SIMPLE BIRATIONAL EXTENSIONS OF A POLYNOMIAL RING $k[x, y]$

Masayoshi MIYANISHI

(Received July 4, 1977)

Introduction. Let k be an algebraically closed field of characteristic zero and let $k[x, y]$ be a polynomial ring over k in two variables x and y. Let f and g be two elements of $k[x, y]$ without common nonconstant factors, and let $A=$ $k[x, y, f \mid g]$. In the present article we consider the structures of the affine k domain A under an assumption that $V:=\operatorname{Spec}(A)$ has only isolated singularities.

In the first section we describe how V is obtained from $\boldsymbol{A}^{2}:=\operatorname{Spec}(k[x, y])$ and we see that if V has only isolated singularities V is a normal surface whose singular points (if any) are rational double points. The divisor class group $C l(V)$ can be explicitly determined (cf. Theorem 1.9); we obtain, therefore, necessary and sufficient conditions for A to be a unique factorization domain. If g is irreducible and if the curves $f=0$ and $g=0$ on A^{2} meet each other then A is a unique factorization domain if and only if the curves $f=0$ and $g=0$ meet in only one point where both curves intersect transversally. We consider, in the same section, a problem: When is every invertible element of A constant?

In the second section we prove the following:
Theorem. Assume that V has only isolated singularities. Then A has a nonzero locally nilpotent k-derivation if and only if we have $g \in k[y]$ after a suitable change of coordinates x, y of $k[x, y]$.

An affine k-domain of type A as above was studied by Russell [8] and Sathaye [9] in connection with the following result:

Assume that A is isomorphic to a polynomial ring over k in two variables. In a polynomial ring $k[x, y, z]$ over k in three variables x, y and z, let $u=g z-f$. Then there exist two elements v, w of $k[x, y, z]$ such that $k[x, y, z]=k[u, v, w]$.

Our terminology and notation are as follows:
k : an algebraically closed field of characteristic zero which we fix throughout the paper.
A^{*} : the group of all invertible elements of a ring A.
$C l(V)$: the divisor class group of a normal surface V.
$\phi^{\prime}(C)$: the proper transform of a curve C on a normal surface Y by a birational morphism $\varphi: X \rightarrow Y$ from a normal surface X to Y.
$(t)_{X}$: the divisor of a function t on a normal surface X.
$p_{a}(D)$: the arithmetic genus of a divisor D on a nonsingular projective surface.
$\left(C^{2}\right),\left(C \cdot C^{\prime}\right)$: the intersection multiplicity.
\boldsymbol{A}^{n} : the n-dimensional affine space.
\boldsymbol{P}^{n} : the n-dimensional projective space.

1. The structures of the affine domain $k[x, y, f / g]$

1.1. Let $k[x, y, z]$ be a polynomial ring over k in three variables x, y and z, and let $\boldsymbol{A}^{3}:=\operatorname{Spec}(k[x, y, z])$. Let V be an affine hypersurface on \boldsymbol{A}^{3} defined by $g z-f=0$, and let $\pi: V \rightarrow A^{2}:=\operatorname{Spec}(k[x, y])$ be the projection $\pi:(x, y, z)=(x, y)$. Let F and G be respectively the curves $f=0$ and $g=0$ on \boldsymbol{A}^{2}. Then we have:

Lemma. (1) For each point $P \in F \cap G, \pi^{-1}(P)$ is isomorphic to the affine line \boldsymbol{A}^{1}.
(2) If Q is a point on G but not on F, then $\pi^{-1}(P)=\phi$.

Proof. Straightforward.
1.2. The Jacobian criterion of singularity applied to the hypersurface V shows us the following:

Lemma. Let P be a point on F and G. Then the following assertions hold:
(1) If P is a singular point for both F and G then every point of $\pi^{-1}(P)$ is a singular point of V.
(2) If P is a singular point of F but not a singular point of G then the point $(P, z=0)$ is the unique singular point of V lying on $\pi^{-1}(P)$.
(3) If P is a singular point of G but not a singular point of F then V is nonsingular at every point of $\pi^{-1}(P)$.
(4) If P is a nonsingular point of both F and G and if $i(F, G ; P) \geqslant 2$ then the point $(P, z=\alpha)$ is the unique singular point of V lying on $\pi^{-1}(P)$, where $\alpha(\in k)$ satisfies: $\frac{\partial f}{\partial x}(P)=\frac{\partial g}{\partial x}(P) \alpha$ and $\frac{\partial f}{\partial y}(P)=\frac{\partial g}{\partial y}(P) \alpha$. If $i(F, G ; P)=1$ then V is nonsingular at every point of $\pi^{-1}(P)$.

We assume, from now on, that V has only isolated singularities. Hence, if $P \in F \cap G$, either F or G is nonsingular at P. Furthermore, we assume that $F \cap G \neq \phi$. When $F \cap G=\phi$ then $A=k[x, y, 1 / g]$ and A is a unique factorization domain.
1.3. Let P be a point on F and G. We first consider the case where F is nonsingular at P but G is not. Let $P_{1}:=P$ and let ν_{1} be the multiplicity of G at P_{1}. Let $\sigma_{1}: V_{1} \rightarrow V_{0}:=\boldsymbol{A}^{2}$ be the quadratic transformation with center at P_{1}, let
$P_{2}:=\sigma_{1}^{\prime}(F) \cap \sigma_{1}^{-1}\left(P_{1}\right)$ and let ν_{2} be the multiplicity of $\sigma_{1}^{\prime}(G)$ at P_{2}. For $i \geqslant 1$ we define a surface V_{i}, a point P_{i+1} on V_{i} and an integer ν_{i+1} inductively as follows: When V_{i-1}, P_{i} and ν_{i} are defined, let $\sigma_{i}: V_{i} \rightarrow V_{i-1}$ be the quadratic transformation of V_{i-1} with center at P_{i}, let $P_{i+1}:=\left(\sigma_{1} \cdots \sigma_{i}\right)^{\prime}(F) \cap \sigma_{i}^{-1}\left(P_{i}\right)$ and let ν_{i+1} be the multiplicity of $\left(\sigma_{1} \cdots \sigma_{i}\right)^{\prime}(G)$ at P_{i+1}. Let s be the smallest integer such that $\nu_{s+1}=0$, and let $N:=\nu_{1}+\cdots+\nu_{s}$. We may simply say that P_{1}, \cdots, P_{s} are all points of G on the curve F over P_{1} and ν_{1}, \cdots, ν_{s} are the multiplicities of G at P_{1}, \cdots, P_{s}, respectively. Let $\sigma: V_{N} \rightarrow V_{0}$ be the composition of quadratic transformations $\sigma:=\sigma_{1} \cdots \sigma_{N}$ and let $E_{i}:=\left(\sigma_{i+1} \cdots \sigma_{N}\right)^{\prime} \sigma_{i}^{-1}\left(P_{i}\right)$ for $1 \leqslant i \leqslant N$. In a neighborhood of $\sigma^{-1}\left(P_{1}\right), \sigma^{-1}(F \cup G)$ has the following configuration:

(Fig. 1)

If $g=c g_{1}^{\beta_{1}} \cdots g_{n^{n}}^{\beta}\left(c \in k^{*}\right)$ is a decomposition of g into n distinct irreducible factors, let G_{j} be the curve $g_{j}=0$ on $V_{0}=\boldsymbol{A}^{2}$ for $1 \leqslant j \leqslant n$. Let $\nu_{i}(j)$ be the multiplicity of G_{j} at the point P_{i} for $1 \leqslant i \leqslant s$ and $1 \leqslant j \leqslant n$. Then it is clear that $\nu_{i}=\beta_{1} \nu_{i}(1)$ $+\cdots+\beta_{n} \nu_{i}(n)$ for $1 \leqslant i \leqslant s$.

1.4. We prove the following:

Lemma. With the same assumption and notations as in $1.3, V$ is isomorphic, in a neighborhood of $\pi^{-1}\left(P_{1}\right)$, to V_{N} with the curves E_{1}, \cdots, E_{N-1} and $\sigma^{\prime}(G)$ deleted off.

Proof. Let $\mathcal{O}:=\mathcal{O}_{V_{0}, P_{1}}, \tilde{V}_{0}:=\operatorname{Spec}(\mathcal{O})$ and $\tilde{V}=V \underset{V_{0}}{\times} \tilde{V}_{0} . \quad$ Since the curve F is nonsingular at P_{1} there exist local parameters u, v of V_{0} at P_{1} such that $v=f$. Let $g(u, v)=0$ be a local equation of G at P_{1}. Then $\tilde{V}=\operatorname{Spec}(\mathcal{O}[v / g(u, v)])$. Note that V is nonsingular in a neighborhood of $\pi^{-1}\left(P_{1}\right)$ (cf. 1.2). Hence there exist a nonsingular projective surface \bar{V} and a birational mapping $\varphi: V \rightarrow \bar{V}$ such that φ is an open immersion in a neighborhood of $\pi^{-1}\left(P_{1}\right)$ and a birational mapping $\bar{\pi}=\pi \cdot \varphi^{-1}: \bar{V} \rightarrow \boldsymbol{P}^{2}$ is a morphism, where V_{0} is embedded canonically into the projective plane \boldsymbol{P}^{2} as an open set. Since $\pi\left(\pi^{-1}\left(P_{1}\right)\right)=P_{1}$ we know that $\bar{\pi}$ is factored by the quadratic transformation of \boldsymbol{P}^{2} at P_{1}. Hence we know that $\pi: V \rightarrow V_{0}$ is factored by $\sigma_{1}: V_{1} \rightarrow V_{0}$, i.e., $\pi: V \xrightarrow{\pi_{1}} V_{1}{ }^{\sigma_{1}} V_{0}$.

Set $v=u v_{1}, u=v u_{1}, g\left(u, u v_{1}\right)=u^{\nu_{1}} g_{1}\left(u, v_{1}\right)$ and $g\left(v u_{1}, v\right)=v^{v_{1}} g_{1}^{\prime}\left(u_{1}, v\right)$. Then $\underset{V_{0}}{ } \times \widetilde{V}_{0}=\operatorname{Spec}\left(\mathcal{O}\left[v_{1}\right]\right) \cup \operatorname{Spec}\left(\mathcal{O}\left[u_{1}\right]\right) ; \sigma_{1}^{-1}\left(P_{1}\right)$ and $\sigma_{1}^{\prime}(G)$ are respectively defined
by $u=0$ and $g_{1}\left(u, v_{1}\right)=0$ on $\operatorname{Spec}\left(\Theta\left[v_{1}\right]\right)$, and by $v=0$ and $g_{1}^{\prime}\left(u_{1}, v\right)=0$ on Spec
 $=\operatorname{Spec}\left(\theta\left[v_{1}, v_{1} / u^{\nu_{1}-1} g_{1}\left(u, v_{1}\right)\right]\right) \cup \operatorname{Spec}\left(O\left[u_{1}, 1 / v^{\nu_{1}-1} g_{1}^{\prime}\left(u_{1}, v\right)\right]\right)$ and since v is an invertible function on $\operatorname{Spec}\left(\Theta\left[u_{1}, 1 / v^{\nu_{1}-1} g_{1}^{\prime}\left(u_{1}, v\right)\right]\right)$, we know that:
(i) $\tilde{V}=\operatorname{Spec}\left(\mathcal{O}\left[v_{1}, v_{1} / u^{\nu_{1}-1} g_{1}\left(u, v_{1}\right)\right]\right)$,
(ii) $\tilde{\pi}:=\underset{V_{0}}{\times} \tilde{V}_{0}: \tilde{V} \rightarrow \tilde{V}_{0}$ is a composition of $\tilde{\pi}_{1}:=\pi_{V_{0}} \times \tilde{V}_{0}: \tilde{V} \rightarrow \tilde{V}_{1}:=$ $\operatorname{Spec}\left(O\left[v_{1}\right]\right)$ and $\tilde{\sigma}_{1}:=\sigma_{1} \mid \tilde{v}_{1}: \tilde{V}_{1} \rightarrow \tilde{V}_{0}$,
(iii) if $Q \in\left(\sigma_{1}^{-1}\left(P_{1}\right) \cup \sigma_{1}^{\prime}(G)\right)-\sigma_{1}^{\prime}(F)$ then $\widetilde{\pi}_{1}^{-1}(Q)=\phi$.

Set $\quad v_{1}=u v_{2}, \cdots, v_{s-1}=u v_{s} \quad$ and $\quad g_{1}\left(u, v_{1}\right)=u^{\nu} g_{2}\left(u, v_{2}\right), \cdots, g_{s-1}\left(u, v_{s-1}\right)=$ $u^{\nu_{s}} g_{s}\left(u, v_{s}\right)$. Set $\tilde{V}_{2}=\operatorname{Spec}\left(\mathcal{O}\left[v_{2}\right]\right), \cdots, \tilde{V}_{s}=\operatorname{Spec}\left(\mathcal{O}\left[v_{s}\right]\right)$. Then, by the same argument as above, we know that the following assertions hold for $2 \leqslant i \leqslant s$:
(ii) $\tilde{\pi}: \tilde{V} \rightarrow \tilde{V}_{0}$ is a composition of a morphism $\tilde{\pi}_{i}: \tilde{V} \rightarrow \tilde{V}_{i}$ and $\tilde{\sigma}_{1} \tilde{\sigma}_{2} \cdots \tilde{\sigma}_{i}$: $\widetilde{V}_{i} \rightarrow \tilde{V}_{0}$, where $\tilde{\sigma}_{i}:=\sigma_{i} \mid \tilde{V}_{i}: \widetilde{V}_{i} \rightarrow \tilde{V}_{i-1} ;$ moreover, $\widetilde{\pi}_{i-1}=\tilde{\sigma}_{i} \cdot \widetilde{\pi}_{i} ;$
(iii) if $Q \in\left(\sigma_{i}^{-1}\left(P_{i}\right) \cup\left(\sigma_{1} \cdots \sigma_{i}\right)^{\prime}(G)\right)-\left(\sigma_{1} \cdots \sigma_{i}\right)^{\prime}(F)$ then $\tilde{\pi}_{i}^{-1}(Q)=\phi$.

When $i=s$, the proper transform $\left(\sigma_{1} \cdots \sigma_{s}\right)^{\prime}(G)$ of G on V_{s} does not meet the proper transform $\left(\sigma_{1} \cdots \sigma_{s}\right)^{\prime}(F)$ of F on \widetilde{V}_{s} (cf. the definition of s in (1.3)). Therefore, in virtue of (iii) above, we know that $g_{s}\left(u, v_{s}\right)$ is an invertible function on \tilde{V}, where $g_{s}\left(u, v_{s}\right)=0$ is the equation of the proper transform $\left(\sigma_{1} \cdots \sigma_{s}\right)^{\prime}(G)$ of G on \tilde{V}_{s}. Thus, $\tilde{V}=\operatorname{Spec}\left(\mathcal{O}\left[v_{s}, v_{s} / u^{N-s}\right]\right)$.

Furthermore, set $v_{s}=u v_{s+1}, \cdots, v_{N-1}=u v_{N}$ and $\widetilde{V}_{s+1}=\operatorname{Spec}\left(\mathcal{O}\left[v_{s+1}\right]\right), \cdots, \widetilde{V}_{N}$ $=\operatorname{Spec}\left(\mathcal{O}\left[v_{N}\right]\right)$. Then it is easy to see that the following assertions hold for $s+1 \leqslant i \leqslant N$:
(i) $\tilde{V}=\operatorname{Spec}\left(\Theta\left[v_{i}, v_{i} / u^{N-i}\right]\right)$,
(ii) $\quad \widetilde{\pi}_{s}: \widetilde{V} \rightarrow \widetilde{V}_{s}$ is a composition of a morphism $\widetilde{\pi}_{i}: \widetilde{V} \rightarrow \widetilde{V}_{i}$ and $\tilde{\sigma}_{s+1} \cdots \tilde{\sigma}_{i}$: $\tilde{V}_{i} \rightarrow \widetilde{V}_{s}$, where $\tilde{\sigma}_{i}=\left.\sigma_{i}\right|_{V_{i}}: \widetilde{V}_{i} \rightarrow \widetilde{V}_{i-1}$ and $\widetilde{\pi}_{i-1}=\tilde{\sigma}_{i} \cdot \widetilde{\pi}_{i}$.
Then $\tilde{V}=\tilde{V}_{N}=\operatorname{Spec}\left(\mathcal{O}\left[v_{N}\right]\right)$. Hence, V is isomorphic, in a neighborhood of $\pi^{-1}\left(P_{1}\right)$, to V_{N} with the curves E_{1}, \cdots, E_{N-1} and $\sigma^{\prime}(G)$ deleted off. In particular, $\pi^{-1}\left(P_{1}\right)=\varepsilon:=E_{N}-E_{N} \cap E_{N-1}$.
Q.E.D.
1.5. Assume that we are given two curves (not necessarily irreducible) F, G on a nonsingular surface V_{0} and a point $P_{1} \in F \cap G$ at which one of F and G, say F, is nonsingular. Let $P_{1}, P_{2}, \cdots, P_{s}$ be all points of G on F over P_{1}, and let ν_{1}, \cdots, ν_{s} be the multiplicities of G at P_{1}, \cdots, P_{s}, respectively. Let $N=\nu_{1}+\cdots+\nu_{s}$. As explained in 1.3, define $\sigma: V_{N} \rightarrow V_{0}$ as a composition of quadratic transformations with centers at N points P_{1}, \cdots, P_{N} on F, each $P_{i}(2 \leqslant i \leqslant N)$ being infinitely near to P_{i-1}. We call $\sigma: V_{N} \rightarrow V_{0}$ the standard transformation of V_{0} with respect to a triplet $\left(P_{1}, F, G\right)$. The configuration of $\sigma^{-1}(F \cup G)$ in a neighborhood of $\sigma^{-1}\left(P_{1}\right)$ is given by the Figure 1. With the notations in the Figure 1, we have a new surface V by deleting E_{1}, \cdots, E_{N-1} from V_{N}. We then say that V is obtained from V_{0} by the standard process of the first kind with respect to $\left(P_{1}, F, G\right)$. On
the other hand, note that $\left(E_{i}^{2}\right)=-2$ for $1 \leqslant i \leqslant N-1$. Hence we obtain a new normal surface V^{\prime} from V_{N} by contracting E_{1}, \cdots, E_{N-1} to a point Q_{1} on V^{\prime} which is a rational double point (cf. Artin [2; Theorem 2.7]). We then say that V^{\prime} is obtained from V_{0} by the standard process of the second kind with respect to $\left(P_{1}, F\right.$, $G)$.
1.6. We next consider the case where, at a point $P_{1} \in F \cap G$, the curve G is nonsingular. Indeed, we prove the following:

Lemma. With the assumption as above, let V^{\prime} be the surface obtained from $V_{0}:=\boldsymbol{A}^{2}$ by the standard process of the second kind with respect to $\left(P_{1}, G, F\right)$. Then, in a neighborhood of $\pi^{-1}\left(P_{1}\right), V$ is isomorphic to V^{\prime} with the proper transform of G deleted off. If either F is singular at P_{1} or $i\left(F, G ; P_{1}\right) \geqslant 2, V$ has a unique rational double point on $\pi^{-1}\left(P_{1}\right)$.

Proof. Let $P_{1}, P_{2}, \cdots, P_{r}$ be all points of F on G over P_{1}, and let μ_{1}, \cdots, μ_{r} be the multiplicities of F at P_{1}, \cdots, P_{r}, respectively. Let $M:=\mu_{1}+\cdots+\mu_{r}$. We prove the assertions by induction on M. Note that $M=1$ if and only if $i(F, G$; $\left.P_{1}\right)=1$. It is then easy to see that V is isomorphic, in a neighborhood of $\pi^{-1}\left(P_{1}\right)$, to a surface V_{1}^{\prime} obtained as follows: Let $\sigma_{1}: V_{1} \rightarrow V_{0}$ be the quadratic transformation of $V_{0}:=A^{2}$ with center at P_{1}, and let $V_{1}^{\prime}:=V_{1}-\sigma_{1}^{\prime}(G)$. Now, assume that $M>1$. Since G is nonsingular at P_{1} there exist local parameters u, v of V_{0} at P_{1} such that $v=g$. Let $f(u, v)=0$ be a local equation of F at P_{1}. Then, V is isomorphic, in a neighborhood of $\pi^{-1}\left(P_{1}\right)$, to an affine hypersurface $v z=f(u, v)$ in the affine 3 -space \boldsymbol{A}^{3}. There exists only one singular point $Q_{1}^{\prime}:(u, v, z)=$ $(0,0,0)$ of V lying on $\pi^{-1}\left(P_{1}\right)$. Let $\rho_{1}: W_{1} \rightarrow A^{3}$ be the blowing-up of A^{3} with center the curve $\pi^{-1}\left(P_{1}\right): u=v=0$, let V_{1}^{\prime} be the proper transform of V on W_{1}, and let $\tau_{1}:=\left.\rho_{1}\right|_{V_{1}^{\prime}}: V_{1}^{\prime} \rightarrow V$ be the restriction of ρ_{1} onto V_{1}^{\prime}.

Set $v=u v_{1}, u=v u_{1}$ and $f\left(u, u v_{1}\right)=u^{\mu_{1}} f_{1}\left(u, v_{1}\right), f\left(v u_{1}, v\right)=v^{\mu_{1}} f_{1}\left(u_{1}, v\right)$. Then V_{1}^{\prime} is given by $v_{1} z=u^{\mu_{1}-1} f_{1}\left(u, v_{1}\right)$ with respect to the coordinate system $\left(u, v_{1}, z\right)$ and by $z=v^{\mu_{1}-1} \tilde{1}_{1}\left(u_{1}, v\right)$ with respect to the coordinate system $\left(u_{1}, v, z\right)$. By construction of $V_{1}^{\prime}, V_{1}^{\prime}$ dominates the surface V_{1} obtained from V_{0} by the quadratic transformation σ_{1} with center at P_{1};

The proper transform $\tau_{1}^{\prime}\left(\pi^{-1}\left(P_{1}\right)\right)$ of $\pi^{-1}\left(P_{1}\right)$ on V_{1}^{\prime} is given by $u=v_{1}=0$; the curve $\tau_{1}^{-1}\left(Q_{1}^{\prime}\right)$ is given by $u=z=0 ; \tau_{1}: V_{1}^{\prime}-\tau_{1}^{-1}\left(Q_{1}^{\prime}\right) \xrightarrow{\sim} V-\left\{Q_{1}^{\prime}\right\}$; the singular point of V_{1}^{\prime} is possibly $Q_{2}^{\prime}:\left(u, v_{1}, z\right)=(0,0,0)$.

The morphism $\pi_{1}: V_{1}^{\prime} \rightarrow V_{1}$ is isomorphic at every point of $\tau_{1}^{-1}\left(Q_{1}^{\prime}\right)-\left\{Q_{2}^{\prime}\right\}$.

Indeed, if $v_{1} \neq 0$ or ∞, π_{1} is given by $\left(u, v_{1}, z\right)=\left(u, v_{1}, u^{\mu_{1}-1} f_{1}\left(u, v_{1}\right) / v_{1}\right) \mapsto\left(u, v_{1}\right)$ which is clearly isomorphic; if $v_{1}=\infty, \pi_{1}$ is given by $\left(u_{1}, v, v^{\mu_{1}-1} \tilde{f}_{1}\left(u_{1}, v\right)\right) \mapsto\left(u_{1}, v\right)$ which is isomorphic as well. Under this isomorphism, $\tau_{1}^{-1}\left(Q_{1}^{\prime}\right)$ corresponds to $\sigma_{1}^{-1}\left(P_{1}\right)$:

Note that the following assertions hold:
(i) $\quad V_{1}^{\prime}$ is isomorphic, in a neighborhood of $\pi_{1}^{-1}\left(P_{2}\right)$, to an affine hypersurface $v_{1} z=u^{\mu_{1}-1} f_{1}\left(u, v_{1}\right)$ on \boldsymbol{A}^{3};
(ii) in a neighborhood of $P_{2}, \sigma_{1}^{\prime}(G)$ is defined by $v_{1}=0$ and $\sigma_{1}^{\prime}(F)$ is defined by $f_{1}\left(u, v_{1}\right)=0$;
(iii) P_{2}, \cdots, P_{r} are all points of the curve $F_{1}: u^{\mu_{1}-1} f_{1}\left(u, v_{1}\right)=0$ on $\sigma_{1}^{\prime}(G)$ over P_{2}, and the sum of multiplicities of the curve F_{1} at P_{2}, \cdots, P_{r} is $M-1$.

Then, by the assumption of induction applied to V_{1}^{\prime}, we obtain V_{1}^{\prime} from the surface $V_{1}^{\prime \prime}$, which is obtained from V_{1} by the standard process of the second kind with respect to a triplet $\left(P_{2}, \sigma_{1}^{\prime}(G), F_{1}\right)$, by deleting the proper transform of $\sigma_{1}^{\prime}(G)$ on $V_{1}^{\prime \prime}$:

where the surface $V_{1}^{\prime \prime}$ is obtained by contracting E_{2}, \cdots, E_{M-1}. Then it is easy to see that V is isomorphic, in a neighborhood of $\pi^{-1}\left(P_{1}\right)$, to the surface V^{\prime}, which is obtained from $V_{1}^{\prime \prime}$ by contracting E_{1}, \cdots, E_{M-1}, with the proper transform of $\sigma^{\prime}(G)$ deleted off. Hence, the unique singular point of V lying on $\pi^{-1}\left(P_{1}\right)$ is a rational double point.
Q.E.D.
1.7. Let $P_{1} \in F \cap G$, and assume that G is nonsingular at P_{1}. Let $P_{1}, P_{2}, \cdots, P_{r}$ be all points of F on G over P_{1}, and let μ_{1}, \cdots, μ_{r} be the multiplicities of F at P_{1}, \cdots, P_{r}, respectively. If $f=c f_{1}^{\alpha_{1} \cdots} f_{m}^{\alpha_{m}}\left(c \in k^{*}\right)$ is a decomposition of f into distinct irreducible factors, let $F_{j}(1 \leq j \leq m)$ be the curve on V_{0} defined by $f_{j}=0$. Let $\mu_{i}(j)$ be the multiplicity of F_{j} at P_{i} for $1 \leqslant i \leqslant r$ and $1 \leqslant j \leqslant m$. Then it is clear that $\mu_{i}=\alpha_{1} \mu_{i}(1)+\cdots+\alpha_{m} \mu_{i}(m)$ for $1 \leqslant i \leqslant r$.
1.8. As a consequence of Lemmas 1.4 and 1.6, we have the following:

Theorem. Assume that V has only isolated singularities. Let W be the surface obtained from $V_{0}:=\boldsymbol{A}^{2}$ by the standard processes of the first (or the second) kind at every point of $F \cap G$. Then V is isomorphic to the surface W with the proper transform of G on W deleted off. The surface V is, therefore, a normal surface whose singular points (if any) are rational double points.
1.9. In the paragraphs $1.9 \sim 1.11$ we shall study the divisor class group $C l(V)$.
 and let G_{j} be the curve $g_{j}=0$ on V_{0} for $1 \leqslant j \leqslant n$. Assume that $F \cap G \neq \phi$. Let $F \cap G=\left\{P_{1}^{(1)}, \cdots, P_{1}^{(e)}\right\}$. For $1 \leqslant l \leqslant e$, either F is nonsingular at $P_{1}^{(l)}$ but G is not, or G is nonsingular at $P_{1}^{(l)}$. We may assume that F is nonsingular at $P_{1}^{(1)}$, $\cdots, P_{1}^{(a)}$ but G is not, and G is nonsingular at $P_{1}^{(a+1)}, \cdots, P_{1}^{(e)}$. (The number a may be 0 .) For $l \leqslant a$, let $P_{1}^{(l)}, \cdots, P_{s_{l}}^{(l)}$ be all points of G on F over $P_{1}^{(l)}$, and let $\nu_{i}^{(l)}(j)$ be the multiplicity of G_{j} at $P_{i}^{(l)}$ for $1 \leqslant i \leqslant s_{l}$ and $1 \leqslant j \leqslant n$; let $N^{(l)}(j)=$ $\nu_{1}^{(l)}(j)+\cdots+\nu_{s_{l}}^{(l)}(j)$, let $\nu_{i}^{(l)}=\beta_{1} \nu_{i}^{(l)}(1)+\cdots+\beta_{n} \nu_{i}^{(l)}(n)$ and let $N^{(l)}=\beta_{1} N^{(l)}(1)+\cdots$ $+\beta_{n} N^{(l)}(n)$. For $a+1 \leqslant l \leqslant e$, let $P_{1}^{(l)}, \cdots, P_{r_{l}}^{(l)}$ be all points of F on G over $P_{1}^{(l)}$, and let $\mu_{i}^{(l)}$ be the multiplicity of F at $P_{i}^{(l)}$ for $1 \leqslant i \leqslant r_{l}$. Let $M^{(l)}=\mu_{1}^{(l)}+\cdots+$ $\mu_{r_{l} .}^{(l)}$. Since G is nonsingular at $P_{1}^{(l)}$, there exists a unique $G_{j}(1 \leqslant j \leqslant n)$ such that $P_{1}^{(l)}, \cdots, P_{r_{l}}^{(l)}$ lie on G_{j}. Then we set $M^{(l)}(j)=M^{(l)}$ and $M^{(l)}\left(j^{\prime}\right)=0$ for $j^{\prime} \neq j$. Let $\varepsilon^{(l)}=\pi^{-1}\left(P_{1}^{(l)}\right)$ for $1 \leqslant l \leqslant e$.
1.10. The structure of the divisor class group $C l(V)$ is given by the following:

Theorem. With the notations as above, the divisor class group $C l(V)$ is isomorphic to:

$$
\left\{Z \varepsilon^{(1)}+\cdots+\boldsymbol{Z} \varepsilon^{(e)}\right\} /\left\{\sum_{l=1}^{a} N^{(l)}(j) \varepsilon^{(l)}+\sum_{l=a+1}^{\infty} M^{(l)}(j) \varepsilon^{(l)} ; 1 \leqslant j \leqslant n\right\}
$$

Proof. Embed $V_{0}:=\boldsymbol{A}^{2}$ into the projective plane \boldsymbol{P}^{2} in a canonical way as an open set, and let $l_{\infty}:=\boldsymbol{P}^{2}-V_{0}$. For $1 \leqslant l \leqslant e$, let $E_{1}^{(l)}, \cdots, E_{q}^{(l)}$ be all exceptional curves which arise by the standard transformation of V_{0} with respect to a triplet $\left(P_{1}^{(l)}, F, G\right)\left(\right.$ or $\left.\left(P_{1}^{(l)}, G, F\right)\right)$ where $q=N^{(l)}$ (or $M^{(l)}$). Let $\tau: W \rightarrow \boldsymbol{P}^{2}$ be a composition of standard transformations of \boldsymbol{P}^{2} with respect to triplets $\left(P_{1}^{(l)}, F, G\right)$ for $1 \leqslant l \leqslant a$ and triplets $\left(P_{1}^{(l)}, G, F\right)$ for $a+1 \leqslant l \leqslant e$. Then it is easy to see that the divisor

$$
\left(g_{j}\right)_{W}-\left\{\sum_{l=1}^{a} N^{(l)}(j) E_{N^{(l)}}^{(l)}+\sum_{l=a+1}^{\infty} M^{(l)}(j) E_{\boldsymbol{m}(l)}^{(l)}\right\} \quad(1 \leqslant j \leqslant n)
$$

has support on $\tau^{\prime}\left(G_{j}\right), \tau^{\prime}\left(l_{\infty}\right), E_{1}^{(l)}, \cdots, E_{q-1}^{(l)}\left(q=N^{(l)}\right.$ or $\left.M^{(l)}\right)$ for $1 \leqslant l \leqslant e$. Hence we have:

$$
\sum_{l=1}^{a} N^{(l)}(j) \varepsilon^{(l)}+\sum_{l=a+1}^{a} M^{(l)}(j) \varepsilon^{(l)} \sim 0 \quad(1 \leqslant j \leqslant n)
$$

Now, let C be an irreducible curve on V such that $\pi(C)$ is not a point, and
let the closure of $\pi(C)$ be defined by $h=0$ with $h \in k[x, y]$. Then, by considering the divisor $(h)_{W}$ on W, we easily see that C is linearly equivalent to an integral combination of $\varepsilon^{(1)}, \cdots, \varepsilon^{(e)}$. Hence, by setting

$$
\mathcal{G}:=\left\{Z \bar{\varepsilon}^{(1)}+\cdots+Z \bar{\varepsilon}^{(e)}\right\} /\left\{\sum_{i=1}^{i} N^{(l)}(j) \bar{\varepsilon}^{(l)}+\sum_{l=a+1}^{\dot{\prime}} M^{(l)}(j) \bar{\varepsilon}^{(l)} ; 1 \leqslant j \leqslant n\right\}
$$

we have a surjective homomorphism:

$$
\theta: \mathcal{G} \rightarrow C l(V) ; \theta\left(\bar{\varepsilon}^{(l)}\right)=\varepsilon^{(l)}(1 \leqslant l \leqslant e) .
$$

Assume that $\operatorname{Ker} \theta \neq(0)$, and let $d_{1} \varepsilon^{(1)}+\cdots+d_{e} \varepsilon^{(e)}=(t)_{V}$ on V, where $d_{l} \in Z$ $(1 \leqslant l \leqslant e)$ and $t \in k(V)$. Let $(t)_{V_{0}}=\sum m_{i} C_{i}$ with irreducible curves C_{i} and $m_{i} \in \boldsymbol{Z}$. Let $t_{i} \in k[x, y]$ be such that C_{i} is given by $t_{i}=0$, and write:

$$
\left(t_{i}\right)_{V}=\pi^{\prime}\left(C_{i}\right)+\sum_{l=1}^{\dot{\prime}} b_{i l} \varepsilon^{(l)} \text { with } b_{i l} \in Z
$$

Then we have:

$$
(t)_{V}=\sum_{i}\left\{m_{i} \pi^{\prime}\left(C_{i}\right)+\sum_{i=1}^{i} m_{i} b_{i l} \varepsilon^{(l)}\right\}=\sum_{i=1}^{i} d_{l} \varepsilon^{(l)}
$$

Therefore, either $m_{i}=0$ for every i, or $\pi^{\prime}\left(C_{i}\right)=\phi$ for every i. In the first case, t is a constant $\in k$, whence $d_{l}=0$ for $1 \leqslant l \leqslant e$. In the second case, C_{i} must coincide with one of G_{j} 's $(1 \leqslant j \leqslant n)$. Then $d_{1} \bar{\varepsilon}^{(1)}+\cdots+d_{e} \bar{\varepsilon}^{(e)}=0$ in \mathcal{G}. This is a contradiction. Therefore, θ is an isomorphism.
Q.E.D.
1.11. The affine domain $A=k[x, y, f / g]$ is a unique factorization domain if and only if $C l(V)=(0)$. We have the following two consequences of 1.10 .
1.11.1. Corollary. With the notation of 1.9 , if $e>n$ then A is not a unique factorization domain.
1.11.2. Corollary. Assume that g is irreducible and that $F \cap G \neq \phi$. Then A is a unique factorization domain if and only if the curves F and G meet each other in only one point where they intersect each other transversally.
1.12. Let A^{*} be the group of all invertible elements of $A=k[x, y, f / g]$. Then A^{*} contains $k^{*}=k-(0)$ as a subgroup. By virtue of ([4], Remark 2, p. 174) we know that A^{*} / k^{*} is a torsion-free \boldsymbol{Z}-module of finite rank and A^{*} is isomorphic to a direct product of k^{*} and A^{*} / k^{*}. The purpose of this paragraph is to determine the group A^{*} / k^{*}. Let H be the subgroup of $\boldsymbol{Z} \varepsilon^{(1)}+\cdots+\boldsymbol{Z} \varepsilon^{(e)}$ generated by

$$
\left\{\sum_{l=1}^{\infty} N^{(l)}(j) \varepsilon^{(l)}+\sum_{l=a+1}^{\dot{c}} M^{(l)}(j) \varepsilon^{(l)} ; 1 \leqslant j \leqslant n\right\}
$$

Let T_{1}, \cdots, T_{n} be n-indeterminates, and let $\eta: Z^{(n)}:=\boldsymbol{Z} T_{1}+\cdots+Z T_{n} \rightarrow H$ be a homomorphism such that, for $1 \leqslant j \leqslant n$,

$$
\eta\left(T_{j}\right)=\sum_{l=1}^{a} N^{(l)}(j) \varepsilon^{(l)}+\sum_{l=a+1}^{e} M^{(l)}(j) \varepsilon^{(l)}
$$

Let L be the kernel of η. Since $N^{(l)}(j)$ and $M^{(l)}(j)$ are non-negative integers for $1 \leqslant l \leqslant e$ and $1 \leqslant j \leqslant n$, each nonzero element of L is written in the form: $\gamma_{1} T_{1}+$ $\cdots+\gamma_{n} T_{n}\left(\gamma_{i} \in Z\right)$, where some of γ_{i} 's are negative. Define a homomorphism
 the following:

Lemma. The homomorphism ξ induces an isomorphism $\xi: L \xrightarrow{\leftrightarrows} A^{*} / k^{*}$.
Proof. (1) Since $\left(g_{j}\right)_{V}=\sum_{l=1}^{a} N^{(l)}(j) \varepsilon^{(l)}+\sum_{l=a+1}^{i} M^{(l)}(j) \varepsilon^{(l)}=\eta\left(T_{j}\right)$ for $1 \leqslant j \leqslant n$, we have:

$$
\eta\left(\gamma_{1} T_{1}+\cdots+\gamma_{n} T_{n}\right)=\left(g_{1}^{\left.\gamma_{1} \cdots g_{n}^{\gamma_{n}}\right)_{V} .}\right.
$$

Therefore, if $\gamma_{1} T_{1}+\cdots+\gamma_{n} T_{n} \in L$ then $g{ }_{1}^{\gamma_{1}} \cdots g_{n}^{\gamma_{n}}$ is an invertible element of A, which is a constant if and only if $\gamma_{1}=\cdots=\gamma_{n}=0$. Thus, ξ is a monomorphism from L into A^{*} / k^{*}.
(2) Let t be a non-constant invertible element of A. Write $(t)_{V_{0}}=\sum_{i} m_{i} C_{i}$ with irreducible curves C_{i} and $m_{i} \in Z$. Let C_{i} be defined by $t_{i}=0$ with $t_{i} \in k[x, y]$. As in the proof of 1.10 , write:

$$
\left(t_{i}\right)_{V}=\pi^{\prime}\left(C_{i}\right)+\sum_{i=1}^{\dot{\in}} b_{i l} \varepsilon^{(l)} \quad \text { with } \quad b_{i l} \in \boldsymbol{Z}
$$

Then we have:

$$
(t)_{V}=\sum_{i}\left\{m_{i} \pi^{\prime}\left(C_{i}\right)+\sum_{i=1}^{\dot{f}} m_{i} b_{i l} \varepsilon^{(l)}\right\}=0
$$

Therefore, either $m_{i}=0$ for every i, or $\pi^{\prime}\left(C_{i}\right)=\phi$ for every i. The first case does not occur because, if otherwise, t is a constant. In the second case, C_{i} must coincide with one of G_{j} 's. Hence we could write:

$$
(t)_{V_{0}}=\sum_{i=1}^{n} m_{i} G_{i} .
$$

 $\xi\left(m_{1} T_{1}+\cdots+m_{n} T_{n}\right)=t$. Therefore, $\xi: L \rightarrow A^{*} / k^{*}$ is an isomorphism. Q.E.D.
1.13. By virtue of 1.10 and 1.12 , we have the following:

Theorem. Assume that V has only isolated singularities. Then we have the following exact sequence of \boldsymbol{Z}-modules:

$$
0 \rightarrow A^{*} / k^{*} \rightarrow Z^{(n)} \rightarrow Z^{(e)} \rightarrow C l(V) \rightarrow 0
$$

where $\boldsymbol{Z}^{(r)}$ stands for a free \boldsymbol{Z}-module of rank r; n is the number of distinct irreducible

factors of g; e is the number of distinct points of $F \cap G$.

1.14. Remarks. (1) It is clear from 1.13 that if g is irreducible then $A^{*}=k^{*}$.
(2) $\operatorname{rank}(C l(V))-\operatorname{rank}\left(A^{*} / k^{*}\right)=e-n$.
(3) Though we proved Theorem 1.13 under the assumption that $F \cap G \neq \phi$ it is clear that the theorem is valid also in the case where $F \cap G=\phi$.

2. Locally nilpotent derivation on $\boldsymbol{k}[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{f} / \boldsymbol{g}]$

2.1. Let A be an affine k-domain. A k-derivation D on A is said to be locally nilpotent if, for every element a of $A, D^{n}(a)=0$ for sufficiently large n. If D is a locally nilpotent k-derivation on A, we define a k-algebra homomorphism

$$
\Delta: A \rightarrow A[X] \quad \text { (with an indeterminate } X \text {) }
$$

by

$$
\Delta(a)=\sum_{n \geqslant 0}(1 / n!) D^{n}(a) X^{n}
$$

Then it is known (cf. [6]) that Δ gives rise to an action of the additive group scheme G_{a} on $\operatorname{Spec}(A)$. Conversely, every action of G_{a} on $\operatorname{Spec}(A)$ is expressed in the above-mentioned way with some locally nilpotent k-derivation on A. We set $A_{0}:=\{a \in A \mid D(a)=0\}$. Then A_{0} is an inert subring of A, and A_{0} is, in fact, the ring of G_{a}-invariant elements of A with respect to the corresponding G_{a} action on $\operatorname{Spec}(A)$. For other relevant results on these materials, the readers are referred to [4] and [6].
2.2. In this section, we set $A=k[x, y, f / g]$, and assume that A is normal. Assume that A has a nonzero locally nilpotent k-derivation D. Then we assert the following:

Lemma. The subring A_{0} of D-constants is a finitely generated, normal, rational k-domain of dimension 1.

Proof. Since A_{0} is the ring of G_{a}-invariants in a normal domain A, A_{0} is integrally closed in the quotient field $Q\left(A_{0}\right)$ of A_{0} and $A_{0}=A \cap Q\left(A_{0}\right)$, where $Q\left(A_{0}\right)$ is the field of G_{a}-invariants in the quotient field $Q(A)$ of A. Then, by virtue of Zariski's Theorem (cf. Nagata [7; p. 52]), A_{0} is a finitely generated normal k-domain of dimension 1. Besides, A_{0} is rational over k by Luroth's Theorem because A is rational over k.
Q.E.D.
2.3. Let $V:=\operatorname{Spec}(A)$. Then V has a nontrivial G_{a}-action corresponding to the derivation D on A. Let $U:=\operatorname{Spec}\left(A_{0}\right) ; U$ is isomorphic to an open set of the affine line \boldsymbol{A}^{1} (cf. 2.2). Let $q: V \rightarrow U$ be the morphism defined by the canonical inclusion $A_{0} \hookrightarrow A$. By 2.2, we know that $A_{0}=k[t, 1 / h(t)]$ with $h(t) \in k[t]$. For almost all elements α of k such that $h(\alpha) \neq 0$, the fibre $q^{-1}(\alpha)$ is a G_{a}-orbit and is, therefore, isomorphic to the affine line. Let $\rho: V^{\prime} \rightarrow V$ be the minimal resolution of singularities of V. As we saw in 1.8, singular points of V are
rational double points. Hence, ρ is a composition of quadratic transformations with centers at singular points. Let $q^{\prime}:=q \cdot \rho: V^{\prime} \rightarrow U$. Almost all fibres of q^{\prime} are therefore isomorphic to the affine line. Now we shall prove the following:

Lemma. There exist a nonsingular projective surface W and a surjective morphism $p: W \rightarrow \boldsymbol{P}^{1}$ satisfying the following conditions:
(1) Almost all fibres of p are isomorphic to \boldsymbol{P}^{1}.
(2) There exists an open immersion $\iota: V^{\prime} \rightarrow W$ such that $p \cdot \iota=\tau \cdot q^{\prime}$, where $\bar{\imath}: U \hookrightarrow \boldsymbol{P}^{1}$ is the canonical open immersion via $U \hookrightarrow \boldsymbol{A}^{1}:=\operatorname{Spec}(k[t])$.
Then the fibration p has a cross-section S such that $S \subset W-\iota\left(V^{\prime}\right)$.
Proof. Let \bar{V} be a nonsingular projective surface containing V^{\prime} as an open set. Then, a subfield $k(t)$ of $k\left(V^{\prime}\right)=k(\bar{V})$ defines a linear pencil $\bar{\Lambda}$ of effective divisors on \bar{V} such that a general member of $\bar{\Lambda}$ cuts out a general fibre of q^{\prime} on V^{\prime}. The base points of $\bar{\Lambda}$ are situated on $\bar{V}-V^{\prime}$. Let $\theta: W \rightarrow \bar{V}$ be the shortest succession of quadratic transformations of \bar{V} with centers at the base points of $\bar{\Lambda}$ such that the proper transform Λ of $\bar{\Lambda}$ by θ has no base points, and let p : $W \rightarrow \boldsymbol{P}^{1}$ be the morphism defined by Λ. Since V^{\prime} is canonically embedded into W as an open set, let $\iota: V^{\prime} \rightarrow W$ be the canonical immersion. Then it is not hard to see that $p: W \rightarrow \boldsymbol{P}^{1}$ and $\iota: V^{\prime} \rightarrow W$ satisfy the conditions (1), (2) of Lemma.
Q.E.D.
2.4. We shall prove the following:

Lemma. (cf. [3]). Let $p: W \rightarrow \boldsymbol{P}^{1}$ be a surjective morphism from a nonsingular projective surface W onto \boldsymbol{P}^{1} such that almost all fibres are isomorphic to \boldsymbol{P}^{1}. Let $F=n_{1} C_{1}+\cdots+n_{r} C_{r}$ be a reducible fibre of p, where C_{i} is an irreducible curve and $n_{i}>0$. Then we have:
(1) For $1 \leqslant i \leqslant r, C_{i}$ is isomorphic to \boldsymbol{P}^{1} and $\left(C_{i}^{2}\right)<0$.
(2) For $i \neq j, C_{i}$ and C_{j} do not intersect or intersect transversally at a single point.
(3) For distinct indices i, j and $l, C_{i} \cap C_{j} \cap C_{l}=\phi$.
(4) One of C_{i} 's, say C_{1}, is an exceptional curve of the first kind. If $\tau: W \rightarrow$ W_{1} is the contraction of C_{1}, then p factors as $p: W \xrightarrow{\boldsymbol{\tau}} W_{1} \xrightarrow{p_{1}} \boldsymbol{P}^{1}$, where $p_{1}: W_{1} \rightarrow \boldsymbol{P}^{1}$ is a fibration by \boldsymbol{P}^{1}.

Proof. For each $i, n_{i}\left(C_{i}^{2}\right)+\sum_{i \neq j} n_{j}\left(C_{i} \cdot C_{j}\right)=0$, where $\left(C_{i} \cdot C_{j}\right)>0$ for some j because F is connected. Hence $\left(C_{i}^{2}\right)<0$. To prove the remaining assertions we have only to show that one of C_{i} 's is an exceptional curve of the first kind. Let K be the canonical divisor of W. Then $(F \cdot K)=-2$ because $p_{a}(F)=0$. Hence, $-2=(F \cdot K)=\sum_{i} n_{i}\left(C_{i} \cdot K\right)=\sum_{i} n_{i}\left(2 p_{a}\left(C_{i}\right)-2-\left(C_{i}^{2}\right)\right)$, where $2 p_{a}\left(C_{i}\right)-2-$ $\left(C_{i}^{2}\right) \geqslant-1$ and the equality holds if and only if C_{i} is an exceptional curve of the
first kind. However, it is impossible that $2 p_{a}\left(C_{i}\right)-2-\left(C_{i}^{2}\right) \geqslant 0$ for every i. Therefore, $2 p_{a}\left(C_{i}\right)-2-\left(C_{i}^{2}\right)=-1$ for some i.
Q.E.D.
2.5. With the notations of 2.3, Lemma 2.4 implies:

Lemma. Write $W-\iota\left(V^{\prime}\right)=\bigcup_{i=1}^{v} C_{i}$ with irreducible curves C_{i}. Then we have:
(1) Every C_{i} is isomorphic to P^{1}.
(2) For $i \neq j, C_{i}$ and C_{j} meet each other (if at all) in a single point where they intersect transversally.
(3) For distinct indices i, j and $l, C_{i} \cap C_{j} \cap C_{l}=\phi$.
(4) $\bigcup_{i=1}^{r} C_{i}$ does not contain any cyclic chains.

Proof. Note that one of C_{i} 's is the cross-section S and the other components are contained in the fibres of p. Then the above assertions follow from 2.4.
Q.E.D.
2.6. Let $V_{0}:=\operatorname{Spec}(k[x, y])$, and let F, G be as in 1.1 . Let $G_{i}(1 \leqslant i \leqslant n)$ be as in 1.9. Embed V_{0} into \boldsymbol{P}^{2} in a canonical way. Let $l_{\infty}:=\boldsymbol{P}^{2}-V_{0}$ and let $\bar{F}, \bar{G}, \bar{G}_{j}$ $(1 \leqslant j \leqslant n)$ be the closures of F, G, G_{j} in \boldsymbol{P}^{2}, respectively. Let $\tau: Z \rightarrow \boldsymbol{P}^{2}$ be a composition of the standard transformations of \boldsymbol{P}^{2} with respect to triplets $(P, F$, $G)$ (or ($P, G, F)$), where P runs over all points of $F \cap G$. Then we know that V^{\prime} is embedded into Z as an open set. We may assume, by replacing W if necessary by a surface which is obtained from W by a succession of the quadratic transformations, that there exists a birational morphism $\varphi: W \rightarrow Z$ such that we have the following commutative diagram:

2.7. Let $P_{1} \in F \cap G$. Assume that F is nonsingular at P_{1} but G is not. Then, in a neighborhood of $\tau^{-1}\left(P_{1}\right), \tau^{-1}(F \cup G)$ has the configuration as in the Figure 1. With the notations of the Figure 1, we can show the following assertions:
(1) A general fibre λ of p may intersect $\varphi^{\prime}\left(E_{N}\right)$.
(2) $\varphi^{\prime}\left(E_{1}\right), \cdots, \varphi^{\prime}\left(E_{N-1}\right)$ are contained in one and only one fibre of p.

Indeed, $\lambda_{V^{\prime}}=\lambda \cap V^{\prime}$ is isomorphic to the affine line, and $\tau \varphi\left(\lambda-\lambda_{V^{\prime}}\right)$ lies on l_{∞}. Hence λ does not meet any of $\varphi\left(E_{1}\right), \cdots, \varphi\left(E_{N-1}\right)$. This proves the second
assertion. By the same reason, we have:
(3) For $1 \leqslant j \leqslant n$, $(\tau \varphi)^{\prime}\left(\bar{G}_{j}\right)$ is contained in a fibre of p. In particular, $(\tau \varphi)^{\prime}\left(\bar{G}_{j}\right)$ is isomorphic to \boldsymbol{P}^{1}.

2.8. We have the following:

Lemma. (1) For $1 \leqslant j \leqslant n, G$, has one place at infinity; every singular point of G_{j} is a one-place point.
(2) For distinct $i, j(1 \leqslant i, j \leqslant n), G_{i} \cap G_{j}=\phi$.

Proof. Note that if φ is not an isomorphism φ is a composition of quadratic transformations of Z with centers at a point on $\tau^{\prime}\left(l_{\infty}\right)$ and its infinitely near points. Then, both assertions follow from 2.5 (cf. 2.7).
Q.E.D.
2.9. We prove the following:

Lemma. For $1 \leqslant j \leqslant n$, the curve G_{j} is nonsingular.
Proof. Note that if P is a singular point of G_{j} then P is a point of $F \cap G_{j}$ (cf. 2.7, (3)). Assume that $P \in F \cap G_{j}$. Then, in a neighborhood of $\tau^{-1}(P)$, $\tau^{-1}\left(F \cap G_{j}\right)$ must have the following configuration as in the Figure 1:

where $\varphi^{\prime}\left(E_{1}\right), \cdots, \varphi^{\prime}\left(E_{N-1}\right)$ and $(\tau \varphi)^{\prime}\left(G_{j}\right)$ belong to the same fibre of p. Note that $(\tau \varphi)^{\prime}\left(G_{j}\right)$ intersects $\varphi^{\prime}\left(E_{s}\right)$ transversally in one point if $N \geqslant s+1$ (cf. Lemma 2.4). Assume that $\nu_{b} \geqslant 2$ and $\nu_{b+1}=\cdots=\nu_{s}=1$. (For the notations, see 1.3.) Such b exists because we assume that P is a singular point of G_{j}. Then $N \geqslant s+1$, and it is not hard to see that $s=b+1$, and that we have the configuration:

where $\tau^{\prime}\left(G_{j}\right)$ touches E_{s-1} with $\left(\tau^{\prime}\left(G_{j}\right) \cdot E_{s-1}\right)=\nu_{b}-1$. This contradicts Lemma 2.4, (3). Therefore, the curve G_{j} is nonsingular.
Q.E.D.
2.10. Now we can prove:

Theorem. Assume that V has only isolated singularities. Then A has a nonzero locally nilpotent k-derivation if and only if we have $g \in k[y]$ after a suitable change of coordinates x, y of $k[x, y]$.

Proof. Assume that $g \in k[y]$ after a suitable change of coordinates x, y of $k[x, y]$. Then $D=g \frac{\partial}{\partial x}$ is a nonzero locally nilpotent k-derivation on A. We prove the converse. With the notations of $2.1 \sim 2.9, G_{j}(1 \leqslant j \leqslant n)$ is a nonsingular rational curve with one place at infinity (cf. 2.8, (1) and 2.9). [Note that G_{j} is a rational curve because $(\tau \varphi)^{\prime}\left(\bar{G}_{j}\right)$ is a component of a fibre of p (cf. 2.4).] Hence, G_{j} is isomorphic to the affine line \boldsymbol{A}^{1}. By virtue of the Embedding Theorem of Abhyankar-Moh (cf. [1], [5]), we may assume that $g_{1}=y$ after a suitable change of coordinates x, y of $k[x, y]$. Then, for $2 \leqslant j \leqslant n, g_{j}$ is written in the form: $g_{j}=c_{j}+y h_{j}$ with $c_{j} \in k$ and $h_{j} \in k[x, y]$ because $G_{j} \cap G_{1}=\phi$ (cf. 2.8, (2)). On the other hand, the fact that G_{j} has only one place at infinity implies that the curve $g_{j}=\alpha$ on \boldsymbol{A}^{2} is irreducible for every $\alpha \in k$ (cf. [5]). Therefore, h_{j} is a constant $\in k$. Thus, $g \in k[y]$.
Q.E.D.
2.11. We know by [4; Theorem 1] that A is isomorphic to a polynomial ring over k if and only if A satisfies the following conditions:
(1) A is a unique factorization domain,
(2) $A^{*}=k^{*}$,
(3) A has a nonzero locally nilpotent k-derivation.

The condition (1) above can be described as follows:
Lemma. Assume that A satisfies the conditions (2) and (3) above. We may assume that $g \in k[y]$ after a suitable change of coordinates x, y of $k[x, y]$. Write: $f(x, y)=a_{0}(y)+a_{1}(y) x+\cdots+a_{r}(y) x^{r}$ with $a_{i}(y) \in k[y](0 \leqslant i \leqslant r)$. Then A is a unique factorization domain if and only if $a_{1}(y)$ is a unit modulo $g k[x, y]$ and $a_{i}(y)$ is nilpotent modulo $g k[x, y]$ for $2 \leqslant i \leqslant r$.

Proof. Assume that A is a unique factcrization domain. With the notations of $1.9, a=0$ because every $G_{j}(1 \leqslant j \leqslant n)$ is nonsingular and $G_{i} \cap G_{j}=\phi$ if $i \neq j$. By virtue of 1.13 , we have: $e=n$. Theorem 1.10 then implies that every G_{i} intersects F transversally. Tbis is easily seen to be equivalent to the condition on $f(x, y)$ in the above statement. The "if" part of Lemma will be clear by the above argument and Theorem 1.10.

Osaka University

References

[1] S.S. Abhyankar and T.T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1976), 148-166.
[2] M. Artin: Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[3] M.H. Gizatullin: On affine surfaces that can be completed by a nonsingular rational curve, Izv. Akad. Nauk SSSR, Ser. Mat. 34 (1970), 778-802; Math. USSRIzvestija, 4 (1970), 787-810.
[4] M. Miyanishi: An algebraic characterization of the affine plane, J. Math. Kyoto Univ. 15 (1975), 169-184.
[5] M. Miyanishi: Analytic irreducibility of certain curves on a nonsingular affine rational surface, to appear in the Proceedings of the International Symposium on Algebraic Geometry, Kyoto, 1977.
[6] M. Miyanishi and Y. Nakai: Some remarks on strongly invariant rings, Osaka J. Math. 12 (1975), 1-17.
[7] M. Nagata: Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, 1965, Bombay.
[8] P. Russell: Simple birational extension of two-dimensional affine rational domains, Compositio Math. 33 (1976), 197-208.
[9] A. Sathaye: On linear planes, Proc. Amer. Math. Soc. 56 (1976), 1-7.

