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1. Introduction

Let G be a doubly transitive permutation group on a finite set Q and aE Q.
In [8], O’Nan has proved that socle (G,)=A XN, where 4 is an abelian group
and N is 1 or a nonabelian simple group. Here socle (G,) is the product of all
minimal normal subgroups of G,.

In the previous paper [4], we have studied doubly transitive permutation
groups in which N is isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with ¢ even.
In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set
Q with |Q| even and let a=Q. If G, has a normal simple subgroup N* iso-
morplic to PSL(2,q), where q is odd, then one of the following holds.
(i) G* has a regular normal subgroup.
(il) G®%=4; or S5, N*=PSL(2,5) and |Q|=6.
(i) G®=My, N*=PSL(2,11) and |Q|=12.

In the case that G® has a regular normal subgroup, by a result of Hering
[3] we have (|1Q], §)=(16,9), (16, 5) or (8,7).

We introduce some notations:

F(X): the set of fixed points of a nonempty subset X of G

X(A): the global stabilizer of a subset A(SQ) in X

X, : the pointwise stabilizer of A in X

X* : the restriction of X on A

m|n : an integer m divides an integer n

X® . the set of H-conjugates of X

| X|,: maximal power of p dividing the order of X

I(X) : the set of involutions in X

D,, : dihedral group of order m

In this paper all sets and groups are finite.
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2. Preliminairies

Lemma 2.1. Let G be a transitive permutation group on Q, a<= ) and N*
a normal subgroup of G, such that F(N")={a}. Let the subgroup X <N® be
conjugate in G, to every group Y which liesin N® and which is conjugate to X in G.
Then N¢(X) is transitive on A= {ye Q| X <N".

Proof. Let BEA and let gG such that B=a. Then, as X <N°F,
X*<NF=N" By assumption, (X¥)*=X for some ,EG,. Hence ghc Ny(X)
and a@"'=qg#'=B. Obviously N4(X) stabilizes A. Thus Lemma 2.1
holds.

Lemma 2.2. Let G be a doubly transitive permutation group on Q. of even
degree and N® a nonabelian simple normal subgroup of G, with acQ. If
Co(N®)=£1, then Ng=N*NNP for a+B<Q and Cy(N®) is semiregular on Q—
{a}.

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let G be a transitive permutation group on Q, H a stabilizer
of a point of Q and M a nonempty subset of G. Then

|F(M)| = INo(M)| x |M°NH|[|H]| .
Here MCNH={g'Mg|g'Mg<H, g=G}.
Proof. See Lemma 2.2 of [4].

Lemma 2.4. Let G be a doubly transitive permutation group on Q and
N*® a normal subgroup of G, with a= Q. Assume that a subgroup X of N* satisfies
XCa=XN" " Then the following hold.

i) F(X)NE*=|FX)Ny™| for B, 7€~ {a}.

(i) |F(X)|=1+|F(X)NBY| Xr, where r is the number of N®-orbits on Q—
{a}.

Proof. Let '={A,, A,, ---, A,} be the set of N®-obrits on Q— {a}. Since
G, is transitive on Q—{a} and G,>N®, we have |A;|=|A;] for 1<, j<r.
By assumption, G,=N;,(X)N® and so N (X) is transitive on T". Hence for
each 7 with 1<i<r there exists g&N;,(X) such that (A))*=A;. Therefore
IF(X)NA;|=|FX*)N(A)*|=|F(X)NA,|. Thus (i) holds and (ii) follows
immediately from (i)

Lemma 2.5 (Huppert [5]). Let G be a doubly transitive permutation
group on Q. Suppose that 0,(G)=%1 and G, is solvable. Then for any involu-
tion 2 in G, |F(2)|*=|Q|.

We list now some properties of PSL(2,q) with ¢ odd which will be required
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in the proof of our theorem.

Lemma 2.6 ([2], [6], [10]). Set N=PSL(2,q) and G=Aut(N), where g=
p" and p is an odd prime. Let z be an involution in N. Then the following hold.

(i) IN|=(g—1)q(g+1)/2, IN)==2" and C(2)=D,_., where g=¢€& {11}
(mod 4).

(ii) 'If q=3, N is a nonabelian simple group and a Sylow r-subgroup of N
is cyclic when r=2, p.

(iii) If X and Y are cyclic groups of N and | X |=|Y |2, p, then X is con-
jugate to Y in (X, Y> and N y(X)=D,...

(iv) If X<N and X=Z,X Z,, N y(X) is isomorphic to A, or S,.

(v) If |N|,>8, N has two conjugate classes of four-groups in N.

(vi) There exist a field automorphism f of N of order n and a diagonal auto-
morphism d of N of order 2 and if we identify N with its inner automorphism group,
{dP>N=PGL(2,q), {f><d)N=G and GIN=Z,xX Z,.

(vii) Cy(d)=Dy¢ and Ceppn(3)=Ditq_o-
(viil) Suppose n=mk for positive integers m, k. Then Cy(f")=PSL(2,p") if
k is odd and C y(f™)=PGL(2,p") if k is even.

(ix) Assume n is even and let u be a field automorphism of order 2. Then
I(G)=INYUd*Uu®¥. If nis odd, I(G)=I(N)Ud".

(x) If H is a subgroup of N of odd index, then one of the following holds:

(1) H is a subgroup of Cy(2) of odd index for some involution z< N.
(2) H=PGL(2,p™), where n=2mk and k is odd.

(3) H=PSL(2,p"), where n=mk and k is odd.

4) H=A, and q=3, 5 (mod 8).

(5) H=S, and q=7, 9 (mod 16).

(6) H=A;, q=3, 5 (mod 8) and 5|(q—1)q/q+1).

Lemma 2.7. Let G, N, d and f be as defined in Lemma 2.6 and H an
{f,d>-invariant subgroup of N isomorphic to D,_.. Let W be a cyclic subgroup
of <d>H of index 2 (cf. (vii) of Lemma 2.6) and set Y=0,W NH). Then
Co(Y)=W-Cip(Y).

Proof. By (viii) of Lemma 2.6, we can take an involution ¢ satisfying
O>H=CHW and [f,t]=1. Since N(Y)=<f, dONy(Y)={f,d>H, Cs(Y)=
Cipxaisa(Y)=W+C¢syxs(Y). Suppose hteC(Y) for some hE{f)>. Since ¢
inverts Y, & also inverts Y and so A% centralizes Y. Hence some nontrivial
2-element ge<{h) inverts Y, so that Cy(g) contains no element of order 4, con-
trary to (viii) of Lemma 2.6.

Throughout the rest of the paper, G° will always denote a doubly transitive
permutation group satisfying the hypothesis of our theorem and we assume
G*® has no regular normal subgroup.
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Notation. C*=C¢(N®), which is semi-regular on Q—{a} by Lemma
2.2. Let r be the number of N®-orbits on Q— {a}.

Since G,>N?, | B¥*| = |y¥*| for B,7€Q— {a} andso |Q|=1+7rX | B¥*|.
Hence 7 is odd and N7j is a subgroup of N® of odd index. Therefore N is iso-
morphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof
of our theorem will be divided in six cases.

Lemma 2.8. Let Z be a cyclic subgroup of Ng with |Z|=1,p. Then
() If |1Z|=2, |F(Z)|=1+4(q—€)|I(Ng)|7/| N5].
(i) If |Z|*2, |F(Z)|=1+|Nys(Z)|7[INxg(Z)|.

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).

Lemma 2.9. If N3#D, . and Z is a cyclic subgroup of Ng with |Z|=+1, p
and Ng(Z)F® is doubly transitive. Then C®=1 and one of the following holds.
(i) Ng(2)FD<LATL(1,q,) for some g,.
(i) Co(Z)Y"P>=PSL(2,p)), r=1 and |F(Z)|—1=|Nya(Z): Ny3(Z)|=p,
where p, (=5) is a prime.
(iif) Ng(Z)FD=R(3), the smallest Ree group, | F(Z)|=28.

Proof. Set Ng(Z)==L and F(Z)=A. By Lemma 2.6(iii), LNN*=D,,,

and LNN®=<>Y>Y >Z, where 0(8)=2, Y=Z(,.0)p2.

If (LN N*)*=1, then LN N®=Nj because L N N® is a maximal subgroup of
N°®. Since |[N®: Ng| is odd, LNN®=Ng=D,_,, contrary to the assumption.
Hence (LNN®)*%+1and as L,>>L,NN®and L,>Y, (L,)* has a nontrivial cyclic
normal subgroup. By Theorem 3 of [1], one of the following occurs:

(a) LA has a regular normal subgroup

(b) LA>PSL(2,p,), |A|=p,+1, where p;(=>5) is a prime

() LA=PSL(3,p1), pi>3, |Al=(py+1

(d) LA=R(3), |A|=28.

Suppose C*#1. Then there exists a subgroup D of C® of prime order
such that (L,)*r>D*. Since [L,, D]<D-:L,NC*=D(L,NC®*=D, D is a normal
subgroup of L,. By (i) and (iii) of Lemma 2.6, G,=L,-N* and so D is a normal
subgroup of G,. By Theorem 3 of [1], G® has a regular normal subgroup,
contrary to the hypothesis. Thus C*=1.

If (a) occurs, L* is solvable because L,/L NN®~=L,N®/N*<Out(N”) and
LNN®=D,,. Hence by [5], (i) holds in this case.

If (b) occurs, we have Y*==1, for otherwise (LN N®)*=1 and so Ng=LN
N®=D,_,, a contradiction. Hence 15=C4(Z)*<IL* and so Cy(Z)*>PSL(2,p,)
and Y*=Z,. Therefore [ANBY*|=p, and r=1 by Lemma 2.4 (ii). Since
| B¥ | =p,, we have | BE"¥*|=p,, so that |[LNN®: LN Ng|=p,. Thus (ii) holds
in this case.

The case (c) does not cocur, for otherwise, by the structure of PSU(3,p,),
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a Sylow p;-subgroup of (L)’ is not cyclic, while (L,)'<LNN*=D,,,, a con-
tradiction.

3. Case (I)
In this section we assume that N3<D,_,, where B+a, g=p".

(3.1) (i) If Ng#Z,x Zy, Nya(Ng)=Np and | F(Ng)| =r+1.
(i) If Ni=Z,X Zy, N ya(N®)=A, and |F(N%) | =3r+1.

Proof. Put X=N,a(Nj3). Let S be a Sylow 2-subgroup of N§ and Y
a cyclic subgroup of N7j of index 2.

If Ng#Z,XZ,, then |Y|>2 and so Y is characteristic in Nj. Hence
X<Nya(Y)=D,_.. From this [N4(S), SNY]<SNY and 0*(N,(S)) stabilizes
a normal series SI>S N Y>1, so that 0%(Nx(S))<Cye(S) by Theorem 5.3.2 of
[2]. By Lemma 2.6(i), Cya(S)<S and hence N4(S)=S. On the other hand
by a Frattini argument, X=N ,(S)Ng and so X=Nj3. By Lemma 2.6(i), (N§)=
=(Ng)"® and so by Lemmas 2.3 and 2.4 (ii), | F(Ng)| =1+ |F(N§) N BY*| xr=
14+ |Ngl|r/|Ng|=r+1. Thus (i) holds.

If Ng=2Z,X Z, N ya(Ng)=A, by Lemma 2.6 (iv). Similarly as in the case
Ng#Z,x Z,, we have | F(N§)| =3r-+1.

(3.2) NN*NNP<LZ,xZ,.

Proof. By Lemma 2.2, it suffices to consider the case C*=1. Suppose
C®=1. Then Nj/N®NNP=NzNEIN*<Out(N®)=Z,x Z, by Lemma 2.6 (vi)
and hence (Ng)'<N®NNP. Since Nj is dihedral, Ng/(N3g)'=Z,X Z,, so that

sIN*NNP<Z,X Z,.

(3.3) Suppose Ng=N*NN® and let U be a subgroup of Ny isomorphic to
ZyX Z,. Then |F(U)|=3r+1 and Ny (U)*® is doubly transitive.

Proof. Sex X=N4(Ng), A=F(Nj) and let {A,, A,, -+, A,} be the set of
N®-orbits on Q— {a}. If g7'Ngg<G,g, then g!Ngg<NINN}=N7NN§<Ng,
where y=af. By a Witt’s theorem, X* is doubly transitive.

If U is a Sylow 2-subgroup of Nj, by a Witt’s theorem, Ng(U)*® is doubly
transitive. Moreover N yo(U)=A4, and so by Lemmas 2.3 and 2.4 (ii), | F(U)|=
1414, X |Ng: Nyg(U)| Xr[|Ng| =3r+1.

If |[N§|,>4, by Lemma 2.6 (iv) and (v), N ya(U)=S, and N§g has two con-
jugate classes of four-groups, say z={K,, K;}. Set X, =M. Then MI>Nj
and X/M<Z, Clearly F(UYNA;#¢ for each 7 and so |F(U)NA;|=3 by
Lemma 2.3. Hence |F(U)|=3r+1. Since Ny8(U)=S,, we may assume r>1.
Hence by (3.1) (i) |A|=r+1>4, so that M* is doubly transitive. Since M=
NN (U), Ny(U)* is also doubly transitive and so N, (U) is transitive on A—
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{a}. As |ANA;|=1, ANA,SF(U) and N ya(U) is transitive on F(U) N A, for
each 7, Ny(U)F® is doubly transitive.

34 () C*=1
(i1) Let U be a subgroup of N§ isomorphic to Z,X Z,. If N3=N*N NP,
then No(U)*Y has a regular normal 2-subgroup. In particular | F(U)|=3r+1=2°
for positive integer b.

Proof. Since N¢ (U)* >N po(U)F=S; or Z,, by (3.3) and Theorem 3
of [1], No(U)*™ has a regular normal subgroup, N (U)"®>PSU(3,3) or
NU)FO=R(3).

Suppose C*=1. Let D be a minimal characteristic subgroup of C*. Clearly
G,>D. If NyU)F®=%R(3), D is cyclic. By Theorem 3 of [1], G has a
regular normal subgroup, contrary to the hypothesis. Hence Ng(U)""'=R(3).
Therefore (N, (U)"™) contains an element of order 9. Since N, (U)/C®N ya(U)
=N;,(U)C*N*|C*N*<Out(N®), by (vi) of Lemma 2.6 we have (N, (U)) <C®
X Nya(U). From this, C® contains an element of order 9 and so C*=Z, or
M;(3). In both cases, C® contains a caracteristic subgroup of order 3. Since
G,>D, by Theorem 3 of [1] G° has a regular normal subgroup, a contradiction.
Thus C*=1.

Let R be a Sylow 3-subgroup of N, (U). Since N (U)/N ya(U)=
N¢ (UN®IN*<Out(N*)=Z,x Z,, RIRN N ya(U) is cyclic. Clearly RNN ya(U)
=Z,. Therefore No(U)*®=PSU(3,3), R(3). Thus (3.4) holds.

Since Nj is dihedral, we set Ng=<t>W and Y=W NN*NNP, where W
is a cyclic subgroup of Nj of index 2 and ¢ is an involution in N§g which inverts

(3.5) (i) If | Y| =3, No(Y)*™ is doubly transitive.
(ii) If | Y| <3, Ni=Z,X Z, or N&=Dy and N* \N*<Z,X Z,.

Proof. Suppose |Y|>3. If Y4<G s, YE<N'NG,e<NJ, where y=a?.
If y=q, obviously Y*<N®. If y=+a, Ny=Ng. Therefore, as | Y| >3, NJ has
a unique cyclic subgroup of order | Y|. Hence Y <NYNN®<N? so that Y¥<
N®. Similarly Y¥* <NP. Thus Y*<N®NN? and so Y =Y. By a Witt’s
theorem, N(Y) is doubly transitive on F(Y).

Suppose |Y|<3. Since [N*NNP: Y| <2, we have N*NN*<Z,x Z,.
On the other hand, as Nj is dihedral, (Ng)’ is cyclic. Hence (ii) follows im-
mediately from (3.2).

(3.6) Set A=F(Ng), L=G(A), K=G, and suppose Ng7#Z,xXZ, Then
L,>Ng, (LY <Ng, K'<N*NNP and (L,)*=Z,. Ifr=1, L* is a doubly transi-
tive Frobenius group of degree r-1.

Proof. By Corollary B1 of [7] and (i) of (3.1), L* is doubly transitive and
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|A]l=r+1. Since N*NL>N®NK=Njg, by (i) of (3.1), we have N*NL=Nj.
Hence L,>>Ng. By (i) of (3.4), L,/Ng=L,N®IN*<Out(N®)=Z,x Z, and so
(L,Y <Ngand (L,)*=Z,. If r=1, then (L,)*=1. On the other hand (L,s)*=1
as (L,)" is abelian. Hence L* is a Frobenius group.

(3.7) Suppose |Y|>=3. Then there exists an involution 2z in NgN'Y such
that Z(Ng)=<2>. \

Proof. Since N3%Z,xZ,, |Ng|,>2? and Nj is dihedral, we have <I(W)>
=Z(Ng)=Z, and N3/(Ng)Y=Z,x Z,. Let Z(Ng)=<z> and suppose that 2 is not
contained in Y. By (3.2), (N5 <N*NNPNW=Y and so |(Ng)| is odd. Hence
INgl,=4 and ¢=p"=3 or 5 (mod 8), so that # is odd. By (3.2) and (i) of (3.4),
Ng/N®N NP=NENP/N*=1or Z,. If N5=N*NN°®, then W=Y and so z€ Y,
conirary to the assumption. Therefore we have Nj/N® N N*=Z, and N3=<{z)
X (N*NNP). Since n is odd and 2 NgN*—NP, by Lemma 2.6 (vi), (vii) and
(ix), NgN*=PGL(2,q) and Cy8(2)=D, ... But N*NNP<Cy8(2) and besides it
is isomorphic to a subgroup of D,_.. Hence N*NN°?=Z, and Ng=Z,x Z,, a
contradiction.

(3.8) Suppose |Y|>3. Then Ng=N®NNP.

Proof. Suppose N5g==N"NNP and let A, L, K be as defined in (3.6) and
x€ L, such that its order is odd and <{x> is transitive on A—{a}. As |Y|
>3, W is characteristic in Ng and hence by (3.6), x stabilizes a normal series
L,>Ng>Wr>(Ng)'. By Theorem 5.3.2 of [2], [x, 0(L,/(Ng)')]=1. Since
L,/(Ng)" has a normal Sylow 2-subgroup and (Ng)’ <K', we have [x, 0,(L,/K")]
=1, so that [x, NE]<K'<N®NNP by (3.6). If r=1, then B*+ R and B €A,
hence NE=x"'Nfx=N}, where y=08". Since yEA and A=F(N8), NE<N?N
Gy=N§ and so N§=N§. Similarly N3=N}. Hence N§=N}, which implies
N§=NPNN". By the doubly transitivity of G, we have N3=N®N NP, contrary
to the assumption. Therefore we obtain r=1.

Let 2 be as defined in (3.7) and put k=(¢—¢)/|N&|. By Lemma 2.8(i) we
have | F(s)| =1-+(g—&) (| N§1 [241)/ INE| =(q—&)[2-+h+1. Similarly | F(Y)|
=k+41. As N3==N"N NP, there is an involution ¢ in Vg which is not contained
in N®. By Lemma 2.6 (i), #’==x for some yN*. Set y=0. Then yEF(2)
and 2 N" By Lemma 2.6 (vii), (viii) and (ix), Cy*(2)=D,,. or PGL(2,\/ q).
Assume Cy¥(2)=D,.. and let R be a cyclic subgroup of C,(z) of index 2. We
note that R is semi-regular on Q— {a}. Set X=Cg(2). Since 2<k+1<(¢—€)/
|g—&|,+1, we have (¢+€)/2 f'k+1 and so |a* | >k+-1. By (i) of (3.5) and (3.7),
Ny(Y)<Ci2)=X and a*2F(Y). It follows from Lemma 2.1 that a*={u|
2€N“} By, Hence |F(z)>|aX|>|F(Y)|+(g-+e)2=k+1+(q—&)2+E=
|F(2)| +&. Therefore E&=—1 and v*= {v}, so that y& F(Y), a contradiction.
Thus C y"(2)=PGL(2,\/ q ), é&=1, Ng/N*NNP=Z, and [{z°NG,>: N*|=2.
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Set Aj=a* and A;=F(2)—A,. Let §EA; and g an element of G satisfying
8*=7v. Then 2 NyN®*—N? and so 2 NyN'"—N?, where v=a¥. Since |{z°N
Gy>: N'|=2 and 2€G,—N?, it follows from Lemma 2.6 (ix) that (2*)*=z for
some k€ Gy. Hence ghe X and §**=v. Thus A,=%*. Let §€ A,. Then zE Ny
and € Z(Ny) by (3.7) and so X N Ny=Z, X Z,, which implies | §€x*)|=(¢—1)/4.
Hence (|A,l, |A])=((g—1)/4+k+1, (¢—1)/4) or (k+1, (¢—1)/2). Let Pbea
subgroup of Cy¥(2) of order / ¢. Then F(P)={v} and P is semi-regular on
Q—{7}. I [ Ay —=(g—1)/4, then /T |(g—1)/A—1=(g—5)/4 and v/ 7 |(g—1)/
4+k+1. From this, ¢g=5% k=3, |A;| =10 and |A,|=6. Since (C y¥(2))"*:=Ss,
X?2=S;andso | X [3>3% As X actson A, and |A,| =1 (mod 3), |G,|s=>1X,];
>33 contrary to N*=PSL(2,25). If | A,| =(¢—1)/2,\/ ¢ |(¢—1)/2—1=(q—3)/2,
s0 ¢=3% k=1, Ng=D; and A,={a, B}. Hence Cy(2) fixes a and @, so that
PGL(2,3)=C yv(2) K N3=Ng=D, a contradiction.

(3.9) Suppose |Y|>3. Thenr=1.

Proof. By (3.6), r+1=2° for some integer ¢>0. On the other hand
3r+1=2" by (3.8) and (ii) of (3.4). Hence 2r=2°(2"°—1) and so c=1 as r
isodd. Thusr=1.

(3.10) Put k=(q—&)/|Ng|. If N3=N*NNP and r=1, then
q—E+2k+2|2((2k+2—8) (k+1—E)k+1) (2k+2—8) (k+1—¢).

Proof. Set S={(v,u)|vEF(u), uc2°}, where z is an involution in Nj.
We now count the number of elements of S in two ways. Since Ng=N"NN°?,
F(2)={v|2=N"} and hence C(z) is transitive on F(2) by Lemma 2.1. Therefore
|S|=1Ql]2%|=]|2°| |F(2)|. Since r=1, |Q|=1+|N®: N§|=kq(g+¢€)/2+1
and by Lemma 2.8 |F(2)| =(¢—&)/2+k+1. Since G,>N°®, 2% is contained in
N? and so |G,: Cg,(2)|=IN®: Cya(2)| =g(qg+E€)/2. Hence (¢—&)/2+k+1]
(kq(g+€/2+4-1)q(g+€)/2. On the other hand | F(2)|,= | C4(2) |2/ Cs,(2) . < |G o/
[Cs,(2)1:= |G|,/ 1Gyl:=1Q]; because |G,: C¢ ()| =¢(qg+€)/2=1 (mod 2).
Hence |q—&+2k+2(,< |kq(q+E)+2], Since kg(q+&)-+2=(kq+2k(E—k—1))
(g—E+2k+2)+2((2k+2—¢€) (k+1—E)k+1) and g(g+E&)=(q+26—2k—2) (g—
E+4-2k+-2)+2(2k+2—€) (k+1—E€), we have (3.10).

(3.11) Suppose | Y | >3. Then one of the following holds.
(i) Ng=N*NNP=D,_,.
(ii) N§=N®NNP£D,_, and N(Y )™ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, Ny(Y)F®=
R(3) or there exists a prime p,>5 such that Cg(Y)F®>PSL(2,p,) and V|Y =
Z,, where V=Cya(Y). By (i) of (3.1) and (3.9), F(Ng)={a, B}. On the
other hand, (N§)f®"=Nj3/Y=Z,. Hence NgY) " +R(3) and Cx(Y) ¥ >
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PSL(2,p1)-

By (i) of (3.4) and Lemma 2.7, we have Cg (Y)=V<f>, where f is a
field automorphism of N”. Let ¢ be the order of f;, n=tm and let p"=&,&
{£1} (mod 4). Clearly Cg (Y)"P=VFM=Z, and |Cg,e(Y) ™]||t, so that
(p—1)/2]2.

First we assume that ¢ is even and set t=2#;. Then Y <Cya(f,)=PGL(2,
p") by Lemma 2.6 (viii). As |V[Y|=p, and p, is a prime, Y is a cyclic subgroup

-1

of Cya(f) of order p"—& and (p"—1)/2(p"—&1)=p,. Put s= 3 (p*"). Then

(p"+E&1)s/2=p,, so that we have either (i) ;=1 and p,=(p"+&,)/2 or (ii) $,>2,
p"=3 and p;=s. In the case (i), 2<(p,—1)/2=(p"+&,—2)/4|2t;=2. Hence
(p1, 9)=(5,3%) or (4,11%). Let z be as in (3.7). As mentioned in the proof of
(3.10), | F(2)| =(¢—1)[2+k+1, | Q| =Fkqg(g+1)/2+1 and Cy(2) is transitive on
F(z). If ¢g=3% then |F(2)|=46 and |Q|=2.19%.23. Hence |C¢(2)|=|F(2)|
|Ce(2)| =|F(2)] | Cq (3)N*N®| | C ya(2) | =46-2°-80=2°".5.23 with 0<i<3.
Let P be a Sylow 23-subgroup of C¢(2) and Q a Sylow 5-subgroup of Cg(2). It
follows from a Sylow’s theorem that P is a normal subgroup of C¢(2) and so
[P, O]=1. Theorefore |F(Q)|>23, contrary to 5/ |Ng|. If ¢=11% then
|F(2)|=066 and |Q|=2-3-6151. Let P be a Sylow 11-subgroup of C¢(2). Since
11,/|Q|, Pis a subgroup of N” for some Y& Q and F(P)= {v}. Hence yE F(z),
so that xE N7, contrary to Cy¥(2)==Dyy. In the case (ii), we have (p,—1)/2=

-1
(22 9)/2|t=2¢,. From this, 9:"1<4t,, hence #,=1, a contradiction.
i=1

Assume t is odd. Then Y <Cye(f;)=PSL(2,p") by Lemma 2.6 (viii). As
|V|Y|=p, and p, is a prime, Y=Z(,m_. ), and (¢—&)/(p"—&)=p;. Hence

:2;: (") (&) " '=p, and (Pl—l)/2=((:_z=§ (™ (&) 7)) —1)/2|t. In parituclar 2t>

") =)' 2=(p"—1) (p")2=2(p™)! % From this t=3, m=1, p}=7 and
=33 so that Ng=Z, X Z,, a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let G® be a minimal counterexample to (3.12) and M a minimal
normal subgroup of G. By the hypothesis, G has no regular normal subgroup
and hence M,+1. As M, is a normal subgroup of G,, by (i) of (3.4), M,
contains N” By (3.9), r=1, hence M is doubly transitive on Q. Therefore
G=M and G is a nonabelian simple group.

Since Ng=D,_,, k=1 and so q—&+4|2((4—¢) (2—&)+1) (4—¢) (2—&)
by (3.10). Hence we have ¢=7, 9, 11, 19, 27 or 43.

Let x by an element of Ng. If |x|>2, by Lemma 2.8, | F(x)| =14 |Nj| X
1/|Ng|=2 and if |x|=2, similarly we have |F(x)|=(q—&)/2+2. Assume ¢=9
and let d be an involution in G,—N* such that {d> N® is isomorphic to PGL
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(2,9)- We may assume d=G,s Since (d>N® is transitive on Q— {a}, by
Lemmas 2.3 and 2.6 (vii), (ix), | F(d)| =2(¢—1) (¢+1/2)/2(¢+1)+1=(¢+1)/2,
while | F(x)| =(g+1)/2+2 for x&I(N®). Hence d is an odd permutation, con-
trary to the simplicity of G. Thus G,=N* if ¢%9,27 and |G,/N®|=1, 3 if
q=27.

If ¢=9, |Q|=1+|N® Ni|=149.10/2=2-23 and |G,|=2’| PSL(2,9)|
=2%+.32.5 with 0<i<2. Let P be a Sylow 23-subgroup of G. Since Aut(Z,)
=Z,X Zy, 3/ | Ng(P)|, for otherwise P centralizes a nontrivial 3-element x and
so F(P)2 F(x) because | F(x)| =1, contrary to | F(P)|=0. Similarly 5 ¥ | No(P)|.
Hence |G: Ny(P)|=2°-3%-5 for some a with 0<a<6. By a Sylow’s theorem,
2%.3%.5=—2°=1 (mod 23), a contradiction.

If ¢=27, |Q|=1+27-26/2=2°-11 and |G,|=2%-3%*.7-13 with 0<:<1.
Let P a Sylow 11-subgroup of G. Since P=Z;, and Aut(Z,))=Z,Xx Zs, 3'*, 7,
" 13 V| Ng(P)| by the similar argument as above. Hence |G: Ny(P)|=2°-3%-7-13
with 0<a<7 and 3<b<3+4i. By a Sylow’s theorem, 2°-3%.7.13=27.3"3.33.
7-13=22-3""%.4=1 (mod 11). Hence a=0, b=4. Therefore N;(P) contains a
Sylow 2-subgroup S of G. Let T be a Sylow 2-subgroup of N3 and g an element
such that 7¥<S. Then T NCy(P)=1 as Ny(P)/Cs(P)<Z, Letu be an in-
volution in TN Cy(P). Then |F(u)|=(27+1)/24-2=16, while 11| |F(u)| be-
cause [P, u]=1 and |F(P)|=0, a contradiction.

If =7, 11, 19 or 43, then G,=N?® and E&=—1. Set I'={{7, 8} |v,8€Q,
v=8}. We consider the action of G on I'. Since G® is doubly transitive, G* is
transitive and Gr=1. Let 2 be an involution of Z(/Ng). There exists an involu-
tion ¢ such that t€2¢ and a’=g. Since G,s=Nj and F(Nj)={a, B} we have
Gp=<t>Nj. By Lemma 2.3, [F(z")|=[Cq2)|x|<E>NgN2°|[2|Ng|=
|F(3)| X | Coy(3) | X |<>NEN 26| 2| NG| = | F(2) | X [<&>NEN 0| /2. As | F(&)]
— [F(=) [(IFR) =12+ — | F@) )2, [<ONEN2°| = [F) |+ 0| [F(z)| —
2. In particular |F(2)|||Q]|. Since |F(2)|=(¢+1)/2+2=(¢+5)/2 and |Q|=
14¢(g—1)/2=(¢*—q+-2)/2, we have g=11 and |<&>NzN=z°|=13. Moreover
|Q|=56, |G,|=|PSL(2,11)|=22-3-5-11 and |G |=2°-3-5-7-11.

We now argue that <t>Ng=D,,. Let R be the Sylow 3-subgroup of Nj.
If t centralizes R, R acts on F(z) and so F(R)CF(¢) as |F(t)|=8 and |F(R)|
=2. Hence a'=a, contrary to the choice of t. Therefore ¢ inverts R and
<{t>Njg is isomorphic to Z,XD,, or D,. Suppose <{¢t>Ng=Z,xD,,, Then
{t>Njg contains fifteen involutions and so we can take u& I(<¢#>)Nj) satisfying
|Fu)] =0 and <&>Ng=<u>xNg. As |F(u)|=0, |Fu")|=|Q|/2=28. By
Lemma 2.3, 28=|C¢(u)| X |[<upNgNuc|[24 and hence |Cg(u)|=2%3-7 or
25-3-7. Since <u>Nj=N4(R), we have | Cg(u): Co(u) N N(R)| =27 or 22.7.
By a Sylow’s theorem, |Cg(u): Ce(u) N Ng(R)|=22-7, so that |Cg(u)|=2°-3-7.
Let O be a Sylow 7-subgroup of Cg(#). Then |Cg(u) NNg(Q)| =2°-3-7 or 22.3.7
by a Sylow’s theorem. Hence 2°:3-7||Ng(Q)|. Since Aut(Z;)=Z,xZ,,
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5/INg(Q)l and 11 |Ng(Q)| by the similar argument as in the case ¢=9.
Therefore |G: Ng(Q)|=2°-5-11 for some a with 0<a<3. Hence |G: Ng(Q)|
#1 (mod 7), a contradiction. Thus <t) Ng=D,,.

Let U be a Sylow 2-subgroup of Ng and set L=Ng(U). It follows from
(3.3) and Lemma 2.6 (iv) that L N N*=A4,, LF")=4, and |L|=2*.3. Let T, <x)>
be Sylow 2- and 3-subgroup of L, respectively. Obviously LI>T and Cp(x)=1.
On the other hand T'™>L N<t) Ng=Dy and so T'=Z,X Z, because Cp(x)=1.
By Theorem 5.4.5 of [2], T is dihedral or semi-dihedral. Hence Ny(T)/C¢(T)
(< Aut(T)) is a 2-group, so that Cy(x)=1T, a contradiction.

(3.13) (ii) of (3.11) does not occur.

Proof. Let G° be a doubly transitive permutation group satisfying (ii) of
(3.11). Let x be an involution in Nj with x¢¢ Y. Then F(xf™)=F(x>Y)=
F(N%)={a, B} by (i) of (3.1) and (3.9). Since |F(Y)|=1+(q—&)/|N&| =1+
k>4, x*™ is an involution. By Lemma 2.5, 14-k=2? and so k=3. By (3.11),
q—E+8(2((8—¢&) 4—&)x3+1) (8—¢) (4—¢€). Hence g+7(27-3-7 if €&=1 and
q+9]2*-32.5-17 if E&=—1. Since k=3|q—¢, 3 ¥'q—&+8. From this ¢+7|27-7
if €&=1 and ¢+9(24-5-17 if &=—1. Therefore ¢=>5% 7%, 112, 59 or 71.

Let p, be an odd prime such that p,| [Q| and p, /| G,| and let P be a Sylow
pri-subgroup of G. Clearly P is semi-regular on Q and so any element in Cg (P)
has at least p, fixed points. If xis an element of Ng and its order is at least three,
| F(x)|=|F(Y)| =4 by Lemma 2.8. Since |Ng|=(g—¢)/3, we have |Q|=1+
|N®: Ng|=1+3q(¢+¢)/2.

If g=5% then |Q|=2*-61 and |G,| =2"%-3-5%-13 (0<i<2). Let P be a
Sylow 61-subgroup of G. Then P=Z. As mentioned above, 5, 13 1| C4(P)|
and so 5% 13 Y |N¢(P)|. Hence |G: Ng(P)|=2°-3%-5"1.13, where 0<a<10
and 0<b, c<1. But we can easily verify |G: Ng(P)| =1 (mod 61), contrary to
a Sylow’s theorem.

If g=7? then [Q]=22-919 and |G, |=2*.3-5%.7* (0<i<2). LetPbea
Sylow 919-subgroup of G. By the similar argument as above, we obtain 5, 7
INg(P)| and so |G: Ng(P)|=2°-3%-52.7"=2°-306 or —2°(mod 919), where
0<a<8and 0<b<1. Hence |G: Ny(P)| =1, a contradiction.

If g=11? then |Q|=2"-173 |G,| =2%*.3-5-11%.61 (0<i<2). Let Pbea
Sylow 173-subgroup of G. Similarly we have 3, 5, 11, 61 ¥ | Ng(P)| and so |G:
Ng(P)|=2-3-5-112.61= —5-27(mod 173), where 0<a<12. Hence |G:N4(P)]
%1, a contradiction.

If g=59, then |Q|=2:17-151 and |G, |=2%"-3-5-29-59 (0<i<1). Let
P be a Sylow 17-subgroup of G. Similarly we have 3,5,29,59 /| N¢(P)| and so
|G: Ng(P)|=2°-3-5-29-59:151°=10-2° or 12:2° (mod 17), where 0<a<4
and 0<b<1. From this, we have a contradiction.

If g=71, then |Q|=2°-233 and |G, | =2%"-3%.5-7-71 (0<7<1). Let P be
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a Sylow 233-subgroup of G. Since 3,5,7,71 ¥ |Ng(P)|, |G: Ng(P)|=22-32-5-
7-71=—3-2° (mod 233), where 0<a<9. Similarly we get a contradiction.

We now consider the case | Y| <3. By (ii) of (3.5), Ng=Z,;X Z, or Ng=Dj,
and N*NNP<LZ,X Z,.

(3.14) The case that Ng=Z,X Z, does not occur.

Proof. Set A=F(Nj). Then |A|=3r+1 and A=F(NgN§) by (ii) of (3.1)
and Corollary B1 of [7]. Since |[N?|,=4, we have ¢g=p"=3, 5 (mod 8) and so 7
is odd. Hence |G,/N®|,<2 and Nj/N*NNP=NZNP?/NP=1 or Z, by (3.2).
Suppose Ng/N*NNP=Z,. Then NgN% is a Sylow 2-subgroup of G,, hence
N¢(N3N8)* is doubly transitive by a Witt’s theorem. Since NgN§=D; and |A|
is even, Cg(NgNE)? is also doubly transitive. Let g be an element of Cy(NgNE)
such that a*=4 and B¥=a. Then Ng=g*Ngg=N§ and hence Ng=N*N NP,
a contradiction. Thus Ng=N*NNP=Z,x Z,.

Let = be an involution in N§ and ¢E2¢ an involution such that a'=g. Set
T={{v, 8} |7, 8€Q, v=+=38}. We consider the action of the element 2 on T.
By the similar argument as in the proof of (3.12), |F(2)|(|F(2)|—1)/24+(|Q]—
|F(2)))2=|F(2") | =1C¢(2)| |2° N<E> G s [ |<tD> Gupl. Since Ng=N"N NP, by
Lemma 2.6 (i), 2° N G,=2% and so |Cs(2)| =|F(2)| X |Cs,(2)|. Hence |G|
(F@I(IFE)] —1)+10] = FE)|) = F(8)| | Coy(#)| 15°N<t>Gogl, so that
|Gl |1Q]=0(mod |F(2)|). Since |G,p/Ng|=|G,sN*IN?||2n, we have |G|
|8n. Clearly |Q|=1+4¢(¢—&) (¢+&)r/8 and by Lemma 2.8 (i), | F(z)|=1+3
(g—&)r/4. Hence 14-3(g—&)r/4|8n(1+g(q—E) (¢+€)r/8). Put m=rs. Then
3qr—3er+4|(4rs(84-9(q—¢€) (q+€)r)3°r=2864 r’s+4s(3pq) (3pg—3ér) (3gr+3é&r).
Hence 3qr—3ér+4|864r*s+4s(3er—4) (36r—4—3¢r) (36r—4-+36r)=8634r%5—
32s(36r—4) (35r—2). (%)

We argue that r=1. Suppose false. Then 32s(36r—4) (3¢r—2)>0 and
s0 3r(q—&)<<864r%. Therefore 288n-+&>q=p">3" and so 288#>3". Hence
(m,7,p,6)=(5,5,3,—1),(3,3,3, —1) or (3, 3, 5, 1), while none of these satisfy
(*). Thusr=1.

Hence 3¢g—36+44|64(5+98)n and |F(2)|=1+43(¢g—%)/4, |Q|=14¢(q—&)
(g+¢€)/8. If E=—1, then 3-3"<<3¢q+7| 256n. Hence n=1 or (n,p)=(5,3), (3,3).
Since 3-3°4-7 4'256-5 and 3-3%*+7|256-3, n=1 and 3¢+7|256. From this, g=
19 or 83. If €=1, then 3-5"<<3¢+1| 8967 and so n=1 or (n,p)=(3,5). Since
3.5%+1,/'896-3, we have n=1 and 3¢+1|896. From this, g=>5, 37 or 149. As
PSL(2,5)=PSL(2,4), g%5 by [4]. Thus ¢=19, 37, 83 or 149.

Set m=|2°N<t>Gaupl. As we mentioned above, |Ga|(|G(2)|(|F(2)|—1)
Q1= F@))=F(#)| | Coy#) Im. Since |Ga/N*|=1 or 2, |Cy()/|Gagl
=(g—¢€)/4. 'Therefore m=(2¢*+4-(26+9)q—9¢€)/(3g—3€+4). It follows that
(g,m)=(19, 27/2), (37, 28), (83, 449/8) or (149, 411/4). Since m is an integer,
we have (¢,m)=(37, 28). But m<|<{t>Gap| <16, a contradiction. Thus (3.14)
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holds.
(3.15) The case that Ng=~=D; and N* N\ NP<Z,X Z, does not occur.

Proof. Let A, L and K be as defined in (3.6). By (3.6), there exists an
element x in L, such that its order is odd and <x*> is regular on A— {a}.
Since (L,)' <N§ by (3.6) and Ng=D, x stabilizes a normal series NEN§> N4> 1.
Hence x centralizes N§Ng by Theorem 5.3.2 of [2] and so ¥ 'Nfx=NE. Put
y=@’. If r=1, then B=v, so that Ny=N& From this, N}=N§. By the
doubly transitivity of G, Ng=N§, hence Ng=N"N NP?, a contradiction. There-
fore r=1 and A={a, B}.

Set <z>=Z(N3g), Aj=aC® and let {A,, A, -+ A} be the set of Cy(z)-orbits
on F(z). Since LI>N®NN? and by (3.2), N*NNP=1, z is contained in N* N NP.
Hence, by Lemma 2.1, B€A, and k is at least two. By Lemma 2.8, | F(2)| =
1+(g—€)5/| Ng| =14-5(¢—¢)/8. Clearly |Cye(2): Ng|=(q—€)/8 and so |A,| >
14-(g—¢)/8. If yEF(3)—A,, then Cy#(2)=Z,X Z,, for otherwise <2>=Z(Ny)<
N?NN? and by Lemma 2.1 yE A,, a contradiction. Hence one of the following
holds.

() k=3 and | A =1-+(g—)f8, |Asl=| Ayl =(g—E)/4-

(i) k=2and | A =1-+(g—&)f8, | Al =(g—8)/2.
i) k=2 and [A]=1+3(g—&))8, | Mgl =(g—E)/4.

Let yEF(2)—A;. Then, 2&Gy—N" and so Cy¥(2)=D,,. or PGL(2,A/q)
by Lemma 2.6 (vii), (viii), (ix). If Cy¥(2)=D,,., then (3-+€)/2| | A;| and so g=7
and (iii) occurs. But (g+€)/2=3]||A,;| —1—1=1, a contradiction. If Cy¥(z)=
PGL(2,+/ q), then (i) does not occur because v/ ¢ f'¢—&. Hence /¢ | |A,]
and v/ ¢ ||A;] —1. From this, ¢g=25 and (iii) occurs. Iun this case, we have
| A;| =10, so that an element of C,¥(2) of order 3 is contained in N} for some
8€ A, contrary to NJ=Ng=Dj,.

4. Case (II)

In this section we assume that Ng=PGL(2,p™), where n=2mk and k is odd.
Since 7 is even, g=p"=1 (mod 4). We set p"=€6& {1} (mod 4). In section
7 we shall consider the case that Ng==S,. Therefore we assume (p,m)=(3,1)
in this section.

(4.1)  The following hold.

(i) N§/N®*NNP=1or Z, and N* N\ N?>(Ng)'=PSL(2,p").

(i) If (p,m)=+(5,1), there exists a cyclic subgroup Y of (Ng)' such that
Nya(Y)=D,_, and N(Y)*® is doubly transitive.

Proof. As N&>N®N NP, either Ng/N*NNP<Z, or N*NNP=1. If N*N
NP=1, by Lemma 2.2 and 2.6 (vi), Ng=Ng/N®NNP=NgN?|NP=Z,XZ,, a
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contradiction. Therefore Ng/N® N NP=1 or Z,and N* N N*>(Ng)'=PSL(2,p").

Now we assume that (p,m)=(5,1) and let 2 be an involution in (Ng)’. Then
Cng(2) =Dyym_) by Lemma 2.6 (vii). Suppose Cy%(z) is not a 2-subgroup
and put Y=0(Cy%(2)). Then, if Y*<G,p for some g€G, we have Y*<N{
and Y#<N§, where y=af and §=4%. By (i) Y <N®NNP andso Y*=Y" for
some he N* N NP. Thus Ng(Y) ™ is doubly transitive. Assume that Cy&(z) is
a 2-subgroup and set Cyg(2)=<u, v|w’=u"", v’=1>. We may assume that vE
(Ng)" and <u?, v> is a Sylow 2-subgroup of (Ng). Since p™=3,5, the order of #*
is at least four. On the other hand there is no element of order |#?| in
<u, v>—<u?, v>. Hence any element of order |#?| which is contained in Nj is
necessarily an element of N* N N®. By the similar argument as above, N4(Y)"®
is doubly transitive.

(4.2) Let notations be as in (4.1). Suppose (p,m)=+(3,1), (5,1) and set
A=F(Y)and X=Ny(Y). Then |A|=rs(p"+E)/2+41, where s=§;‘1p2’"", Cs(N®)

=1 and one of the following holds.
(1) X*<ATL(1,2°) for some integer c.
(i) X2=PSL(2,p,) or PGL(2,p,), r=1, k=1 and 2p,=p"+¢&.

Proof. By Lemma 2.8 (ii), |A|=14+|N°NX|r/|NsNX|=1+(p>"*—1)
r[2(p"—E&)=rs(p"+€)/2+1. By (4.1) and Lemma 2.9, we have (i), (ii) or X*=
R(3). '

Assume that X*=R(3). Then rs(p"+€)/2+1=28, hence k=1 and
r(p"+€)[2=27. Since r is odd and 7| 2m=n, we have r=m=1 and ¢=53"
But a Sylow 3-subgroup of X, is cyclic becuase N*NX=D,_, and X,/ X NN*
=X N®IN*<Z,X Z,, a contradiction. Thus (i) or (ii) holds.

(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose X*<AT'L(1,2°) and put
W=Cy4(Y). Then Y<W=Zm_.. Since Cya«(Y) is cyclic, W is a character-
istic subgroup of Cye(Y) and so W is a normal subgroup of X,. Hence W<X,
and (X NNg)*=1 or Z,. By Lemmas 2.4 and 2.6, F(X NNjg)=1+4|X NNg|
INg: XNNg| xr/|Ng|=14r. Since 1+r<|A|, (X NNg)*=Z, and hence
(1+4r)?=rs(p"+€)/2+1 by Lemma 2.5. From this, r=s(p”+&)/2—2|mk and so
P+ mk<2. Hence m=k=r=1 and ¢=7%

Let R be a Sylow 3-subgroup of N5. Since Ng=PGL(2,7), we have R—=Z,.
By Lemmas 2.4 and 2.6, |F(R)|=14-(7"—1)|Ng: N,%(R)|/|Ng|=4. Hence
N(R)F®=4, or S,. But is a Sylow 3-subgroup of N, (R) because N"~=
PSL(2,7%), contrary to N¢,(R)F®=A4; or S,.

(4.4) (i) of (4.2) does not occur.
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Proof. Let notations be as in (4.2). Suppose X“I>PSL(2,p,). By the
similar argument as in (4.3), Cy&(Y) <X, and so Cye(Y)*=Z,, and Nya(Y)*=
D,, . Hence |(X4)*||2p,-2n. Since X*>>PSL(2,p,), pi(p1—1)/2| | (Xa)*|, hence
p1—118n. As k=1 and 2p,=p"+&, we have p”"+E—2| 32m. From this, (p,m,p,)
=(11,1,5), (3,2,5) or (3,3,13).

Let R be a cyclic subgroup of Ng such that R=Z ;. By Lemma 2.6,
N(R)T™® is doubly transitive and by Lemma 2.8 (ii), |F(R)|=14 |Nya(R)|
[INW&(R) | =14 (pn— 1) [2(p"+ &)= (5" —&)[2-+ 1.

If (p,mp)=(11,1,5), |F(R)|=7 and so by [9] |Ng(R)F®|=42 and
N (R)F®=Zs. Since | Nya(R): Ny3(R)| =6, Nya(R)"®=Ng,(R)"®. Hence
Nya(R)|K=Z;, where K=(Nya(R))rp» But Nya(R)/(Nye(R))'=Z,xZ,;, a
contradiction.

If (p,m,p)=(3,2,5), |[F(R)|=5 and so by [9], |NgR)®|=20 and
N (R)"®=Z,. Since | Nya(R): Ny%(R)| =4, Nya(R)*=Z,, contrary to N ya(R)
[N o R) =2, % 2

If (p,m,p)=(3,3,13), |F(R)|=15. By [9], N¢,(R)F® is not solvable, a

contradiction.
(4.5) p"=5.

Proof. Assume that p”"=5. Then n=2k with k odd and N5=PGL(2,5)
=S;. First we argue that Ng=N®NN*. Suppose false. Then C4(N*)=1
by Lemma 2.2, and N§/N* N NP=Z, by (4.1). Since NEN§/Nz=NE/N* N NP=
Z, and the outer automorphism group of S5 is trivial, we have Z(NgN§)=Z,.
Let w, be the involution of Z(NgN¥§) and let weI(NE)—I(N®). Since Cya(w,)
>Ng, by Lemma 2.6 (viii) and (ix), @ acts on N® as a field automorphism of
order 2 and Cya(w)=PGL(2,5"). By Lemma 2.8 |F(w)|=1+4r(g—&)|I(N%)|/
|Ng|=1+5r(5%—1)/24. Let Pbe a Sylow 5-subgroup of Cys(w). Then |P|=5"
and |y?|=5*"1or 5" for each yeQ— {a}. Since P acts on F(w)— {a}, we have
5%71|5r(5%*—1)/24, so that k=1 and |F(w)|=6 as r|k. Hence Cya(w)™=.S;
and so Cg(w)"™=S;. But clearly we N* N N? by Lemma 2.1, a contradiction.
Thus Ng=N"N NP

Let V be a cyclic subgroup of Nj of order 4. Since Ng=NPNNP=S,,
Ng(V)*™ is doubly transitive and by Lemma 2.8, [F(V)|=1+|Nya(V)|r/

[N yg(V)| =1+4(5%*—1)r/8=3rs-1, where s=’2§25". By Lemma 2.9, Co(N®)=1

and (a) Ngo(V)F" <ATL(1,2°) or (b) Ng(V)"V=R(3).

Put P=Nyg(V). Then P=Dy, |F(P)|=1+|Nya(P)| | Ng: Nyg(P)|7/| Ng|
=r+1 and PF"=Z,. If (b) occurs, k=1 and =9, hence |F(P)|=10, a con-
tradiction. Therefore (a) holds.

By Lemma 2.5, (r+1)*>=3rs+1 and so r=3s—2|k. Hence k=r=1 and
G4/N®<Z,x Z, Let z be an involution in Ng. Then |F(z)|=14-24-25/120=6
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by Lemma 2.8 and |Q|=14|N®: N3|=66 as r=1. By the similar argument
as in the proof of (3.12), | F()|(|F(z)| —1)/2-+(1Q] — | F(z) )/2=| C() | |5 N
{DGupl||{t>Gaupl|, where t is an involution such that a’=3. Hence |26 N<t>G 4|
=15|Gapl[|Csu(2)|. Set H={t>G,p and let R be a Sylow 3-subgroup of Nj.
By Lemma 2.8, | F(R)|=1+424-10/120=3. Set F(R)=1{a,3,7}. On the other
hand, as Ng=S; and Out(S;)=1, we have H=Z(H)X Ng and |Z(H)|=2, 4 or
H=Cyz(N3)XNg and Cx(Ng)=D,. In the latter case Gup=2Z(Gap)X Ng and
Z(Gup)=Z,X Z,, contrary to Lemma 2.6 (ix). In the former case, we have
|Z(H)|=2. For otherwise Z(H)<Gy and Z(H) N2°% ¢ and so letting u€ Z(H)
N 2¢, we have |R|=3||F(u)| —1=5, a contradiction. Therefore Z(H)=Z, and
so |2° NH| <25+4-25=50, while [2° NH |=15|Gap|/|Cs,(2)| =15-120/24=75,
a contradiction.

5. Case (III)

In this section we assume that Ng=PSL(2,p"), where n=mk and k is odd.
Set p"=¢€& {41} (mod 4). Then ¢=¢& (mod 4) as k is odd. In section 6 we
shall consider the case that Ng=A4,, so we assume (p,m)==(3,1) in this section.
From this N§ is a nonabelian simple group and so Ng=N®NNPf or N*NNF=1.
If N*NNP=1, then Cz(N®)=1 by Lemma 2.2 and Ng=N§/N®* N NP=NzNP|N*
~Z7,X Z,, a contradiction. Hence Ng=N*NNP*.

Let 2 be an involution of N§. Suppose 2¥€ G, for some g G and set y=
af, 8=R% Then 2*&NING<NINNS<N*NNP and so 2*=z"8. Hence
Cs(2)7® is doubly transitive and by Lemma 2.8 (i), | F(2)|=(¢—&)r/(p"—&)+1.
In particular |F(2)| >3r+1 as (p"—&)/(p"—€) = p*"+Ep"+1>3.

By Lemma 2.9, C4(N®)=1 and one of the following holds.

(a) Cg(&)f<ATL(1,2°).

(b) Ce(2)F®=PSL(2,p) (p1=5), r=1 and |Cya(2): Cy3(2)| =p:.

(©) Colz)@=R(3).

Let Y be a cyclic subgroup of Cyg(2)=D,n_, of index 2. Since Cg,(3)>7,
z€Y and Cy(2)7® is doubly transitive, we have F(Y)=F(z). By the similar
argument as in (3.1), N® N N(Cy3(2))=Crg(2) or N*NN(Cy%(2))=A4,. Hence
by Lemmas 2.3 and 2.4 | F(Cyg(2))| =1+ |Cyg(2)| [Ng: Cys(z)[r/|Ng| or 14
| 44| INg: Cyg(2)|7/INg|. Therefore |F(Cy3(2))|=r+1 or 3r+1. From this
Cng(r)FP=2,.
In the case (a), (r+1¥=14(p"—€)r/(p"—&) by Lemma 2.5 and hence r=
k-1 N
(#"—8)[(p"—E)—2|mk. Since (p"—&)/(p"—&)2((p") '+ D" +1)=25(—p")
and k>3, we have p™*~D(p?"—pm1) <mk, hence ((p™)*~3|k)(m|(p""—p"+1))<1.
Thus k=3, m=1 and p=3, cotrary to (p,m)=(3,1).

In the case (b), r=1, py=(p"—&)/(p"—E&), pr(p1—1)/2]|s and s|4mkp,, where
s is the order of Cg,(2)"®. Hence p,—1|8mk. Since p,—1=(p"—&)/(p"—&)—1
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2"+ D"+ 1)—1= Z_:(—P"')‘ZP"’“'”(P"—D: we have p*=2 2k <4m|(p"—
1)<1 because p"+3. Hence k=3 and p"=>5, so that p,—1=304'8mk=24, a

contradiction.
In the case (c), r+1=4 and 1+4(p"—&)r/(p™—€)=28 and so r=3 and
(p"—8)/(p"—€)=9. Hence 9>(p™+1)/(p"+1)=>p*"—p"+1, so that p"=3, a

contradiction.

6. Case (IV)

In this section we assume that Ng=4, and ¢=3,5 (mod 8). If N*NNf=1,
by Lemma 2.2, C4(N®)=1 and so Ng/N*NNP=NZNFINP<Z,xZ, Hence
N§IN® N\ NP=1 or Z,, so that 26N Gu=2° N N5=2" for an involution zE N%.
Therefore Cy(2)7® is doubly transitive. By Lemma 2.9, C;(N*)=1 and one of
the following holds.

(a) Cg(x)FD<ATL(1,2°) for some interger ¢ >1.

(b) Co(2)FP=PSL(2,p,) (p1=5), r=1 and |Cya(z): Cyg(2)|=p1

(c) Col#) ™=R(3).

Let T be a Sylow 2-subgroup of N3. Then z&T and by Lemmas 2.3 and 2.4,
|F(T)| =1+ |Nya(T)|r/|INg| =r+1. By Lemma 2.8 (i), | F(2)|=(¢—&)r[4+1.
Hence TF®=7Z, if ¢=%5. If ¢g=>5, as PSL(2,5)=PSL(2,4), (ii) of our theorem
holds by [4]. Therefore we may assume g=5.

In the case (a), (r+1)’=1+(¢—&)r/4 by Lemma 2.5. Hence r=(¢—&—38)/4
and 7|#n, so that g=11 or 13 and r=1. Let R be a Sylow 3-subgroup of Gap.
Then R=Z; and R<Nj because Gop/Ng=GoN*/N°=1 or Z, and Ng=A4,.
By Lemma 2.8 (ii), |F(R)|=1+12/3=5 and N (R)"™® is doubly transitive.
Since Ng,(R)=D,, or D,, and |F(R)|=5, we have |NgR)|s=5. Let S be
a Sylow 5-subgroup of Ng(R). Then [S, R]=1 as Ng(R)/C¢(R)<Z, Since
S5/ 1Gasl, |F(S)|=0o0r 1. If |F(S)|=1, F(S)SF(R) and so 5| | F(R)| —1=4,
a contradiction. Therefore S is semi-regular on Q. But [Q|=1+4+|N®: N3|=
56 or 92. 'This is a contradiction.

In the case (b), pi(p1—1)/2|s and s|2n(q—E)/2=4np,, where s is the order
of Cg,(2)F®. Hence p;—1|8n. Since p,=(q—E&)/4, p"—E—4|32n and so we have
q¢=11,13,19,27 or 37. If q==27, by Lemma 2.6, C,(2)=D,_. or Dy, and so
Coug(3)'?=Z,. Hence (p;—1)/2=2. From this ¢=19. Let R be a Sylow 3-
subgroup of G,s. By the simmilar argument as in the case (a), Ng(R)F® is
doubly transitive and |F(R)|=1418/3=7. Hence 7| |G|. On the other hand

|G|=1Q| |Gyl =(1+|N* Ni|)|Gsl=(1+18-19-20/2-12)-2°-18-19-20/2=
23%.32.5.11-13-19 with 0<:<1, a contradiction. If ¢g=27, then [C¢(2)|,=
[F(2)];X | Csy(?) | ;=8X | G4l while | Q| =1+ |N®: Ng| =14-26-27-28/2-12=
820=2%.5.41 and so |G |,=4|G4l|,. Therefore |Cg(2)| £'| G|, a contradiction.

In the case (c), r+1=4 and 14(¢—&)r/4=28. Hence r=3 and ¢=37,
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contrary to 7 |n.

7. Case (V)

In this section we assume that N§g=3S, and ¢=7,9 (mod 16). We note
that 4 .

First we argue that N5=N®NN?. Suppose Ng==N®NNP. Then Cg(N®)
=1 by Lemma 2.2. Since Nj/N*NNP=N3NF/N*<Z,x Z,, we have N*NN*?
=4, and N§/N®NNP=Z,, so that NEN3/Ng=NE/N*NNP=Z, Hence as
Out(S,)=1, Z(N3NE)=Z,. Set <t,p=Z(N3N%) and let t€I(N§)—I(N®). Since
Cya(t))>Ng=S,and {HN*=NEN®, by Lemma2.6,we have Cya(t)=PGL(2,./ q)
and | F(t)| =14-3(¢—&)r/8 by Lemma 2.8.

Let P be a Sylow p-subgroup of Cy«(t). Then |P|=+/q. If p%3, P acts
semi-regularly on F(t)— {a} and so \/q |3(¢—&)r/8. Therefore /¢ |r and so
5"<n?as p>5 and r|n. But obviously 5" >n? for any positive integer #. 'This
is a contradiction. If p=3, |P: Py|=+/q/3 0or+\/q for each yeQ—{a}.
Hence \/¢/3]|3(¢—&)r/8 and so ¢|81#2. In particular, 3"=¢|81n*. From this,
n<7. Since g=3"=7 or 9 (mod 16), we have g=3% or 3% If ¢=3, Q=1+
IN®: N§|=1+48-9-10/2-24=16, a contradiction by [9] If ¢=35, |F(t)|=1+
273r and |F(t)—{a}|>|Cya(t): Cyz(t)| = |PGL(2, 3%)|/8=2457 contrary to
r|3. Thus Ng=N"NN°".

Let V be a cyclic subgroup of N% of order 4 and let U be a Sylow 2- sub-
group of Njg containing V. Then U=Nya(V), |F(V)|=1+(¢—&)r/8 by
Lemma 2.8 and |F(U)|=1+8-3r/24=r+1 by Lemmas 2.3 and 2.4. If
q=%7,9, then |F(U)|<|F(V)| and hence U"")=Z,. Suppose ¢g=7 or 9. Then
r=1asr|n. Hence |Q]=1+|N®: N3|=8 or 16. By [10], we have a contradic-
tion. Therefore UTV=Z,.

Suppose V&< Gyp for some g G and set y=af. Then VE< g !'N®g N Gap
<N'NGup<NINN}<N*NNP=N% As N3=S,, V¥=V" for some h&N§.
Hence Ng(V)F" is doubly transitive. By Lemma 2.9. C¢(N*)=1 and one of the
following holds.

(a) N(V)FM<ATL(1,2°.

(b) No(Vy"=PSL2,p), pi—(g—E)/8=5.

(c) No(V)"=R().

In the case (a), (r+1)’=1-+(¢—&)r/8 by Lemma 2.5 and so r=(¢g—&—16)/8
and 7|n. From this g=23 or 25 and r=1. Since |Q|=1+|N": N§|=2-127
or 2:163, we have |G|,=2|G4|, while |[Ng(V)|,=|F(V) || Neo(V) ;=4 G4l
contrary to |[Ng(V)|||G|.

In the case (b), pi(p1—1)/2|s and s|2n(¢g—E&)/4=4np,, where s is the order
of Ngu(V)F™. Hence p;—1|8n. From this, p”"—&—8|64n and so ¢=23, 41, 71
or 73. Since p, is a prime and p,=(¢—&)/8>5, ¢+23, 71, 73. Therefore g=41
and |[Q|=1+|N® N3|=1+40-41-42/2-24=22.359, so that |G|,=4|G4l,.
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Since Ng=N"*NNP, Cc(2)7® is transitive by Lemma 2.1. On the other hand
| F(z)|=1+40-9/24=16 by Lemma 2.8 (i) and so |[Cg(2)|,=16|C¢,(2)|,=
16| G,l,, contrary to |Cy(2)| | |G].

In the case (c), r+1=4 and 14 (¢—&)r/8=28. Hence r=3 and ¢=71
or 73, contrary to 7 |n.

8. Case (VI)

In this section we assume that Ng=4; and ¢=3,5 (mod 8). In particular,
nis odd. If Ng=N®NNP, then N*NNP=1, C;(N®)=1 and so Ng=N;zN*/N°*
<Out(N?)=Z,x Z,, a contradiction. Hence Ng=N®NNP. Let = be an involu-
tion in Ng and T a Sylow 2-subgroup of Nj contraining 2. Then, by Lemma
2.8 |F(z)|=1+4(q—¢€) 157/60=1+(¢—&)r[4 and by Lemmas 2.3 and 2.4|F(T)|
=1+4+12-5¢7/60=1+4r. Since Nz=N*NNP, zGﬂGmpzzGﬂN‘;=z"’§ and so
C(2)F® is doubly transitive. By Lemma 2.9, C¢(N*)=1 and one of the follow-
ing holds.

(a) Ce(2)F<ATL(1,29).

(b) Ce(x)">PSLEZp), pr=(q—E)4=5.

(€) Col)"®=R().

In the case (a), by Lemma 2.5, (¢—¢&)/4=1 or (r+1)/=14-(q—&)r/4.
Hence ¢=5 or r=(q—&—8)/4|n. If ¢=5, then N3=N® a contradiction.
Therefore p"—&—8|4n and so n=1 and g=11or 13. If g=13, we have 5 /|G|,
a contradiction. Hence ¢g=11 and |Q|=14|N®: N§|=1+10-11-12/2-60=12.
By [9], G®=M,,, | Q| =12 and so (iii) of our theorem holds.

In the case (b), we have p,(p,—1)/2|s and s|2n(q—E&)/2=4np,, where s is the
order of Cg,(2)F®. Hence p;—1|8n and so p"—E—4|32n. From this ¢=19, 27
or 37. Since 5||Gy4l, g¥27,37. Hence ¢=19 and |Q|=1+4+|N®: Nz|=1+
18-19-20/2:60=2-29. Since G,=PSL(2,19) or PGL(2,19), |G|=|Q||G4l
=2.29-2.18-19.20/2=23+{.32.5.19.29 with 0<i<1. Let P be a Sylow 29-
subgroup of G. Then P is semi-regular on Q and 3, 5,19 /| Ng(P)| because
Ny(P)/C4(P)<Zx Z,. Hence |G: Ng(P)|=2'-32.5-19 with 0<j<4, while
2/.32.5.19=1 (mod 29) for any j with 0<j <4, contrary to a Sylow’s theorem.

If Ce(2)F?=R(3), r+1=4 and 14-(¢—&)r/4=28 and hence r=3, ¢=37,
contrary to r|n.
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