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Introduction. Let k be an algebraically closed field of characteristic zero
and let k[xy y] be a polynomial ring over k in two variables x and y. Let/ and
g be two elements of k[xy y] without common nonconstant factors, and let A=
k[xyyyfjg]. In the present article we consider the structures of the affine k-
domain A under an assumption that V:=Sτpec(A) has only isolated singularities.

In the first section we describe how V is obtained from A2:=Spec(k[x, y\)
and we see that if V has only isolated singularities V is a normal surface whose
singular points (if any) are rational double points. The divisor class group Cl(V)
can be explicitly determined (cf. Theorem 1.9); we obtain, therefore, necessary
and sufficient conditions for A to be a unique factorization domain. If g is
irreducible and if the curves / = 0 and g = 0 on A2 meet each other then A is a
unique factorization domain if and only if the curves / = 0 and £ = 0 meet in only
one point where both curves intersect transversally. We consider, in the same
section, a problem: When is every invertible element of A constant?

In the second section we prove the following:

Theorem. Assume that V has only isolated singularities. Then A has a
nonzero locally nilpotent k-derivation if and only if we have g^k[y] after a suitable
change of coordinates x, y of k[xy y].

An affine Λ-domain of type A as above was studied by Russell [8] and Sathay e
[9] in connection with the following result:

Assume that A is isomσrphic to a polynomial ring over k in two variables. In
a polynomial ring k[x, yy z] over k in three variables x, y and z> let u=gz—f.
Then there exist two elements v, w of k[x> y> z] such that k[x, yy z]=k[uy v, w].

Our terminology and notation are as follows:
k: an algebraically closed field of characteristic zero which we fix throughout

the paper.
A*: the group of all invertible elements of a ring A.
Cl(V): the divisor class group of a normal surface V.
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φ'{C); the proper transform of a curve C on a normal surface Y by a birational
morphism 9?: X - ^ F from a normal surface X to F.

(£)x: the divisor of a function ί on a normal surface X.
pa(D): the arithmetic genus of a divisor ΰ o n a nonsingular projective surface.
(C2), (C-C): the intersection multiplicity.
^ln: the ^-dimensional affine space.
Pn: the ^-dimensional projective space.

1. The structures of the affine domain k[x, y, f/g]

1.1. Let k[x> y, z] be a polynomial ring over k in three variables x, y and z, and
let A3: = Spec(k[x, y, z]). Let V be an affine hypersurface on A3 defined by
gz—f=0, and let π: V->A2:=Sρec(k[x, y]) be the projection π: (x,y, z)=(x,y).
Let F and G be respectively the curves f=0 and £ = 0 on A2. Then we have:

Lemma. (1) For each point P e P f l G , π~\P) is isomorphic to the affine
line A\

(2) If Q is a point on G but not on F, then π'\P)=φ.

Proof. Straightforward.

1.2. The Jacobian criterion of singularity applied to the hypersurface V shows
us the following:

Lemma. Let P be a point on F and G. Then the following assertions hold:
(1) If P is a singular point for both F and G then every point of π~\P) is a

singular point of V.
(2) If P is a singular point of F but not a singular point of G then the point

(P? #=0) is the unique singular point of V lying on π~\P).
(3) If P is a singular point of G but not a singular point of F then V is

nonsingular at every point of π~\P).
(4) If Pis a nonsingular point of both F and G and if i(F, G P) > 2 then the

point (P, z=ά) is the unique singular point of V lying on π~\P), where a(^k)

satisfies: M(F)=M(P)a and ^(P)=M{P)a. Ifi(F9G; P ) = l then V is nonsin-
ox ox oy oy

gular at every point of π~\P).

We assume, from now on, that V has only isolated singularities. Hence, if
P^Ff]Gy either F or G is nonsingular at P. Furthermore, we assume that
F n GΦφ. When F |Ί G=φ then A=k[x,y, 1/g] and A is a unique factorization
domain.

1.3. Let P be a point on F and G. We first consider the case where F is non-
singular at P but G is not. Let P1:=P and let vx be the multiplicity of G at Pλ.
Let σx: V1->V0:=A2 be the quadratic transformation with center at P 2 , let
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P2:=σ{(F) Γ[σT\Pι) and let v2 be the multiplicity of σ[(G) at P 2 . For *> 1 we

define a surface F f , a point P ί + 1 on F, and an integer vi+ι inductively as follows:

When F f _!, P, and vt are defined, let σf : F f ->F f _! be the quadratic transforma-

tion of F f _! with center at P t, let P l + 1 :=(σ 1 σί)
/(ii;i)nσΓ1(Px ) and let vi+1 be

the multiplicity of (ov-cr^G) at P ί + 1 . Let s be the smallest integer such that

*>s+1=0, and let N:=v1-\ \-vs. W e may simply say t h a t Ply -",PS are all

points of G cm the curve F over Px and vu >vs are the multiplicities of G at Pu •••,

Psy respectively. Let σ: VN->V0 be the composition of quadratic transformations

σ-:=o'1"'(rN and let Ei:=(σi+1" σNyσT1(Pi) for ί^i^N. In a neighborhood of

σ~\Pι), σ~\F\jG) has the following configuration:

(Fig. 1)

If g=cg?i...ggΛ (c^k*) is a decomposition of g into w distinct irreducible factors,

let Gj be the curve£ ; —0 on Vo—A2 for l</<τz. Let ^, (j) be the multiplicity

of G. at the point P, for 1 </<.y and 1 <y<w. Then it is clear that z^/VKl)

1.4. We prove the following:

L e m m a . PFzV/ί ίA^ ία/w^ assumption and notations as in 1.3, V is isomorphic,

in a neighborhood of π~\Pι)y to VN with the curves Ely •••, EN_X and σ'(G) deleted

off-

Proof. Let O\=O
y^Pχ, 0 : = Spec(O) and V=Vx Vo. Since the curve F

F o

is nonsingular at Pi there exist local parameters u> v of Vo at Px such that v=f

Let (̂w, v)=0 be a local equation of G at P x . Then V=Spec(O[vlg(u> v)]).

Note that F is nonsingular in a neighborhood of π~\Pι) (cf. 1.2). Hence there

exist a nonsingular projective surface F and a birational mapping <p: V-+V such

that >̂ is an open immersion in a neighborhood of π~\Pι) and a birational

mapping 7t=π φ~1: V->P2 is a morphism, where F o is embedded canonically

into the projective plane P2 as an open set. Since π(π~\Pι))=P1 we know that

7t is factored by the quadratic transformation of P2 at Pλ. Hence we know that

TΓ: V->V0 is factored by σx: Vx->VQy i.e., π: V*Vι%V0.

Set v=uvuu=vulyg(u,uv1)=ui>1gι(u, v^ and g(vu1,v)=vv^g{(u1,v). Then

F x x Fo=Spec(0[z;1])USpec(O[w1]); σT\Pi) and σί(G) are respectively defined



666 M. MIYANISHI

by u=0 and gι(u> ^i)=0 on Sρec(O[z;1]), and by v=0 and^ί^, v)=0 on Spec
(O[nJ). Since V:=Vχ V^Vx^x P0)==FxSpec(OKI)U FxSpec(0[Wl])

F 0 F l F 0 F l F l

= Spec(O[vu Όilu^gxfa ^i)])U Spec(0[^i, \lv^~ιg[{uu v)]) and since i; is an
invertible function on Spec(O[uu l/^Vl"1^rί(wi, v)])y we know that:

(i) Ϋ=8pec(O[^vιiyι'ιg1(u9υι)])9

(ii) 7t\=nX Vo: V-^Ϋ0 is a composition of 9t1:=πιXV0: V-^V1:=
F F

and *1:=<r1 |^ ι: Ϋ^Ϋ*
(iii) if QG(aT\Px) U σί(G))-σί(F) then »
Set v1=uυ2y —, ϋ,-i=t«>, and ^(w, vι)=u"*g2(u, υ2), —,gs-i(u, vs^)=

uv*gs(u,vs). Set 7 2 = Spec(ί?h]), , f s = Spec(0[<J). Then, by the same
argument as above, we know that the following assertions hold for 2^i^s:

(i) Ϋ=S^c(p[v,, v^i+ ^r'g^u, v,)]);
(ii) τt\ Ϋ-*Ϋ0 is a composition of a morphism 5?,-: Ϋ->Ϋ{ and tfi* 2 ••«•<:

^f-» ô» where &i:=σi\fi: Ϋ^Ϋi-t; moreover, » ί _ 1 =β , * i ;
(iii) if Qe(σT\Pi) U (σj σ. y ^ J - ί o Ί σ,)'^) then τtT\Q)=φ.

When t = ί , the proper transform (σ1 ' σ8Y(G) of G on Vs does not meet the
proper transform (ov σ5)'(.F) of JF1 on Vs (cf. the definition of s in (1.3)).
Therefore, in virtue of (iii) above, we know that gs(u, vs) is an invertible function
on V, where gs(u, vs)—Q is the equation of the proper transform (oΊ' σs)'(G) of
G on Ϋa. Thus, F=Spec(0[ί; s, vJuN"%

Furthermore, set v9=UΌt+U"'9υN^=uΌN and Ϋt+i=Spec(O[vt+1])9 —,VN

= Spec(0[ϋtf]). Then it is easy to see that the following assertions hold for
s+Ki<N:

(i) ^ S p e c p ^ , , v<luN-%
(ii) 7ΓS: V->VS is a composition of a morphism τr, : V-» V, and d ̂ x a-,-:

Vi->ΫS,^where ^ = σ , | F . : f ^ F ^ x and T r ^ ^ σ , - ^ .
Then F = V^=Spec(O[^^]). Hence, F is isomorphic, in a neighborhood of
π~\Pi), to F# with the curves Ely •••,J?JV_1 and σ\G) deleted off. In particular,

1 ) = ε : = ^ - £ J V Π EN-X. Q.E.D.

1.5. Assume that we are given two curves (not necessarily irreducible) F9 G
on a nonsingular surface Vo and a point P^F Π G at which one of F and G, say
JF, is nonsingular. Let Pl9 P2> •••, Ps be all points of G on F over P x, and let
î> •"> ̂ β be the multiplicities of G at P 1 ?

 β ,P s , respectively. Let iV=zΛι-J- +J>s.
As explained in 1.3, define σ\ VN^>V0 as a composition of quadratic transforma-
tions with centers at N points Pl9 -"yPN on F, each P, (2<2<Λ^) being infinitely
near to P, _i. We call σ: VN-*V0 the standard transformation of Vo with respect
to a triplet (Pu F, G). The configuration of σ~\F U G) in a neighborhood of
σ~\Pι) is given by the Figure 1. With the notations in the Figure 1, we have a
new surface V by deleting Eu •••, EN_λ from VN. We then say that V is obtained
from VQ by ίA^ standard process of the first kind with respect to (Pl9 Fy G). On
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the other hand, note that (Z??)=—2 for 1</<JV—1. Hence we obtain a new
normal surface V from VN by contracting Ely-"yEN_ι to a point Qx on F ' which
is a rational double point (cf. Artin [2; Theorem 2.7]). We then say that V is
obtained from F o by ίfo standard process of the second kind with respect to (PXy Fy

G).

1.6. We next consider the case where, at a point Px^Ff]Gy the curve G is
nonsingular. Indeed, we prove the following:

Lemma. With the assumption as above, let V be the surface obtained from
F o : = A2 by the standard process of the second kind with respect to (Px yGyF). Then,
in a neighborhood of π~\Pt)y V is isomorphic to V with the proper transform of G
deleted off. If either F is singular at Px or i(Fy G; P x )>2, F has a unique rational
double point on π~\Px).

Proof. Let Ply P 2 , •••, Pr be all points of F on G over PXy and let μly •••, μr

be the multiplicities of F at Ply •••, P r , respectively. Let M:=μx-\ \-μr. We
prove the assertions by induction on M. Note that M=ί if and only if i(Fy G;
P 1 ) = l . It is then easy to see that V is isomorphic, in a neighborhood of π~\Px)y

to a surface V[ obtained as follows: Let σx\ Vx-+V0 be the quadratic transforma-
tion of V0:=A2 with center at PXy and let V{:=Vx—σ[(G). Now, assume that
M>\. Since G is nonsingular at Px there exist local parameters uy v of F o at Px

such that v=g. Let f(uy v)—0 be a local equation of F at Px. Then, F is
isomorphic, in a neighborhood of π~\Px)y to an affine hypersurface υz=f(uy v)
in the affine 3-space A3. There exists only one singular point Q{: (uy vy z)=
(0, 0, 0) of V lying on π~\Px). Let px: WX->A3 be the blowing-up of A3 with
center the curve π~\Px): u=v=0y let Fί be the proper transform of F on Wly

and let τ 1 : = ρ 1 | v j : V[->V be the restriction of ρx onto V{.

Set ί^ t t^ , u=vux and /(w, uvx)=uμifx(uy vx)yf(vuly v)=vμ^fx{uXy v). Then
Fί is given by vxz=uμi~ιfx(uy vx) with respect to the coordinate system (uy vly z)
and by z=vμi~1fx(uly v) with respect to the coordinate system (uXy vy z). By
construction of Fί, Fί dominates the surface Vx obtained from F o by the quadratic
transformation σx with center at Px

Fί — Γ ± - > V

v, — U v0.
The proper transform r'^π'^P^) of π~\P^) on V{ is given by M = © ! = 0 ; the
curve τϊ\Q'i) is given by u=z=0\τι; V{—τΐ\Q'tfXV— {Q{} the singular
point of VΊ is possibly 02: (M. »H 2 ί)=(0, 0, 0).

The morphism w^ V{-*Vχ is isomorphic at every point of ^ ' (QQ— {Q'2}.
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Indeed, if ^ Φ O or oo, πχ i s given by (uy vly z)=(u> vly uμ^"ιfλ{uy v^)jv^)\^{uy v±)
which is clearly isomorphic; if ^ = 0 0 , 7tχ is given by (uly v, v^~lfi{uXy v))t-*(uu v)
which is isomorphic as well. Under this isomorphism, τT1(Qί) corresponds to

πx

Note that the following assertions hold:
(i) V{ is isomorphic, in a neighborhood of πT1(P2)> to an affine hyper-

surface v1z=uμi~1f1(uy vj on A3;
(ii) in a neighborhood of P2>

 σ'ι{G) is defined by ^ = 0 and σ[{F) is
defined by fλ(uy ^i)=0;

(iii) P2y - , P r are all points of the curve Fλ: u^~λfλ(uy v1)=0 on σ[{G) over
P2, and the sum of multiplicities of the curve F1 at P2> •"> -Pr is Λί—1.

Then, by the assumption of induction applied to V{, we obtain V{ from the
surface V"9 which is obtained from Vλ by the standard process of the second
kind with respect to a triplet (P2, <rΊ(G)y i<\), by deleting the proper transform of
σ{(G) on V'{\

(Fig. 2)

where the surface V'{ is obtained by contracting E2y-"y EM_χ. Then it is easy
to see that V is isomorphic, in a neighborhood of π~\Pιjy to the surface V'y
which is obtained from V" by contracting Ely " yEM_ly with the proper transform
of <τ'{G) deleted off. Hence, the unique singular point of V lying on π~\Pι) is
a rational double point. Q.E.D.

1.7. Let P iGFΠG, and assume that G is nonsingular at Px. Let Ply P2y- yPr

be all points of F on G over Ply and let μly •••, μr be the multiplicities of F at
P\y"'yPry respectively. If f—cfιu * fZm (c^k*) is a decomposition of/ into
distinct irreducible factors, let F^lKjKm) be the curve on Vo defined by fj=O.
Let μ{(j) be the multiplicity of F. at P t for l < / < r and l < j < w . Then it is
clear that μi=a1μi(l)+- +amμi(nι) for l<z '<r.

1.8. As a consequence of Lemmas 1.4 and 1.6, we have the following:
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Theorem. Assume that V has only isolated singularities. Let W be the
surface obtained from V0:=Λ2 by the standard processes of the first (or the second)
kind at every point of FΓ\G. Then V is isomorphic to the surface W with the proper
transform of G on W deleted off. The surface V is, therefore, a normal surface whose
singular points (if any) are rational double points.

1.9. In the paragraphs 1.9~1.11 we shall study the divisor class group Cl(V).
Let g=cgf}i g%* (CGA*) be a decomposition of g into distinct irreducible factors,
and let Gj be the curve gβ=0 on Vo for 1 < j </z. Assume that F (Ί GΦ0. Let
Ff]G={P[1\ —,P[e)}. For 1 </<<?, either F is nonsingular at P{n but G is
not, or G is nonsingular at P{1). We may assume that F is nonsingular at P£υ,
•-, P[a) but G is not, and G is nonsingular at P[a+1\ •••, P[e\ (The number a
may be 0.) For /<α, let P[ι\ •••, P™ be all points of G on F over P£°, and let
v\ι\j) be the multiplicity of Gj at P{P for l < i < i , and \<j<n\ let N«Xj)=
Λl)(j)+~-+viιl(j), let vV>=βιvVXl)+-+βuv¥Xn) and let N^=βιN<tχi)+-
+βnW

ιXn). For a+KKe, let P[ι\ - , I*'} be all points of F on G over P['\
and let /4° be the multiplicity of F at P\l) for K ^ r ; . Let M^=μ[l)-\ h
μ[l)

r Since G is nonsingular at P[!\ there exists a unique Gj ( l < j < n ) such
that Pί°, - , P^} lie on G,.. Then we set M«Xj)=M«> and M^(/)=0 for j'*j.
Let ^/>=τr-1(Pi/)) for

1.10. The structure of the divisor class group Cl(V) is given by the following:

Theorem. With the notations as above, the divisor class group Cl(V) is
isomorphic to:

Proof. Embed V0:=A2 into the projective plane P2 in a canonical way as
an open set, and let L:=P2— Vo. For l < / < e , let E[ι\ •• ,£'^ ) be all exceptional
curves which arise by the standard transformation of Vo with respect to a triplet
(P[ι\ F, G) (or (P[ι\ G, F)) where q=N«> (or M«). Let τ : W-^P2 be a com-
position of standard transformations of P2 with respect to triplets (P{1\ F, G) for
1 < / < α and triplets (P[ι\ G, F) for a+1 </<^. Then it is easy to see that the
divisor

has support on τ'(Gy), r'(L), E\'\ -, E^lx (q=N^ or M « ) for 1 </<<;. Hence
we have:

Σ iV<'>(/)£<Z)+ Σ MC^ίC'-vO (1 < ; < « ) .

Now, let C be an irreducible curve on V such that π(C) is not a point, and
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let the closure of π(C) be defined by h=0 with h^k[x,y]. Then, by considering
the divisor Qί)w on W, we easily see that C is linearly equivalent to an integral
combination of £(1), •••, 8(e\ Hence , by setting

we have a surjective homomorphism:

θ: Q-

Assume that Ker 0φ(O), and let έ/^H h ^ w = ( * V o n ^> w h e r e

and ί^A(F). Let (ίV 0=ΣW fiCί with irreducible curves C, and m
Let i , -G^, r] be such that C, is given by £, =0, and write:

(ti)v = * ' ( C , ) + Σ M ( / ) with i « G Z .

Then we have:

(t)v = 2
i

Therefore, either /#,•=() for every ί, or π'(Ci)=φ for every ί. In the first case, t
is a constant e&, whence dι=0 for l < / < £ . In the second case, C, must
coincide with one of G/s (1 <j<ή). Then rf^H h ^ 5 ( O = 0 in S. This is
a contradiction. Therefore, θ is an isomorphism. Q.E.D.

1.11. The affine domain A=k[xy y, f/g] is a unique factorization domain if
and only if C7(F)=(0). We have the following two consequences of 1.10.

1.11.1. Corollary. With the notation of 1.9, if e>n then A is not a unique
factorization domain.

1.11.2. Corollary. Assume that g is irreducible and that Ff)G^φ. Then A is
a unique factorization domain if and only if the curves F and G meet each other in
only one point where they intersect each other transversally.

1.12. Let A* be the group of all invertible elements of A=k[x, y,flg\. Then
A* contains k*=k—(0) as a subgroup. By virtue of ([4], Remark 2, p. 174)
we know that A*/k* is a torsion-free ^-module of finite rank and A* is isomor-
phic to a direct product of k* and A*l'k*. The purpose of this paragraph is to
determine the group ^4*/&*. Let H be the subgroup of Z£(1)H \-ZS{e) gen-
erated by

Let Tu •••, Tn be w-indeterminates, and let η: Z(n):=ZT1-\ \-ZTn->H be a
homomorphism such that, for
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Σ
l=a+i

Let L be the kernel of η. Since N(i)(j) and M(l)(j) are non-negative integers for
l < / < £ and l < j < w , each nonzero element of L is written in the form: 7χTi+
" + fy»ϊ 1

β(%GZ), where some of γ/s are negative. Define a homomorphism
f: L-^RΓ* (where K=k(x, y)) by ? ( 7 i Γ i + - + 7 n Γ n ) = ^ i ^«. Then we have
the following:

Lemma. The homomorphism ξ induces an isomorphism ξ: L^X.A*lk*.

Proof. (1) Since ( ^ = 2 J V ( O 0 ^ for

we have:

Therefore, if ΎiΓxH [-ynTnGL then gl^ gl* is an invertible element of ^4,
which is a constant if and only if 7 1 = = γ n = 0 . Thus, ξ is a monomorphism
from L into A*/k*.

(2) Let ί be a non-constant invertible element of A. Write (ί)vp==Σ w»Ct

with irreducible curves C, and m, e Z. Let C, be defined by 11=0 with *, G k[xy y].
As in the proof of 1.10, write:

(ti)v = ^ ( C f J + Σ * ^ ( / ) with

Then we have:

i / 1

Therefore, either w,=0 for every /, or π'(Ci)=φ for every ί. The first case does
not occur because, if otherwise, t is a constant. In the second case, C, . must
coincide with one of GjS. Hence we could write:

Then t=cgΐi—gZ* with c^k*. It is then clear that mxTx^ \-mnTn^L and
1n)=ί Therefore, ξ: L->A*lk* is an isomorphism. Q.E.D.

1.13. By virtue of 1.10 and 1.12, we have the following:

Theorem. Assume that V has only isolated singularities. Then we have the
following exact sequence of Z-modules:

0 -* A*[k* -* Z^ -* Z ( β ) -> Cl(V) -> 0 ,

where Z(r) stands for a free Z-module of rank r nis the number of distinct irreducible
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factors of g\e is the number of distinct points of F Γl G.

1.14. REMARKS. (1) It is clear from 1.13,that if g is irreducible then A*—k*.
(2) rank (C/(F))-rank (iί*/A*)=β-Λ.
(3) Though we proved Theorem 1.13 under the assumption that F Π (?Φ φ

it is clear that the theorem is valid also in the case where F D G=φ.

2. Locally nilpotent derivation on k[x, y> f/g]

2.1. Let A be an afBne ^-domain. A Λ-derivation D on A is said to be locally
nilpotent if, for every element a of A, Dn(a)=0 for sufficiently large n. If D is a
locally nilpotent ^-derivation on A, we define a ^-algebra homomorphism

Δ: A -> ̂ 4[X| (with an indeterminate X)

by Δ(α)

Then it is known (cf. [6]) that Δ gives rise to an action of the additive group
scheme Ga on Spec (A). Conversely, every action of Ga on Spec (A) is expressed
in the above-mentioned way with some locally nilpotent /^-derivation on A. We
set Ao:= {a^A \D(a)—0}. Then Ao is an inert subring of A, and Ao is, in fact,
the ring of Ga-invariant elements of A with respect to the corresponding Ga-
action on Spec (A). For other relevant results on these materials, the readers are
referred to [4] and [6].

2.2. In this section, we set A=k[x,y,f/g], and assume that A is normal. Assume
that A has a nonzero locally nilpotent A-derivation D. Then wτe assert the follow-
ing:

Lemma. The subring Ao of U-constants is a finitely generated, normal,
rational k-domain of dimension 1.

Proof. Since Ao is the ring of GΛ-invariants in a normal domain A, AQ is
integrally closed in the quotient field Q(A0) of Ao and A0=A Π Q(A0)9 where
Q(A0) is the field of GΛ-invariants in the quotient field Q(A) of A. Then, by
virtue of Zariski's Theorem (cf. Nagata [7; p. 52]), Ao is a finitely generated
normal A-domain of dimension 1. Besides, Ao is rational over k by Lΐiroth's
Theorem because A is rational over k. Q.E.D.

2.3. Let V: = Spec(A). Then V has a nontrivial Gβ-action corresponding to
the derivation D on A, Let ϊ7: = Spec(^40); U is isomorphic to an open set of
the affine line A1 (cf. 2.2). Let q: V->U be the morphism defined by the
canonical inclusion A0^A. By 2.2, we know that A0=k[t, l!h(t)] with h(t)^k[t].
For almost all elements a of k such that A(α)φO, the fibre q~\ά) is a Gβ-orbit
and is, therefore, isomorphic to the affine line. Let p: V'-^V be the minimal
resolution of singularities of V. As we saw in 1.8, singular points of V are
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rational double points. Hence, p is a composition of quadratic transformations
with centers at singular points. Let q':=q ρ: V'->U. Almost all fibres of q/

are therefore isomorphic to the affine line. Now we shall prove the following:

Lemma. There exist a nonsingular projective surface W and a surjective
morphism p: W-^P1 satisfying the following conditions:

(1) Almost all fibres of p are isomorphic to P1.
(2) There exists an open immersion t: V'^>W such that p t—τ q', where

Ί: U^P1 is the canonical open immersion via Uc->A1:=Spec(k[t]).
Then the fibrationp has a cross-section S such that

Proof. Let V be a nonsingular projective surface containing V as an open
set. Then, a subfield k(t) of k(V')=k(V) defines a linear pencil Λ of effective
divisors on V such that a general member of Λ cuts out a general fibre of q' on
V. The base points of Λ are situated on V— V. Let θ: W-+V be the shortest
succession of quadratic transformations of V with centers at the base points of
Λ such that the proper transform Λ of Λ by θ has no base points, and let p:
W-+P1 be the morphism defined by Λ. Since V is canonically embedded into
W as an open set, let i: V'->Wbe the canonical immersion. Then it is not hard
to see that p: W^>PX and c: V'-^Wsatisfy the conditions (1), (2) of Lemma.

Q.E.D.

2.4. We shall prove the following:

Lemma, (cf. [3]). Let p: W-+P1 be a surjective morphism from a nonsin-
gular projective surface W onto P1 such that almost all fibres are isomorphic to P1.
Let F=nιCι-\--' -\-nrCr be a reducible fibre of p, where C{ is an irreducible curve
and n{ > 0. Then we have:

(1) For 1 </<r , C, is isomorphic to P1 and (Cf)<0.
(2) For i^j, C{ and C'. do not intersect or intersect transversally at a single

point.
(3) For distinct indices i, j and I, C, Π Cy Π Cι=φ<
(4) One of C/s, say Cly is an exceptional curve of the first kind. If τ\ W-+

T pχ
Wλ is the contraction of Cly then p factors as p: W->W1-^P1, where px\ W1-^P1 is
a fibration by P1.

Proof. For each i, Λl (C?)+Σ.Λ/C |. C y)=0, where (C, C i )>0 for some j

because F is connected. Hence (C?)<0. To prove the remaining assertions
we have only to show that one of C/s is an exceptional curve of the first kind.
Let K be the canonical divisor of W. Then (F K)=—2 because ρa(F)=0.
Hence, -2=(F'K)=^ni{CrK)=^ni(2pχCi)-2--(Cl)^ where 2^(C,)-2-

(Cf)> —1 and the equality holds if and only if C, is an exceptional curve of the
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first kind. However, it is impossible that 2/>Λ(C, )—2—(Cf)>0 for every t.
Therefore, 2/> Λ (C l )-2-(Cf)=-l for some i. Q.E.D.

2.5. With the notations of 2.3, Lemma 2.4 implies:

r

L e m m a . Write W—t(V')= U Cf wίίλ irreducible curves C, . ΓAtfrc α e Aαwi:

(1) Every C t w isomorphic to P1.
(2) For ί =f=y, C t α^/ Cy w^ί each other (if at all) in a single point where

they intersect transversally.
(3) For distinct indices i, j and I, C, Π C Π Cι=φ.

r

(4) U Ci does not contain any cyclic chains.
ι = l

Proof. Note that one of C, 's is the cross-section S and the other components
are contained in the fibres of p. Then the above assertions follow from 2.4.

Q.E.D.

2.6. Let Vo: =Spec(&|>, y])y and let F, G be as in 1.1. Let G, (1 <i<n) be as
in 1,9. Embed Vo into P2 in a canonical way. Let L:=P2— Vo and let Fy G,G^
( l < y < » ) be the closures of F, G, Gj in P 2 , respectively. Let T: Z-^P2 be a
composition of the standard transformations of P 2 with respect to triplets (P, F,
G) (or (P, G, F)), where P runs over all points of F Π G. Then we know that
V is embedded into Z as an open set. We may assume, by replacing W if
necessary by a surface which is obtained from W by a succession of the quadratic
transformations, that there exists a birational morphism ^>: W—>Z such that we
have the following commutative diagram:

2.7. Let P x e F Π G. Assume that F is nonsingular at Px but G is not. Then,
in a neighborhood of T " 1 ^ ) , T ' ^ F U G ) has the configuration as in the Figure
1. With the notations of the Figure 1, we can show the following assertions:

(1) A general fibre λ of p may intersect <p'(EN).
(2) <p'(Fi), ••*, <P'(EN-\)

 are contained in one and only one fibre of p.
Indeed, λ / = λ Π F is isomorphic to the affine line, and τφ(\—\v') lies on /«>.
Hence λ does not meet any of φ(Ex)y "'yφ(EN.1). This proves the second
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assertion. By the same reason, we have:
(3) For l^j^tiy (τ<p)'(Gj) is contained in a fibre of p. In particular,

(τφ)'(Gj) is isomorphic to P1.

2.8. We have the following:

Lemma. (1) For 1 < j < n, G} has one place at infinity every singular point
of Gj is a one-place point.

(2) For distinct ij

Proof. Note that if φ is not an isomorphism φ is a composition of quadratic
transformations of Z with centers at a point on τ'iJJ) and its infinitely near points.
Then, both assertions follow from 2.5 (cf. 2.7). Q.E.D.

2.9. We prove the following:

Lemma. For K j < « , the curve Gi is nonsingular.

Proof. Note that if P is a singular point of G. then P is a point of F Π Gj
(cf. 2.7, (3)). Assume that P^FΓiGr Then, in a neighborhood of τ~\P)y

τ~\F Γl Gj) must have the following configuration as in the Figure 1:

-2

where φ'{E^)> ~ yφ\EN_^) and {τφ)\Gj) belong to the same fibre of p. Note that
{jφ)\Gj) intersects φ'(Es) transversally in one point if N^s-\-\ (cf. Lemma2.4).
Assume that vb^2 and vb+ί=-"=vs=l. (For the notations, see 1.3.) Such ft
exists because we assume that P is a singular point of Gr Then i V > ί + l , and
it is not hard to see that j = i + l , and that we have the configuration:

where τ\Gj) touches Es_x with (τ\GJ) Es^1)=vb—l. This contradicts Lemma
2.4, (3). Therefore, the curve G. is nonsingular. Q.E.D.

2.10. Now we can prove:
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Theorem. Assume that V has only isolated singularities. Then A has a non-

zero locally nilpotent k-derivation if and only if we have g^k[y] after a suitable

change of coordinates x, y of k[x, y].

Proof. Assume that g^k[y] after a suitable change of coordinates xy y of

k[xy y]. Then D=g— is a nonzero locally nilpotent ^-derivation on A. We
ox

prove the converse. With the notations of 2.1~2.9, G;. (1 < j < ή) is a nonsingular

rational curve with one place at infinity (cf. 2.8, (1) and 2.9). [Note that Gj is a

rational curve because (τφY(Gj) is a component of a fibre of p (cf. 2.4).] Hence,

Gj is isomorphic to the afϊine line A1. By virtue of the Embedding Theorem of

Abhyankar-Moh (cf. [1], [5]), we may assume that gx—y after a suitable change

of coordinates x, y of k[xy y]. Then, for 2 < y < # , g. is written in the form:

gj=Cj+yhj with c^k and h.^k[x, y] because Gj Π G1=φ (cf. 2.8, (2)). On the

other hand, the fact that G. has only one place at infinity implies that the curve

gj=a on A2 is irreducible for every αEA (cf. [5]). Therefore, h} is a constant

(Ξk: Thus, g<=k[y]. Q.E.D.

2.11. We know by [4 Theorem 1] that A is isomorphic to a polynomial ring over

k if and only if A satisfies the following conditions:

(1) A is a unique factorization domain,

(2) A*=k*f

(3) A has a nonzero locally nilpotent ^-derivation.

The condition (1) above can be described as follows:

Lemma. Assume that A satisfies the conditions (2) and (3) above. We may

assume that g^k[y] after a suitable change of coordinates xy y of k[x, y]. Write:

ftXyy^a^+a^x+^+aXyy with a^tΞkiy] (0*ζikr). Then A is a

unique factorization domain if and only if aλ(y) is a unit modulo gk[x, y] and a^y)

is nilpotent modulo gk[x> y] for 2 < i < r.

Proof. Assume that A is a unique factorization domain. With the nota-

tions of 1.9, tf—0 because every Gj ( l < j < n ) is nonsingular and GiΠGj=φ if

1Φ7. By virtue of 1.13, we have: e=n. Theorem 1.10 then implies that every

Gi intersects F transversally. This is easily seen to be equivalent to the condi-

tion onf(x, y) in the above statement. The "if" part of Lemma will be clear by

the above argument and Theorem 1.10.
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