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The paper in the title, which we quote as (T), contains numerous errors of
careless * typographical" nature. Two of them, however, which occur in (105)
and (170), are very serious.

The purpose of this note is to salvage a portion of (T) with necessary cor-
rections and to have a few more formulas.

(T) may be divided into two parts. The first part handles the case where
b2^b1 (for the definition of bλ and b2 see (T), p. 495), and this is the case for two
Witt tight 4-designs. There is no trouble in this part. All the troubles lie in
the second part which handles the case where bx>b2.

The author is thankful to Professor Hikoe Enomoto for his kind com-
ments and suggestions.

REMARK. H. Enomoto, R. Noda and the author are now jointly preparing
a paper which shows that (105) does not hold and that there exist finitely many
possibilities for v and k as parameters of tight 4-designs.

1. Corrections

Page 493 Line 2. Replace to by of.
Line. 18. Replace 27 by 23.
Line 22. Replace s by k.

Page 494 (5). Replace N2 and Nι by Nι and N2 respectively.
Page 497 (36). Insert ( between J and v.
Page 498. The first assertion in §3 becomes obvious if we consider the

Diophantine equation 2Y— Y= Y2-X2 or 2X= Y2-X\
Page 501 Remark. Replace 8 by 18.
Page 503 Line 23. Replace e3 by c3.
Page 504 (73), Page 505 Lines 4 and 8. Replace le2 by \e2. Then the

given argument does not hold. But we can argue as follows: We may assume
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that k^\v. By (21) 2ae=2k-2m2<v. By (70) 2e<2C+6e-v+3. By (71)
2e<(cι+4)e+c0+2—D^e?+4-e+l—D. Thus D=#+2e, and hence ^ = ^ 0 =
e—ί. Furthermore, v = 4^-\-4e, 2C+6e—υ+3 = 2e+l and a = 2e+ί. Now
by (67) A2—4e(e+ ί)k+(2e+ \)\2^+2e-1)=0. The discriminant of this equa-
tion is negative.

Page 506 Line 8. Replace 5 by 4. Then we can argue as in the case a—4.
Page 509 Line 26. Replace 1 by 3.
Page 511 Line 13. Replace 8 by 12. Then the given argument does not

hold. But we can argue as follows: We have that v = 9a2— 1. By (30)
2k=3cf+l+x. Thus from (1) we obtain that

{x-(6a2-2)}2 = ( 3 α 2 - l ) ( 9 a 2 - l ) .

Since a is odd, we may put 3a2— l=2A2 and 9a2— 1=2Z?2, where A and B are
positive integers. Then J52=3^42+l. In particular, A and B are relatively
prime. Furthermore, x=4A2±2AB. By (47) we have that 3yA=(3A2±AB+\)
X(2A±B), which implies that A=l.

Page 512 Line 2. Replace e>4d0 by e<4d0. Then the given argument
does not hold, and there remain two cas^s which we fail to repair. Anyway we
argue as follows: We may assume that d1=e—l9 c x =2 and c^do=me with m
positive. Then from (103) we obtain that cQ=2dQ-\-m-\-2 (mod e). So we dis-
tinguish three cases.

Case 1. co + 2e — 2do+m+2. In this case from (103) we obtain that
3do=3e—3—m and 3co=m. Since codo=me> we get a contradiction that dQ=3e.

Case 2. co-{-e=2dQ-\-m+2. In this case from (103) we obtain that 3do=
2e—m—2 and 3co = e + m + 2. From (100) we obtain that υ =
From (102) we obtain that 3(ϋ+l)=2α(10έ?+5+m). So we have that

( i ) 3(2^+2^+1) = a(10e+5+m)

and

(ii) 9me = (e+2+m)(2e-2-m).

Eliminating m from (i) and (ii), we obtain that

(iii) 0 2 -4t f*+2* 2 -2α+2*+l = 0 .

(iii) can be rewritten as a Pellian equation

(iv) (2*

We notice that (X, F ) = ( l , 1) is the fundamental solution of X2—2Y2= — 1 and
other positive solutions are obtained by multiplying positive powers of

( 4 3 ) to (1,1).
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Case 3. c0=2d0-\-m-\-2. In this case from (103) we obtain that 3do=
e—m-1 and 3co=2e+m+4. From (100) u = V + 4 * + 2 . From (102) 3(^+1)=
a(22e+11+2m). So we have that

= a(22e+lί+2m)

and

(ii) 9me = (2e+4+m)(e— 1—m).

Eliminating m from (i) and (ii), we obtain that

(iii) 0 2 -SW+4* 2 -4tf+4*+3 = 0 .

(iii) can be rewritten as a Pellian equation

(iv) (4*+2-α) 2 -3(2*+l) 2 = _ 2 .

We notice that (X, F ) = ( l , 1) is the fundamental solution of X2—3Y2= — 2 and
other positive solutions are obtained by multiplying positive powers of

(32) t o

So we have to leave Cases 2 and 3 incomplete. It is, however, not so diffi-
cult to invoke Thue-Siegel type theorems to secure that only finitely many pairs
of a and e come into the possibilities for the parameters of tight 4 designs.

Henceforth we assume that dx<e—\> namely (105). But we notice that
most relevant equalities in (T) are independent from this assumption.

Page 512 Lines 12, 15, 21 and 29. Page 513 Line 4. Replace d0 by 2d0.
Page 512 Line 13. Replace (dx+7y+l by (d1+7)e2-e+2 if <:0=0; by

(d1+6)e2+2 if do=O; by ( ^ + 7 ) ^ - 4 if co</oΦθ.
Page 512 Line 18. Replace 7 and, by 6 and, respectively.
Drop Page 512 Lines 19-22 and the first sentence o^ Line 23.
Page 512 Line 24. Replace 6 by 5.
Drop from "Since" of Page 512 Line 25 to the second sentence of Page 513

Line 1.
Page 513 Line 5. Replace ^e3+2e?+(7+d0)e+l by <ez+2e2+(8+d0)e.
Page 513 Line 16. Replace α = 4 by 18#=73. Hence we can drop the

next few lines.
Page 514 Lines 16, 21 and 26. Replace kQ(cQ+dQ+l) by 2ko(co+do+\).
Page 514 Line 25. Replace ex by cx.
Page 515, (120). We notice that (120) holds without the assumption that

dx<e-l.
Page 516 Line. 6 Replace 3 by 13.
Page 518 Lines 1 and 5. Replace a(do+l) by do(a+l).
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Page 518 Line 26. Replace a+ί by a—I.

Page 520 (164). Replace 4e> by 2Λ

Page 521 (170). Replace a{e-\-\)v by e(a+l)v. Then the given argument

does not hold, and the proof is incomplete.

2. Main results of (T)

We may summarize main results of (T) in the following two propositions.
We use the notation in (T).

Proposition 1. Witt 4-(23, 7, 1) design is the only non-trivial tight A-design
with k a prime.

Proof. (T), Lemma 1.

Proposition 2. Witt designs are only non-trivial tight 4-designs with b2^blm

Proof. By (59) and (17) of (T) we have that 2b1=C(v-3)+2C+2e and

Zb2 = (v—3)(v—C)+2(υ—C)—2e—2. Then 6 ^ ^ if and only if υ^2C+

% Now if d2=0 ((T), Page 510), then by (100) and (104) of (T) we have
v—ί

that v=4-e?+(j+2)?+co+do+l^4e2+(j+4)e. Moreover, by (101) and (111)

of (T) we have that 2C=4e2+2c1e+2co^e2+(2j+4)e. So the proof is com-

plete if dx<e—\. If d1=e— 1, then we have that v<,\(?+\e+2 and C=2e2+

2e+2do+m+2.

3. Formulas

We would like to add a few more formulas. By (164) and (166) of (T) we

have that

(1) ( α 2_ 1 ) /

By (112) and (138) of (T) (1) implies that

(2) l^/^2(e-α-l).

Hence by (155) of (T) we have that

(3) (α 2-l)(ϊ)-4e 2-4e+l) = 4(e-a)(e-a+l)

and

(4) 4e2+4e+4^*><4e2+6e, (provided that d^e—V).

Moreover by (110) of (T) we obtain that
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(5) (a2-l)k2- {4a2e*+4a(a-2)e+(3a-l)(a-l)}k

+2a2e(e+l)(2ae+a—3) = 0.

We notice that the discriminant of (5) must be a square.
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