X,Y), for
X, Yepi. Then we have

2.1) &X,.Y>=B(X,Y) for X, YeEp.

Let ceG,, G, being the connected subgroup of G generated by g,, denote
the standard Cayley transform for D(cf. Takeuchi [9]), and define an involutive
automorphism @ of G¢ by 0(x)=c*c™? for x&G¢. The differential Adc® of
0 will be also denoted by 8. Then we have 07v==76, 6t=t and 0H=—H. We
may define an anti-linear endomorphism X — X of p§ by X=76X, so that

pt = {Xep; X = X}

is a real form of p;. Let now F: D p§ be the Harish-Chandra imbedding
for D, and Sc@Dcp; the Shilov boundary of D. The groups G,K or g,t,
P, p¢ etc. are the direct products or the direct sums of respective objects for D,
1<i<s, which will be denoted by the same notation but with the suffix i.
Then F is the product imbedding F;X -+ X F; of Harish-Chandra imbeddings
" F;: Dy pic for D;, and S is the direct product S;X -+ XS, of Shilov boun-
daries S;C0D;Cbpic of D;. The group K acts transitively on S and S is a
compact connected manifold with dim S=dim; D=n-+1. Let X?€S; be the
standard base point of S; (cf. Takeuchi [9]). Then

(2.2) eigenvalues of ad(:"}(v/—1 X?)) on g; are 0,2,—2.
Put X°=X}+.--4+ XS and
K,= {keK; kX" = X} .

Then (K,K,) is a symmetric pair with respect to 6 and S is identified with the
quotient manifold K/K,. If we set

8= {Xet;0X = —X},

and Y(X)=[X,/—1 X°] for X €3, then +r defines a linear isomorphism of 3
onto p*. In particular, we have

23) [BV=1X]=p*.
For these properties of symmetric bounded domains of tube type, we refer the
reader to Koranyi-Wolf [4], Takeuchi [9].

Now let dimy D;=n;+1 and put a;=1//2¢c;(n;+1), 1=i<s. We define
an (n+1)-dimensional compact connected submanifold M of pg by

A

M= a,S, X Xasss ’

and endow it with the Riemannian metric g induced from <, >. We write
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M=a;S;Cple, 1Si<s. If we put E/=+/—1a,X'Ep}, and E=E,+ -+
E.ep¢, then E; belongs to ]lAJ;, since each D; is a circular domain in pj;, and
hence E belongs to M. Thus we have M;=K.E, and M=KE. Note that
we have also

(24) K,= {keK;kE=E},
and hence M is identified with K/K,. Moreover, (2.1), (2.2) imply
NV =1X), V—=1XD=4dim p,=8dim; D;=8(n;+1)

and hence <E,, E;>=4/c;, thus <E,E>=3<E;, E;>=3;4/c;=4/c in virtue of (ii).
Therefore, identifying pfc with C**! by an orthonormal basis of p}; with respect
to 2( , )., and thus identifying p¢ with C**!, we have

M,c 8™+ (c,/4), 1=<i<s,
and

M= Mx - X M,C S**(c/4) .

Furthermore, the property (2.2) implies that each inclusion M, S (c,/4) is
a standard minimal isometric imbedding of an irreducible symmetric R-space
M~ in the sense of Takeuchi [10]. Thus, by Takeuchi [10] the inclusion f:
(M, 8)— S™*(c/4) is an isometric imbedding with parallel second fundamental
form such that f(M ) is not contained in any real hyperplane of C**', Here the
identity component I°(M ) of the group of isometries of (M £) may be identified
with K. Moreover, f is minimal if and only if

(2.5) cin41) = c(n+1) for each Z, 1=i<s.

Now let z: S**(c/4)— P,(c) be the Hopf fibering and put Mzn(M).
It is a compact connected submanifold of P,(C) since it is a K-orbit in P,(C).
We endow M with the Riemannian metric g induced from that of P,(c), and
denote by f:(M,g)—P,(c) the inclusion. Since the connected subgroup Z
of K generated by RH acts on p by U(l)={el; €€C, |&|=1}, we have
n“(]ll):M. Therefore we have dim M=n. Thus we are in the position of 1
with m=mn.

Theorem 2.1. Let f:(M,g)—P,(c) be the isometric imbedding associated to
d=(D,,+++,D,; ¢},*+,¢,) in the above way. Then

1) f is totally real and has the parallel second fundamental form. In par-
ticular, (M, g) is locally symmetric;

2) f is minimal if and only if c;dim¢ D;=c(n+1) for each i, 1 <i<s;

3) The dimension of the Euclidean factor of the locally symmetric space
(M,g) is equal to s—1;

4) (M,g) has no Euclidean factor if and only if s=1 and dim¢ D, =2. In



ToraLLy REAL SUBMANIFOLDS 725

this case, (M,g) is irreducible and f is minimal;
5) (M,g) is flat if and only if s=n+1 and dim; D;=1, i.e., D; is the unit
disk, for each i, 1<i<n-+1.

Proof. We prove first that f is totally real. Since K acts on P,(c) as iso-
metric holomorphisms of P,(c), f is K-equivariant and M is a K-orbit, we need
only to prove the property (1.8) for g=E. By (2.4) the tangent space T, M is
identified with 8. Moreover, by (2.3) we have [, E]=p*, and hence T M is
identified with p*. In particular we have \/—1E=[H,E]€bp*, since HES.
Thus, if we put

b= {Xep'; <X, vV—-1E>= {0},

it is identified with HE(M) Now <p*,/—1p*>={0} implies <§, /—15)>
—{0}. We have therefore the required property: <Hz(M), JH(M)>={0}.
The assertion that o is parallel is an immediate consequence of Lemma
1.1,5), since NM=J(TM) in our case. The assertion 2) follows from Lemma
1.1,1) and (2.5). The assertions 3),4),5), except for the minimality for f in 4),
follow from the following observations:
(a) the dimension of Euclidean factor of M=the one of M —1;
(b) the dimension of Euclidean factor of M;=1;
1 if dim¢ D;=2,
0 if dimgD;=1.
The minimality of f in 4) follows from 2). g.e.d.

(c¢) the number of irreducible factors of M:{

3. Classification of totally real submanifolds with parallel second
fundamental form

Let d=(D,,-++,D;; ¢;,+*,¢;) and d'=(D!,+-,D};¢f,-++,ct) satisfy condi-
tions (i), (ii) in 2. They are said to be equivalent, denoted by d~b’, if s=t
and there exists a permutation p of s-letters {1,2,-:+,s} such that Dj;, is isomor-
phic to D; and ¢j;y=c; for each 7, 1=<i<s. The set of all equivalence classes
of b=(D,, -++,Dy; ¢;,+++,¢,) with (i), (ii) will be denoted by 0, .. Let Aut(P,(c))
denote the group of isometric holomorphisms of P,(c). It is isomorphic to the
projective unitary group PU(n-+1) of degree n+1 in the natural way. We
denote by 4, the set of all Aut(P,(c))-congruence classes of n-dimensional
complete connected totally real submanifolds M of P,(c) with parallel second
fundamental form. Then from the naturality of Harish-Chandra imbedding
our correspondence d—M in 2 induces a map O, ,— 3, ..

Theorem 3.1. 1) The map D, ,— 4, is a bijection.
2) Let f:(M,g)—P,(c) be a totally real isometric immersion of an n-dimensional
complete comnected Riemannian manifold (M,g) with parallel second fundamental
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form. Then there exist an n-dimensional complete commected totally real sub-
manifold «: M' < P,(c) with parallel second fundamental form and an isometric
covering f': M— M’ such that f=:o f'.

Proof. 1) Surjectivity: Let McCP,(c) be an n-dimensional complete
connected totally real submanifold with parallel second fundamental form.
We use the notation in 1 with m=n. Then, by Lemma 1.1 M=r"Y(M)C
S?*Y(c[4) is complete, connected, with parallel second fundamental form and
not contained in any real hyperplane of C**'. Moreover we have 7z(M) =M.
Thus, by Theorem 4.1 of Takeuchi [10]

M= M X M,C.S™(c,/4) X -+ X S™(c,]4) C S™*(c[4)

where each ]\Al,-CS'”i(c,-/4-), ¢;>0, is an irreducible symmetrlc R-space, Z;m;+s
=2n+42 and 3, 1/c;=1/c. Here the group K—I°(M) is 1dent1ﬁed with the
identity component of the group {$p €O(C**'); ¢M=M}. Since M is invariant
under the subgroup Z= {EI €€C, |g|=1} of O(C™™), Z is a closed sub-
group of K. Let p: M— M be the universal Riemannian covering of M. Then,
by Lemma 1.1,4) M is the Riemannian product VxH of maxxmal integral
submanifolds V and H in M of distributions p'lV(M ) and p'lH(M) respectively.
Since Vis a flat line, it is contained in the Euclidean part of M. Thus, if we
identify Lie I(M) with a Lie subalgebra of Lie I(M), Lie Z=Lie I'(V) is
contained in the center of Lie I(M)=Lie K. Therefore Z is contained in the
center of K, which implies that K is a subgroup of the unitary group U(n+1)
It follows that each irreducible symmetric pair (g;,f;) associated to M; is of
hermitian type. Moreover, each g; has a semi-simple element E; such that
ad E; has just three distinct real eigenvalues. This is the case if and only if
each irreducible symmetric bounded domain D, associated to (g; ;) is of
tube type. Here we have 2dim¢; D;=m;-+1, and hence 3; dim; D;=n-1. There-
for, McP,(c) is obtained from db=(D,,---,D;;c,,--*,¢,) by the construction in
2. This proves the surjectivity of our map.

Injectivity: Let M CP,(c) and M'CP,(c) be associated to d=(D,,++,D,;
¢,y ¢) and d'=(Dyq, -+, D}; cf, -+, ct), respectively. Various objects in the con-
struction of M’ will be denoted by the same notation as for M but with primes.
Suppose that there exists ¢EAut(P (¢))=PU(n+1) with pM=M'. Then
we have a C-linear 1sometry $: p&—p’¢ with respect to < , > and {, >’ such
that qSM—M' and ¢ induces ¢. Then the homomorphism ¢,: K=I(M)—>
K'—-I"(M’) defined by ¢x(k)=dokod™" is an isomorphism. The differential
(<f>K)* 1’ of ¢ will be denoted by qﬁr Moreover, the C-linear isomorphism
d)p ®, )= ¥",]') with $or=s' 0<i>p is a linear isometry with respect to B and
B’, and it satisfies

(B.1) Sy (kX) = dx(k) ($,X) for kEK, XEp.



ToraLLy REAL SUBMANIFOLDS 727

We define an R-linear isomorphism &:g=%f+p—>g'=*t+p’ by ¢=$I+$p'
Then (3.1) implies

(3.2) ®oad X = (ad ®X)od for Xe&t.

We shall show that & is actually a Lie isomorphism. Since (3.2) holds, we
need only to show

(3.3) PX,Y]=[®X,DY] for X,Yep.
For each Z &t we have

B'([®X, ®Y], ®Z) = B'(®X, [@Y, DZ])
= B'(®X, ®[Y,Z]) by (3.2)
= B'($,X, $,[V,Z]) = B(X, [V, Z])
— B([X,Y], Z) = B'(®[X,Y], ®Z) by (3.2).

This implies (3.3). Now the naturality of Harish-Chandra imbedding implies
b~b’. 'This proves the injectivity of our map.

2) Construct an isometric immersion f: (M, ) —S?*(c/4) from f in the
same way as in 1. Then, by Lemma 1.1 ( M, £) is complete and f has the parallel
second fundamental form. Thus, by Theorem 4.1 of Takeuchi [10] the i image
M’—f(M) is a complete submanifold of S**!(c/4) and the map f': M—M' in-
duced by f is an isometric covering. Therefore M’ —n—(M’) is an n-dimensional
complete connected submanifold of P,(c) and the induced map f': M— M’ is
an isometric covering. It is clear that A/’ is a totally real submanifold of P,(c)
with parallel second fundamental form. This completes the proof. q.e.d.

ExampLE. Let D be the irreducible symmetric bounded domain of type
(IV) with dime D=n+1,n=2. Then the submanifold M C P,(c) corresponding
to d=(D; ¢) is the naturally imbedded real projective n-space P"(c/4) with
constant sectional curvature ¢/4, which is totally geodesic in P,(c).

We define a convex subset F, , of R” by
F, = {a = (a;))€R"; a;20(1<Zi<m), oy +20,+ -+ +na,<1jc} .

For each a€F,, we define constants ¢,,++,¢,,; with 0<¢;=¢, <+ =¢,4; by
the relations

(B4 ;= 1e;i—1)e; (1=i<n) and = 1/c; = 1/c,
and put
M2t = S1(cy/4) X - X S (Cayr/4) © ST (c/4) .

Then, by Theorem 2.1,5) M;’,:n(MZ*‘)CPn(c) is an n-dimensional complete
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connected flat totally real submanifold with parallel second fundamental form.
Let 7,, denote the set of all Aut(P,(c))-congruence classes of such submani-
folds. Then the correspondence o —M7 induces a map F, ,—7,,.

Theorem 3.2. 1) The map F, ,—7,, is a bijection.

2) An n-dimensional complete connected flat totally real minimal submanifold
of P,(c) with parallel second fundamental form is unique up to the congruence relative
to the group Aut(P,(c)), and it is given by MiC P,(c).

Proof. 1) By Theorem 2.1,5) and Theorem 3.1, 7, , corresponds one to
one to the set of all (n+1)-tuples (¢, *+,¢,,,) With 0<¢; < ¢, <+ =¢,4, and Z; 1/¢;
=1/c. But the latter set corresponds one to one to the set F,, by the rela-

tions (3.4).
2) By Theorem 2.1,2), M} C P,(c) is minimal if and only if ¢;=c(n-1) for
each 7, 1<i<n. TThis is the case if and only if a=0. q.e.d.

RemARk. The norm ||os|| of the second fundamental form o, of M%LC
P,(c) is given by
lloall? = {2 c;—(3n-+1)c} /4.

In particular, we have ||o||*=n(n—1)c/4.

4. Characterization of a flat totally real surface in Py(c)

Let f:(M,g)— (M,2) be an isometric immersion of an #n-dimensional Rieman-
nian manifold (M,g) into an (n--¢)-dimensional Riemannian manifold (3,g2)
with ¢=1. The inner product and the norm of tensors defined by Riemannian
metrics are denoted by { , >and || ||, respectively. We denote by & the second
fundamental form of £, and by S; the shape operator of f. They are related
by {S¢X,Y>=<(a(X,Y), &> for vector fields X,Y on M and a normal vector
field £. We define a section & of the bundle End(NM) of endomorphisms of
the normal bundle NM by ¢=go’s, regarding o as a homomorphism from
TMQ®TM to NM. Moreover, we define a homomorphism S~ from TMQQTM
to End(NM) by S*(X,Y)¢=0(X,S;Y)—o (Y, SeX) for vector fields X,Y on
M and a normal vector field £&. Then we have the following

Lemma 4.1 (Simons [8], Chern-do Carmo-Kobayashi [2]). Let p be an
arbitrary point of M. Then we have an inequality

lloplP+11S5 1P < (2—1/g)llo,lI* -
If the equality holds, then either o,=0 or o,%0, Ny(M)=N,M and q<2.

Now assume that (M,2) is a Kihlerian manifold M,,(c) of constant holomor-
phic sectional curvature ¢ with dim¢ M,,(c)=m, and that f is totally real in the
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sense that < J(T,M),T,M>={0} for each p&M, where J denotes the complex
structure tensor of M,(c). Then we have an orthogonal Whitney sum: NM=
J(TM)® J(TM)*, where J(TM)™* denotes the orthogonal complement of J(TM)
in NM. We define a homomorphism ¢; from TMQTM to NM by o,(X,Y)
= J(TM)-component of ¢(X,Y) with respect to the above decomposition, for
vector fields X,Y on M. Let A=Tr,vV** denote the Laplacian on NM. Then,
from Simons’ formula (Simons [8]) which describes Ag for a general minimal
isometric immersion, we have the following lemma.

Lemma 4.2. Let f:(M,g)— M,(c) be a totally real minimal isometric im-
mersion. Then

(41) <Ac,od> = (ulloll+llos|P)ec/4—lo1P—ISHIP .

Proposition 4.3. Let f: (M,g)— M, (c), c=<0, be a totally real minimal iso-
metric immersion with parallel second fundamental form. Then f is totally geodesic.

Proof. Since V*o=0, we have by Lemma 4.2
(llelP+-llosIP)c/4 = llelP+IISHP  with ¢=<0.
This implies =0, and hence o=0. q.e.d.

Lemma 4.4. Let f: (M,g)— M,(c) be a totally real minimal isometric im-
mersion of an n-dimensional Riemannian manifold (M,g). Then
1) We have an inequality

(42) —<Ad,o>={2—1n)llo]P—(n+1)c/4}loll%;
2) If furthermore M is compact, then we have

@#3) [ IIv*olio,<{ _1e—1mlolr—@+1)e/4tlolFo,

where v, denotes the Riemannian measure of (M, g).

Proof. 1) Since J(TM)=NM in our case, we have o;=c. Thus the
equality (4.1) reduces to {Ac, o> = (n+1)c|lo|*/4—llo|’— [ISH|’. Now (4.2)

follows from Lemma 4.1.

2) Integrating the equality: (1/2)A(|lo])=<Ac,o>+|V*c|[’, we obtain
[ 9%l = | <Ac,adv, .

Thus (4.2) implies (4.3). q.e.d.

Theorem 4.5. Let f: (M,g)— P,(c), c>0, be a totally real minimal isome-
tric immersion of a compact connected Riemannian manifold (M,g) with dim M=
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n=2. Suppose that the second fundamental form o of f satisfies an inequality
llo|*<mn(n+1)c/4(2n—1)

everywhere on M. Then either f is totally geodesic and it is an isometric covering
to the naturally imbedded real projective n-space in P,(c), or n=2, ||lo|*=c/2
(=n(n+1)c/4(2n—1)) everywhere on M and f is an isometric covering to the flat
surface M3 C Py(c) defined in 3 (up to the congruence relative to Aut(P,(c))).

Proof. We have
C—=1m)lle|P—(n+1)c/4 = 2—1/n){llo|"—n(n+1)c/4(2n—1)} <O
from the assumption. It follows from (4.3) that
{llelP—n(n+1)c/4(2n— 1} lo]* = 0

everywhere and that o is parallel. Assume that f is not totally geodesic. Then
llo|’=n(n+1)c/4(2n—1) everywhere, and hence n=2 by Lemma 4.1. Now
we see from Theorem 3.1 that a 2-dimensional complete connected totally
real minimal submanifold M’ of P,(c) with parallel second fundamental form is
congruent to M3 unless it is totally geodesic. On the other hand, the second
fundamental form o, of M§C Py(c) satisfies [|oo|[?=c/2 (cf. Remark in 3). Thus

we get the theorem. q.e.d.

REMARK. Our MEC Py(c) is nothing but the flat isotropic surface in Py(c)
with parallel second fundamental form constructed in Naitoh [5].
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