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1. Introduction. The conformal automorphisms of the extended com-

plex plane C=CU{°°} form the Mϋbius group Mϋb Every element a of

Mϋb is a transformation of the form

a(z) = (az+b)l(cz+d)9

where aybyc and d are complex numbers with ad—bc=ί. Hence Mϋb may
be considered as a 3-dimensional complex Lie group, isomorphic to SL(2, C)
modulo its center. We denote by e the identity transformation of Mϋb. An
element a^Mϋb, a(z)={az-\-b)j(cz-j-d), different from ey is called parabolic
if tr2a—(a-{-d)2=4; a is called elliptic if tr2α=(α+</)2G[0 4); in all other cases
a is called loxodromic.

Let G be a finitely generated Kleinian group, Ω=Ω(G) the region of
discontinuity of G and Λ=Λ(G) the limit set of G. Let M(G) be the set of
Beltrami coefficients μ(z) for G supported on Ω(G), that is, the open unit ball
in the closed linear subspace of Loo(C) determined by the conditions

(1.1)

and

(1 2)

where Loo(C) is the complex Banach space consisting of measurable functions
μ on C with finite !/«, norm | |μ| |. Let wμ be the uniquely determined quasi-
conformal automorphism of C with the Beltrami coefficient μ=-w^w^y which keeps
the points 0,1, oo fixed. The above condition (1.1) is necessary and sufficient
in order that wμG(wμ)~1 is again a Kleinian group; this is easily checked and is
well-known.

Let 7i, γ2, •••, rik be a system of generators for G. A homomorphism X:
G->Mϋb is called parabolic if tr2%(γ)=4 for every parabolic element γGG.
Let X: G^-Mϋb be a parabolic homomorphism. Then X is represented by
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the point (%(7i), %(γ2), •••, %(γA))e(Mόδ)* and we may consider the set
Xp{G) of all the parabolic homomorphisms as a subset of (Mϋb)k. The identity
isomorphism id of G is represented by the point (ylf γ2, "•> Ύk)^(Mϋb)k.

A homomorphism X: G-^Mϋb will be called, in this paper, Ω-parabolic if
tr2%(γ)=4 for every parabolic element γ G G determined by a puncture on
Ω/G We denote by XΩ-P(G) the set of all the Ω-parabolic homomorphisms of
G into Mϋb.

A quasiconformal deformation of G is a homomorphism X sending γ G G
into αoa^oγo^oa^J^eΛftfft, where a^Mϋb and μ^M(G). The quasiconfor-
mal deformations of G form a subset Xqc(G) of Xp(G). Now we have the
canonical surjection Φ G : MϋbxM(G)->Xqc(G) that takes (ay μ)^MϋbxM(G)
into the homomorphism %eX? c(G) with X(7)==αo«Λ>γo(αo«>μ)~1. It is
known that ΦG is holomorphic (see Bers [1], [2]). We note that Xqc(G)d
Xp(G)<^XΩ__p(G). Moreover, XΩ-P{G) is, in a natural way, an affine algebraic
variety and a change of generators for G amounts to a biholomorphic trans-
formation of XΩ_p(G).

Now following Bers [2], we can give the definitions of stability of finitely
generated Kleinian groups.

Let G be a finitely generated Kleinian group and OΊ, γ2, "•> Ύk a n arbi-
trarily chosen and fixed system of generators for G. Then G is called quasi-
stable if, for every open neighborhood N of the origin 0 in M(G), there exists
an open neighborhood U of id=(yly γ2, •••, jk) in (Mΰb)k such that UΠXqc(G)
dΦG(MobxN). If there exists an open neighborhood U of id in (Mob)k

such that U f]Xp(G)= U Γ\Xqc(G), then G is said to be quasiconformaΠy stable.
Analogously, if there exists an open neighborhood U of id in (Mϋb)k such that
U f]XΩ-p(G)=U(~)Xgc(G), then, in this paper, we will say that G is quasicon-
formally stable in Ω-parabolic sense. From the fact already stated, it will be
easily checked that these definitions are well-defined, that is, are independent
of the choice of generators for G.

In this paper we shall be concerned with the above stability of finitely
generated Kleinian groups and prove some theorems.

2. Prerequisite lemmas. In this section we prepare some notations
and lemmas for the later discussions.

Let G be a Kleinian group. Let D be a non-empty open subset of Ω(G)

invariant under G such that C\D contains more than two points. The pair

(D,G) is called the configuration (D,G) (see Bers [3]).

A quadratic differential (or an automorphic form of weight —4) for a con-
figuration (D,G) is a holomorphic function φ(z) in D such that φ(7(z))ryf(z)2=

φ(z) for any γ e G . It is called integrable if | |φ | | ^= \ I \φ(z)\dxdy<ooy and is
J JD/G
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called bounded if \\φ\\B=\\^D2Φ\\= sup \-52(z)\φ(z)\ <ooy where \D(z)\dz\ is

the Poincare metric on D. Integrable quadratic differentials for (D, G) form a

Banach space A(D,G) with the norm | | 1^. Bounded quadratic differentials for

(DyG) form a Banach space B(D,G) with the norm | | \\B. Let DG be D with all

elliptic fixed points of G removed. Assume that DGjG is of finite type, that is,

DGjG is a disjoint finite union of Riemann surfaces *SΊ+*S2+ "m + Sm where each

Si is obtained from a compact Riemann surface of genus g{ by removing ,w, ( <

+ °°) points. Then, as is well-known, B(D,G) is identical with A(D,G) and the

dimension of B(D,G) is equal to Σ (3#t—3+w, ) (see Chapter III of Kra [5]).
1 = 1

According to Ahlfors' finiteness theorem (see [5] and the literature quoted

there), if G is a non-elementary finitely generated Kleinian group, then ίlGjG

is of finite type and the dimension of B(Ωly G) is finite. We denote its dimension

by σ(G). For φe5(Ω,G) satisfying | | λ5 2 φ| |<l , set μ(z)=X^2(z)φ(z) for s e Ω ,

μiΛ=0. Since \l(Ύ(z))y'(z)j'(z)=\2

Ω(z) for any γ E G , we have μ^M(G). Such
μ are called canonical Beltrami coefficients for G. They form the open unit ball

Mcan(G) in a vector space of dimension σ(G).

Lemma 1. Let G be a finitely generated Kleinian group and let jl9 γ2> •">

jk be a system of generators for G. Put Gx=aGa~ι for a fixed a^Mob. Then

there are biholomorphic bisections θ: (Mob)k->(Mόb)k and τ\ M(G)-^M(G1)

satisfying the following properties:

(1) τ(0)=0,

(2) θ({7» Ύ2>

θ(X^p(G))=XQ,p{Gι)9 and

(3) θ(ΦG(Mϋb X iV))=ΦGl (Mώ X τ(JV)) for any subset N in M(G).

In particular, if G is quasi-stable or quasiconformally stable or quasiconformally

stable in Ω-parabolίc sense, then so is Gu respectively.

Proof. We define θ: (Mob)k->(Mόb)k by θ((% γ2, - , ^

aoj2oa~\ —, αoγ^oα"1) for (ft, ft, —, ft)G(Mόi)*. We define T by

^ ( α " 1 ^ ) ) ^ 7 ^ ) / ^ " 1 ^ ) for μ^M(G) and £<ΞC. If we set W^wμoa~ι for

)y then the complex dilatation μ r of W satisfies μw=T(μ) By this fact,

we readily see the properties (1),(2),(3) to hold and the latter part of the lemma

follows from these properties and the definitions of stability.

REMARK 1. In the case where G is non-elementary, if we set ψ(z)=

φ(a~\z))a~u(z)2 for φeβ(Ω(G), G), then we can easily check that ψ belongs

to fi(Ω(G!), GO and that T^M

Lemma 2. Let G be a non-elementary finitely generated Kleinian group
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and 7i, 72» *"> Ύk a system of generators for G. Then the three following con-

ditions are equivalent to each other:

(1) G is quasi-stable,

(2) for every open neighborhood N of the origin 0 in Mcan(G)y there exists an

open neighborhood U of id=(rγu

rγ2y •••, 7*) in (Mϋb)k such that U ΓiXqc(G)d

ΦG(MobxN),

and

(3) if V is a sufficiently small open neighborhood of (e,0) in MΰbχMcan(G),

then the restriction ΦG\V of ΦG to V maps V bϊholomorphically onto some open

neighborhood of id=(rγ1, 72> "•> Ύk) in Xqdβ). In particular, there exists an

open neighborhood U of id in (Mϋb)k such that U Π Xqe(G) w a complex analytic

submanifold of dimension cr(G)+3 of U.

Proof. According to Lemma 1 and REMARK 1, we may assume that G is

normalized such that the points 0,1, oo are the attractive fixed points of some

loxodromic elements, say, γ^ , *y2*, γ3* of G, respectively. In this case, if

we fix a sufficiently small open neighborhood Jv of 0 in M(G), it has been known

that there exists an open continuous mapping ΠΩ : ]§->Mcan(G) such that ΠQ(0)

= 0 and ΦG(tf>Aθ=ΦG(<2>ΠΩ(μ)) for a^Mϋb and μ^N(see Theorem 1 in Bers

[3])

Assume that G is quasi-stable. Let N be a given open neighborhood of

0 in Mcan(G). Then there exists an open neighborhood U of id=(rfly 72> "*,

7k) in {Mϋbf such that U{λXqc{G)(ZΦG{Mobxliaι{N)y Since ΦG(Mϋbχ

nz\ft))c:ΦG{MϋbxN), (1) implies (2).

By the definition of quasi-stability, (3) clearly implies (1). Thus it remains

to prove that (2) implies (3). Put F=aowμ for a^Mϋb and μ<=M(G). Then

a is uniquely determined by the homomorphism %: jh-^FoyoF'1. Indeed,

a takes 0, 1, oo into the attractive fixed points of %(7i*), %(γ2*) a n d X(7a*),

respectively. Furthermore, we can easily verify that a depends continuously

on X G X ? C ( G ) . Thus, for any open neighborhood W of e in Mϋb, there exists

some open neighborhood U1 of id in (Mϋb)k such that

(2.1) £7χ flX i C(G)(ZΦG(WxM{G)).

Let N be any open neighborhood of 0 in Mcan(G). Assume the property (2).

Then there exists an open neighborhood U of id in (Mϋb)k such that

(2.2) U Π Xqc{G) c ΦG{Mϋb x N).

We may assume that UdUx. Owing to (2.1) and (2.2), we have Uf]Xqc(G)

CZΦG(WxN). This means that, for any open neighborhood V=WxN of ( ,̂0)

in Mϋb X Mcan(G), there exists an open neighborhood U of id in (Mϋb)k such that

(2.3) ί / Π l ί t ( G ) c Φ c ( F ) .
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Since we know by Lemma 1 in Bers [2] that the restriction ΦGiΛfbίχMcβΛ(G) t o

MϋbxMcan(G) of ΦG has maximal rank σ(G)+3 at the point (tf,0), the above
(2.3) implies (3). Thus we see that (2) implies (3).

3. Criteria for stability. A Kleinian group G acts on the right on the

vector space Π of quadratic polynomials via

PΎ(Z)=P(ΎZ)IΎ'(Z), (pen, γeG, *eC).

One can thus define the (first) Eichler cohomology group H^GyTl), that is,

Hι(G,U) is the space of cocycles Z\G,U) factored by the space of cobound-

aries B\G,Ώ). I{p<=Z\G,n) satisfies

(3.1) p\G0GB\G09Π)

for every parabolic cyclic subgroup Go of G, we say that p belongs to PZ\G,

Π), the space of parabolic cocycles. We denote by PH\G, Π) the space of

parabolic cohomology, that is, the space of parabolic cocycles factored by the

space of coboundaries. Analogously, the space PZQ(G, Π) of Ω-parabolic

cocycles is defined as the space of those p^Z1(G, Π) for which (3.1) holds for

every parabolic cyclic subgroup Go of G which corresponds to a puncture on

Ω/G, and we denote by PHl

Q(G, Π) the space of Ω-parabolic cohomology.

From these definitions we have the equalities

(3.2) dim PH\G,n) = dim PZ\G,Π)-dim B\G,U)

and

(3.3) dim Pί^(G,Π) = dim PZ^(G, Π)-dim B\G,Ώ) .

For a non-elementary Kleinian group G, we have the so-called Bers' map

/?*: JB(Ω, G)->JJP(G,Π) which is anti-linear and injecΐive, and we know that

β*(B(CϊyG))^PH\G,n) (see Kra [5]).

Gardiner and Kra have discussed in [4] the intimate relation between

XQ-P(G) andP#£(G,Π) and the analogous relation between Xp{G) and PH\GfU).

Here we state slightly stronger versions of some results in [4] as the following

lemmas (see Theorem 8.4 in [4]). The proofs of these stronger versions are

already accomplished in [4].

Lemma 3. Let G be a finitely generated Kleinian group and yly γ2> "•> Ύk

a system of generators for G. Then there exist an open neighborhood U of id=

(OΊ, %> •"> Ύk) in {Mϋb)k and a complex submanifold V of dimension dim PZι

(G, Π) of U such that U Π Xp(G) C V. If, further, U Π Xp(G) itself is a submani-

fold of U, then the holomorphic tangent space of U Π Xp(G) at id is isomorphic to

PZ\GyU) and hence the dimension of UΓ\Xp{G) equals dimPZ\G9U). Analo-

gously there exist an open neighborhood U of id in (Mob)k and a submanifold V of
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dimension dim PZ^(G,Π) of 0 such that UΠXΩ-p{G)ciV and such that, if

UΠXΩ-p(G) itself is a submanifold, then the dimension of UΓ\XΩ-P(G) is equal to

dim PZΩ(G,U).

REMARK 2. For a non-elementary Kleinian group G, we know that dim

B1(G9Tί)=3 (see [5]). Thus, for a non-elementary finitely generated Kleinian

group G, in view of (3.2) and (3.3), we have

(3.4) dim PZ\G, Π) = dim PH\G, IΊ)+3

and

(3.5) dim PZΩ(G,U) = dim PHΩ(GyU)+3 .

L e m m a 4. Let G be a non-elementary finitely generated Kleinian group.

If β*(B(Ωl,G))=PH\G,n), then G is both quasiconformally stable and quasi-

stable. If /3*(5(Ω, G))=PHΩ(G, Π), then G is both quasiconformally stable in

Ω-parabolic sense and quasi-stable.

Now we can prove the converse of Lemma 4 by using Lemmas 2 and 3.

Theorem 1. Let G be a non-elementary finitely generated Kleinian group.

Then G is both quasiconformally stable and quasi-stable if and only if β*(B(Ω, G))=

PίP(G,Π). Analogously, G is both quasiconformally stable in ίl-parabolic sense

and quasi-stable if and only if β*(B(a,G))=PHl(G,Ώ).

Proof. According to Lemma 4, it suffices to prove the necessity. Assume

that G is both quasiconformally stable and quasi-stable. Then, by Lemma 2,

there exists an open neighborhood U of (yly 72> '"> Ύk) i n {Mϋb)k such that

Uf\Xqc(G) is a submanifold of dimension σ(G)+3 of [/, where (γu y2> •••, yk)

is a system of generators for G. Since G is quasiconformally stable, we may

assume that

(3.6) UΠXP{G)= UΠXqc(G).

Then, according to Lemma 3 and REMARK 2, U Π Xp(G) is a submanifold of

dimension dim PH\G, Π ) + 3 of U. Thus, by (3.6), we see that σ ( G ) + 3 =

dim PH\Gy Π)+3, and because of the injectivity of β*, we have β*(B(ΓL, G))

=PH\G, Π).

In a similar manner, if G is both quasiconformally stable in Ω-parabolic sense

and quasi-stable, we see that β*(B(Ω, G))=PHΩ(G, Π).

REMARK 3. Bers conjectured in [2] that all finitely generated Kleinian

groups are quasi-stable. KruskaΓ [7] responded to this conjecture in the

affirmative for all non-elementary finitely generated Kleinian groups, but it

seems hard to follow.
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Let G be a non-elementary finitely generated Kleinian group and yu

Ύ2, •"•> Ύk a system of generators for G. Let X: G->Mϋb be an isomorphism
such that both X and X'1 preserve parabolic elements and such that X(G) is
a Kleinian group. All such X form a subset S of Xp(G). Using the fact
that a Kleinian group is elementary if and only if it has a commutative subgroup
of finite index, we see that if % e S , then X(G) is non-elementary. Let *SΊ
be the subset of S which consists of all X G S such that X{G) is quasiconformally
stable and let S2 be the subset of S which consists of all X^S with /3*(i3(Ω

Then we can prove the following theorem.

Theorem 2. Let G be a non-elementary finitely generated Kleinian group

and yly γ2, •••, yk a system of generators for G. Then Sγ and S2 are empty or open

in XP(G) and S2 is a subset of Sv

Proof. By Lemma 4, S2 is clearly a subset of Sv Let X be any element
of S. As both X and X~ι are isomorphisms which preserve parabolic elements,
we can see Xp(X(G))=Xp(G) as subsets of (Mϋb)k. Hence it suffices to prove
that, if id=(yly y2, •••, yk)^Siy then 5, includes an open neighborhood of
id in Xp(G) for i=ly2.

First we treat the case id^S^ Then G is quasiconformally stable and
thus there exists an open neighborhood U of id in (Mϋb)k such that U Π Xp(G)
= UΓ\Xqc{G). Let X be any element of UΓ\Xp{G). As % is a quasiconformal
deformation of G, we can see Xp(X(G))=Xp(G) and Xqc(X(G))=Xqc(G) as
subsets of (Mϋb)k. Hence we have

u n xp(x(G)) = u n xp{G) = u n xqc(G) =un xqc{x(β)).

Since U is also an open neighborhood of X in (Mϋb)k, this means that X(G) is
quasiconformally stable and X^SV That is, we have U f]Xp(G)ClS1. This
proves the theorem for SV

Next we consider the case id<=S2. This means β:¥(B(a(G)fG))=PH1

(G,Π). By Theorem 1, G is both quasiconformally stable and quasi-stable.
Thus, by Lemma 2, there exists an open neighborhood U of id in (Mϋb)k such
that Uf)Xp(G) is a submanifold of dimension σ(G)+3 of U and such that
UΓ)Xp{G)=Uf]Xqc(G). Let X be any element of Uf)Xp(G). As % is a
quasiconformal deformation of G, the open neighborhood U Π Xp(X(G)) of X
in XP(X(G)) (=XP(G)) is identical with U ΠXp(G). Hence U{)Xp{X{G)) is a
submanifold of dimension σ(G)+3=σ(%(G))+3 of U. On the other hand,
in this case, the dimension of UΓ\Xp(X(G)) must be equal to dim PZ\X(G),
Π)=dim PH\X(G),U)+3 by Lemma 3 and (3.4). Hence we see σ(X(G))+3
- d i m P^(%(G),Π)+3. So we have /3*(£(Ω(X(G)), X(G)))=PH\X(G)yn)
and %eS 2 , which show £/ Π ̂ ( G ) C 52. This completes the proof of the
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theorem.

REMARK 4. Under the hypothesis of Theorem 2, let X: G->Mϋb be an
isomorphism such that %(G) is a Kleinian group and XQ~P(X(G))=XQ_P(G) as
subsets of (Mϋb)k. All such X form a subset S of Xa_p(G). Let Sλ be the
subset of S which consists of all % G S such that %(G) is quasiconformally stable
in Ω-parabolic sense. Let S2 be the subset of S which consists of all XEΞS

with β*(B(Ω(X(G))y X(G)))=PHΩ(X(G)yU). Then, using the above lemmas,
Theorem 1 and (3.5), we can similarly prove that Sx and S2 are empty or open in
XQ_p(G) and that S2 is a subset of Sj.

4. Some results on stable groups. In this section, using some more
lemmas, we shall prove some results on stable groups.

Let K*z. 1 be a finite real number and wn a ̂ -quasiconformal automorphism

of C with the complex dilatation μn (n=ly2y •••). We say that the sequence

wnyn=\y2y •••, is a good approximation of a quasiconformal automorphism w

of C with the complex dilatation v if the two following conditions are satisfied:

(1) limα;n(£)=«;(#) uniformly on C with the spherical metric

and
Λ

(2) Yim μn(z)=v{z) for almost every point z in C.

Now we draw the two following facts from Lehto-Virtanen [8] (see
Chapter II and IV in [8]).

Lemma 5. Let K^l be a finite real number and W a family of K-quasicon-

formal automorphisms of C. If there is a finite positive number d>0 such that, for
Λ

every mapping w^W and for three distinct fixed points zl9 z2i z3^Cy the spherical

distances between w{z^) and w(Zj) (iJ=ly2,39iΦj) are greater than d, then W

forms a normal family with respect to the spherical metric. That is, every infinite

sequence of elements of W contains a subsequence which converges uniformly on C

with respect to the spherical metric. Furthermore, all its limit functions are also

K-quasiconformal automorphisms of C.

Lemma 6. Let K^l be a finite real number and let wn,n=ly2,- , be a

sequence of K-quasiconformal automorphisms of C which converges to a quasicon-
Λ A

formal automorphism w of C with the complex dilatation v uniformly on C with respect

to the spherical metric. If the complex dilatations μn(z) of wn tend to a limit μ(z)

almost everywhere on Cy then the sequence wnyn=ly2, •••, is a good approximation

of wy that is, μ{z)=v{z) for almost every point z in C.

Now we prove the following.
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Theorem 3. Let G be a non-elementary finitely generated Kleinian group and
^1,72, " >Ύk a system of generators for G. Assume that G is quasi-stable. Then
there exists an open neighborhood U of id=(fγ1, γ2, •••, yk) in (Mϋb)k with the
following properties;

(1) if Xn^UΓ[Xqc{G), then there exists a quasiconformal automorphism

wn of C with the complex dilatation μn^Mcan(G) such that wnoy(z)=Xn(
rγ)own(z)

for γ e G and z^C, and

(2) if a sequence χ Λ e U n l ? c ( G ) , « = l , 2 , •••, converges to the identity isomor-

phism id=(rγu

rγ2> *••>'/*)> then the sequence wnyn=l,2, •••, gives a good approxima-

tion of the identity transformation e of C.

Proof. By our assumption, G is quasi-stable. Thus, by Lemma 2, there

exist an open neighborhood V of (e> 0) in Mϋb X Mcan(G) and an open neighbor-

hood U of id in (Mϋb)k such that ΦG\M'όbχMcan(G) maps V biholomorphically onto

U Γ\Xqc(G). Hence every %WG Uf]Xqc(G) is induced by the quasiconformal

automorphism wn=anowμ» of C satisfying wnoy(z)=Xn(
fγ)own(z) for γ e G and

A

# e C , where (an,μn)^ V is uniquely determined by Xn.

It remains to prove the latter part of the theorem. Because of Lemma 1,

we may assume that the points 0,1, oo are the attractive fixed points of some

loxodromic elements of G. Now assume that a sequence Xn^U ΓiXqc(G),n=

1,2, •••, converges to id. Then, as remarked in the proof of Lemma 2, the

sequence an^Mϋb, w= 1,2, •••, converges to the identity transformation e and

thus we have lim an{z)=z uniformly on C with the spherical metric. In

this case, by Lemma 5, we see that the sequence wn=anowμn,n=l>2, •••, forms

a normal family with respect to the spherical metric and that, if wnk=ankowμ»k,

k=l,2, , is any convergent subsequence of the sequence, then the limit func-

tion w is a quasiconformal automorphism of C which keeps the points 0,1, oo

fixed. On the other hand, since lim μn(z)=0 almost everywhere in C, w is

conformal by Lemma 6. Hence w is the conformal automorphism of C which
Λ

keeps 0,1, oo fixed, that is, .w is the identity transformation e of C. Since we

have shown that the sequence &;„,#= 1,2, •••, forms a normal family with respect

to the spherical metric and that any convergent subsequence wnk,k=l>2,•••,
A

is a good approximation of the identity transformation e of C, the sequence wn)

w=l,2, •••, itself is a good approximation of e.

Corollary. Under the hypothesis of Theorem 3, if a sequence X n G l ? ί ( G ) ,
« = 1 , 2 , •••, converges to the identity isomorphism td=(ryli γ2> ••', 7*)> t^ιen the
spherical distance between the attractive fixed point of XH(y) and that of γ con-
verges to zero uniformly for all loxodromic elements
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Now we shall state one more lemma. The essential part of our proof of

the lemma is due to Maskit [9] and, for the sake of completeness, we shall give

the proof.

Lemma 7* Let G be a Kleίnian group and let F and w be quasiconformal

automorphisms of C with FojoF~1=worγow~1^Mϋb for γGG. If the complex

dilatation μw of w satisfies μw\A(G)—^y then so does that of F.

Proof. If we set ό=FGF~ι, then the quasiconformal automorphism

Fow~ι of C satisfies Fow~1o^(z)=^oFow~1(z) for z^C and tfeG. It is well-

known that Fow~\z)=z holds for all z^A(ό) (see Lemma 1 in Kra [6]).

Since Fow~ι is quasiconformal, Fow~ι is absolutely continuous on lines and

has finite partial derivatives at almost every point (see [8]). For any fixed

line Sy almost every point of A(6) Π S is a point of density of A(ό) Π S. Hence,

for almost every point #oeΛ((z), we can find a sequence of points ^GΛ(G)

with zn-^%0 and with Re(zn—z0)=0 (or Im{zn—zo)=O). Since Fow'1 is the

identity on Λ((r), we see d(F ow~ι) j dz=\ and d(Fow'1)/dz=0 almost every-

where on Λ((z). In particular, we have

(4.1) AVo»-W)=0.

On the other hand, if we set z=w(ζ), then

(4.2) μ^z) =

By our assumption, we have

(4.3) μwlA(G) = 0 .

Since w(A(G))=A(G), we see μF,Δ ( C)=0 from (4.1), (4.2) and (4.3).

Gardiner and Kra have remarked in [4] that, for a non-elementary finitely

generated Kleinian group G, if β*(B(Ω,,G))=PHl(G,n)y then there exist no

other Beltrami coefficients for G supported on Λ(G) than 0. On the other

hand, by Lemma 4, if fi*(B(rL,G))=PHl(G9n), then G is quasiconformally

stable in Ω-parabolic sense and hence G is, of course, quasiconformally stable.

Noting these facts, we can prove the following slightly modified form of Gardi-

ner and Kra's result.

Theorem 4. Let G be a non-elementary finitely generated Kleinian group.

If G is quasiconformally stable, then there exist no other Beltrami coefficients for

G supported on the limit set Λ(G) than 0.

Proof. Assume the contrary. Then there exists a Beltrami coefficient
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μ for G supported on Λ(G) such that μ\A(G)^FU We set μn{z)= — μ(z). Since
A W

limμ,w(#)=0 for # e C , we see by Lemma 5 and Lemma 6 that the sequence

wμ», n=\,2, •••, is a good approximation of the identity transformation e of C.

Let %M: G->Mόb be the homomorphism defined by %w(γ) (jaf)=«;μ«oγo(α;μ«)"1(ar)

for γ ^ G and z^C. Then the sequence %w,w=l,2,•••, converges to the

identity isomorphism id=(yu γ2> •"> 7*), where γ^ γ2, —, γΛ is some arbitrarily

chosen and fixed system of generators for G.

Since G is quasiconformally stable, there exists an open neighborhood U

of id in (Mϋb)k such that

(4.4) UnXp(G)czXqc(G).

If we choose a sufficiently large w0, then we see Xno^U. Also clearly %«0S

and

(4.5) Xno<=UΠXp(G).

Owing to (4.4) and (4.5), we can see that there exists a quasiconformal automor-

phism F of C with μF\A(G)—0 a n d that wμ"ooγo(2#μ«o)~1=:.FoγoF~1 for γ G G .

In this case, for the complex dilatation μnQ=— μ of wμ»of we have μn \^G)=0 by

Lemma 7. This contradiction proves the theorem.

Recently the author learned from Prof. Ahlfors and Prof. Kra that the

following result holds as a translation of Dennis Sullivan's theorem: Let G be any

finitely generated Kleinian group. Then there exist no other Beltrami coeffi-

cients for G supported on Λ(G) than 0.
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