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1. Introduction

We consider a decomposable Galton-Watson process (GW process, for
short) which contains no supercritical class and at least one critical or final class,
that is, such a process for which the mean matrix has the Perron-Frobenius
root p==1. The principal object of the present paper is to prove several limit
theorems for the most general decomposable GW processes with p=1, and
among others, give a new characterization of the limit distributions. Some of
the main results were announced in [9].

Let us begin with the classification of multitype GW processes. Let Z(n)=
(Zi(n)),sis4 be a d-type GW process and M=(m}),x; ;<, its mean matrix. Type
7 is said to be accessible from type ¢ if m}*™, the (i,7) component of M", is pos-
itive for some n=0. This relation is written as i—j. If i—j and j—1, then
7 and j are said to communicate with each other. This relation is written as 7¢>
J. Since & is an equivalence relation, we can decompose the set of types {1, 2,
-+, d} into the equivalence classes C), C,, -++, Cy. Accessibility is a class pro-
perty, i.e., if i—j for some 1€ C, and j €Cg, then i"—j’ for all /'€C, and j'E
Cs. The relation Cy—>Cp is simply written as S<a(B<a if B4a) and accessi-
bility thus induces a partial order on the classes C), Cy, ++-, Cy. The process
Z(n) is said to be indecomposable (resp. decomposable) if N=1 (resp. N =2).

Set Mg=(m})icca, jecg- Then, by definition, each M3 is irreducible. As in
most of the references we assume that each M7, is positively regular, i.e., irredu-
cible and aperiodic. We denote, by pa, the maximal eigenvalue of M. The
class C, is said to be supercritical if p,>1 and subcritical if pys<<1. When py=
1, C, is said to be final (resp. critical) if the generating function F¥(s), i€ Cl,, are
linear with respect to ', i€ C, (resp. otherwise).

The limit theorems for decomposable GW processes with p=max{p,, p,, ***,
py}=1 have been studied by several authors. The central problems for such
processes are concerned with the limit distributions of random vectors of the
form
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(1.1 (Zo), g =1, NIE,
ap(n)

where Zp(n)=(Z(n))iecpy ISB=N, are the subvectors of Z(n) on Cg, E, is a
conditioning on Z(n) and ag(n), I<B=N, are certain normalizing sequences.
Let €=(0,-+,0,1,0,-:-,0), where the 7"th component is 1 and the others are 0,
and let P.i be the measure of the process such that P.i[Z(0)=€‘]=1. Consider
the process starting at Z(0)=¢€’, i€Cs. Unless B=a, Zg(n)=0 for every n=0.
Therefore, without loss of generality, we may assume that

(1.2) Z(0) = ¢,i=Cy, and B<N for any B+N.

We now list some of those results obtained in the references. Provisionally,
lim X{(z) means the limit of random vectors X(n) in distribution. First we state

Nn— oo
two unconditioned limit theorems.
[A] (Polin [6]). N=2 and 1<2 with C, a critical class and C a final class.
In this case lim (n7'Z)(n), Z,(n)) exists and its components are independent. The
Nn—> o

limit distribution is given explicitly.

[B] (Foster and Ney [2]). {C,,---,Cy} islinearly ordered; 1<2<++-<N.
(Note that the order is converse with that of [2].) Cl, is critical for @ N and Cy
is a one-type final class. Under these assumptions, lim {n"¥*'Z\(n),+--,n ' Zy_,

n—> oo
(n), Zy(n)} exists and is non-degenerate. The Laplace transform of the limit
distributions is characterized by means of some semi-linear partial differential
equation.

Next we state two conditioned limit theorems.

[C] (Foster and Ney [2]). As before, 1<2<+:+<N. Every C, is critical.
In this case, the non-degenerate limit of {n""Z(n),--*,n"'Zy(n)| Zy(n)*0} exists
and the limit distributions are characterized in a way similar to that in [B].

[D] (Ogura[5]). {C,,---,Cy} contains no final class but may not be linearly
ordered. Under this assumption, lim {n™'Z\(n), --:,n"'Zy(n)| Z(n)=0} exists and

n—> o0

the limit distribution is determined by some recurrence formula with respect to
the partial order <. In this case, however, the support of the limit distributions
are relatively small.

We extend all the above results to the most general GW processes with
p=1. Theorem 2.3 contains [A] and [B]. Theorem 2.4 contains [C] and,
together with Theorem 2.5, solves the conjecture in [2]. Theorem 10.1 genera-
lizes [C] and [D] (and bridges them). The characterization of the limit dis-
tributions in Theorem 2.3 to Theorem 2.5 seems to be new (see [E] below) and
the recurrence formula in Theorem 10.1 is simpler than that in [5].

All the main results of this paper heavily depend on Theorem 2.1 which
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we shall call the fundamental limit theorem. Unlike the limit theorems mentioned
above, this theorem and Theorem 2.2 are concerned with the limit of random
vectors of the form

(13) (L), 1<p<nim,
as(n)
where Y(n) is the sum of n-independent copies of Z(n), Yp(n) is the subvectors
of ¥(n) on Cg and E,, is a conditioning on ¥(n). In the simplest case, Theorem
2.1 and 2.2 are specialized as follows;
[E] Asin[B], 1<2<:+<N. Every C, is critical or final, i.e., ps=1 for
a=1,2,---,N. Then, for every t>0, the limit of

(1.4) (™Y \([nt]), -+, n7 ¥ n([mt])}

is non-degenerate. The logarithmic Laplace transform (¢, N) of the limit dis-
tribution of (1.4) is the solution of a first order ordinary differential equation in ¢
having N as a parameter. Moreover if Cy is critical, a similar result is valid for
the limit of conditioned random vectors {n~¥Y,([nt]), -+, n Y ([nt]) | Y »([nt])=

0}.

The main results are summarized in section 2. Their proofs are given in
sections 6 to 9. The basic tools in the proof of Theorem 2.1 and 2.3 are the
expansion formulas on generating function and an exponential formula on infinite
products of matrices which are close to the mean matrix. This exponential
formula will be proved in section 4. Standard expansion formulas are given
in section 5 and a special expansion formula at a final class in section 8. The
normalized limit M* of products of the mean matrix which is introduced in
section 3 is useful for the characterization of limit distributions. Some part in
the original proof of the limit theorems was much simplified by making use of
general results on logarithmic Laplace transform. This was suggested by T.
Watanabe. Above all, Lemma 7.2 and its application to conditioned limit
theorems are due to him. In section 10 we shall extend Theorem 2.4 and 2.5
by the method of Ogura [5]. Finally a few examples will be given in section
11.

Acknowledgements. I would like to express my sincere thanks to Professor
T. Watanabe for his valuable advices in the course of completing this work.
Some of his contributions have been mentioned previously. Most of the re-
sults were improved by his advices. Especially he pointed out the fundamental
role of Theorem 2.1 whose original version was Lemma 8.1 (i) and which I
had taken as an auxiliary result for the proof of Theorem 2.3, and suggested
the author to reduce all the other limit theorems to Theorem 2.1. The probabi-
listic interpretation of Theorem 2.1. is also due to him.



178 S. SuciTaNI

2. The main results

The process we consider in this paper is the following;
(A.1) For each a, My is positively regular,
(A.2) p=max{p, -, py}=1, that is, there is at least one critical or final class,
(A.3) For each critical class C,, 'ZC E[Z(1)Z,(1)]<oo,

5,7,RECy
(A4) a<N for every a=N.

Assumption (A.4) is no essential restriction for our purpose as was mentioned
previously. We do not impose any further assumption besides Theorem 2.5
and 10.1.

We define the degree of relationship »(83,a) between classes Co and Cég;

max #{i; pa, = 1} if B=a,
(2.1) V(,B, (x) = {f=q1 << <oy=a
—1 otherwise,
and
(2.2) v(a) = v(a, N).

Since each M is positively regular, there exist uniquely a positive row
vector Us=(7;);ec, and a positive column vector #”=(u');ec,, such that

(2.3) UM’ = pala, Mau® = p,u® and Z wo, = D v;=1.

i€Cy zeC,,

If ps=1, we define

(2.4) Bo= 31 v,Eg[Z,-(l)Zk(l)—Sj,,,Z,,(l)]ufu" .

1

2 ijk
In section 3, we shall show the following fact (see Theorem 3.1); for each i&€C,
and j € Cp there exists

(2.5) lim n7¥E Myl 1) — gyt

n— oo

and m*;>0 if »(8,a)=1. We define for B<a,

(2.6) as,; = (v(B, a)—l)iezc om*; jeCs,
(2.7 62] o;m* jeCs,
ieCy
(2.8) ¢ _]_;20, m*i ieC,.
B

Let A=(\/),<;<, denote a vector in R4.

Theorem 2.1 (Fundamental limit theorem).
Let Cy be a critical or final class and i€ Ca. Then we have
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29)  limn(1—Edfexp(— 3 3 nCNIZ([nf]))]) = Vralt, M,
fn— oo B=LajeCg

t>0,
where \ra(t, N) is the solution of

Dyt = —Bardt Wt 25 au 0o,

v(B,a)=2 jECp

Va0, M) = 23 33 baM.
v(B,a)=1jECg

(2.10)

exp(—ra(t, N)) is the Laplace transform of an infinitely divisible distribution.
Theorem 2.2. Let C, be a critical class and iC,. Then we have
(2.11) lim n(1—Eglexp(— 21 23 n7*®“NZ([nt])); (Z,([nt]))jc0a = 0])
n—> oo B=ZajeCg
= ¥a(t, M, £>0,
(2.12) lim nE[1—exp(— 23 23 n"®NZ([nt])); (Z([n8]))jece = 0])
n—> 0 B=LajeCsg
= 77w(t, h)ui, t>0 )
where
(2.13) Ya(t, V) = ll_im Ya(t, M),
J—> o0

jE€Cq
and 14(t, N) is the solution of

d 2
— na(t, M) = —Bga(t, N):— = ng(t, N
a2 (£, M) 7a(?, N) L7 (% A)
(2.14) + SV au NEEN2
V(ﬂ:“)%Z jECﬂ
7]¢(O, h) == 0 .

The relations of \ra, Vra and ns are given by

(2.15) Valt, M) Z74(t, V),
(2.16) V3(t, N) = (tBa) "+ 7a(t, A)
(2.17) 1Bu(Va(t, M) —Va(t, M) = 1—1Ba(Va(t, N)—7a(Z, N))

t
- exp(—B,,So(wlr,,(s, ) 7a(s, M))ds) -
exp (—74(t,N)) is the Laplace transform of an infinitely divisible distribution.

With the help of the above theorems we can obtain the limit theorems for
the process Z(n) with Z(0)=é’,7 = C, under certain normalization which depends
on the degree of relationship »(8) for each class Cs. We first give an uncon-
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ditioned limit theorem when C), is a final class.

Theorem 2.3. Let Cy be a final class. Set D(1)={i€Ca; v(a)=2}, D(2)
={i€Cs;v(a)=1} and d;=4D(i),i=1,2. Then, for each i<Cy, there exists

N
(2.18) lim Eglexp(— 23 23 a7 "®*WNIiZ (n))] = G(M);
n—>oo 8=1jeCg

the limit is independent of i. G(N) can be decomposed as follows;
(2.19) G(V) = G(MGAN),
(2'20) Gl(k) == Gl((hi)iED(l))y Gz(h) = Gz(o\'i)ieo(z)) )
(2.21) G(M= 1I Gia7).

v(a)=12

Pg=

Gy(X) is the Laplace transform of a probability measure on Z2. Each G, «N)
is the Laplace transform of an infinitely divisible distribution on R$1 and can be ex-
pressed as follows;

1
(2.22) Gra(h) = exp(—c,,,golp,(s, A)ds)
where
(2.23) o= 23 D om*ui>0,
ieCy jeCy

and ra is the solution of

d _ 2
g Vet M) = —Bata(t, N)

3 aa IO,

B,a)=2 ieC
(2.24) T P s
¥a(0, N) = P IR NPT
jECs

V(ﬂya) =1
\ v(B,a)+v(e)=v(B)+1

We next give two conditioned limit theorems according as Cl is critical or
subcritical.

Theorem 2.4. Let Cy be a critical class and i=Cy. Then we have

(2.25) lim Ez[exp(— % 2 n " ONIZ(n)) |(Z;(n))jec , F0] = H(M);
n—>oco A=1jeCsg

the limit is independent of i. H(N) is the Laplace transform of an infinitely
divisible distribution on R and can be represented as follows;

(2.26) H(V) = By, ) —¥a(L, V).
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Theorem 2.5. Let Cy be a subcritical class and i€Cy. Set
(2.27) A, ={a;v(@)=0 or v(a)=1, ps=1}.
Assume that the set A, has no final class. Then we have
(2.28) nlin;Ee"[eXp(—ﬁél jg.‘bﬂ"'”‘s’l"zf(”)) [(Z;(n)jecp)sca, +0] = Hi(A).

H () is the Laplace transform of a probability measure on RS and can be represented
as follows;

229 HM=( (af)l: lc.’;(B.,.)“)"y (aE ca(F5(1, M) —Pa(1, M),

=1
p¢=1 ,0¢)=1
where Ja(t, N) is the solution of (2.24) and
(2.30) Vo(t, N) :xﬁm Valt, M) .
je CT

Va(t, N) is represented as follows

(2.31) ¥a(t, ) = (tBa) "'+ 7a(t, M)
where 74(t, N) is the solution of

d _ 2 2

- mt,l=_ ¢¢t,h —_—— ,,t,l

2 6 Talts A)* == 7a(t, A)

o NIPED2
(2.32) T R 2
v(B,a)+v(a)=v(B)+1
7a(0,A) = 0.

3. The normalized limit M* of products of the mean matrix

Let M=(m})si js. be the mean matrix. Let M"=(mi™) and (M")g=
(M5 ™)iccq,jecg: Then (M")a=(Mgz)". In this section we study the asymptotic
behavior of M".

The following lemma is well known (see [7]).

Lemma 3.1. Let M3 be a positively regular matrix. Then there exists uni-
quely a positive row vector Va=(v;)iecq and a positive column vector u®=(u');cc,
such that

(3.1)  vaM§ = pavs, Mou® = pau® and 23 uiv; = 2 v;=1.
i€Cy 1eCy
Set

(3.2) 9= U"Qu, = (ui'vi)i.iGCw .

Then we have
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(3.3) (M32)" = paP3+0(p") for some 0<p<<ps.

The mean matrix M=(M3),<« s<y satisfies the condition that Mg=0 unless
B=a. If L=(Lj) also satisfies the same condition, then

(3.4) (LM)’;_EL‘”M" > LMy,

A=r<La

From this we have

3.5 (M"g = O unless B<Za,
66 (= 3 MENME= 3 M for fa.

A more useful form is

3.7) M)z = 2 E (M"‘)”M (M"+hE
n—1
=k§0 ﬂéir‘.Q(Mm)” My(M")

if B<a and n=1.

Theorem 3.1. Let B=Za. Then the following statements are valid;
(1) If v(B, a)=0, then there exists 0<<p<<1 such that

(3.8) (M")s = O(p") ,
and hence
(3.9) o< i (M“)g<oo .
(i1) If v(B, @)=1, then there exists a finite M*3>O such that
(3.10) nl_l)rg n VGO MMG = M*3.

(iii) Let pa=1; if v(B, @)=1 and B< «,

oo

(3.11) M*g=233 23 PaMyM*)}
k=0p=r<a

and if v(B, ) =2,

(3.12) M*E = (v(B, a)—1)7 S PaM2M*} .

B=r<a
V(B;T)=V(/9,a)—1
(iv) If po<<l and v(B, a)=1.
(3.13) M*g = M (I—Mz)*MM*} .

AZr<a
V(ﬂ.r) v(B,a)
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REMARK. M*3=P3 if p,=1.

Proof. We shall prove this theorem by induction with respect to the partial
order <. First we shall show (i). If a is a minimal element, then p<<1 and
a=p. In this case, (3.8) is clear by Lemma 3.1. We have to show (3.8) assum-
ing (M")3=0(p") for any B=<v<a with »(3, ¥)=0. But by (3.7) we have

n—1
(M5 = O pto™™) = 007",

where max (pa, p)<<p<<l. Positivity of (3.9) follows from the definition of the
partial order <.

Next we shall show (ii), (iii) and (iv) simultaneously. If « is a minimal
element, then p, =1 and B=a. (3.10) is clear by Lemma 3.1. For general a,
we have to show (3.10) assuming that lim n *®"*(M")E=M*}>O0 for any 8=

Nn— oo

v<a with »(8,7)=1. If p,=1 and »(B,a)=1, then »(B,7)=0 for any By <
a. By (3.7), (3.8) and Lemma 3.1, we have

lim (M")3 = 2 2 PMI(MY.

n— oo

This proves (3.11). Positivity follows from (3.9), Pz>0O and M7=0 for some
B=v<a. If p,=1and »(B,a)=2, then v(ﬂ,a)=ﬂmax v(B,7)+1. Then by
=r<a

(3.7) we have

lim ™Y ®"* Y (M™)g

Nn—> oo

n—1
= lim 2 n"'(" MY M) MM )}
n—o0 k=0 f<7r<
—1 v(8,®)-2
—lim 3 L ( —k— 1) S PERMEM*
n—>o00 k=0 N n B=Zr<e

v(Br)=v(B)—1
= (B, a)—1)7! P> PIMIM*Y,
B=r<a
v(Br)=v(Ba)—1
which proves (3.12). Positivity follows from P3>0,M*}>0 and M3=0 for
some B=<7v<a with »(8,7)=v(B,a)—1. If ps<<1 and »(B,a)=1, then »(B,a)
= max »(83,7). By (3.7) we have
BZr<a
lim n~ V&Y M™)g
n—> oo

n—1 .
—lim 3 3 (MM ES(rry
n—oo k=0p8=Zr<a
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n—1 —h—1\"B®-1
=im 33 eyt

n—>o0 k=0 A=r<a n

v(Bir)=v(8.@)
= 2 ([—M)TMiM*Y.
B<r<a

V(ﬂ r=v(fa)

This proves (3.13). Positivity follows from (/—Mz)™' >0, M*}>0 and My+0

for some B=<v<a with »(8,7)=r(B,a).

4. Infinite products of matrices close to the mean matrix

In this section we shall establish some general results on infinite products
of matrices close to the mean matrix. The exponential formula (4.12) or, more
generally, (4.26) is a basic tool for the proof of Theorem 2.3 and has its own
interest. For any sequence {M(n)},>, of matrices and 7 =m, we make the follow-
ing convention;

n n—m
4.1) kII M(k) = kIIOM(n—k) = M(n)M(n—1)-+-M(m) .
=m =
m—1
We shall also define kH M(k)=1 (the identity matrix).
Lemma4.1. Let Mg be a positively regular matrix with ps—=1 and {a(n)} >,

a sequence of positive integers going to infinity. Assume that the matrices {May(k,
1)} osiatn nz1 and {Ma(k)} iz, satisfy the following conditions;

(4.2) O Mk, n)<MXE), 0=k=<a(n), n=1,
(4.3) lim Ma(k, n) = Ma(k)<M2, k=0,

n—> oo .
(4.4) 5‘_. ME(k)<oo .

Then there exists a row vector wy such that

a(n) a(n)
(4.5) lim TI (M2—M2(k, n)) = lim I (Mi—M:(R)
n—> oo = =

— lim II(M" (k) = U Qw, .

n—>oco k=
Proof. 'To be short we omit the suffix @. First we shall show the last equ-
n—1
ality of (4.5). Set Lﬂzkﬂo(M——M(k)) and c(R)=max {mi(k)(m})™; i,j ECy,m’
>0}. Then by (4.4) we get

[

(4.6) kgoc(k) <oo,
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n+m—1
Since (1—c(k))M = M—M(k)=< M, we have ( kH (1—c(R))M"L, =L, ,<M"L,.
=n
Therefore by Lemma 3.1,

(#.7) (H (1—c(R))) (PL); = Jim n (L)< hm 1 (L,);=<(PL,);

Since lim H (1—c(k))=1 by (4.6), there exists Q— hm L,. By (4.7) we get

—DOO——

O0=PQ=(uQv)Q=u®vQ. Setting w=vQ, we have the last equality of (4.5).
The second equality in (4.5) is obvious.
The first equality of (4.5) follows from the following inequality;

(4.8) 0= 1_1 (M~ M(k, m)— II (M—M(k))

a(n) —1
g( (M M(D))) (M(k)— M(k, n))(H(M M(i, m)))

z: MoK M(k)y—M(k, m)M*,
because the last display goes to zero with # by assumption (4.3) and (4.4).

Lemma 4.2. Let Mg be a positively regular matrix with ps=1 and {a(n)} 2,
a sequence of positive integers going to infinity. Assume that the matrices {My(k,
1)} osk=atn) w1 Satisfy the following conditions;

4.9) O=Mg(k,n)=M,,

(4.10) lim max v.Mgk,n)u®=0,
n—>oo 0<k<a(n)

and there exists a finite limit

(4.11) lim Z‘.vaMa(k mu® = c(a).

n—-DOO =

Then we have

(4.12) lim n (M2— M2k, n)) = P .

n—)oo =

Proof. As before we omit the suffix a. Set
a(n)
(4.13) O(m, n) =kH (M—M(k, n)), q(m, n) = vQ(m,n)u .
=m
To show (4.12), it suffices to prove the following two relations;

i 20,m) _ p_
(4.14) lim &1 = P = u®v,
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(4.15) ' 1}1»11:0 q(0,n) = &7 .

Since lim M"=u®uv >0, there exists a sequence of positive numbers {r,}
such that o
(4.16) nl_1>r<r>1° r,=0 and (1—r)uQu=M"=(1+r,)uQu.

Set 8,= max max {mi(k,n)(m})™'; m;>0}. Then we have
0<k=<a(n) i j€Cy

(4.17) (1—-8, ) M=M—Mk,n)=M, 0=k=a(n),n21,
and by (4.10),
(4.18) lim$§,=0.

Nn— oo

First we shall prove (4.14). Let m be fixed arbitrarily and set R(m,n)=
"(:f:I;m(M—M(k, n)). By (4.16) and (4.17) we have
(1=38,)"(1—7n)u@v)R(m, n) (1—3,)"(1—7,)u®v)
=000, n)=((147,)uQv)R(m, n) (1+7,)u@v) .
It then follows that
(4.19) (1—38,)"(1—r,)*(vR(m, n)u)uQv
=0(0, n)= (1+r,) (vR(m, n)u)uQu,
(4.20) (1—8,)"(1—r,)vR(m, n)u=q(0, n)<(1+r,)vR(m, n)u .
Hence we get

(1=38,)""(1—r,) 0(0, n) (A+7,)
Aty O =0 ) = d=s )i —r %

Then letting n—cc and m—> co, we obtain (4.14).
Next we shall prove (4.15). Set

n) — Ok, mu_
(4.21) u(k, n) o&.7) u.

If we can show that

(4.22) lim max max [4'(k,n)| =0,
n—oco 0<Sk=<a(n) icC,

then (4.15) is proved as follows. By (4.13) we have

9(0, m) = q(1, )—vM(0, m)Q(1, n)u

_ _oM(0, n)Q(1, n)u
a(1, %) (1 o )
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_ a1 oMk, n)Q(k+1, n)u
= g(alm), ) kgo (1 g(k+1,n) )
a(n)—1
= (1—vM(a(n), n)u) k1=10 (1—vM(k, n) (u+u(k+1, n))).

Then by (4.22), log (1—7)=—r+O(r*) and the assumptions of this lemma we
obtain (4.15);
lim log ¢(0, n)
Nn— oo
a(n)—1
= lim {log (1—vM(a(n), n)u)+ kEO log (1—vM(k, n) (u+u(k+1, n)))}
N—> o0 =
a(n)—1
= —lim {vM(a(n), n)u+ kE vM(k, n)u}
n— oo =0
= —c(a).

It remains to prove (4.22). Let m be fixed and consider two cases; k=a(n)
—m or k>a(n)—m. If k<a(n)—m, then by (4.16) and (4.17),

(1-8,)"(1—r,) (u@v)O(k+m, nyu=Q(k, nju=(1+4r,) (@QQU)Q(k+m, n)u .
Hence

(1=38,)"(1—r,)g(k+m, n)u=Q(k, n)u=(1+r,)q(k+m, n)u ,
(1=38,)"(1—r,)q(k+m, n) =q(k, n) = (14-7,)q(k+m, n) .

Then
(1—3”)"'(1—7’",)” SQ(k) n)us 1+rm u
147, . qtk,n) — (1=8,)"(1—r,) ’
and therefore
i 147, _(1=8)"A—r,)\, s
423)  [u(h )| é((l—B,)"’(l—rm) UL >u,kga(n) myicCa.

If k> a(n)—m, then by (4.17) we get

(1—8,)"u< (1—38,) M-k fem-kiy
<Ok, Mus MM *iy =y
(1-8,)" =Zqk,n)=<1.

Then

O a1
(1=8)ust prls
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and therefore

@24) k)< ((1—1—3)"' —(1-8)" ', k>a(n)—m, i€C,.

By (4.23) and (4.24) we get

max u’ .
ieC,

1+r,,,_l:gl,>

lim  max maxlu(kﬂ)l_(1 s
™ m

n—>oo 0Sk<a(n) icC,
Letting m—> oo we obtain (4.22).
Combining the above two lemmas, we have

Lemma 4.3. Let My be a positively regular matrix with ps—1 and {a(n)}
a sequence of positive integers going to infinity. Let {My(k, n)}ogigatw nz1s
i=1,2, and {My ®P(k)} iz, be those matrices satisfying the following conditions;

{M 3O (k,n)} satisfy the conditions in Lemma 4.2, {My ®(k,n)} and {M 3y ®(k)}
satisfy the conditions in Lemma 4.1 and

(4.25) O=MyW(k, n)+My®k,n)=<Mjz, 0=k=Za(n),n=1.
Then we have

(4.26) ,,l_l,n;, k]] (My—Mg®(k, n)—MyP(k, n)) = e “u*Quw, ,
where

(4.27) c(a) _nlf; E v My O(k, n)u®,

(4.28) Wa = Uy ”I_Lr& I;[ (M5—My®(k)).

Proof. As before we omit the suffix @. Fixm arbitrarily and set

Mk, n) = M“)(k 1)+M®(k, n), L(m, n) = 11 (M M(k, n)),
(4.29)
O(m, n) = H (M M(k, n)), Q(m, n) = H (M MOk, n)) .

Then we have

a(n)
(4.30) I (M- M(k, ) = Q(m, m)L(m, )
4.31) lim L(m, n) =':I_}:(M—M<Z>(k)) .
By Lemma 4.2,
(4.32) lim Q®(m, n) = e~ @P,

n—» oo
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and by a calculation similar to (4.8),

(4.33) O<Q“)(m n) O(m, n)
a(n) a( n
—kzm(l (M——M(l n))) M P(k, n)( II (M——M W1, n)))

= 2 M= MO (R, n)M*™
k=m
Hence

(4.34) e™®P;2 [im Qi(m, n) lim Qi(m, n)

Nn—> 00 Nn—s 0
2 P (PMO(RM*™);.
k=m
Since lim 23 M®(k)=0, it follows from (4.31) and (4.34) that

m—>oo k=m

lim H (M—M(k, ) = lim. lim Q(m, n)L(m, n)

n—»oo m—> o0 fi—> oo

= e “®P-lim H (M M®(R)) = e ““uQuw .

m—oo k=0

Finally we shall generalize Theorem 3.1. This lemma will be often used
in later sections.

Lemma 4.4. Let a be fixed and {a(n)} a sequence of positive integers going
to infinity. Assume that {M(k, n)}osisatn nz1 Satisfy

(4.35)  O=M¥(k, n)< M} for any B, v<a and 0=k=a(n),n=1,

(4.36) lim max m,(k n)y=0 foranyi,jc U Cy,
n—>c0 OSkSa(

(4.37) hm kf_,‘ MYk,n)= O for any y<a withpy=1.

Then, for any Y < B =a, the following statements are valid.
(i) If v(v, B)=0, then

(4.38) lim ( H (M—M(k, m))f = (M), m20,
a(n) k 1 o0
(439) Tim SY(TT(M—M(, m)) = X,(M}.

(i) If v(y, B)=1, then
()
(4.40) lim a(n)'”""‘”“(:ﬁo(M—M(k, n))e = M*8.
n— oo =

Proof. (4.38) is obvious and (4.39) follows from (3.8), (4.38) and the
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dominated convergence theorem. We next prove (4.40). In fact we shall
show the following relation by induction; if »(v, 8)=1, then for any b(n)<a(n)
such that lim b(n)= oo,

n—oco
b(n)
(4.41) lim bn) 9 11 (M—M(k, m))§ = M*}.
n— oo k=

If B is a minimal element, then pg=1 and B=7. In this case, (4¢.41) is nothing
but (4.12) in Lemma 4.2 (¢(8)= O) For general B(Za), we have to show (4.41),

assuming that hm c(n) v 5)“( H (M—M(k n)))3=M*} for any vy<8<B with
v(7v,8)=1 and any c(n)=a(n) w1th lim ¢(n)=oco. Thisis proved in a way similar
n—> 00

to the proof of Theorem 3.1 by using, instead of (3.7), the following formula;

(#42)  ( O(M—M(k »m)s

b=
=3V Y (TT (ME—ME(, n))) (ME—ME(m—F, n))
F=0726<f1=m—k+1

m—k—1
(I (=M, m))h, 7<8.

For example, if pg<<1 and v('y B)=1, then we have

lin b(n)~*¢" B>+l( H (M) = 3 (M) MEMY
” V()= o(r.8)
— M*

where the last equality is due to (3.13) in Theorem 3.1. The cases when
ps=1,v(7,8)=1 and pg=1,v(v,B8)=2 are proved similarly.

5. An auxiliary limit theorem

Let v be a nonnegative integer and iECs,B<a. An important step for
the fundamental limit theorem is to estimate
(5.1) 1—Ei[exp(— 23 23 n YOOV INIZ (k)] .
r=<pjely
Let X be a random vector taking values in R%. The Laplace transform

and the logarithmic Laplace transform of X (or the distribution of X) are de-
fined by

d
JO) = Blexp(~ 30X,
= d for A\ERS .
Yv(N) = —log E [exp(—zglx‘Xi)]
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We need the following facts from the general theory of Laplace transform.

Lemma 5.1. Let {X(n)} be a sequence of random wvectors taking values in
RS and {a(n)} a sequence of positive numbers increasing to infinity.

d
(i) If {a(n)iglE [Xi(n)]} is bounded, then

(5.2) ¥a(M) = a(n) (1—E [CXP(—z_é?\"X.'(ﬂ))])
is uniformly bounded and equicontinuous in N on compact subsets of R4.

(i1) The sequence (5.2) is convergent if and only if Elexp( ———ﬁ] A X(n))]*™ is
convergent. In this case, the limit =

o
(53) (M) = lim a(n) (1— E[exp (— M X,(m)])

d
= —nlinilo a(n) log E [exp(—;glhiXi(”))]

is the logarithmic Laplace transform of an infinitely divisible distribution on R, if
r(N) is continuous. Then the convergence of (5.3) is uniform on compact sets of R,
so that for M,—N\ we have

d
(54) (M) = lim a(n) (1—Elexp (— L MX )

(iii) Given a continuous function r(N) on RS with \r(0)=0, suppose that (5.3)
holds for N such that \'>0 for alli. Then, (5.3) holds for any NE R4 and hence
the conclusions of (ii) are valid.

We shall give several estimates of (5.1).

Lemma 5.2. Let i€Cy,v=0 and t>0. Then there exists c>0 and 0<<p<<1
such that

(5.5) 1—Ejexp(— ) 3 a " @iz (k)]
r=<ajeCy
Sen™ 2 2D MAen™Ppt 3T 3N,
v(r,a)z1jeCy v(ra)=0jeCy
0=<k=[nt].

Proof. Since 1—exp(—7)=r on R., we have

(5.6) 1—E.fexp(— 2} 23 a7V INIZ (k)]
r<ajeCy
=20 2 aOMTINIE[Z (k)]
r<ajeCy
— 2 2 n—V(y,w)—vH)\‘jm},(k) .
r=<ajely
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By Theorem 3.1, there exists ¢ >0 and 0<<p<(1 such that for any k=0 and jECy,

m;.'(k)é(;pk if V('Y, a) =0,

5.7 i
(57) mi® Ze(h 1) i u(r, @) 2 1.

(5.5) is an easy consequence of (5.6) and (5.7).
Lemma 5.3. Let 8=a,ic€Cp,v=0 and t>0.
(1) If pg=1, then there exists ¢ >0 such that

(5.8) 1—E.,i[exp (——Tgﬁ jEECyn'””"")"‘J"‘)JZ ()]

Sen VBTSN SN 0=Sk=[nt].
r=hjeCy

(1) If pp<<l, then there exists ¢>0 and 0<p<<1 such that
(5.9)  1—Edlexp(— 2} 23 n™* 97" NZ;(R))]

r=<pjeCy
écn—v(p,a)—v 2 2 xj_i_m—wp,m)—’vﬂpk 2 2 7\’;' ,
v(r.B)zljeCy v(r,8)=05€Cy
0=k=[nt].
Proof. For any y<pB=a, we have
(5.10) o7, B)+2(B, a)<v(v, ) +1 if py=1,
(5.11) v(7, B)+v(B, a)=v(7, @) if pp<1.

Therefore

(7, @) v 1= —0(¥, B)—(v(8, @)+ v—1)+1 if pp=1,
—v(7, @)—v+1=—v(v, B)—(¥(B, a)+v)+1 if pp<1.

Hence we obtain (5.8) (resp. (5.9)) by taking »(8,a)+v—1 (resp. ¥(8,a)-+») for
v in (5.5).

Theorem 5.1. Let i€Cysv=2 and lim M,=N. Then

n— 0o
(5.12) lim n’(1—Eglexp(— 2 3 o777 NZy([n2]))])
n—>o0 . r<ajeCy
= 2V N mFNrON >0,

v(r,a)zljely

Before the proof of this theorem, we derive some expansion formulas on ge-
nerating function. Let I be a finite index set and 0=s'<1,x,€Z, for i€l. For
8=(s");es and X=(x;);e;, 8* means [I (s'). Let p(x) be the transition function

el

of Z(n) and F(s) be the generating function;

F(s) = (F(hsisar F'9) = Bu[s™] = 33 pi(o)e~.
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Let F(n:8)=(F'(n:8)).<i<qs be the n-th iteration of F(s), i.e.,

(5.13) Fi(n:s) = F(F(n—1:8)) = Fi(n—1: F(s)) = E,[s*™], 1<i=<d.

We denote
(5.14) 8% = (si)iECm O = (8%)pq, 8O = (5%)8za
(5.15) Xa= (%;)iccar X0,00= (Xs)p<ar X(,a1= (Xp)pza-

Then we may write
(5.16) s(O,a] = (s(o’a), sm)’ x(o’d] = (x(o,a)’ x‘”) .

Unless 8=, Pe[Zj(n)=0]=1 for every iEC4s, jECp and n=0. Therefore we
may write F*(n:8)=F*(n:s®),
Expanding F“(s) at s=1, we have
(5.17) 1°— F*(s) = 1°— F*(s®")
= (1°—F*(1®", s*)+(F*(1®*, s*)— F*(s®%, s))
= (M3—M:(s)) (1°—8“)+ﬂ§a(M s—M3(s) (1°—s°),

where

(5-18) 5(8) = (m(8))icca,iccs »

and
mi(s) = mi(s%) = 33 p(e,{1— | (1~ (1*— sy eadg}

(5.19) xEZY 0 icc..
mj(s) = mj(s®*)

=x§zé"<x)x,-{1—Sf,(l‘“”—<1‘°"”>—s<°'“>)s)x<°-w>‘<e"><°»w>d§(s")x~} ,
i€Ca jECs a+p.
We set

(5.20) M(s) = (M5(8))isa,p=n -

Then by (5.17),

(5.21) 1— F(s) = (M—M(s)) (1—s).

Therefore by induction we get

(5.22) 1°—F%n:s) = (kILII(M:—Mz(F(n—k:s)))) A°—F*@:—1:s))
I k
+21 23 r(n

A<a k=1

=11<M:—M:(F<n—m:s)»)(Mz— 3(F(n—F:8)) (1°— F?(n—k:s)),
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or

n—1
(5.23) 1%~ F*(n:s) = (IL(M:—MZ(F(k:s) (1°—F*(I:8))
1 pn—

+2”2(

1
(M3—ME(F(m:5)))) (M3—M3(F(k:5))) (1P— F¥(k:s)),
A<ak=l m=k+1

<izn—1,
and

n—1
(5.24) 1—F(n:5) = (I (M—M(F(k:8) (1—s)..

Moreover we prepare an expansion formula which will be used in later sec-
tions. If C, is a final class, then F*(1*®, s*)=Mgzs®. Therefore

(5.25) My(s)= O if Cg4 isfinal.

If C, is critical, the expansion of mj(s) at s*=1" leads us to

(5.26) mj(s) =k§6a(qffk—quk(s)) (1=, i,jECa,

where

(6:27) gia =5 FAZNZN 8,20 = 5 3 ) (55,0
1,],kE€Cs,

(5:28) 4(s) = (")
L N e L A (T

d
x=Z%

By (5.25) and (5.26) we obtain
(5.29) Ma(s) = O( Ec (1—s)) ifpa=1.

RrMARK. Expansion formulas (5.17) and (5.26) are slightly different from
(and more convenient than) the standard ones (see, e.g., [5]).

Proof of Theorem 5.1. By Lemma 5.1 (ii), it is enough to consider the
case A,=MA. We denote e,(A)=((exp(—n"""""""\)));ccy)vze. Then it follows
that

(5.30) Eilexp(— 23 23 n7* 07 INIZ(R))] = Fi(k:e,(N))
r<ajeCy

By (5.24) we have
(5.31) 1°— F*([nt]: e,(V))
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[nt]—1

=ﬁ§( H (M—M(F(k:e,(M))s(1P—ei(N))

= -I— 23
v(B,)=0 v(fa)z1
The first part >} vanishes as n— oo, for
v(B,a)=0
[n]1—1
( kl}o (M—M(F(k:e,(M))s=(M"1)s = O(p!"), 0<p<1, by (5.7).

To evaluate the limit of the second part . 2) , we shall apply Lemma 4.4 to
v(B,a) =1

M(F(k:e,(N))). Let 8=« with pg=1 be fixed. If j€Cs, then by Lemma 5.3
(i) we get

(5.32) 1—Fi(k: e,(\))
= 1—E.i[exp(— 23 2} n "0 VZkZ (k)]
7=<8 heCy
< o EOISY SV ok 0<E<[nt].
r<p heCy

But since v>2 and v(B,a)=1, we have

(533  lim 2_ ME(F(k:e,(\)) = O for B=a with ps—1 and £>0..
For each j€Cp, B<ZLa, it follows that

(5.34) lim max (1—Fi(k:e, (M) =0.

n—>o0 0SE< [nt]

In fact this follows from (5.32) if pg=1. If pp<1, (5.34) follows from Lemma
5.3 (ii) by the same method. Therefore

lim max mi(F(k:e,(\))=0 forany: ]E U Cs
n—>oo 0<E< [nf]

We can apply Lemma 4.4 (ii) to each term of 2} in (5.31),
v(8a)z1

(5.35) lim n*(1°— F*([nt]: e,(M)))

—limn* 3T [ PO(MF5o()n o)

n—>0o00 V(B»a) =1

- M*ASPE
v(B,a)z1

We have proved (5.12).

6. Proof of Theorem 2.1

Let us start with

Lemma 6.1. Let p,—=1. If \'>0 for any jECa, then
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1—Eqexp(— 23 E n”EONZ ([nt]))]

(6.1) lim p=aje -
"”°°zEZ v;(1—Ee[exp(— E E n~"EONZ ([n]))]) ’
1E€C,, t>0.
Proof. Set
(6'2) en(k) = ((exp(_”—v(p'u)xj))jECB)BSw .

Then (6.1) is equivalent to
(6.3) lim L —F(n]:eM) _ o 450

nvoo Va(1°— F([nt]:€,N))

Let n=[nt], I=0 and s=e,(A) in (5.23). Then
[nt]—1

(6:4) 1°—F*([n]:e,(N)) = ( H (Mo—M(F(k:e,(N)))) (1°—ea(M))

[n]—1 [n]—1
+23 23 ( ﬂ (M" M(F(m:e,(M)))) (Ms—Mg(F(k:e,(M))))

B<a k=0 m=Fk
(1°— FP(k:e,(N))) .

Since ps=1 it follows that
1—Fitk:e,A)=<cn™, i€Co, 0Zk=[nt],

by Lemma 5.2. (Note that {v;»(7,a)=0} is empty.) Hence by (5.29) we get
My (F(k:e,(M))=O0(n""). Therefore there exists a>0 such that

65)  MizMi-MF(k:e,)=(1—2 )Mz, 0k
By (6.4) and (6.5) we have

— (e, )2 (1-2) (M2t —exn) .
Since A >0 for j€C,, we get
(6.6) lim (1~ F/([nd]: €,(A)) = oo, i€ Ca.
On the other hand we claim that
6.7) :lé[i n’(1—F/([nt]: e, (A))) <o, jECp, B<Lax .

If pg=1, then »(B,a)=2 and if pg<1, then »(B,a)=1. To see (6.7) it is enough
to take »=1 1n Lemma 5.3.
- By (5.22) we have
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(68) 1°—F*([n]:e,(\))

l
= (1L (Mo~ Mo(F([nt]—k:e,(V))))) (1°—F*([nt] —L:€,(7)))

I k-1
20 2 (11 (Mo—M(F([nt]—m: e,(M))) (M — M(F ([nf] —k: e,(3))))

A<ak=1m=
(18— Fé([nt]—k: e,(M)))
= 1(1’ ”)‘I‘Iz(lr ”)’ I=1.
By (6.6) and (6.7),

(6.9) 2™ o 1>

n—>c0 val(l) n)

which implies (6.3) by Lemma 5.2 of [5]. For the completeness, let us reproduce
the proof of Ogura [5]. By (6.5) we have

(1—2) ey L=EArtl i)
) Y o (e, )

< I, n) S(l_i)_I(MM)I 1*—F¥([nt]—l:e,())
v (L, n) n * vs(1°— F*([nt]—1: e,(N)))

Therefore by Lemma 3.1,

; . Iilbn) _ = Ii(l,n) ;
| 1 <1 Sui+cpt
(610) = nf:o vaIy(l, n)_n—lfrolo vwll(l’ n)—u °
1€C,, 1>0,0<p<1.
Since

1°—F*([nf]:e,N)  _ ( L(n) | L(,n) )(1 vuIl, n)>"
v(1°—F*([nt]:€,(V))  \vuIi(l, ) va(l, ) v (I, n)

we have

PN IRT 1—F'([nt]:e,(N))
w—ep = I et e,(V))

T _ 1—F([nt]:e,(N)) il
= Nim e —F(n e ) TP

Letting /— oo, we obtain (6.3).
Proof of Theorem 2.1. Let e,(A) be the one in (6.2). We have to show
(6.11) l—l)lilo n(1*— F*([nt]: e,(N))) = Ya(t, M)u®, t>0.
By (5.7) and L:mma 5.1 (i), the sequence
| {n(1—E[exp (—Tzéja jezc yn'“”'“’x"Z,»([nt]))])} w21, 1€Ca,



198 S. SuciTani

is uniformly bounded and equicontinuous on compact subsets of R5. Therefore
it is enough to show (6.11) only for A such that A’ >0 for all j. Set

(6.12) Vall, n) = nvl(1°—F*(l:e,(N))) .
Then since v M} = vs, we have by (5.17) and (5.26),

(6.13) ra(l+1, ) = nwu(1°—F*(I+1:e,(A)))
— moaME(1°— F*(I: €,(N)))—nvaM*(F(I:€,(\))) (1°— F*(I:€,(A)))
—|—ﬁ}<_,"anv¢(M§—M§( F(l:e,(N)))) 1°—F?(I:€,(\)))

= ‘l"a(l’ n)
— 2 c nv(g;x— i (F(l:€,(N)))) (1—Fi(l:e,(N))) (1—F*(I: e,(N)))

1,7,kECy

—f—ﬂganvw(M s—Mg(F(l:e,(N)))) (1P—FF(l:e,(N))) .
We shall show that there exists ¢>0 and 0<<p<1 such that
(6.14) |Wral4-1, m)—rall, m) | Sc(n™+p'), 0<I<[nd] .

By Lemma 5.2, the second part on the last side of (6.13) is O(#™!). Next con-
sider the third part. If 8<a and pg=1, then »(8,a)=2. By Lemma 5.3 (i)
we have 1P—F*(l:e,(N))<cn %1P. If B<a and pp<l, then »(B,a)=1. By
Lemma 5.3 (ii) we have 1°—F#(l:e,(M)) <c(n"*+n"'p")1P. From these estimates,
(6.14) is valid.

Set

o [Wall ) fort=1im™",
(6.15) Y = {Ml’ n)+(nt—1) (Ya(l+1, n)—ra(l, 1))

for n 't < (I41)n".

Then, on compact subsets of (0, o), {y/%’()} ,», is uniformly bounded by Lemma
5.2 and equicontinuous by (6.14). Therefore we can use the compactness argu-
ment. Let {40} be any convergent subsequence and set
(6.16) Vao(t) = lim P §7(2), ¢>0.
J—oo

We shall show that +Jr4(2) is the solution of (2.10). This, combined with Lemma
6.1, proves (2.9).

Set

B . :
(6.17) M(l, n) = {"g V(F (I:e,(A) lli 2 <= fx(yor= Y a<a ;

(6.18) g*(l, n)
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— i 0 if B<e,
(. 2, @ aialF (G e(W)) (1—F (e W) (1- F(l: 0
fB=a,
and
(6.19) {M(l’ n) = (M5(1, n))psa,15a »
a(l, n) = (a°(, n))pza -

Let MO*'=(M8)s<q12a. Then, by (5.17) and (5.26),

10— F O] 1:e,(M))
= (M®— (1, n)) A®1—F©*7:e,(\)))—a(l, 1) .

Therefore
(6.20) 1091 FO“[nf]: e,(M))
=( "'H_I(M“’ " HI(I, m))) (1%*1—e,(N))
[nt] 1 [m]—1 0.
— 120 (m I}H(M —M(m, n)))a(l, n) .

By (6.17) and (6.18) we obtain

(6.21)  nwu(1"—F *([nt]:e,(N)))
[nt]—1 [#t]—1
= 23 nwa H (M©*1—M(1, n)))y(1"—e}(N))— n.q”(l, n) .
rsa =0
[n£]
In the same way as in the proof of Theorem 5.1, we can see that lim E M(1,n)

n—>o0 /=

=0 for any Y=<« with py=1and lim . maE( mi(F(l: e,(V)))=0 for any 7,jE

U Cy. Therefore we can apply Lemma 4.4 to each term of the first part on the
r=a

right side of (6.21) to obtain'

(6.22) lim § nv,,,( H (M“’ “]—M(l n)))y(1"—ex(M))
n—-oo r=a
= lim é} n [nt]“(y DY M*G+o(1))n v “)(V—{—o(l))
n—oo rssa
= DV v MENP TN
T=a
Since
[nt]1-1 tyn . . ;
Z nvaq"(l, n) = S ijéc v:(q;.s— g4 (F([ns]: ,(N)))) - n(1—F’([ns] : €,(N)))

*n(1—F*([ns]:e,(A)))ds ,
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we have by Lemma 6.1 and (6.16),

: [njt] » ¢ s 0,k 27,
(6.23) Jim 3%l ) = So D P )
— B, S'%(s)st .
0

Therefore yr4(2) is the solution of
(6.24) Wro(t) = —Ba| ulsYds+ SoMrpcn,
0 r<a

This is equivalent to (2.10) and we have completed the proof of the first part
of Theorem 2.1. The second half of Theorem 2.1 is obvious from Lemma 5.1

(ii).
7. Proof of Theorem 2.2

The following lemma is well known (see [3]).
Lemma 7.1. Let C, be a critical class. Then
(7.1) ”1_1:1010 n(1—P[(Z (n))jeca = 0]) = (Bs) ', i€Cy .
We next give a lemma from the general theory of Laplace transform.

Lemma 7.2 (T. Watanabe). Let {X(n)} be a sequence of random vectors
taking values in RS and {a(n)} a sequence of positive numbers increasing to infinity.
Assume that the following conditions are satisfied:

(a) There exists

d
(7.2) V() = lim a(n) (1—F [exp (— 232 X(m)]),

where r(N) is the logarithmic Laplace transform of a random vector X on RS.
(b) For an integer ¢ such that 1 =c<d it holds that

(7.3) nlin:oa(”) (1—=P[(Xi(n))cr1gisa = 0]) = ¥(0, ++, 0, 00, =+, 0),
where "I’(xl’ M) 7":’ 0, % °°)= lim 11,\(7\‘1’ R 7\'d)'

c-lﬁ_é);oéd
Then we can conclude that
(7.4) nl_ifg a(n) (1—E[exp( —EIVX.'(”)); (Xi(n))er1sisa = 0])
— 1],»(),1, R 7\,‘, 0o, ee, oo) ,
(7.5) nlir?o a(n)E[1—exp(— zE}lx,"X,-(n)); (Xi(n))esr1sisa = 0]

= 1’,\(%1’ --’)\'c’ 00, v, oo)_-»\l/-(o’ 00,0’ 00, oo, oo).
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Proof. First we remark the following fact; if lim X(n)=X in distribution
and lim P[X(n)E A]=P[X € A] for a closed set A'z—;lo:en for any bounded con-
tinu’:):: function f(x) on R4 we have lim E[f(X(n)); X(n)= A]=E[f(X); X A4].

Let {X®(n)},<i<tam1 be the inZlZptndent copies of X(n) and set Y(n)=

[a(m)]
kgl X®(n). Then by assumption (b),
¥(0, ++,0, 00, ++, 00) = —;l_i)rilog P[(Xi(n))cs1sisa = O]
= _;;l—lf?o log P[(Yi(n))cs1siza = 0] -
By assumption (a), we have lim ¥(#)=JX in distribution. Therefore by the first
remark we have o
1!,-(7\'1, oo, )\f’ 00, .o, oo)
— —lim log Efexp(— SNTi(n); (¥i{r)evssisa = 0

c
= —lim log Efexp(— 'EIX‘X,-(n)); (Xi())e15i<4 = 0]
n—oo 1=

= lim an) (1—Elexp (— TMX0); (X evssisa = 0]

which proves (7.4). (7.5) follows from (7.3) and (7.4).

Proof of Theorem 2.2. Leti€C,and t>0. Then by Theorem 2.1,
(7.6)  lim n(1—Eeifexp(— ﬂga jgp"‘”‘ﬂ’”h’zi([nt]))]) = Vra(t, M’
It follows from Lemma 7.1 that
(7.7) lim n(1—Pol(Z,([n1))jeca = O) = (tB) "
But Yra(t, (0%, A)) is the solution of

%«!f«(t, (0%, A%) = —Batra(t, (07, A%)), (0, (07, A7) = vad”.
Hence

(7.8) Palty (00, 0%) = lim (s, (0, 2%)
JECy
= lim — Y
AJ—> 00 1 +tB¢v¢h
Jj€Cq

= (tBs)7".
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Therefore by Lemma 7.2,
(7.9)  hmn(l—Eglexp(— 33 23 n”"®ONZ([nt])); (Z,([n1]))seca = 0])
n—>o0 B<ajeCg
= Va2, A®D, %)) .

This proves (2.11) and (2.13). (2.12) and (2.16) follows from Lemma 7.2, (7.8)
and (7.9). (2.15) is obvious from (2.9) and (2.12).
Next we shall prove (2.14). By (2.16) we have

(7.10) (2, N) = (Ba) 1142, M) .
By (2.10) we get
L (#a(t, M) = — Bt M+ 2041, 1)

3T a MO,

V(@) 22 jECh
i.e.,
t t
tult, V) = —Baf (svruls, W)Yo +-2{ svrals, W)
0 0
—i—st 2V D) ae NEN0s
oy(fla)=2 jeCs
Therefore
t t
(7.11) tetgrs(t, A) — —B.,,S (W, x))st+zg s (s, M)ds
0 0
t
—i—S 3N 2 au N5 BN s
oy(fa)=2jeCs

Substituting (7.10) in (7.11) and differentiating with respect to ¢, we obtain (2.14).
The proof of (2.17) is also easy. First equality is obvious from (2.16). By
(2.10) and (2.14) we have

% {t(Yra(t, M)—71a(t, M)} = (Vralt, M)+24(t, X)) {1—2Bu(Vralt, N)—7a(t, M)} -

Second equality follows from this.
Finally the last statement of Theorem 2.2 is a consequence of Lemma 5.1,

for lim Pi[(Z;([nt]));ece=0]=1 by (7.1) and the left hand side of (2.12) equals
n—>00

Jim nEo[1—exp (~ﬂ§z jgﬁn'”""“’hjzf([nt])) |(Z([7]))jeca = 0] -

8. Proof of Theorem 2.3

We first prepare an expansion formula on generating function at the final
class.
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Let Cy be a final class. Then the generating functions Fi(s),ieC}, have
the form

8.1) Fi(s) = ) ki(sOM)s, icCy .
jeCxy
The function &j(s®*’) can be written as

(8.2) Ri(s@) = 30 pi(x6,m) (8P, 4, jEC,

where the summation is taken over all X, yy=((%4)secq)u<n, such that x,€Z,. It
is easy to see that

(8.3) Pi(X0,m) = P'(X0m, (€)n)

= Pi[Z n(1) = xo.m, Zx(1) = (€’)n] .
If we define
(8.4) KN (s®M) = (ki(8™™)); jecy »

then we have

(8.5) FV(s) = KN(s®¥)sV .
Noting that

(8.6) KNAOMy = MY,

we expand kj(s®™) at 1®M as follows,

(8.7) m;—kj(s®") =a§ 4 kefclulffk(s‘”’) (1=s"),4,j€C,
where
(8.8) 1 (s®M)
= 3 pilxo, N))ka:(l(O-N)_(I(O.N)_ sOME)xc, 7@, mdE |
o,
By (8.3), e
(8.9) ; EECNljfk(l(o’N)) = mj .
Setting
(8.10) Lila(s®M; w™) = (kguljfk(s(o»m)w"),-,jec o AN
we have
(8.11) F¥(s) = (M%—ENL,JY,(s«’»N); 1°—s%)s? .

By induction,
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(8.12) F¥(n:s) = (nl__Il(M%— 2 Lia(FOM(k: 8); 17— F*(k:s))))s" .
k=0 a<N

By (8.9),

(8.13) Lita(1OM; w1V = (3] 23 L) ecy

JECy k€Cy

—( 2 miw );ecN=Mg .
keCy

Set
(8.14‘) en(h) = ((exp(—n"”(5)+1)\.j))jecﬂ)1§p§N .
Then by (8.12) we have

N :
C1) - Edop(= 2, B vV L D ]ecs

= f"v]([nlt]: e,(N))
nt]—

=( II (M¥— 2 Ly.o(FOV(k: e,(N)); 1°— F*(k: e,(A))))es (N) .
k=0 a<N

Therefore to prove Theorem 2.3, it will be necessary to estimate
(8.16) 1°—F°(k: e,(A)) = (1—E[exp(— >} E n"’(’)“x’Z {R)])icca s
r<aje

for every a<N.
In the following lemma, we do not assume that C is a final class.

Lemma 8.1. Suppose that icC,.
(1) If pa=1, then

(8.17) lim n(1—Ei[exp(— SV Y pOA Wiz (D))
n—>o0 r<ajeCy
= Vra(t, M), >0,

where 4 is the solution of (2.24).
(i) If pa<<l, then
(8.18) lim n(1—Efexp(— 33 3} a0 ONZ([ar)))
n— oo

r=ajeCy
= N E m*iuira(t, N), t>0.
= v(a)+1 jeCs
pp=1
Proof. First we shall show (i). Choose any convergent sequence {A,}
in R:. By Theorem 2.1 and Lemma 5.1, we have

(8.19) lim n(1—Eg [exp(— 2} >} nYNIZ ([mD)D
n—>o0 r<ajeCy
= Yra(t, lim N, )u’ .

n—»oo
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Take Nj=n"O*M+®-1\i icCy, y<a. Then by (5.10) we have
. {7\" if v(7, a)+v(a) = v(7)+1,
lim 2] = .
PO 0 if »(v, a)+v(a) < v(v)+1.
From (2.10), yra(2, lim A,)="Va(,M).
n—> oo

Next we shall show (ii) by induction. The induction hypothesis is this; for
any B<a with pg<1,

(8.20) hm n(l —FE, [exp(— 2 n YOI 7. ()]
P Y m* ’\lfy(t h), t>0,71€Cs.
V(r) V(ﬂ)+1 jeCy
oy=1

We first prove the following relation; if 8<a and 1€ Cl,
(8.21) lim n(1—Eq[exp(— 2} >} n‘”(8)+”(°’)7\ij([nt]))])

n—>oo 0=p jeCs

Pa(t, Mu' if pg = 1 and »(B) = v(a)+1,

*i, ] . _
= v zv‘imﬂ JEE,”’ N if ¥(B) = v(a),
P

0 otherwise.

The first two cases on the right hand side of (8.21) are immediate from (8.17)
and the induction hypothesis (8.20). In the other cases (pg=1,7(8)=v(a)+2
or pp<<1,v(B)=v(a)+1) it follows from (5.10) and (5.11) that

(8.22) (v, B)+1—2(7)+2(a)=<0.

By substituting B,rv=2 and n*™A*1YMU™ ) for or,v and M in Lemma 5.2, we
have
I—Edfep(~ 3} 3 w0 ONZ ()] = O™,
=8 je

which proves the last part on the rlght side of (8.21).

Set e,(M)=((exp(—n" "N N\)).cc )vza. For every i€Cp, B=a, we have
(8.23) Edexp(— 3 3 a0z (R))] = Fi(k: e,(\)).

r=fjely
Substituting s=e,(N), n=[n#] and /=0 in (5.23), we have
nt -1

(8.24) 1°—F*([nf]: e,(M)) = ( (M o —M(F(k: e,(N))))) (1°—ez(M))

[n]—1 [nt]—1

+ﬂ§‘.a kZO (m_H (MG—MG(F(m: e,N))) (Mg —Ma(F(k: e,(X)))
(1P—F*(k: e, (MN))) .
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By using (8.21) we can complete the proof of (8.18) as follows;

(8.25) lim n(1%— F*([nt]: e,(N)))
n— oo
- B @-M)Mi S WM

f<a v(r)=v( /9
v(B)=v(a) py=1
+S e, ) (UM M

v(B)= V(a)

pp=1
2 W( A)( 2] (I—M3)"MM*}
u(ﬂ) v(a) B<r<a
pﬁ" V(ﬂ’T)=V(/9:a)=1

(M) MPRW

3N t, M) M*3u? ,
TS uca)+1'p”( M3
op=1

where the last equality is due to (3.13).

To complete the induction argument we have to show that (8.18) is valid for
each minimal element « in {a;ps<<1}. It is easy to see that, if @ is minimal
in the whole set {1,2,:--, N}, both sides of (8.18) are zero. Unless « is minimal
in the whole set, the argument in the preceding paragraph is still valid. (In
this case, there is no B such that 8<a with ps<C1, so that there does not occur
the second case in the right hand side of (8.21).)

Proof of Theorem 2.3. First note that u¥=17", since MY is a probability
matrix. Let e,(M) be the vector defined in (8.14). Set

s o
(8.26) x:'z{" ifj€Ca ) 2 2,

0 ifjeCav(@)=1.
We shall apply Lemma 4.3 to the right side of (8.15). 'To this end let us define
Ly FOM(k: e,(N); 1°—F*k: e, ALY if =2,
(8.27) my(k,m) = {"” " (R &, (V) . (et it e)
OnLy o FON(k: e, (N)); 1°— F%(k: e,A))1Y if v(a)=1.

We investigate the asymptotic behavior of these values. Recalling (8.16)
and substituting »=0, a=N and B=a in Lemma 5.3, we get

(8.28) 1°—F%k: e,(N)) <c(n2+n"'p*), 0Zk=[nt],
for v(@)=3 o1 v(a) = 2, pa<<l.

Then by the definition (8.10) of Ly, it follows that
[nt]1—-1
(8.29) llm E my(k,n) =0 if »(@)=3 or »(a) = 2, pa<l .

By Lemma 5.3 (1) we have
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(8.30)  1°—F*(k:e,(\)<cn™, 0<k=<[nt], for »(a)=2, pa=1.

Therefore by Lemma 8.1 (i),

[n] -1 t
831 lm 2 ml, n)=SvNLﬁYm(1‘°'”);\F¢(s, A)u)1ds
n— oo = 0

t
- vNMf,’u‘”S Ta(s, N)ds, for (@) =2, pa=1,
0
where the last equality follows from (8.13). By (8.28) and (8.30) it follows that

(8.32) lim max my(k,n)=0 forr(a)=2.

A slightly careful examination of the proof of Lemma 5.3 tells us that
(8.33) 1°—F%k: e,N)<cn™, 0Zk=[nt], for v(a)=1, pa<l.
(Note that (8.33) is not valid for 1*— F*(k: e,(N)).) By Lemma 8.1 (ii) we have

(8.34) lim #(1°— F*([51]: e,(X))) = lim n(1°— F*([nf]: e,(\)))
n—> 0 Nn—>o0
3N t, M) M*guf for v(a) = 1, pa<1.
= y(a)+1%( ) (@) P
pp=1
Therefore
[nt]—1
(8.35) 11m kZ m}y(k, n)
— SvNL,é‘f.,(l("’”) SV MEuPPa(s, M)1Vds
0 v(B)= V( )+1
pp=1
>3 vNM"M*:uﬂS Ta(s, Mds  for v(a) = 1, pa<1 .
V(ﬂ) V(a)+1
pe=1
Set

MYy = 31 LYFOV(k: ,0); 1°— F(k: €,(N)
v(a) =2

+ ZN Ly o(FON)(k: e,(N)); 1°— F*(k: e,(N))) ,
a<
v(a)=1
My ®(k, n) = ‘:‘_IN Ly (F®N(k: e,(N)); F(k: e, (N))—F*(k: e,(\))) .
v(a)=1

By those results obtained previously we have

(8.37) lim max oyMy®Ok, 01V =0,
n—oo 0<k<[nt]—1

(8.36)

and



208 S. SucITANI

[n]—1
(8.38) lim Z oy My Pk, n)1¥

n—>oco

- = vNMgu“S Fals, N)ds
u(a)=12 0
Pa=

¢
53 o] s Vs
a<N v(B)=v(a)+1 0

v(a)=1 pp=1

— 3 oM* “S Frals, N)ds ,
v(a) —1
Py=

where the last equality follows from (3.12).

We next discuss M¥®(k,n). Let a<N,v(a)=1 and iEC,. It then
follows that

(8.39) Fi(k: e,(X))—Fi(k: e,(\))
= Edlexp(— 2 2 n O IINIZ (k) — eXp(— 2 2 n’”“”“k’z (k)]

A=<a jeCp
v(8)z2
= Ea[l—exp(— E 2} N'Z;(k))]
V(ﬂ)—l
= cpt,
(8.40) lim (Fi(k: e,(N))—Fi(k: e,(N)))
n—> 0o
—1—Edexp(— 31 3 NZR)] = 1—Fi(k: (1)),
f=a jeCp
v(B)=1
where e(A)= lim e,(A) i.e.,
n—>oo
iy 1 forieCs, v(8) = 2,
(8.41) ) = {eXp(—x‘) for i€Cp, v(B) = 1.
Set My P(R) = 23 Ly o(FOM(k: e(N)); 1°—F®(k: e(M))). It is obvious from
u€a§£1
(8.39) and (8.40) that

(8.42) MY P(k, n) <MYy P(k) andnlirrjo My ®(k, n) = My (k) .
Moreover, each component of My (k) is bounded by ¢p* by (8.39). Hence
(8.43) éjoMx-<2>(k)<oo.

On the other hand
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B4)  MEOR) = 3 LEFO(k: eh); 1~ F(k: eV)
= MY—KY(FOM(k: (M),

where the first equality follows from F®(k: e(M))=1" whenever »(a)=2 and the
second equality follows from (8.7).

By (8.38), (8.39), (8.43) and (8.44) we can apply Lemma 4.3 to (8.15) to ob-

tain

(345)  lim F¥([nd]: e,(V)

= ep(~, 3 oMl | s, M)): Tim ( HKN(F<° (k: e(M)))eV(N)

Ry
= ( I Gualt, MGI,
p¢=—1
where
(8.46) 7(A) = lim (kﬁoK%(F(°'” Yk: e(M))))e’(A) .

Since MY is a probability matrix, the component of G¥() is identical. Let Gy(A)
be the common component function of GY(N). The formula (8.45) proves (2.18)
to (2.23). By (2.18) and (2.19) we have

(8.47) lim Efexp(— 2_1]2 NZn))] = Gy(N), i€Cy,

so that Gz(h)=G2((7x"),~ED<2)) is the Laplace transform of a probability measure
on Z{-. Infinite divisibility of G, 4(¢,N) is a consequence of Theorem 2.1. Thus
we have completed the proof of Theorem 2.3.

9. Proof of Theorem 2.4 and 2.5
We first prove Theorem 2.4. For each i€Cy we have

N
o1 Edlexp(= «El j;;‘cn-w)x,-z () (Z;(n));ec 0]
N .
= (Pl(Z(n)jecy #O) {1~ Eelexp (= 2, 2 n'”‘"’h’Zj(n));
(Zi(n)jecy = 0)—(1—E. [eXP(—aX_l » Z n Y ONZ(m)])} -
Since Cy is critical, #X the denominator in (9.1) converges to (By) %’ by Lemma

7.1 and 7 X the numerator converges to (V(1,N)—ry(1, M)’ by Theorem 2.1
and 2.2. Infinite divisibility of H(A) is obvious from (2.17).

We next prove Theorem 2.5. As in (9.1) we have
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9:2) Eifexp(— 2 5‘_. n"ONZ;(m))|(Z;(n)jeca)ucs, +0]

a=1je

= (Pe[((Zi(m))icca)aea, #0])”1{(1—Ee‘[exp(— 2 E "‘”‘“)X’Zj(ﬂ));

((Z;(n))ieca)aca, = 0])—(1—Eeiexp(— E Z n=ONZm))} -

a=1je
We have already proved that
N :
(9-3) lim n(1—Eg[exp(— 23 23 n7 "N Z(n))])
n—> oo ] a=1jeC,
= 2 2 m ]\pﬂ(ly h) )
 w(h=1jECs
pp=1
in Lemma 8.1 (ii) and that
94) ljim Te(1, (0P, AP)) = lim rg(1, (0P, AP)) = (Bg)™*
Ai—>o0 Ai— 00
jeCp jeCs

for pg=1,v(B) =1,
in (7.8). 'Therefore, if we prove
(9.5)  lim n(1—Pa[((Z(n));eca)eca, = 0]) = 23 2 m*u'(Bg) ™",
n—>o0 v(B)=1;€Csp
pp=1
we can use Lemma 7.2 to obtain

(9.6) hm n(l —Ei[exp(— z z: n'”("‘wz #(n)); (Z;(n))jeca)uca, = 0])

a=1je

= 2 2 m*uPE(1, ),
V(ﬁ)=11.iECB
pPB=

which, together with (9.3) and (9.5), completes the proof of Theorem 2.5.
Lemma 9.1. The relation (9.5) is valid.

The proof is quite similar to the proof of Lemma 8.1 (ii) and even simpler.
We make the induction hypothesis as follows; for any @<V such that pp<1,
ﬁ EAI)

9.7) Jim n(1—Pe[((Z(m)secs)ssp,sea, = O])
= 2 E *::uj(B-y)—l, 1605 .

V(T) V(ﬂ)"rl jeCy
py=1

Then the following relation is valid; if 8<N and i€ Cl,
9.8) Tim #(1—Pal(Z,(1)jecolozp s, = O)
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(Be) if ps = 1, BE4,,
m*’u! B. -1 .
= V(T)=?(ﬂ)+1jEZCy w/(By) if pp < 1,B€4,,
py=1
0 if BeEA, .

If pg=1 and B A,, there is no § such that §<B, §€4,. Hence the first case
on the right hand side of (9.8) is valid by Lemma 7.1. The second equality is
(9.7) itself. 'The third case is also obvious, since there is no 83, d€ 4, if B¢
A,. Let e(A)=(exp(—\));5isq and define A, by

09 M={5 Heonsen

Then for any BN we have _

(9.10) Pe[((Z(n))jecs)sss sea,=0]=F'(n:e(N;))  fori€Cs.
The rest of the proof is the same as in Lemma 8.1 (ii), so it is omitted.

RemARk. To complete the induction in the above proof we need the fact
that

(9.11) lim n(1—Pa[(Z;(n));ece = 0]) = 0, i€ Ca, if pa<l,
n—> o0

which is immediate from Lemma 3.1.

10. More on conditioning

In this section we shall extend Theorem 2.4 and 2.5 in the present paper
and Theorem 5.1 in [5] by the method of Ogura [5].
For each k=1, let

(10.1) vi(@) = max {v(a)—k+1,1},
(10.2) A, = {a;v(@)<k—1orv(a) =k, pa=1}.
Theorem 10.1. Let 1<k=< max v(at). Assume that the set Ay has nc final
1<as<N

class. cg, i€ Ca, are the constants defined by (2.8).
(i) Let Cy be a critical class. Then for each i € Cy there exists

(10.3)  lim Edfexp(— %1 3 wONZ ()| (Z0)secadnen, +0]
n—>o0 a=1j7€Cy
= I(A);

the limit is independent of i. I(N) is the Laplace transform of a probability measure
on R4 and is represented as follows;

(10.4) 1) = (Bh) (W= (M) —¥v(V) -
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Here b%,\pt and k= for v(a) <k with p,=1 are determined by the same recurrence
formula with respect to the partial order < as follows; if v(a)=Fk and ps=1, then

(10.5) by = (Ba) !, ¥a(M) = Pa(1, ) and 4r5=(A) = ¥3(1, N),
and if v(a)<k and ps=1, then

by = Ra(bh; B< ), ¥a(M) = Ru(¥h(N); B<ct)
(10.6) and
Yo "(V) = Ru(¥5~(N); B<at),

where Ru(xg; B< ) is defined by

10.7 Ru(xp; B<a) = ((Bas)? vchxp)? .
(10.7) ( G s B<a)= ((Ba)~ V5 ?(?)Htgéw a%p)
op=

(i) Let Cybea subcritical class. Then, for each iECy, there exists

(10.8)  lim E.exp(— z} 2 n " NIZ (1)) | (Z (1)) jeca)wea, 0]

n—>oco a=1jeCy

=I,(A).

I,(\) is the Laplace transform of a probability measure on R and is represented as
follows;

(10.9) L) =( 2 cb)™ 2 ca(va™(W)—va(M) -
T

Note that I(M) and I;(A) depend only on (\;i€C,, v(a)=k). The case

of k=1 is nothing but Theorem 2.4 and 2.5. The case of k= max v(a) was
1<as<N

shown in Theorem 5.1 of [5], although Ogura [5] uses more complicated recur-
rence formulas than ours. The simplification of recurrence formulas is due to
the recurrence formula (3.13) for m*} (see the proof of Lemma 10.1).

Actually we can prove a little more than Theorem 10.1. Let a€ 4, and
t1€Cy. As in section 9 we have

(10.10)  Eei[exp(— 23 Z n"ONZ; ("))l((Z,(”))Jecy)ysﬁO]

raje
= (P[((Z; (n)),ecy)m *0]) H(1—Eglexp(— TZ(“; yn'”"”’X’Z i(m);
TEA
(@) secryze = D—(1—Bulexp(— 2 3w NZ, )}

The following three lemmas enable us to find the limit of (10.10). Taking a=
N we obtain (10.3) and (10.8). The first two lemmas are esesntially due to
Ogura [5]. Set
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2@ if py=1,aE4,,
10.11 —
(1011 m@ = |- pa<1,aEA4,.

Note that py(a)<1.

Lemma 10.1. (i) If Cqis a critical class and o € A,, then

(10.12) lim n**(1—E,i[exp(— X} 2 n~"¥MNIZ (n))])
Sy iec..
(i) If Cq s a subcritical class and o € Ay, then
(10.13) ’}ir?on"““)(l——Eei[exp(—r? ]2 n” W MNIZ ((n))])

= > SV m* kN, i€C, .
O Ha)+17ECs W)
op=1

Lemma 10.2. (i) If C,is a critical class and a € A,, then
(10.14) ”ll_r}:o n"¥M(1—Pg[(Z j(n))jec.,)y»éi: = 0]) = btu', ieC,.
(1) If Cy is a subcritical class and o € Ay, then
(10.15) Tim 11— Pul((Z(n)ecpz = O)

N m* b, i€C, .
v(ﬂ) v(a) +1jeCs
op=1

Lemma 10.3. (i) If C,is a critical class and a € A,, then

(10.16) lim n's®(1—Eufexp(— 3 33 ™ ONZ(); ((Z1(0)eerlyz = O)

n—>o0 r=ajeCy
) TEA,;
= YheA), ieC,y.
(i) If Cuis a subcritical class and o € A,, then

(10.17) Tim n5@(1—Eufexp(— 3 33 n™sNZ,(0)); (Z,(0))ecalrso = O)
n—> o0 regz jECy YEA,
T k

= N 2wy =(N), i€C, .
v(B)= u(a)+1]ECp
5__
Lemma 10.3 is a consequence of Lemma 10.1 and 10.2, if Lemma 7.2 is
applicable to this case. Since y&(M) depends only on (A)ygzs, Write k()=

P (N for () >k, M for »(B)=Fk). It is enough to show that
(10.18) Jim (07 for w(9) >k, W for w(8) = B) = b, .

—>» 00

jeCpr(B)=Fk
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This is true by (7.8) if »(a)=Fk and by the recurrence formula (10.6) if v(a)<k.
The proof of Lemma 10.1 is the same as that of Ogura [5] except the proof
of the following relation;

(10.19) lim (1—Esfexp(— X} 23 n™%M\Z;(n))]) =0,

r<ajeCy
1€Cy, a€EA4L, pa=1,

which we need in the course of the proof. Ogura [5] used his Lemma 4.7 to
show (10.19). But the lemma does not apply to our case, for we allow the
existence of final classes in {1,2,:-,N} —A4,. Although our substantial task is
to prove (10.19) and our recurrence formula (10.6), we will outline the whole
proof.

Proof of Lemma 10.1. By Lemma 5.1 (iii) we have only to consider the
case when A>0,1=<j=<d. The relation (10.12) for »(a)=Fk and (10.13) for »(a)
=k—1 have been already shown in Lemma 8.1. For general a € 4,, we use in-
duction with respect to the partial order <.

First we shall show (10.13). Let a with ps<<1 and v(a)=I(=k—2) be fixed.
Assume that (10.12) is valid for any a’<e such that py=1,a’E€ 4,, and (10.13)
is valid for any a’<a such that py<<1, a’EA4,;. Itis easy to see that, for any
B<a and 7€ Cp,

(10.20) lim n"¥®(1—Egfexp(— X3 ) 2 % M\IZ (n))])
n—>oco r=pjely

V(M if pp = 1 and »(B) = v(a)+1,
) m* i) if v(8) = v(@)

= wm=v(+1jeCy
py=

0 otherwise.

Set
(10.21) €M) = ((exp(—n"PM)) eco o
Then, for any i€ Cp, B=a, we have
(10.22) Eglexp(— 23 X} n™"ONZ (k)] = Fi(k: e,(N)) .

r=pjely

Then we can show (10.13) by the same method as in the proof of Lemma 8.1 (ii),
so the proof is omitted.

It remains to show (10.12). Let @ with p,=1 and »(a)=I(=<k—1) be fixed.
Assume that (10.12) is valid for any a’<a such that p,=1, a’€4, and (10.13)

is valid for any a’<a such that py<<1,a’€4,. It then follows that, for any
B<a and i,
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(10.23) lim n?*(1—Eglexp(— 23 2} n ®OAZ(n))])
n—>co 0=8 jeCs

‘1"5(7”)“' if P = 1 and D(B) == y(a)_l_l ,
ik _
LB, mmesiia 2o
Py=

0 otherwise.
Set s=F(n: e,(A)) in (5.17). Since v,M;=v, we have by (5.26),
(10.24) 0 (1°— F*(n+1: e,(\)))—va(1°— F(n: e,(\)))
= 2 v(g7v—4;.(F(n: (M) (1—Fi(n: €,())) (1—F*(n: e,(M)))

1,5,k€Cq
+;Z<Jav¢(M s—Mp(F(n: €,(M))) (1P—FP(n: e,(N))) .
If we set
a, = v,(1°—F%(n: e,(N))),
by = (an)_zi’j’kzé‘lcavi(q;k_quk(ﬁ' (n: e,(M)) (1—Fi(n: e,(N)))
(10.25) (1—F*(n: e, (M),
Cs =ﬂ§avm(M s—My(F(n: e,(N)))) (1°P— F¥(n: e,(N)))

+vo(F*(n+1: e,N)—F%n-+1: e,,,V)),
then by (10.24) we get
(10.26) Api1—ay = —by(a,Y+c, .
Let p=2"""#1<1, Then %———,u,,(cx) by (10.11). We shall prove the following

relations;

(10.27) lima,=0,

(10.28) nErEn"c,, = Bart(A)*>0,
(10.29) nl_;r: b, = Bs>0,

(10.30) nl_lfilo Ela—;;‘(l“—F“(n: e, (M) = u”.

By (10.27), (10.28) and (10.29) we can apply Lemma 4.6 of [5] to obtain
(10.31) lim #*a, = {B,'*Bayrk(A)}"* = Yh(N) .

n—>oo
This, combined with (10.30), proves (10.12).
It remains to prove relations (10.27) to (10.30). First of all, by (5.31) of
[5], there exists some ¢>0 such that
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(10.32) Fi(n+1: e,,(A)—Fi(n+1: e,A)=cn'(1—Fi(n2+1: €,.,(N)), iECq .
We shall prove (10.27) (which is equivalent to (10.19)). Set a= lim g,

Nn—> 00

Then we can choose a subsequence {#;} so that

(10.33) lima,,=a,
J—>o
and there exists
(10.34) & = lim (1°—F%(n;—k: e,;_4(N))) ,
J—>oo

for every k=0. Substituting s=F(n;—1: e,,_(N)) in (5.17), we have

(10.35)  1°—F%(n;: e, (M)
= (M2—M(F(2,—1: €,,,(M)) (1°— F*(n,~1: €,,,()))
+ 2 (M= M3 (1,1 €0, () (1= Fn,—1: (M)

By (10.23) and (10.33) we get

(10.36) &0 = (Mg—M(1°—€0))E0)
(10.37) a = vaflo) = Vb — Va5 (1" —E0))60

< a—vMa(1° )60 -

Therefore vaM(1*—&(1))§(1H=0 and hence

(10.38) M,(1°—&3)60 = 0.

Hence

(10.39) §0) = M80), a = v .
Similarly we have

(10.40) 8y = M 805, a = vaf) .
Repeating this argument we obtain

(10.41) 80y = (M2)6G+1), a = Valhary, k=0
Then, by (3.3), i: follows that

(10.42) & = au”.

If a>0, then 1=£()>0. But since C, is a critical class we have mj(1*—&)) >0
for some 7, j&€C,. This contradicts to (10.38).
Next we shall show (10.28). By (10.27) and (10.32), lim v.(F*(n+1: e,(X))
n— co

—F"(n+1: e,.,(N)))=0. Therefore by (10.23),
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(10.43) lim 7",

n—oco

= 3 wM S M

f<a V(T) V(ﬂ)+1
v(B)=v(a) oy=1
+ 11r Mv.Mzuf
v+ AVJoeb3
pp=1

= 3 e X PiMIM*}PiMEPYuf
V(ﬂ) v(a)+1 B<r<a
op=1 v(Br)=v(Ba)=1

2 YE(MpaM*guf = Bara (M),
VCB) V( )+1
pp=1
where the third equality follows from (3.12) and the last equality is due to the
definition (10.6) and (10.7) for v-4(A). Hence we have proved (10.28).
By (10.26), (10.27), (10.28) and the boundedness of {b,} we have lim n"a,=

n—oco

lim n*a,,,= lim {n"a,(1—a,b,)+n"c }_ llm n*a,+Bapi(N)2.  This means that

n—> oo n—oo

B__ 8
lim n*a,=co. Therefore by (10.23) we see that lim — L —2 (1:€:(N) _
n—>co 1o Va(1"— F(n: e,(N)))

for any 8<a. Then, as in the latter half of the proof of Lemma 6.1, we obtain
(10.30). 'Therefore lim b,=B,>0 by definition of b,.

n—> 00

For the proof of Lemma 10.2 we remark that as in Lemma 9.1, for any 8=
a,

(10.44) Pe[((Zj(n)jecs)sss sen, = 0] = F'(n: €(No)), i€C,
where e(M)=(exp(—\))1sisq and A, is defined by

oo if iEC-,, 'YEA[,,

(10.45) M0 ifieCy, ved,.

Then the proof of Lemma 10.2 is the same as that of Lemma 10.1.

11. Examples

In the first three examples, the mean matrix is assumed to have the form

100
110 0

(11.1) M=|011
110

0

011



218 S. SuciTant

Then it is easy to see that

(11.2) Ci=1{i},pi=1,
(11.3) 1<2<-+<d,
—j+1  if i=j,
(11.4) v(j,1) = { 1 i i<,
and
. Lo iz,
(11.5) m*i = lim n™ 00 = { ((—))!
oo 0 if i<y

Let f(s) be a one-dimensional generating function such that
(11.6) f()=1,f"(1)=2B>0.

Recall that s, M denotes the d-dimensional vectors; §=(s");<;<4, 0=5'<1 and A=
(M)isisar M 20.

ExampLE 1. Let F'(s)=f(s"), Fi(s)=s""f(s), 2<i<d—1 and F¥(s)=s"""s".
Then Cy(1=d—1) is a critical class and C, is a final class. We have q; ;=
1 bo— 1
o Bi i T e
(==t )

(11.7) Yri(t, N) =nlgr:° n(1—Ei[exp(— ]éln"“ INZ([21]))])

and (¢, M) is the solution of

By Theorem 2.1, we get

(11.8) ‘l’:(’ M) = —Byn(t, AP+ 2( ) o,

\If.-(O, M) =2\,

for i<d—1.
It is easy to see that ¥;=+;. Then by Theorem 2.3 we obtain

d 1
(11.9) lim Ed[exp(— .len" “INZ(n))] = exp(——S Vra_i(t, N)dt)e™ .
Nn—> o0 j= [}

This is already given in [2] by a different formulation.

In case it is necessary to distinguish +; for various d’s, we shall write v, ;,
i=1,2, -

If d=2 or 3, we can solve (11.8) explicitly for i=d—1; if d=2,

1
11.10 A= —2 |
(11.10 Yt ) =
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(1.11)  lm Egfexp(—n"NZyn)—A2Zy(n))] = (1--Br) ™3 |
71— 0o
and if d=3,

AV Exzcosh(\/ BA't)4+V/ Alsinh(V Balf)
B v/ B\*sinh(V BA't)+V Alcosh(V BAlt)’

(1L12) ot M) =
(11.13) lim E,s[exp(— %} ni"NZ(n))]
n—> o 1=

= (cosh(V BAY) 422 %sinh(\/ BAY)) VBN
Let a;=0,1<i<d—1 and A=0. By substituting M'=(d—j—2)! a;\, (j =<d—2),
A '=a,_\, A?=0 in (11.8) for i=d—1 and (11.9), we have

d—2
(1114 lim E,_,a[exp(—)\.jg i~ d—j—2) a,Z }(n)—An"'ag_,Zs_(n)))

= eXp(—s:;!;'d—l(t’ )“)dt) ’

where yr,_,(¢, \) is the solution of

d- _ -2
i, N) = —Birg_yi(2, A)? I,
(11.15) dt‘l"d 1t ) Va1 )+j§1a1 A

\{p‘d—l(09 7\') =a; i\ .

If a;=0, 1=<i<d—2, then (11.14) is the Laplace transform of a gamma distribu-
tion. If d=3 and 4;>0 for some 1=i<d—2, then (11.14) is the Laplace trans-
form of an infinitely divisible distribution with a smooth density (see [10]). A
class of ordinary differential equations closely related to the infinitely divisible
distributions is given in [11].

ExampLE 2. Let F'(s)=f(s"), Fi(s)=s"""f(s"), 2<i<d—2, and F(8)=¢""',
i=d—1,d. In this case, C;(!=d4—2) is critical and C;(i=d—1,d) is final. By
Theorem 2.1 we have

d—1
(11.16) Yrg_1(t, N) = lim n(1—Eqa-1[exp(— _Z}ln""’x"Zj([nt]))])
”'—)00 J=

where yr;_, is the solution of

i\p (t L) =di2—x_f_td—j-z 1!, (0 N) — 7\'4-1

dt d—-1\% j=1 (d——]-—-Z)' ’ d-1\Y» ’
i.e.,

d—1 i
N d-j-1
SN =2 — 7,

Hence by Theorem 2.3,
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(11.17) hm E a[exp(— En’ NZ(n))] = exp< s (d}_;)l)

This is the Laplace transform of a delta measure.

ExampLi 3. Let FY(s)=f(s), Fi(8)=s""'f(s"), 2<i<d. Then all the classes
are critical. By Theorem 2.4 we have

d
(11.18) lim Ed[exp (— Eln"’*f“)\.fZ ()| Z 4(n) %=0]
n— oo j=

= B(7(1, N)—rs(1, N))

where 4, is the solution of

(11.19) "’d(’ A) = — Bt 7»)2+]§=3 (d—]——l)—'t'i‘i-l’

'\I"d(oy h') = )\'d )
and
(11.20) 3 3) = lim (1, 1),

This is already shown in [2] by a different formulation. If d=1 or 2, then we
can solve (11.19) explicitly; if d=1,

1
(11.21) M) =17 Byu"’” aBA) =,
(11.22) lim Eaexp(—n""NZy(n))| Zy(n) +0] = (1-+BA\Y) ™,
n—>oo
and if d=2,

L) — M V/Ba*cosh(V BAY)+V Alsinh (Vv BAl)
V2l M) =N g Brzsinh(v/ Bri) -/ Meosh(v/ Bat)
- _[Alcosh(V'BA't)
VitM) =Y sinh(V BAY)’

(11.23)

(11.24) lim E.[exp (—n 2\'Zy(n)—n"N2Z,(n)) | Zy(n) +0]
n— oo

—VEu cosh(v/ B_Xl)_\/ BX\Zcosh(V BAY) 4V Alsinh(v/ B_A,_l))
o sinh(VBAY) vV BaZsinh(V B4V Alcosh(v BAY)

Letting k=2, we apply Theorem 10.1. In this case, »(a)=k is valid only
for a=d—k-+1. Hence
bg—k-&-l = B-l )
(11'25) ‘I"Z—kﬂ(h) = 1I’d—le+1(1a h) = ‘l"d—le+l(1’ Av) ’
Yiia1(V) = Vaora1(1L, M) = Yiea(l, A),
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where Yr;_541(t,N) and Yr7-s+1(,A) are given by

%‘I’d—kﬂ(t» A) = =Byt MY +]¥ F_—%td""i ,

‘I’d-k+l(03 h’) = )‘d—k‘u )
Pik+1(t, M) zld_lkigl Va-pa(t, h) .

(11.26)

Recurrence formula (10.7) is given by
(11.27) Ri(x;j<i) = (B ;)2
It then follows that

d—k+1 d
(1128)  lim Edfexp(— 3} a0 Z 0~ 31 aowZ )|
n— co j=1 j=d—

(Z(n))a-p+15j<a F0]
= (BYien(l, x»”‘“—(B«m w1, M)

If k=d, then \n(t,\)=

tB _and ¥, x)_—

Therefore we have

lim E, d[exp(— E n~"NZ(n))|(Z;(n)),<j<q 0]

U—> 0

- 1_(1—ﬁl§;l)w :

The case of d=2 is already given in [5].
We shall give an example such that Cy is a final class with $Cy>1.

ExampPLE 4. Let F'(s)=f(s"), F(8)=s'f(s), F3(s)=% f(sz)s3+—12— f(sY)s* and
F‘(s):% f(s‘)s3+% f(s%s'. Then the mean matrix is

1000
1100
1111
11.29 M=+ 1 1]
(11.29) 2 2 2 2
1313
4 4 4 4

It is easy to see that

(11.30) C,={1},C,= {7} C;= {3, 4} p=p=p=1,
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(11.31) 1<2<3,

a—pB+1 if a=g,

(11.32) ¥(B, a) = {_1 if a<pB

and by Theorem 3.1,

1 0 00

1100

1 2 1 2
11.33 M= = - =|.
( ) 33 33
1212
3 333
Obviously, C,, C; are critical and Cj is final. It follows from (11.33) that a,,=
b, ;=1 and c2=%. By Theorem 2.1 we get

2
(11.34) Yro(t, A) = lim n(1—Eez[exp(—jgln"‘%'Zf([nt]))])

Nn—> oo

and r, is the solution of
%‘Pz(l, A)= —B‘I’Z(t: R’)z"_)"l) Y0, R') =%,
i.e.,

MV Bacosh(v BAlt)++/ Alsinh(v Balt)
(11.35) Vit N) = B V/BN’sinh(V/ BAY)+V Mlcosh(V BAY) |

Therefore, by Theorem 2.3, we have
(11.36) lim Ei[exp(—n"2A'Z(n)—n""N*Zy(n)—NZy(n)—N'Z (n))]
Nn—> 00

— exp( — %g:‘\pz(t, L)dt)‘(%e-ha—[—%e-m)

= i(cosh(\/ B\Y) 422 'ngsinh V/ BAY)) 2B(eN 2072 |
3 n ( )

for 1=3,4.
Finally we shall give an example such that {C}, -*-,Cy} is not linearly ordered.

ExampLE 5. Let FY(8)=f(s"), F¥(s)=s's, F3(s)=s'f(s*) and F*(s)=s%%"
Then

(11'37) Ci = {1'}’ Pi = 1,
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(11.38) 1<2<4, 1<3<4 and neither 2<3 nor 3<2,
(11.39) v(4)=1,v(3) =»(2) =2, (1) = 3.

In this case, C, and Cj; are critical and C, and C, are final. By Theorem 2.1
we have

(11.40) lim n(1— Eifexp (—n"NZ([n])—n- N Z([n])])
= '\l"i(t) L), = 2) 3 )

where +Jr, and Jry are the solutions of

(11.41) Dyt W) =N, 0,8 = 2,
(11.42) dit«;»a(t, A) = — Byt MM, (0, M) = N2,
i.e.,

e =
£A) = x/g v/ BA3cosh(V BaY) 4V Msinh(v BaM)
"I"3( ’ ) - B \/ExsSinh(\/Blet)"i‘\/Tcosh(\/E{lt) .

Therefore, by Theorem 2.3, we obtain

lim E.s[exp(—n\Zy(n)—n"N2Zy(n)—n" N Zy(n) — N Z(n))]

Nn— oo

= exp(—{ tt, Mt exp(— [ (e, M exp (—19)

S B —__\-VYB
= exp ( — %k‘- AP— 7&4) (cosh(\/ BAY) G %sinh(\/ Bx‘)) .
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