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0. Introduction

Consider the Cauchy problem for a hyperbolic operator

(0.1) L = Dt+(^ °)(*, X, Dx) + (^ hfy, X, Dx) on [0, T]xR\

where Dt denotes — \/--T3<> functions λ, (ί, x, ξ) are real valued and belong
to 5~([0, T]; S1) and bjk{t, x, ξ) belong to J3~([0, T]; 5°). Throughout this
paper we assume that

(0.2) {τ+λ;, {τ+λy, T+λ,}}^ x, ξ) = 0 on [0, T]xR% ,

(i,j,k =1,2)

where for /, g e C\R]^|) {/, g}(t, x; T, ξ) denotes the Poisson bracket:
φrβ,g-d,β,g+Vίf'Vxg-Vxf>Vig){t, x; r, ξ).

Recently, using Fourier integral operators with multi-phase functions,
Kumano-go -Taniguchi-Tozaki in [10] and Kumano-go -Taniguchi in [11]
constructed the fundamental solution for a hyperbolic system with diagonal
principal part (Theorem 3.1 in [11]). In these papers the propagation of sin-
gularities of solutions was investigated by using an infinite number of phase
functions (Theorem 3.4 in [11] or Theorem 3.1 in the present paper).

In the present paper we prove that the propagation of singularities can be
described by means of five phase functions φu φ2y Φi#φ2> <ί>2#Φi and φi#φ2#Φi,
when the assumption (0.2) is satisfied (Theorem 3.2). We note that the
characteristic roots satisfying (0.2) are not necessarily involutive. For examples,
\x=-tξ and \2=tξ for n=ί satisfy (0.2), but

{τ+λ l f τ+λ2}(=2£)Φ0 (H=0).

Other examples will be given in Section 2.
The propagation of singularities of solutions has been investigated by
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many authors [1], [2], [3], [4], [6], [8], [12], [13], [14], [15], [16], [17], [18], [19]
etc.. In particular, in [2], [6], [14], [15], [16], [17], [19] operators with involu-
tive characteristics are treated. Alinhac in [1] and Taniguchi-Tozaki in [18]
give the precise descriptions for singularities of solutions for operators on R\
with principal part 9?—£2/9* (/ is a positive integer) which are not involutive.

In Section 1 we exhibit main results on the theory of Fourier integral
operators in [10] and [11] needed later. In Section 2 under the assumption
(0.2) we contract the multi-product Φjl9...tjv+1(t0, •• 9tv+1; x, ξ) (jk=ly2) of

phase functions φjk(t, s; x, ξ) (/*=1, 2) (see (1.11)), which are the solutions of
the eiconal equations for τ-\-\Jk(t, x> ξ) (see (1.10)) (Theorem 2.4). In Section
3 we prove the main theorem (Theorem 3.2).

The author would like to express his sincere gratitude to Professor H.
Kumano-go for his advice and encouragements.

1. Fourier integral operators

For a multi-index a={aXy •••,#») of non-negative integers α ; and points
x=[xly •• }xn)^Rn, y=(yly « ,j;n)ei?n we use the usual notation:

\a\= «,+ •••+«., dt = 9?j - aj;, dXj = J L ,

m = m\ - «;, DXj = - v / = T 9 v V,= (9,ιf » , 8,.),
<*> = (1+ I*!1)*, x y = Xiyi+...+χnya.

For f(x)=(fu •»,/,) ( / ^ ε C 1 ^ ) ) we denote

Let si on Rn denote the Schwartz space of rapidly decreasing functions and
let si' denote the dual space of s&. For u^sόx the Fourier transform ύ(ξ)—
F[u](ξ) is defined by

and then, for ύ(ξ)^sόξ the inverse Fourier transform F[u](x) is defined by

F[ύ](x) = J eixM(ζ)dξy dξ = (2π)-»dξ.

For real ί we define the Sobolev space Hs as the completion of si in the norm

DEFINITION 1.1. We say that a C°°-function ρ(x, ξ) in R2n=Rn

x x Rn

ξ belongs
to the class Sm (—oo<^<oo), when
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(l l)

where plt](x,ξ)=dΊmp(x,ξ).
The class Sm makes a Frechet space with semi-norms

I pI ί"> = max sup {| p$(χ, ξ) | /<£>«-'-'} (/ = 0, 1, 2, •••).

We set S~"= Γ) S" and 5 ~ = U Sm.

The pseudo-differential operator p(X, Dx)^Sm with symbol p(x,ξ)^Sm is
defined by

(1.2) p(X, Dx)u = 0 s-Jj^/^'^O*, ξ)u(x')dx'dξ

= lim (( Jt'-Λ tXίεx', €ξ)p(x, ξ)u(x')dx'dξ ,

where X(Λ?, f)e^(Λ 2 Λ) such that %(0, 0 ) = l (cf. [7]).
Now we state definitions and theorems in Kumano-go-Taniguchi-Tozaki

[10] and Kumano-go-Taniguchi [11] without proofs (see also [5]).

DEFINITION 1.2. If 0 ^ τ < l , we denote by £P(τ) the set of real valued
C°°-functions φ(x, ξ) in R2n such that/(.r, ξ)=φ(x, ξ)—x-ξ belongs to S1 and

(1.3) Σ ™

REMARK 1.1. In [10] £P(τ) denoted the class of C2-functions. The above
definition is due to [11].

We define the Fourier integral operator pφ(X, Dx) with symbol p(x,
and phase function φ(x, ξ)^9?(τ) by

(1.4) pφ(X, Dx)u(x) = f /«*#p(x, ξ)ύ(ξ)dξ ,

DEFINITION 1.3. Let φj^S>(τj), j= 1, •••, v+l, •••, ?„ = j[]τ ;.<;τ0 for a

sufficiently small fixed τ 0 with 0 < τ 0 ^ l / 8 . We define the multi-product

Φv+i(«, f)=(ΦJ—#Φv+i)(*, ξ) of phase functions φj(x, ξ) (j=ί, - , v+\) by

(1.5) Φv+1(*°, Γ+1) = Σ (Φ. ̂ Γ 1 , Bv'

where {X ,̂ Bv}y-i(*°» ?v+1) is defined as the solution of the equation

f *' = V ίφ i(*'-1,f'),
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Proposition 1.4 (Theorem 1.8 and Theorem 1.9 in [10]). Let φ ; <

y = l , •••> ^+1> '"y ^OO^T"O= 1/8. Then, Φv+ι(x, ξ) of (1.5) w

belongs to ^ ( ^ v + i ) , ^v+i = τ"iH hτv+i> wώλ α constant co>O independent of v

and τ 0 . We also get

α Q\ f 11 j U, . /

,Oj φl?fΦ2frΦ3 I = : : v

Consider a hyperbolic equation

(1.9) (A+λ(ί, X Z),))« - 0 on [0, Γ]

(λ(ί, Λ?, ?)e5°°([0, Γ]; 51), real valued).

Let φ=φ(t, s)=φ(t, s; x> ξ) be the solution of the eiconal equation

( 1 1 0 ) Γ dtΦ+Mt, x, V,φ) = 0 on [0, T],

Then, we have

Proposition 1.5 (Theorem 3.1 in [9]). For a small To (0<T0^T) we

get φ(t, s)^S>(c(t—s)) (0^s^t^TQ) with a constant c>Q.

We fix such a To in what follows. Take λ, C/=l, ##, ^ + 1 , —) as λ of

(1.9) such that {λy},~i is bounded in B°°([0, T]; S1) and let φ y be the solutions

of (1.10) corresponding to λ y. We define Φ = Φ1Λ...,v+i(*o> •••, ίv+Γι °̂> fv+1)

( i . i i ) Φ(t0, - , ίv+1) = <M*0) o # - #Φv+i(<v, /v+i),

and define {Xί, Bί}y=i(ί0, •••, ίv+1; Λ;0, | V + 1 ) as the solution of

(112)
{& Vφ(tj, tJ+1; x>,

where T 0 > 0 is a constant independent of v in Proposition 1.4 and Proposition

1.5. Then, we have

Proposition 1.6 (Theorem 2.3 in [10]). Φ(ί0, •••, ίv+1) of (1.11) satisfies

P. Qtφ = Xj{tjy χjv9 3l)-\H1(tj, XL Bί)

(j = 0,.-, v+ί, λo-λv+ 2 = 0, XI = x°, H!=V,oΦ ,

2°. i/" tj=tj+ι for some j 3 we have
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3°. If \j=\j+1 for some j> we have

Now let (q,p)(t,siy,v)=((q1,-',qn),{p1,-,pa))(t,s;y,v) (O^s^
be the bicharacteristic strip for (1.9), that is, (q, p) (t, s) is the solution of

= -v,λ(<, ί, ί ) , (g, />) I /-. = (y, v) •
( U 3 )

at

Then, we can solve (1.13) in full interval s^t^T by the Gronwall inequality,
since I V*λ(f, ?,/>) | ^C^ and |V,λ(*> ?, ί ) | ^C^py (0£t^T) for a constant

). We state propositions on the bicharacteristic strips.

Lemma 1.7. Lέtf φ(#, ̂ ^ ^ ( T ) . Tfew, /or any yy η<=R2n (resp. (x, ξ))
there exists a point (x, ξ)G:R2n (resp. (y> η)) such that

(1.14) y = Vfiφ(*, 77), ξ = Vxφ(x, rj) .

Proof. Set F(x)=F(x; y, v)=—VtΦ(x, ^7)+^+^. We have

\
Jo

where / is a unit matrix and for a matrix A~(aij\ _M, •••, n) the norm

is defined by { Σ l ^ l2}172- Then, we can apply the fixed point theorem, and

x=x(y} η) satisfying y=Vξφ(x, η) is determined as the fixed point. Then,
ξ(y, η) is determined by Vxφ(x(y, v), η).

Similarly, (y(x> ξ), η(x, ξ)) is determined. Q.E.D.

Lemma 1.8. Let (q,p) (t,s;y,v) (O^s^t^T) be the bicharacteristic strip
defined by (1.13) and φ(t,s;x,ξ) (0^s^t^T0) be the solution of the eiconal
equation (1.10). Then, it follows that

(1.15) y = Vfiφ(ί, s; q(t, s), 77), p(t, s) = V,φ(ί, s; q(ty s)9 η)

Proof. By Lemma 1.7 we can define (q\ p') (ί, s; y, rj) (0^s^t^T0) by

(1.16) y = Vtφ(f, s; q\t, s), rj), p\t, s) = V,φ(ί, s; q\t, s), v).
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Differentiate both sides of (1.16) in t, respectively. Then, using (1.10) we get

at

Since q'(s, s)=y and p'(s,s)=η from (1.16), we can see that q'(t,s) = q(t,s)
andp\t, s)=p(t, s) (0^s^t^T0). Q.E.D.

Take Xj (j=ly •• , i > + l ) as λ of (1.9) and define Φ = Φ l t . . . f V + 1 ( ί 0 , •••, ίv+1",
x, ξ) (0^t^+1^ ~^t0^T0^T) by (1.11) corresponding to {\j})t\. For a
set {t'θ9 —,ίί+ 1}c[0, To] such that *o^*ί^ ^ + i (resp. f ί ^ f ί ^ ^fί+i) we
define a trajectory (δ,P)(σ)=((?if...fv+i, Pi,...,v+i)(σ; t'o, — ,tl+1;y, η) in * ^ σ ^
tζ+ι (resp. ^o^cr^^v+i) as follows: (Q, P)(<τ) are continuous functions on [tί+u to]
(resp. [ίί, tί+1]) such that (g, P)(ίv/

+i)=(>', v) and for σ e ( ί ί , ίLi) (resp. σ<Ξ
(«-i, «)) (Q, P)(σ) satisfy

(1.17) f ^
dσ dσ

T h e n , we obtain

Proposition 1.9. Let T^T0^t0^ ~^ίv+1 ^ 0 . Using Lemma 1.7, for any
point (y} η) take a point x satisfying

(1.18) y = VέΦi,...,v+i(^ —, 'v+Γ, ̂  ^)

(1.19) (δi,.,v+i, Λ.....v+i)fe; t0, - , ίv+1; j , 97)

= (Xί, Bί)Λ, - , ίv+i; x, v) (* = 0, - , ^ + 1 ) ,

{-yί,Bί}y-i is the solution of (1.12) corresponding to Φ = Φ l f . . . f V

X ; = ΛT Hv° == V Φ i v + i ( ί 0 " ίv+i5 Λ» ^) >
(1.20)

Proof. Relation (1.7) in Proposition 1.4 shows that

— ,ίv+Γ, Xy η) = Vxφi'

Together with (1.12) and (1.18) we get

(1-21) , β , . x ,_, w 4
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Now when k=v+l, (1.19) is valid. From the definition of {Q, P)(σ)=

(£?i, ,*+i, -Pi. ,v+i)(σ) and by Lemma 1.8 we have

, η) .

Compare the above relation with X\ and Bϊ of (1.21). Setting Xl+1 =y, &l+1=
we get by Lemma 1.7

In a similar way we can prove (1.19), inductively. Q.E.D.

2. Contraction of multi-phase functions

Let \j(t, x, ξ)ξΞB°°([Oy T]\ S1) C/=l» 2 ) a n d b e r e a l valued functions.
Throughout this section we assume that

(*) {τ+λ, , {τ+\j, τ+λA}}(ί, Λ, f) = 0 on [0,

where f o r / ^ e C 1 ^ ? ^ ^ ) {/,^}(ί, Λ; T, f) denotes the Poisson bracket

(2.1) {/, g}(t, x; T, ζ) = (dτfdtg-dtfdτg+Vtf-Vxg-Vxf.Vtg)(t, x; r,

Let φ ; (ί, ί; x, I) (y=l, 2, O^s^ t ̂ To) be the solutions of the eiconal
equation (1.10) corresponding to λ, and define φ = Φyif...^v+i(f0, •••, ί v + 1 )e
^ ( ί o - ί v + i ) ) (O^ίv+i^ ^ ί o ^ ^ o , J > l , 2) by Φ-φy^o, Ott-#φyv+1(ίv,ίv+i),
where £0>0 a n d 7Ό>0 a r e constants independent of v (see Proposition 1.4 and
Proposition 1.5). We fix such a Γo in what follows. It is easy to see that

Lemma 2.1. Let H(t, x, ξ) e C\R2n+1) and (qy p)(t) = (q,p)(t, s; y, η)
(0^s<t^T0) be the bicharactertstic strip defined by (1.13) for τ+λ(ί , xy ξ) of
(1.9). Then, we have

(2.2) j-σH{σ,q(σ),p{σ))= -{H,r+X}{σ,q{σ),p{σ))

Lemma 2.2. For J=(j\, •• ,j\+i) 0 * = l , 2) αwrf α ίeί {ί0, •• ,ίv+i} ( ϊ 1 ^
ί0^ - ^ίv+ i^0) &ί (Q, P)(σ) = (Q)l...,j^1, Pju~..J,J(σ; t0, -, tv+1;y, η) be the
solution of (1.17) corresponding to {λ J Π ί Set

(2.3) v{σ) = (Xt-\ι)(<r, Q(τ), P(σ)) (t,

re, we get

(2.4) -f o(σ) = {τ+λ!, τ+λ2}(σ, Q(σ),



178 W. ICHINOSE

Proof. For σ E ( ί h tk^) it follows from Lemma 2.1 that

— v(σ) = — {λ2,aσ

Then, we get (2.4) in both cases jk=ί and 2. Q.E.D.

L e m m a 2.3. Assume that the assumption (*) /zo/ά. Then, for v{σ) defined

by (2.3) we get

(2.5) ϋ( σ )

where a= { τ + λ 1 ? τ+λ 2 }(f v + i , J>, v) and δ=(λ 2 —λi)(ί v +i, y, η)—atv+1.

Proof. We can see from Lemma 2.2 that v(σ) belongs to C1([tv+1, ί0]).

From (2.4) and Lemma 2.1 it follows that

f2v(σ) {{τ+λi, τ+λ2}, τ+\jk} = 0
aσ

Hence, we get (2.5). Q.E.D.

REMARK 2.1. If the assumption (*) is satisfied, v(σ) defined by (2.3) de-

pends only on σ, tv+ly y and ηy and is independent of the choice of J=(ji> *">

(v=l, 2 •••) and {ί0> •••, ί v }.

Theorem 2.4. Assume that the assumption (*) λoάfr. For {ί, ^, t2, s}

^^ define functions (ψly ψ2) (t, tu t2, s) by

(2.6)

2+
t—ίχ + *2 — ^

_, obtain

(2.7) Φ l . 2 , l ( ί , Ψ l , Ψ 2 , SI X, ξ) = &2,l,2(t, t u t2, S',X,ξ).

Proof. We shall determine ψj(t, tly t2y ή ( j = l , 2) of (2.6) as the func-

tions satisfying (2.7). From Proposition 1.6 we get Φ2,if2(*, tly t2y s; x, ξ) as the

solution of

1 Φ2,if2l *=*! = φi,2^i, t2, s; xy ξ).

So, we have only to determine ψj (/ = 1, 2) depending only on ί, tly t2 and

such that for Φ w ( ί , ^, ί2, s)=Φw(t, tly t2y s; xy ξ)
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( 2 . 8 ) I t 1'2f l ' 2 l f 2 f l

holds.
Suppose that for ψj ( ;=1, 2) (2.7) holds. Set Δ=(ί, ψx, ψ2, j ; Λ?, ξ) and

ΛJr^dtψj ( — 1 , 2). Then, from (2.8) and Proposition 1.6 we have

(2.9) 0 = (8/Φ1Λ1)(Δ)+(8/lΦ1>2fl)(Δ)ψί+

(9ί2Φi,2,i)(A)iH + λ2(^ χy VxΦif2fi(Δ))

= ( λ 2 - λ i ) ( f , * , V , Φ w ( Δ ) ) -

where {X2, B2}, ii(<0> Ί> ̂  ^ *> I) is the solution of

(Λ = 1, 2, *° = *, f8 = f, Ji = 1, >2 = 2, y3 = 1)

Take a point j ; such that

y = VfiΦi f2 fi(Δ) = V έ Φi, 2 , i(^ Ψ i, ^2 , *; Λ, f ) .

Let (ρ, P)(σ)=(ρi f 2 fi, Λ,2,i)(σ ; t3 ψu ψ2, s y, ξ) be the solution of (1.17) and set

v{σ) = (λ2-λ!)(σ, ρ(σ), P(σ)) .

Then, by Proposition 1.9 we can write (2.9) in the form

(2.9)' 0 = ϋ(ί)-KΨi)Ψί+^(Ψ2)ψ2

Take account of the assumption (*). Since from Lemma 2.3 ̂ (σ) has the
form aσ-\-by we get

(2.9)" 0 =

Now we take ψj such that -ψ y satisfy

(2.10) Ψί—Ψ 5 = l , ΨiΨί

If -ψ i I ί = ί i = f 2 and ψ 2 | / = ί i = ί , the second equality of (2.8) is also satisfied by
Proposition 1.6. Hence, we obtain

(2.11) Ψ1-Ψ2 = t-tx+t2-s , ψl-ψl = ί-f

Solving (2.11), we get the functions of (2.6) satisfying (2.7). Q.E.D.

n n

REMARK 2.2. For real constants α ; and bj λ i = — Σ Λi?ί a n d λ2=^—2ί Σ όf f f

on i?J^ satisfy the assumption (*). Then, we have
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w f c tl3 t2> s; *, f) = Σj Wi(t-t1+t2-s)+bi(t2

1-t2

2)}ξi+X'ξ ,

2.1.2& tu t2} s; x, ζ) = ±±
From these multi-phase functions we see that ψj (7=1, 2) of (2.6) are uniquely
determined functions which satisfy (2.7) for any a} and &y.

REMARK 2.3. Set Δ 2 = {(^, f2); 0 ^ j < f 2 < * i < * ^ To}. Consider the mapp-
ing M: Δ2B(^i, t2)^>(ψij ψ2) with (t, s) as a parameter. It is clear that the
image of the mapping M is included in Δ2. Since from (2.11)

tι-t2 = f- ΨΊ+Ψ2-*, ί?-ί i = ί 2 - ψ i + ^ | - ί 2 ,

M2=I (identity map) holds. This implies that the mapping M: Δ2->Δ2 is one
to one and onto. Make the change of variables with (t, s) as a parameter

t[ - ψ x ( ί , tu t2> s), t'2 =

Then, we get

Γ Γ'exp {iΦ2χ2{t, tu t2> s; x, ξ)}dt2dtλ
Js Js

= [ Pexp {iΦ1A1(ί,, t'u tί, s; x, ξ)} f )~g dt'2dt[.

We note that the functions ψly ψ2 and (̂ 1— )̂/(̂ —^1+^2— )̂ have singular points
(ΐi=t, ΐ2=s). So it seems that it is not easy to construct the fundamental solu-
tion by using Fourier integral operators with a finite number of phase functions,
if we only follow the method in [10], [11], [15] and [17].

Let (0ylt...fyv+1, Pj^.h^Xo ; tOi •••, tv+1;y, η) be the solution of (1.17) corres-
ponding to {λyjϊii a n d a set {ί0, - , tv+1) C[0, To].

Corollary 2.5. Assume that (*) holds. Then, for any v (2^2), {jly ---yjv+i}
(Jk=h 2,jhΦjk+1) and {t0, -.,ίv+1} (T0^t0> ~>t,+1^0) we get

79 Λy\ Φii.-.iv+ife •"> *v+Γι ̂ > ?)

= Φ i A i ( ^ ^ ^ ί v + i ; Λ , f ) ,

/or ίowe ^ (7=1, 2, ίo>^ί>^2>ίv+i) independent of x and ξ. By using the same
tj (j= 1, 2) we also get

fry 4^x (Qh.".h+i> ^i.-./v+i)(V> 0̂> ' " j ^V+l 5 J* ^)

= (£?i.2.i, Λ A i ) ( V > ^ « , t'2} ίv+1; y, 97)

/or any point (y,
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Proof. We can get (2.12) by Proposition 1.6 and Theorem 2.4, inductively.
Then, we obtain (2.13) by using (2.12) and Proposition 1.9. Q.E.D.

REMARK 2.4. For λ, (ί, x, ξ) (/=1, 2) in Remark 2.2 we have

(2.14)
ι,2\t> h> s) — Xi

2.l(t, h, S) = Σ

Comparing (2.14) with Φi>2,i
 a n d ^2,1,2 i n Remark 2.2, we can see that we can

gererally contract Φi>2,i(*> *i> h> ή and Φ 2 Λ 2 (t, tu t2i s) (t>t1>t2>s) no more.
Furthermore, from Proposition 1.9 we can also see that we can generally contract
(Qi,2,i> P\,2tι){t, tl9 t2, s) and (£>2,i,2> ^2,1,2)^, tu t2, ή(t>^>tz>s) no more.

EXAMPLES. .We give examples of Xk {t, x, ξ) (k=\y2) satisfying (*) on

[0, T]χR6

x ξ except \k in Remark 2.2 below. They are not involutive, since

{τ+λi, τ+X2}(^ xi ζ) doe snot identically vanish on a set {(t, x, ξ); X^t, x, ξ)=

\2{t,x,ξ)}.

2. λχ(ί, *, 5 ) = ^ , X2(ί, *, I) = tξ2.

3. λ!(ί, Λ, ξ)=x£ι+ξ3β \2(t, x, ξ)=-x£i+ξ2

3. Propagation of singularities

Consider a hyperbolic system with diagonal principal part

on [0, T] X Λ" (λ/ί, x, ξ) efi~([0, Γ] S 1 ),

real valued, δ,4(ί, *, f)eJ5~([0, T]; 5°)).

We assume that for a constant ΛΓ > 0 we have

(3.2) λ,(ί, x, δf) = δλ, (ί, *, f) (I ξ\ ^M, 8^ 1).

We also assume that (*) of Section 2 holds.
We study the Cauchy problem

(LU(t,x) = 0 on[0,T],
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where I7(ί, *)='(u,(ί, *),«,(«,*)) and G{x)=t(g1(x),g4x))(gi(x)f=H_. =
σ

Let φj(t, s; x> ξ) (O^s^t^Tof^T) be the solutions of the eiconal equations
(1.10) corresponding to λ ; and define Φ ^ Φ ^ ...Λ + i(ί0, ..., fv+1) (jk= 1, 2) by
Φ=Φφo, hW-Ui^, fv+1) (see (1.11)).

If we apply Theorem 3.1 in Kumano-go-Taniguchi [11] to L of (3.1), then,
for a small T0(0< T0^T) we can get the fundamental solution E(ty s) (O^stί
t^T0) of L (i.e. LE(t, s)=0 on [0, Γo] and E(sy s)=I (unit matrix)), which is
represented by means of Fourier integral operators with multi-phase functions
Φj t...tyv+1 (^=0, 1, •••). We fix such a To in what follows. We will apply the
theory in [11] for the propagation of singularities of solutions (Theorem 3.4
in [11]) to the Cauchy problem (3.3).

For λyχ, •••, λyv+1, {y, η) and a fixed 0^££<l we define an ^-station chain
{ti, —, v̂} as the point ί > ί x > ••• > ί v > 0 such that for k=l, •••, v

(3.4) I \jk(tk, tf, ξk)-χh+i(tk, x\ ξk) I £

at (Λ*, ξk) = (Qjir.th+1, Pjιr.,jv+ι)(tk; t, *!,..., ίv, 0; y, ^ ) ,

where (0ylf...fyv+1, Pjir .h+i) (°"» *<>> —, v̂, 0; j , 77) is the solution of (1.17) corres-
ponding to {λyj ϊ ί i and {t0, •••, fv+1} (fo=^, ί v +i=0). Define the ^-station set
Λε jlt... j\+1(t; y, η) by the set of all ^-station chains {tly •••, ίv}

We set WF(G)=\jWF(gj) for the wave front set WF(gj) of ^ . For

J=(ji> ~'>h+i) we set J" 1

Af(ί; y , 77) {(Qy1.....y1>+1, Pju-^+1){t; t, tu - , ίv, 0; y, 77);

and set

Γ M - {δΛf(ί;y, 77); (y, v)(ΞWFs(G)y J=(

(3.6) y4 = 1, 2, z; = 0, 1, -.., δ>0,

(WF2(G) = {(y, 77); dis {(y, 1771 -hi), WF(G)} ^£}),

for a large constant M 0 > 0 depending on M of (3.2). Then, Theorem 3.4 in
[11] says without the assumption (*)

Theorem 3.1. f) Tt g w c/o^J and for the solution U(t, x) of the Cauchy
o<ε<i

problem (3.3) Z

(3.7) WF(U(t))a o ^

If we add the assumption (*), then, setting

(3.8) Γί>0 = {δΛ^(ί; y, v); (y, V)(ΞWF(G), δ > 0 ,

M ^Mo, J= (1),(2), (1, 2), (2, 1), (1, 2, 1)} ,
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we get the main theorem.

Theorem 3.2. Assume that the assumption (*) holds. Then, for the solu-

tion U{t, x) of the Cauchy problem (3.3) we get

(3.9) WF(U(t))artt0

Proof. By Theorem 3.1 we have only to prove that

(3.10) Π r M = r / i 0 .
o<ε<i

It is easy to see that f] Tt9'DΪί

t0. So, we prove that
o<ε<i

f]
o<ε<i

n r,.to<ε<i

We fix 0<t^ To and take a point (a0, £°)<Ξ {] Tt 8 and fix it. If we take
o<ε<i '

sufficiently large, then, setting ξk=Pjy+l9».9jι(tk; 0, tv, ••, ίo; *°, £°) ( Λ = l , ...,

1, ί v + 1 = 0 ) , we have

(3.11) C " 1 ^ ! ^

Here, the positive constant C is independent of the choice of J=(jly •• ,/ v+i) and

a set {/0, —,«v}c[0, t]. Since (Λ;0, f°) belongs to f) Γ ί ε, for any 6 β ,=2-" 1

o<ε<i

there exist J?m = (jT, -,j?m+i) 0 " ? = L 2 - jk^j^x), (ym, Vm)^WF,m(G) and

{ίf, •••, O e Λ ^ j i« +1(ym, vm) s u ς h that

(3.12) (A a = (ρ>-,....y-i+I, Pyr.....c.+i)C; t, a, •••> «L, o ; j
M , ^ M ) .

We consider (#°, f°) deviding into two cases as follows.

I) The case where we can take a subsequence l={niμ}μZi and a point

σi (O^σi^ί) such that ί{-»σi and ί ί ^ σ i as /->oo.

II) The other case.

I). We show that (x°> ξ°) belongs to Γ/f0, when 0 < σ i < ί . In the other

case O Ί ^ O or ί we can also prove this by the similar way. By the assumption

I) we can also take a subsequence 7={/μ}>=i of /={mμ}μΞi such that

(iϊ,/V0 = (U), 0,2), (2,1) or (2, 2).

We may assume t h a t y ? = l and y? γ + 1 =2, since we can prove similarly in the

other cases. Now, take a point (y°, η°) (\η°\ ^ C " 1 , see (3.11)) such that

(3.13) (f, η°) = (ρ2,i, P2.i)(0; 0, σ i , t; χ\ ξ°).

We note that

(3.13)' (A f ) = (O1>2, P1>2)(ί; t, σly 0; / , η°).
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Then, it is easy to see that

(3.14) f = x°+^ V ^ σ , ρ2f l(σ; 0, σu t; x\ f ) , P2#1(σ; 0, σ» t; x°, ξ°))dcτ

τ, Q2Λ(σ; 0, σu t; x\ ξ\ P2>1(σ; 0, σ» t; x\ g°))Λr.

Using the assumption of this case, for any small δ>0 there exists N such that
for any J^N we have

(3.15) W, ^ γ } c | > 1 - S , σ 1 + S ] .

Since for any yΊ we have the similar equality to (3.14), we get

for a constant C^O independent of δ and γ. By the similar way we get

Consequently, we can see that (yy

9 ?7Y)-^(^0, 9°) as γ->cx> and

(3.16) (/,^°)

Next, since {tf, •",ίΫ}GΛg?(ij.,., j + i ( / , T;7), it follows from (3.11) and (3.12)
that ' 'V<Y

I(λp-λOW, &(<r; flf, ί; °̂, n Λ(flf flf, ί ^0, y

for a constant C of (3.11). Here, noting thatyϊ=l and jlf+ι=29 we used

= (Qu P0(/ϊ; flf, ί; *°, f0).

When γ-ί oo, we get from (3.13)

0 = (λ2-λ1)(σ1, Q1(σ1; σ» t; x°, f°), Pfa; σ1( ί; x°,

= (λj-λOίσi, ρ i > 2( σ i; ί, σlf 0; jί0, ^°), P^σ,', t, σ» 0; j°, if)).

Together with (3.13)' and (3.16) this implies that

II). We can take a subsequence /={fKμ.}μ,~i and points
σ ̂ ί ) such that ί{-»σi and ίί/-*σ2 as /->oo. We set

(3 17) ί ) ( θ " ' Z ) = ( λ 2 ~ λ l ) ( σ ; ^ί.-.>ί 1 +i( f f ; f ' t[> •"' 0 ; ^ ' ' ' )
Pil-.il +1(o ; ί, ίί, - , 0; y , ,') (O^
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For large / we have

tι-tι >—

and then, noting that {t{9 •••, t[^ eΛ g / ^ f . . . j ^ + 1 ( j / , vl)> w e have by (3.11)

Kfί OI, K^ iil^cε,.

Consequently, since v(σ; /) of (3.17) has the form

(3.18) υ(σ;l) = aσ+b

from Lemma 2.3 in Section 2, it follows that

(3.19) K<r;/

Now, by Corollary 2.5 there exist some Vu V2 (t>V2>V2>§) such that

(3.20) (A ξa) = (Qw, PIA1)(<; t, Ά, n, 0; yι, v')

Then, we note that

(3.20)' (/ , , ') = (Qw, P 1 A 1 )(0; 0, V2, Ί[, t; x", ξΰ).

We set

( ' ' Pw(<r;t,t'un,0;y',v')).

Since ^i(σ; /) = v(σ\ 1) by Lemma 2.3 and Remark 2.1, from (3.19) we obtain

(3.22) \Vι{σ.i)\^^C_ειT(ί.

Next, let σt ( ι = l , 2, σ^σ^) be the accumulating points of sets {?i}/-i,
respectively and take some subsequence {Ύ — lμ)^ such that ί ϊ-^σ! and
Ά->σ2 as γ->oo. Then, it follows from (3.20)' that there exists (y°y η°) such
that

(/, vη -> (y\ η°) = (ρ 1 A 1 , P1A1)(0; o, σ2, ̂  /; ̂  a

as 7->oo, and

(3.23) (f, η°)(ΞWF(G).

We note that

(3.24) (*°, f ) = ( f t A I , P I A 1 )(ί ; t, iru <τ2, 0; / , v°) •
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By using (3.22) we obtain

(λi-λ2)(σ, ftΛi(σ; /, σu σ2, 0; y\ y°), PiAi(σ; t, σly σ2, 0; f, y0))

^ l i m ^ σ ; γ)

= 0 ( 0 ^

This implies with (3.23) and (3.24) that

which means (3.9) together with the result of I). Q.E.D.
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