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0. Introduction

Consider the Cauchy problem for a hyperbolic operator

by by, "
5 (t, X, D,) on [0, TTxR",

21 Y22,

o0 L=y Ja x D)+

where D, denotes —+/—19,, functions \,(t, ®, ) are real valued and belong
to B([0, T]; S*) and b;(t, x, £) belong to B=([0, T']; S°. Throughout this

paper we assume that

(0.2) {rn, 0, 7033 @ 2, E) =0 on [0, T]xXRY,
G j k=1,2)

where for f, g CYRIGHY) {f, g} (¢, x; 7, E) denotes the Poisson bracket:
(anatg_atfafg+VEf'ng_vxf' Vig)(t: X5 T, E)

Recently, using Fourier integral operators with multi-phase functions,
Kumano-go -Taniguchi-Tozaki in [10] and Kumano-go -Taniguchi in [11]
constructed the fundamental solution for a hyperbolic system with diagonal
principal part (Theorem 3.1 in [11]). In these papers the propagation of sin-
gularities of solutions was investigated by using an infinite number of phase
functions (Theorem 3.4 in [11] or Theorem 3.1 in the present paper).

In the present paper we prove that the propagation of singularities can be
described by means of five phase functions ¢, ¢z, H1% by, P.#p; and ¢ # b8 by,
when the assumption (0.2) is satisfied (Theorem 3.2). We note that the
characteristic roots satisfying (0.2) are not necessarily involutive. For examples,
A =—tE and A,=1£ for n=1 satisfy (0.2), but

{7‘|‘7\'1; 7—[“7\«2}(:25):':0 (E:':O) .

Other examples will be given in Section 2.
The propagation of singularities of solutions has been investigated by
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many authors [1], [2], [3], [4], [6], [8], [12], [13], [14], [15], [16], [17], [18], [19]
etc.. In particular, in [2], [6], [14], [15], [16], [17], [19] operators with involu-
tive characteristics are treated. Alinhac in [1] and Taniguchi-Tozaki in [18]}
give the precise descriptions for singularities of solutions for operators on R;
with principal part 87—#92 (I is a positive integer) which are not involutive.

In Section 1 we exhibit main results on the theory of Fourier integral
operators in [10] and [11] needed later. In Section 2 under the assumption
(0.2) we contract the multi-product ®; .. ;.. (%, = tvi1; %, §) (a=1, 2) of
phase functions ¢;,(2, s; x, &) (js=1, 2) (see (1.11)), which are the solutions of
the eiconal equations for 74n; (2, x, &) (see (1.10)) (Theorem 2.4). In Section
3 we prove the main theorem (Theorem 3.2).

The author would like to express his sincere gratitude to Professor H.
Kumano-go for his advice and encouragements.

1. Fourier integral operators

For a multi-index a=(ay, **+, @,) of non-negative integers «; and points
x=(%,, ***, %,) ER", y=(1, ***, ¥.) ER" we use the usual notation:

la| = oyt +ay,, 0F = 0% -+ 0%, 0, 9

i 6—.70, ’
D3 = D3 - D3, D,j = _\/___mxj’ V.= (0,, ", 0,,),
<x> = (1+ IxIZ)I/Z’ Xy = x1y1+"'+xnyn .

For f(x)=(fi, ***, fu) (fi(x) € C'(R")) we denote
axf: vxf: (8thj; }]eil, oy n) .

Let 8 on R" denote the Schwartz space of rapidly decreasing functions and
let 4’ denote the dual space of ¥. For us s, the Fourier transform #4(§)=
F[u](€) is defined by

Fll§) = [ e ueyds,
and then, for #4(£); the inverse Fourier transform F[#](x) is defined by
Pla)(x) = S FH(E)dE, dE — (2m)dE .

For real s we define the Sobolev space H, as the completion of & in the norm

lell, = { | <& 1a(e) 12ay

DrrFINITION 1.1, We say that a C”-function p(x, £) in R*=R} X R} belongs
to the class S™ (— oo <m<<oo), when
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(L.1) | P (x, E)| < Ca p<EX™,
where p{g)(x, £)=0tDip(x, £).
The class S™ makes a Fréchet space with semi-norms

|1 = max sup {| pAs, D™} (1=0,1,2,).

le+BlI<?

Weset S™"= (] S™ and S*= |[J S™
The pseudo-differential operator p(X, D,)€ 8" with symbol p(x, £)€S™ is
defined by

(1.2) »(X, D.)u — OS—-SSRZne"("‘""gp(x, Eyu()d! B

— lim Sg LS Ex!, EE)p(, Eyu(x)dx'dE
e R*
where X(x, £)€ S(R*) such that X(0, 0)=1 (c.f. [7]).
Now we state definitions and theorems in Kumano-go-Taniguchi-Tozaki
[10] and Kumano-go-Taniguchi [11] without proofs (see also [5]).

DerFiNiTION 1.2, If 0=<7<1, we denote by P(r) the set of real valued
C~-functions ¢(x, £) in R? such that J(x, £)=¢(x, £)—x-£ belongs to S* and
(1.3) > iug{lfég))(x, E)KEI ™} =7.

l®+gl<2
ReMARk 1.1. In [10] P(7) denoted the class of C*-functions. The above
definition is due to [11].

We define the Fourier integral operator pg(X, D,) with symbol p(x, £)ES™
and phase function ¢(x, £)E P(1) by

(1.4) Po(X, D,)u(x) = gR”e"d’("E) p(x, YUE)EE,  uES.

i =T, for a

DeFINITION 1.3. Let ¢,€P(7)), j=1, -+, v+1,

sufficiently small fixed 7, with 0<7,=1 /8. We define the multi-product
Dy (%, E)=(dilt+#bv11)(%, £) of phase functions ¢;(x, £) (j=1, -+, »+1) by

HI

(1.5) Do, £ = 2 (4(X4 E{)—X{-Ei)+dvn(X3, £
Xy = ")
where {X{, E{};2:(x", £*") is defined as the solution of the equation
% = V5¢i(xj—11 g’) ’
g

1.6 i
(0 = V.b;(, IZA R j=1,v.
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Proposition 1.4 (Theorem 1.8 and Theorem 1.9 in [10]). Let ¢, € P (7)),
j=1, v v+1, -, T =7,=<1/8. Then, ®yy(x, &) of (1.5) is well defined and
belongs to P(cyTyi1), Tys1= Tyt +Tyy1, with a constant c,>0 independent of v
and 7, We also get

W [ POl BT EE D,
VD (o, £ = Ve a(X3(', £77), £,
(1.8) dif ot ds = (¢1#¢'z)#¢3 = (p1# DB ) -
Consider a hyperbolic equation
(1.9) DAt X, D))u=0  on]0, T]

(¢, x, £)eB=([0, T]; S*), real valued).
Let ¢=¢(t, s)=o(t, s; x, ) be the solution of the eiconal equation

{ 0pHN(t %, V,6)=0  on|0, T],

1.10
( ) ¢]t=s:x'g-

Then, we have

Proposition 1.5 (Theorem 3.1 in [9]). For a small T, (0<T\=T) we
get (¢, 5)EP(c(t—s)) (0=s=<t=<T,) with a constant c>0.

We fix such a 7, in what follows. Take A; (j=1,--+,»+1,+-:) as A of
(1.9) such that {\;},2; is bounded in B=([0, T']; S*) and let ¢, be the solutions
of (1.10) corresponding to A;. We define @ =@, , .. yu(ty -+, tvsr; &% EF)
(Oétv+1§ oo étoé Toé T) by

(1'11) q)(tm ) tv+1) = ¢1(to: tl)# #¢v+1(tv; tu+1) )
and define {X73, Ei},;21(t, -+, tvs; &% EFY) as the solution of
{ = Ve(ﬁj(tj—h ti; xj—l, EI) ’

Ei = Vx¢’j+1(tj) tj+1; xj) §j+l) s ]: 1; Y,

where T;>0 is a constant independent of » in Proposition 1.4 and Proposition
1.5. Then, we have

(1.12)

Proposition 1.6 (Theorem 2.3 in [10]). ®(%, ***, tv11) of (1.11) satisfies

10. 6,].@ = Xj(tj, X{,, Ei’;)_‘)\;j+1(tj’ X%) Ei)
(] = 0: °ty V+1’ A=Nyq2 = 0’ Xe = xO’ ES:Vqu) ’
XiH = Vi, 21 = B4

20, If tj=t;,, for some j, we have
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L XD (RTINS FAS FFPRETINY ) |
= q)l.z."'.f,.f+2,---,'V+l(t0: H) tj) tj+2) °t t'v+l) .
3% If Nj=N\j41 for some j, we have
@1,2"..'y+1(t0, R ty+1)
= D@y ...j-1, 541, v1(los 05 Ejoty Bigr, o0y Bug)
Now let (¢, p)(2, 53 ¥, 1)=(q1, ***» 4a) (P1> =, 20)) (&, 8539, 1) (0=s=t=T)
be the bicharacteristic strip for (1.9), that is, (g, p) (2, s) is the solution of

j_g = VE)"(t: q, P) ’
(1.13)

ap _ —VME 4, 0), (@ 0)]e=s= (¥, 1)

Then, we can solve (1.13) in full interval s<¢<T by the Gronwall inequality,
since |VeA(Z, ¢, p)| <C, and |V (L, ¢, p)| =CKp> (0=<t<T) for a constant
C,>0. We state propositions on the bicharacteristic strips.

Lemma 1.7. Let ¢(x, )P (7). Then, for any y, n=R™ (resp. (x, £))
there exists a point (x, E) R (resp. (y, 1)) such that
(114) Y= VEd)(xJ ’7)) &= V,cﬁ(x, 77) .

Proof. Set F(x)=F(x; y, n)=—Vp(x, 7)+x+y. We have

1
| F(e)—F)) < |1V.9e(x-+-8(s'—x), m)—I11d6]a'—x| <7|2'—=],
where [ is a unit matrix and for a matrix 4=(a;;; ;:_{1, -++, n) the norm [|4]|

is defined by {3]|a;;|?}*2. Then, we can apply the fixed point theorem, and
B

x=x(y, ) satisfying y=Vp(x, ) is determined as the fixed point. Then,

E(y, 7) is determined by V.$(x(, 7), 7)-
Similarly, (y(x, &), n(x, £)) is determined. Q.E.D.

Lemma 1.8. Let (q,p) (¢,5;y,m) (0=s<t=T) be the bicharacteristic strip
defined by (1.13) and $(¢, s; x, &) (0=s=t=T,) be the solution of the eiconal
equation (1.10).  Then, it follows that

(1.15) ¥ = Vid(t, s; qt, 8), m), (L, 5) = V. (2, 55 4(2, $), )
O0=s<t=<T).

Proof. By Lemma 1.7 we can define (¢, p') (¢, 53 ¥, ) (0=s=t=T,) by
(1.16) Y= Ved(t, 55 ¢'(£, 5), 1), (2, 5) = V(2 55 ¢'(, 5), 1) -
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Differentiate both sides of (1.16) in #, respectively. Then, using (1.10) we get
W1, = ventt, ¢, ), 20,9,
%(t, 5) = —V.\(L, q'(t, 5), p'(1, 9)) -

Since ¢'(s, s)=y and p'(s,s)=» from (1.16), we can see that ¢'(,s)=g(t, )
and p'(¢, 5)=p(t, s) (0<s<t<T,). Q.E.D.

Take n; (j=1, -+, v+1) as A of (1.9) and define ®=; .. v1(f, -+ by
x, £) (0=t,, < <t,<T,<T) by (1.11) corresponding to {x;}jIi. For a
set {tf, -+, t,,,} C[0, T,] such that #f=¢{=---=1,,, (resp. H=t=--=ti1) We
define a trajectory (Q, P)(¢)=(Q1....v+1s Pryrr)(@; 8, =y Bar3 ¥, ) in H1Z0 =
£11 (resp. ti<o =<t{,,) as follows: (Q, P) (<) are continuous functions on [t} 1, tt]
(resp. [#, t,,,]) such that (Q, P)(t/,,)=(y, ) and for o E(t}, ti_,) (resp. ¢
(tis, 1)) (O, P)(o) satisfy

dP

(1.17) 9 9o, 0,P), L= v, 0,P).
do do
Then, we obtain

Proposition 1.9. Let T=T,=t,=---=t,.,=0. Using Lemma 1.7, for any
point (y, ) take a point x satisfying

(1.18) Y= VD, . vualte, **5 buaas %, 7).
Then, we have
(1-19) (Ql,u-,'v+1’ Pl,--~,v+1)(tk; fo, == byats s "i)

= (XE Bty -y tyars %, 7) (k=0, -, v+1),
where {X 3,5} ;L. is the solution of (1.12) corresponding to ®=; ... ,., and

(1.20) { X)=ux B = VD via(lor 05 Eyirs % 1),

X — 9, B — 7.
Proof. Relation (1.7) in Proposition 1.4 shows that

{ VECP(tor oy lyggs X, 77) = V§¢v+1(tv, tyirs X¥, 7}) ,
qu)(tm sy byt X, ’7) = Vx¢1(to, 4 X, E\ll .

Together with (1.12) and (1.18) we get

X:’—: t—;t;Xs_I’ES’
(1.21) { V5¢k(k 1 b

Et—l = V:cqsk(tk—lr s Xﬁ—l’ Eﬁ ) k= 1: T V+1 .
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Now when k=»+41, (1.19) is valid. From the definition of (Q, P)o)=
(O1,. v41 P, v41)(0) and by Lemma 1.8 we have

{ y= V5¢’V+1(t"’) tV+l; Q(t’v), 77) ’
P(t,) = Vidpvn(ty, tvir; O@), 1) -

Compare the above relation with X7 and B} of (1.21). Setting X} "'=y, 5, =y,
we get by Lemma 1.7

o) = X, Pt)=g".

In a similar way we can prove (1.19), inductively. Q.E.D.

2. Contraction of multi-phase functions

Let a;(2, x, E)= B=([0, T1; S*) (=1, 2) and be real valued functions.
Throughout this section we assume that
(*) {rtn {rtn, 74033 %, 8) =0 on [0, TIX RS
G k=172)),

where for f, g€ CY(RIGH) {f, g} (¢, x; 7, E) denotes the Poisson bracket
21 {f. 8@ x5 7, &) = (0.f0,6—0,f0.g+ Ve fV.g—V.[-Veg)t, x; 7, E) .

Let ¢,(t, s; %, £) (=1, 2, 0=s=<t<T,) be the solutions of the eiconal
equation (1.10) corresponding to A; and define ®=®; . ; . (t, =, &) E
@(co(to‘—tvﬂ)) (Oétv“é =T, jk=1) 2) by (I)=¢i1(to: tl)#"'#qSiv“(tv, tv+1)»
where ¢,>0 and T,>0 are constants independent of » (see Proposition 1.4 and
Proposition 1.5). We fix such a 7| in what follows. It is easy to see that

Lemma 2.1. Let H(¢, x, &) C'(R*™"") and (g, p)(t)=(q, p)(t, 55 ¥, n)
(0=s=t=T,) be the bicharacteristic strip defined by (1.13) for T+\(¢, x, E) of
(1.9). Then, we have

22 LHe,q0) p0) = —{H, TN e go) o)) (=oSTh).

Lemma 2.2. For J=(j;, -*,jvr1) (=1, 2) and a set {t;, -+, 1.} (T=

L= - 2t 20) let (Q, P)(0)=(Qj, - iysr Pimiver)(0s to,- b3 ¥, m) be the
solution of (1.17) corresponding to {x;}ili. Set

(2.3) o(e) = Me—M)(o, Do), P(0))  (bn=o=t).
Then, we get

CH Lo = (rHr A} Q) Po) (St
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Proof. For c=(t, #-,) it follows from Lemma 2.1 that

g;v(o-) = — {XZ’ T+7\1ik} + {7\‘1’ T+)‘fk}
= _{T+7\'2, T+7\'j,,}+{7'+7v1, T+7\i,,}’ .
Then, we get (2.4) in both cases j,=1 and 2. Q.E.D.

Lemma 2.3. Assume that the assumption (x) holds. Then, for v(c) defined
by (2.3) we get

(2.5) o) = artb  (hnSc=t),
where a= {1+, T+ Az} (tvs1, ¥, 1) and b=(Ny—N\1)(tv 41, Y5 1) — by iy

Proof. We can see from Lemma 2.2 that v(s) belongs to C'([ty41, &])-
From (2.4) and Lemma 2.1 it follows that

2
iﬁdd:=—{h+mbr+MLT+wu}=0 (<o <tp).

Hence, we get (2.5). Q.E.D.

ReMARK 2.1. If the assumption (*) is satisfied, v(c) defined by (2.3) de-
pends only on o, #,,;, ¥ and 5, and is independent of the choice of J=(j,, *-*,

Jord) (=1, 2 ) and {t, -+, &,}.

Theorem 2.4. Assume that the assumption (%) holds. For {t, 1, t,, s}
(0=s<ty<t,<t=T,) we define functions (\Jry, \r;) (¢, t,, t5, 5) by

(L, 4, 1y, 5) = t—w

—ttt—s
29 th+zs)( )
t—1L)(E—s
t, b,y )=t —t,fFs—>1 22 )
‘.”2( L L2 ) 11—t ts t—tt+t—s

Then, we obtain
(2‘7) ®l,2,1(t1 11’1: 11b'27 §5 X, g) = ®2,1,2(t: tl) tZ) $5 X, E) .

Proof. We shall determine (¢, ¢, 2, s) (=1, 2) of (2.6) as the func-
tions satisfying (2.7). From Proposition 1.6 we get @, ,(t, t;, &, 5; %, £) as the
solution of

{ 0,z 1 2+ Nolt, %, V, Dy 1,) =0,
q)z,l,zl t=t; = cpl,z(tl: L, 55 %, ).

So, we have only to determine yr; (j=1, 2) depending only on ¢,t,t, and s
such that for @, , (¢, t,, t,, )= ,,(t, ty, 15, 5; %, E)
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at(q)l,z,l(t) Yri, Yra, 5))+7\2(t, X, Vx®1,2,1(t: Y1, Yy, s)) =0,

(2.8) {
q)l,Z,l(tJ Vi, Yra, 8) | t=t; = cI)l,Z(tb L, $; %, &)

holds.
Suppose that for ¥; (j=1, 2) (2.7) holds. Set A=(2, Y}, s, §; %, £) and
Vi=0pp; (j=1, 2). Then, from (2.8) and Proposition 1.6 we have

(29) 0= (0,D,21)(A)+(0: D1 21)(A)Yri+
(01,@1,2,1) (AW SNt %, VD) 5,(A))
= (A2—N)(t, %, V. P, 51(A))—

A=) (¥, X2(A), Bx(A)i+Re— M) (W2, XE(A), BHA)E,

where {X3, Ei}:21(t, t1, &, t;; x, £) is the solution of

xk = V§¢ik(tk—1’ tk; xk_I’ gk), gk - Vx¢’f;,+1(tk) tk+1; xky Ek+l)
(k= 1,2,x°:x, 5325) jlz 1:j2:2sj3: 1)-

Take a point y such that
Y = Vi@ 5 1(A) = VeDy21(2, Yo, ¥ 85 %, &)
Let (Q, P)(0)=(Q121 Pi21)(c; t, V1, ¥, 85 9, E) be the solution of (1.17) and set
9(a) = M2a—M)(o, Q(o), P(0)).
Then, by Proposition 1.9 we can write (2.9) in the form
(2.9) 0 = () —v(Y )1 +o(Yr)Yrs .

Take account of the assumption (*). Since from Lemma 2.3 v(c) has the
form ac-b, we get

(2.9)" 0 = (at+-b)—(ayr+byWri -+ (avr+-b)vrs
= —a(Yryrl —rb— 1) —b(Pi{— i —1).

Now we take yr; such that r; satisfy
(2.10) Yi—Pi =1, Yp{—Pabi=1t.

If Aoy |i=,=t, and yry|,=,=s, the second equality of (2.8) is also satisfied by
Proposition 1.6. Hence, we obtain

(2.11) Yi—V = t—ti+t,—s, Yi—vi=>—t+8—5.
Solving (2.11), we get the functions of (2.6) satisfying (2.7). Q.E.D.

RemMaRKk 2.2. For real constants a; and b; A= —‘"V‘_, a;€; and N,== —ZtE1 bE,;
i=1 =
on R, satisfy the assumption (). Then, we have
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(I)l,?,l(t) b, b, 85 %, ) = 21 {ai(t—t1+tz_s)+bi(t%—t§)}Ei‘f‘x'g ’

D, 108, 1, 1, 55 %, 8) = é {ait,—t)+b,(F—E+ 55—} Ei4-x-E .

From these multi-phase functions we see that vr; (=1, 2) of (2.6) are uniquely
determined functions which satisfy (2.7) for any a; and b;.

REMARK 2.3. Set A,={(t;, t,); 0=s<t,<t,<t<T,}. Consider the mapp-
ing M: A S (by, t;)—>(Yry, ¥r2) with (2, s) as a parameter. It is clear that the
image of the mapping M is included in A,. Since from (2.11)

bh—t, = t—YrFr—s, H—1 = P—Pi+Pi—o,
M?=1 (identity map) holds. This implies that the mapping M: A,— A, is one
to one and onto. Make the change of variables with (z, s) as a parameter
t{ = 1l"l(t) tl) tZ) s)’ té == '\l"z(t: tl) tZ) S) .

Then, we get
tpt
S S lexp {iq)z,l,z(t, b, by, 3 %, E)}dtdt

t (] A t’—t’
—_— 4 4 . 1 2 4 /’
= S;L exp {i®, ,.(t,, 1], 13, 5; %, E)} PR sdtz dt].

We note that the functions v, Yr, and (#,—%,)/(2—%,+2,—s) have singular points
(ti=t, t,=s). So it seems that it is not easy to construct the fundamental solu-
tion by using Fourier integral operators with a finite number of phase functions,
if we only follow the method in [10], [11], [15] and [17].

Let (Qj, iys1s Piprivs1)(@5 B ***5 tvi13 ¥, 1) be the solution of (1.17) corres-
ponding to {A;}}il and a set {t, :*-, ,41} [0, Ty].

Corollary 2.5. Assume that (¥) holds. Then, for any v (Z2), {js, **, Jvs1}
k=1, 2, ju=¥ jis1) and {t, -+, tya} (To=t,> - >1,,,20) we get

cDj1."'-fV+1(t0’ ety X, §)

(2.12)
= ®1,2,1(t0) t{) té) t'H—l; X, E) *

for some t; (j=1, 2, t,>t{>t;>1t,,,) independent of x and £. By using the same
t; (=1, 2) we also get

(Qfl,"',fv.;-l) le,"'iu-}.l)(to; tO? "ty t1l+1; y! 77)
= (Q12,1, P121)(%5 b, 1, 82, tvi1; 3, 1)

for any point (y, n)E R*™.

(2.13)
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Proof. We can get (2.12) by Proposition 1.6 and Theorem 2.4, inductively.
Then, we obtain (2.13) by using (2.12) and Proposition 1.9. Q.E.D.

ReMARK 2.4. For A2, x, &) (=1, 2) in Remark 2.2 we have
Bilt, ) = Bla(t—s)Eta-E,

$alt, ) = 2 b(P— k-,

ot 1, ) = 2 (- t)H (et
(1, 1, 5) = 2 {ati—)+b(E— D Eta-E

(2.14) :

Comparing (2.14) with @, ,, and ®@,; , in Remark 2.2, we can see that we can
gererally contract @, (¢, t;, 1, ) and @, , (2, t,, L, §) (¢>1,>1,>5) no more.
Furthermore, from Proposition 1.9 we can also see that we can generally contract
Q1210 Pr2)(t, 1, tay 8) and (Qn12) Po1 )2, 11, oy $)(2>1,>1,>5) no more.

ExampLes. .We give examples of A, (2, x, &) (k=1, 2) satisfying (*) on
[0, T]X R; ; except A, in Remark 2.2 below. They are not involutive, since
{T+n, TN} (2, %, E) doe snot identically vanish on a set {(2, %, £); M(2, x, &)=
o2, %, E)}.

1. 7\1(t, X, £)=El, 7\2(15, X, E) = 0,E,4-Es.

2. M2, x, E)=xE1, M2, %, &) = &,

3. 7\‘1(t: X, E):xZSI_*—E:{; 7bz(t, X, E):_x3£1+52

3. Propagation of singularities

Consider a hyperbolic system with diagonal principal part

)'1 0) (bll blz)
3.1 L=D t, X, D)+ t, X, D,
D o 5)o 000+ 7 Je X0

on [0, TIXR* (A2, x, E)EB=([0, T]; SY),
real valued, b;(t, x, £)€B=([0, T]; S°)).
We assume that for a constant M >0 we have
(3.2) Nj(t, %, 8E) = O\(2, %, £) (IE1=M, 8=1).

We also assume that (*) of Section 2 holds.
We study the Cauchy problem

{ LUt x)=0 on]0, T,

(33) Ulo = G),
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where U(t, x)="(u,(t, x), u,(¢, )) and G(x)="(g,(x), g:(x))(ge(x)EH_.. = L_JH,).
Let ¢;(2, s; %, &) (0=s=t=T,=T) be the solutions of the eiconal equations
(1.10) corresponding to A; and define ®=®; . ;,. (4, **, tvi) (Jo=1, 2) by
Dby (ty, B)-+Hbsy  (tr tusn) (s0€ (L11)).

If we apply Theorem 3.1 in Kumano-go-Taniguchi [11] to L of (3.1), then,
for a small T, (0<T,<T) we can get the fundamental solution E(z, s) (0=s=
t<T,) of L (i.e. LE(t, s)=0 on [0, Ty] and E(s, s)=1I (unit matrix)), which is
represented by means of Fourier integral operators with multi-phase functions
D;. . iy, (»=0,1,--). We fix such a Tj in what follows. We will apply the
theory in [11] for the propagation of singularities of solutions (Theorem 3.4
in [11]) to the Cauchy problem (3.3).

For N\j, ***, Njy,p» (¥, 1) and a fixed 0=<E<1 we define an &-station chain
{t,, ---, .} as the point ¢>#>-:->¢,>0 such that for k=1, ---, »

(3-4') Ixik(tk) xk) Ek)_xfk+l(th xk) Ek)l .§8<Ek>
at (xk) Ek) == (Qi1,~~-,fy+1’ le,«-',iy_;.l)(tk; t: tl;'": t’V) 0; Y, 77) ’

where (Q,-l’,..,,-vﬂ, le’...'jv+1) (o3 ty, +++, £y, 05 ¥, 1) is the solution of (1.17) corres-
ponding to {x;}iii and {z, -+, t1} (f,=t, £,,,=0). Define the &-station set
Aq j, . iysy(ts ¥, 1) Dy the set of all &-station chains {t, -+, ,}.

We set WF(G)szJWF(gj) for the wave front set WF(g;) of g;. For
. . j=1
J:(]l) "‘,]\,+1) we set

A5 3, 1) = {Qipe vy Pipeini) @ 6 1y 2205 1, 05 3, 7);

3.5)
( {tlJ ) t‘#} EAE,fl,--~,jy+1(t; y) 7])} ’

and set

T, .= {3A](t5 3, 1) (9, ) EWFAG), J=(j, =+ Jv41) »
(3.6) Gi=1,2,2=0,1,,8>0, |p| =M}
(WF(G) = {(, ); dis{(y, In| 1), WF(G)}=¢}),

for a large constant M,>0 depending on M of (3.2). Then, Theorem 3.4 in
[11] says without the assumption ()

Theorem 3.1. , O T, . is closed and for the solution U(t, x) of the Cauchy
problem (3.3) we have -
(3.7) WEF( U(t))(:kD<l T, 0=t=T,).
If we add the assumption (*), then, setting

3.8) Lo = {8A4(t; 3, m); (9, ) EWF(G), >0,
I"]l gMa; J= (1)’(2)’ (1: 2)7 (2’ 1)’ (1’ 2, 1)} »
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we get the main theorem.

Theorem 3.2. Assume that the assumption (x) holds. Then, for the solu-
tion U(t, x) of the Cauchy problem (3.3) we get

3.9 WFU@)cl:,, ((0=t=T).
Proof. By Theorem 3.1 we have only to prove that

(3.10) () Tye=T4,.

0<e<

It is easy to see that (] T, ,DI%, So, we prove that
o<l

| Ty .CI,.

0<e<
We fix 0<t<T, and take a point (x°, )€ (] T, and fixit. If we take
0<E<1

|£°] sufficiently large, then, setting §*=P;, .. ;(t; 0, t,, -, t,; &%, £°) (k=1, -+,
v+1, ¢,,,=0), we have

(3.11) C'Z|EEC  (R=0,-,v+1).

Here, the positive constant C is independent of the choice of J=(j,, ***,jv+) and

a set {f, -, 1,} C[0, t]. Since (x°, &% belongs to (] T, for any &,=27"
0<eL

there exist Ji,=(j7, -, jin) (GF=1,2, jE+jt), " 7")EWF,(G) and

{er, -, 0} EAemJg‘,...J;ﬂmH(y"‘, 7") such that

(312) (xo, EO) = (jS",---,f,',"m_,_p Pji”....'j;”m+1)(t; Z, t'ln) Tty t‘r’nm’ 0) J’m, 72m) .

We consider (x°, £&°) deviding into two cases as follows.

I) The case where we can take a subsequence /= {m.},2; and a point
o1 (0=0,=t) such that ¢{—>¢, and #; —o, as [—>co.

ITI) The other case.

I). We show that (x°, £°) belongs to I';,, when 0<g;<t. In the other
case o;=0 or ¢ we can also prove this by the similar way. By the assumption
I) we can also take a subsequence v={l.} .= of /= {m.},.Z1 such that

(G i) = (1,1),(1,2), (2, 1) or (2,2) .

We may assume that j{=1 and j7,,,=2, since we can prove similarly in the
other cases. Now, take a point (3°, 7°) (|7°| =ZC ™, see (3.11)) such that

(313) (J_"o: "—70) = (QZ,I) PZ,I)(O; 0’ (D) t; ‘xo, EO) .

We note that

(313)I (xo) EO) = (QI,Z) PI,Z)(t; t; Oy 0, 5’0) —0) .
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Then, it is easy to see that

(3.14) 3= °+S Vo, O(es 0, au, 15 2°, E), Py 0, o, 15 20, £9))dor
+L Voo, 0si(; 0, o1, 15 42, EY), Pya(o3 0, o, £ 49, E))dor.

Using the assumption of this case, for any small §>0 there exists N such that
for any v =N we have

(3.15) {1, -, 8.} C[o1—38, o1 1-3] .

Since for any »” we have the similar equality to (3.14), we get
|7¥—y"I=Cd  (Y=N)

for a constant C;>0 independent of § and 7. By the similar way we get
I7"—71=C8  (Y=N).

Consequently, we can see that (y?, ")—(3°, 7°) as Yy—co and

(3.16) (3, 1) EWF(G).

Next, since {t], -+, },} EA,, j7,.. 17 H(LV , 1"), it follows from (3.11) and (3.12)
that

[(—2)(#, Qi1 8, 25 &% £°), Pi(t1; 4, t; &°, &§°)) | =C€,
for a constant C' of (3.11). Here, noting that j{=1 and ;J,,,=2, we used
O, 1w Py ...,,-zyﬂ)(t’{; t, 8, e, 2, 0; 97, 1)
- (le Pl)(tlr t 1 t; xoy EU) .
When y— oo, we get from (3.13)
O = (7\2—7\1)(0'1, Ql(o'l; Oy t; xoy gO)’ Pl(o-l; gy, t; xoy EU))
= (7\'2'—7\1)(0'1) Ql,z(o'l; t, oy, 0 5’0, "—70): P1,2(0'1; t, oy, 0; 5’0; 770) ) .
Together with (3.13)" and (3.16) this implies that
(&, ) {AF2(2; 3, 9); (9, 7)) EWF(G)}
cry,.

IT). We can take a subsequence I/={m.},2, and points ¢y, o, (0=<0,<
o1=t) such that ¢{—>¢; and £ —o, as [—>oc0. We set

1)(0'; l) = (7\‘2_7\‘1)(0-; QI{ \, 1+ (0- L, zl: -, 05 yI, 77,)3

(3.17)
Pj{-"'rj{:ﬁl(o-; z, tl, s, 0 y , 7]) (0§o’§t) .
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For large [ we have
t{—tilg%(¢1—52)>0’

and then, noting that {#{, ---, til} EAgl'j{'....jf‘,_H(yl, 7'), we have by (3.11)
lo(tt; D, lo(t,; DI=Ce,.

Consequently, since (o ; [) of (3.17) has the form

(3.18) v(o;l)=ac+b (0=20=1)

from Lemma 2.3 in Section 2, it follows that

(3.19) lo(o; 1)| S2C&Ty(ti—1,)
=4C¢ET(01—02) O=c=1).

Now, by Corollary 2.5 there exist some 1, £ (¢>#;>#,>0) such that

(3.20) (xoy 3’:0) = (Ql,z,l) Pl,z,l)(t; t: f{, fé: 0; yl’ 77,) .
Then, we note that

(3.20) (y’, "71) = (Ql,z,b PI,Z,I)(O; 0, #2, 71, t; &, ).
We set

vi(o; 1) = (Ae—N)(o; Quaalos 8, 2L, E4, 05 5, 7),
P, ,i\(0; ¢, £, 13, 0; ¥, 771)) .

Since v,(c'; I) = v(o; [) by Lemma 2.3 and Remark 2.1, from (3.19) we obtain
4C

0,702

(3.21)

(3.22) loy(o; 1) < &T,.

Next, let &; (i=1, 2, 3 =5;) be the accumulating points of sets {!},=,
respectively and take some subsequence {y=1/},2; such that 7{—&; and
f}—a5, as Y —>oo, Then, it follows from (3.20)" that there exists (3", 7°) such
that

" 7)) = (3% 1°) = (12,1 Pr22)(05 0, &, 73, 25 &°, £°)
as Y —oo, and
(3.23) (3, ) EWF(G).
We note that

(3.24) (xo’ £ = (Ql,z,n Pl,z,l)(t; t, 6y, 65 0; 3% 7°).
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By using (3.22) we obtain

(7\'1_7\‘2)(0-, Ql,?,l(o_; t) 6-11 6-2’ 01 5}0’ 7_70)) Pl,Z,l(a-; t’ 61: 6-2’ 0; 5}0: —0))
= lim v,(o; v)
Y>>

This implies with (3.23) and (3.24) that

(xo’ Eo) € i"t',o

which means (3.9) together with the result of I). Q.E.D.
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