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Introduction. Let & be an algebraically closed field of characteristic zero
and let k[x, y] be a polynomial ring over k in two variables x and y. Let f and
g be two elements of k[x, y] without common nonconstant factors, and let A=
k[x, v, flg]. In the present article we consider the structures of the affine k-
domain 4 under an assumption that J:=Spec(4) has only isolated singularities.

In the first section we describe how ¥ is obtained from A%:=Spec(k[x, y])
and we see that if 7" has only isolated singularities V" is a normal surface whose
singular points (if any) are rational double points. The divisor class group C{(V)
can be explicitly determined (cf. Theorem 1.9); we obtain, therefore, necessary
and sufficient conditions for 4 to be a unique factorization domain. If g is
irreducible and if the curves f=0 and g=0 on A? meet each other then 4 is a
unique factorization domain if and only if the curves f=0 and g=0 meet in only
one point where both curves intersect transversally. We consider, in the same
section, a problem: When is every invertible element of 4 constant?

In the second section we prove the following:

Theorem. Assume that V has only isolated singularities. Then A has a

nonzero locally nilpotent k-derivation if and only if we have g ER[y)] after a suitable
change of coordinates x, y of k[x, y].

An affine k-domain of type A as above was studied by Russell [8] and Sathaye
[9] in connection with the following result:

Assume that A is isomorphic to a polynomial ring over k in two variables. In
a polynomial ring k[x, y, 2] over k in three variables x,y and z, let u=gz—f.
Then there exist two elements v, w of k[x, y, 2] such that k[x, y, 2|=Fk[u, v, w].

Our terminology and notation are as follows:

k: an algebraically closed field of characteristic zero which we fix throughout
the paper.

A*: the group of all invertible elements of a ring 4.

C[(V): the divisor class group of a normal surface V.
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@’(C): the proper transform of a curve C on a normal surface Y by a birational
morphism @: X—Y from a normal surface X to Y.

(t)x: the divisor of a function ¢ on a normal surface X.

po(D): the arithmetic genus of a divisor D on a nonsingular projective surface.

(C?), (C-C’): the intersection multiplicity.

A": the n-dimensional affine space.

P": the n-dimensional projective space.

1. The structures of the affine domain k[x, y, f/g]

1.1. Let k[x, y, 2] be a polynomial ring over % in three variables x, y and 2, and
let A%:=Spec(k[x, y, 2]). Let V be an affine hypersurface on A® defined by
gz—f=0, and let z: V'— A*:=Spec(k[x, y]) be the projection z: (x, y, 2)=(%, y).
Let F and G be respectively the curves f=0 and g=0 on 4%, Then we have:

Lemma. (1) For each point PEF NG, n~'(P) is isomorphic to the affine
line A'.
(2) If O is a point on G but not on F, then =~ '(P)=4¢.

Proof. Straightforward.

1.2. The Jacobian criterion of singularity applied to the hypersurface ¥ shows
us the following:

Lemma. Let P be a point on F and G. Then the following assertions hold:

(1) If P is a singular point for both F and G then every point of =~ (P) is a
singular point of V.

(2) If Pis a singular point of F but not a singular point of G then the point
(P, 2=0) is the unique singular point of V lying on =~ *(P).

(3) If P is a singular point of G but not a singular point of F then V is
nonsingular at every point of n~'(P).

(4) If P is a nonsingular point of both F and G and if i(F, G; P)>2 then the
point (P, z=q) is the unique singular point of V lying on =~ Y(P), where a(<k)
satisfies: 2L (P)=28 (P and 21 (P)=28 (P)ar. Ifi(F,G; P)=1 then V" is nonsin-

Ox Ox Oy oy
gular at every point of n™(P).

We assume, from now on, that V" has only isolated singularities. Hence, if
PEF NG, either F or G is nonsingular at P. Furthermore, we assume that
FNG=+¢. When FNG=¢ then A=Fk[x, y, 1/g] and 4 is a unique factorization
domain.

1.3. Let Pbe a point on F and G. We first consider the case where F is non-

singular at Pbut G isnot. Let P;:=P and let », be the multiplicity of G at P,.
Let o,: V1—>V,;:=A? be the quadratic transformation with center at P;, let
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P,:=c/{(F)No7T'(P,) and let », be the multiplicity of ¢{(G) at P,. For i>1 we
define a surface V;, a point P,,, on V; and an integer »;,, inductively as follows:
When V;_,, P; and v; are defined, let o;: V;—V;_, be the quadratic transforma-
tion of V;_, with center at P;, let P, :=(cy+0;)(F)No7'(P;) and let »;4, be
the multiplicity of (o,+:-5;)(G) at P;;;. Let s be the smallest integer such that
v, =0, and let N:=v,+---+v,. We may simply say that P, ---, P, are all
points of G on the curve F over P, and v, -+, v, are the multiplicities of G at P,, -,
P,, respectively. Let o: Vy—V, be the composition of quadratic transformations
=0y oy and let E;:=(c;4; +oy) a7 (P;) for 1<i<N. In a neighborhood of
a"'(Py), o (F UG) has the following configuration:

(Fig. 1)

eessesane

oF) JEy N\ Ey,.

If g=cghr--- ghn (cEk*) is a decomposition of g into n distinct irreducible factors,
let G, be the curve g,=0 on V,=A? for 1<j<n. Let v(j) be the multiplicity
of G, at the point P; for 1<i<s and 1<j<#n. Then it is clear that v;=Bv,(1)
+ B pi(n) for 1<i<s.

1.4. We prove the following:

Lemma. With the same assumption and notations as in 1.3, V is isomorphic,
in a neighborhood of n™(P,), to Vy with the curves E,, -+, Ey_, and o'(G) deleted
off.

Proof. Let O:=0y, s, Vy:=Spec(®) and V=V x V,. Since the curve F
Vo

is nonsingular at P, there exist local parameters u, v of V, at P, such that v=f.
Let g(u, v)=0 be a local equation of G at P,. Then V=Spec(O[v[g(u, v)]).
Note that V' is nonsingular in a neighborhood of z~%(P;) (cf. 1.2). Hence there
exist a nonsingular projective surface ¥ and a birational mapping @: V=V such
that o is an open immersion in a neighborhood of # % P;) and a birational
mapping #==-@ ': V—P? is a morphism, where V, is embedded canonically
into the projective plane P? as an open set. Since n(z~'(P,))=P, we know that
7 is factored by the quadratic transformation of P? at P,. Hence we know that

7
n: V=V, is factored by ay: V=V, i.e., #: V—>1V13>1V0.

Sft v=uv;, u="2u,,g(u,uv,)=u"1g,(u, v;) and g(vuy,v)=v"1gi(#;,v). Then
V1§ Ve=Spec(O[v,]) U Spec(O[u,]); o7'(P;) and oi(G) are respectively defined
[}
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by =0 and g(«, 21)=0 on Spec(O[2,]), and by v=0 and gi(u;, v)=0 on Spec
(Olw]). Since V:= V>< VO—V>< (Vl >< V)= V>< Spec(@[vl]) U V>< Spec(@[ul])

=Spec(O[v;, v,/u"r" lgl(u, vl)])U Spec(@[ul, 1/v*17'g{(uy, ©)]) and since v is an
invertible function on Spec(O[u,, 1/2*17 g}(u,, 'o)]), we know that:
(i) V=Spec(Ofv,, v.fu"""gi(w, v1)]), L
(i1) Zi=m X V,: V=V, is a composition of 1= X Vo: V= V=
0 [

Spec(Of[vy]) and 6y:=a:|7,: ViV,

(i) if Q€(oT () U oi(G))—ai(F) then #7'(Q)=¢.

Set  vy=uv,, -+, v, =uv, and gy, v))=u"2g,(u, v,), ***, ger(¥, V,1)=
w'gu, v). Set V,=Spec(O[vy]),-, Vi=Spec(O[v,]). Then, by the same
argument as above, we know that the following assertions hold for 2<7<s:

(i)  V=Spec(Ofo;, vifu'r*+"~ig,(u, v,)]);

(i) #=:V—-V,isa composition of a morphism #;: V—V,; and &,65++6;:
V:—V,, where 6;:=0;|7,: V.= V._,; moreover, #;,_,=&; 7,

(i) if Q€(a7 (P;)U (o1 0:)(G))—(oy++0;) (F) then #7Y(Q)=4.

When i==s, the proper transform (o;'::o,)(G) of G on V, does not meet the
proper transform (oy-+o,)Y(F) of F on V, (cf. the definition of s in (1.3)).
Therefore, in virtue of (iii) above, we know that g,(u, v,) is an invertible function
on V, where g,(u, v,)==0 is the equation of the proper transform (oy-+*c,)(G) of
G on V,. Thus, V=Spec(O[w,, v,/u""*]).

Furthermore, set v,=uv,4;, -, Vy_;=uvy and V ,,=Spec(O[v,]), -+, Vy
=Spec(O[vy]). Then it is easy to see that the following assertions hold for
s+H1<i<N:

(1) V—Spec(O['v,, v;[u¥ ")),

(ii) #,: V=V, is a composition of a morphism #;: V—V; and &,,--5;:
V.—V,, where 6,=0,|y,: Vi—> V., and #;_,=6;+ ;.

Then V=Vy=Spec(O[vy]). Hence, V is isomorphic, in a neighborhood of
7z~ Y(P,), to Vy with the curves E,, -+, Ey_, and ¢/(G) deleted off. In particular,
7 (P)=¢E:=Ey—EyNEy_,. Q.E.D.

1.5. Assume that we are given two curves (not necessarily irreducible) F, G
on a nonsingular surface V; and a point P,&€F N G at which one of F and G, say
F, is nonsingular. Let P, P,, --+, P, be all points of G on F over P,, and let
vy, -+*, Vs be the multiplicities of G at Py, -, P, respectively. Let N=v,++--+v,.
As explained in 1.3, define o: V' y—V; as a composition of quadratic transforma-
tions with centers at IV points Py, -+, Py on F, each P; (2<i<N) being infinitely
near to P;_;. We call o: Vy—V, the standard transformation of V, with respect
to a triplet (P, F, G). The configuration of (¥ UG) in a neighborhood of
o~Y(P,) is given by the Figure 1. With the notations in the Figure 1, we have a
new surface V by deleting E), -+, Ey_, from V. We then say that V is obtained
from V, by the standard process of the first kind with respect to (P,, F, G). On
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the other hand, note that (E?)=—2 for 1<i<N—1. Hence we obtain a new
normal surface V'’ from V by contracting E;,-++,Ey_, to a point Q, on V'’ which
is a rational double point (cf. Artin [2; Theorem 2.7]). We then say that V"’ is
obtained from ¥V, by the standard process of the second kind with respect to (P, F,
G).

1.6. We next consider the case where, at a point P,€F NG, the curve G is
nonsingular. Indeed, we prove the following:

Lemma. With the assumption as above, let V' be the surface obtained from
Vo:=A? by the standard process of the second kind with respect to (Py, G, F). Then,
in a neighborhood of = Y(Py), V is isomorphic to V' with the proper transform of G
deleted off. If either F is singular at P, or i(F, G; P\)>2, V has a unique rational
double point on n~Y(P,).

Proof. Let P), P,, -+, P, be all points of F on G over P, and let y,, -+, g,
be the multiplicities of F at Py, +--, P,, respectively. Let M:=p,~++pn,. We
prove the assertions by induction on M. Note that M=1 if and only if #F, G;
P))=1. Itisthen easy to see that V is isomorphic, in a neighborhood of z~Y(P;),
to a surface V1 obtained as follows: Let o,: V;—V, be the quadratic transforma-
tion of V,:=A? with center at P, and let V{:=V,—c/(G). Now, assume that
M>1. Since G is nonsingular at P, there exist local parameters u, v of V, at P;
such that v=g. Let f(#, v)=0 be a local equation of F at P;. Then, V is
isomorphic, in a neighborhood of z~}(P,), to an affine hypersurface vz=f(u, v)
in the affine 3-space A%. There exists only one singular point Q1: (4, v, 3)=
(0, 0, 0) of ¥ lying on z~X(P;). Let p,: W,—A? be the blowing-up of A® with
center the curve z~%(P,): u=v=0, let V’{ be the proper transform of ¥V on W,
and let 7:=p,|y;: V{—V be the restriction of p, onto V1.

Set v=uv,, u=vu, and f(u, uv,)=u" f,(u, v,), f(vu, v)=v"f3(u;, v). Then

1 is given by v,2=u"17"fi(u, v,) with respect to the coordinate system (u, v;, %)
and by z=v"1"'f,(u, v) with respect to the coordinate system (u, v, 2). By
construction of V1, V{ dominates the surface V; obtained from V/, by the quadratic
transformation o, with center at P,;

T
Vi —— V1V

Lk
8!
V, — 7, .
The proper transform 7{(z~Y(P;)) of = %(P,) on V1 is given by u=v,=0; the
curve 77'(Q1) is given by u=z=0; 7: V{—17Y(Q)SV—{Q1}; the singular
point of V1 is possibly Q3: (u, v, 2)=(0, 0, 0).
The morphism 7,: V{—V) is isomorphic at every point of 77(Q])— {Q%}.
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Indeed, if 2,20 or oo, 7, is given by (u, v;, 2)=(, vs, ¥"1" fi(u, v;)[v,) > (4, v;)
which is clearly isomorphic; if v;,= o0, =, is given by (%, v, " l"lfl(ul, v)) (45, )
which is isomorphic as well. Under this isomorphism, 77'(Q1) corresponds to
oT!(Py):

o7

Q) ™' (7' (P) _

Note that the following assertions hold:

(i) V1 is isomorphic, in a neighborhood of z7'(P,), to an affine hyper-
surface v,2=u"1"1f,(u, v,) on A3;

(i) in a neighborhood of P,, o{(G) is defined by v,=0 and o{(F) is
defined by fi(u, v,)=0;

(iii) P, -++, P, are all points of the curve F;: u*17! fi(u, v,)=0 on ¢{(G) over
P;, and the sum of multiplicities of the curve F, at P,, -+, P, is M—1.

Then, by the assumption of induction applied to V{, we obtain V{ from the
surface V7, which is obtained from V) by the standard process of the second
kind with respect to a triplet (P, o{(G), F;), by deleting the proper transform of
ci(G) on VY:

(Fig. 2)

’(G) Ey Ey.,

where the surface V' is obtained by contracting Ej, -+, E},_;. Then it is easy
to see that V is isomorphic, in a neighborhood of z~%P,), to the surface V’,
which is obtained from V7 by contracting E;, ++, E,_,, with the proper transform
of ¢/(G) deleted off. Hence, the unique singular point of V lying on =~(P,) is
a rational double point. Q.E.D.

1.7. Let P,eF NG, and assume that G is nonsingular at P,. Let P, P,, -+, P,
be all points of F on G over Py, and let u,, *+-, u, be the multiplicities of F at
Py, -+, P,, respectively. If f=cfi1- fy» (cEk*) is a decomposition of f into
distinct irreducible factors, let F, (1< j<m) be the curve on V, defined by f,=0.
Let p(j) be the multiplicity of F; at P; for 1<i<r and 1<j<m. Then it is
clear that p;= o u(1)+ - +appi(m) for 1<i<r.

1.8. As a consequence of Lemmas 1.4 and 1.6, we have the following:
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Theorem. Assume that V has only isolated singularities. Let W be the
surface obtained from Vy:=A? by the standard processes of the first (or the second)
kind at every point of F NG. Then V is isomorphic to the surface W with the proper
transform of G on W deleted off. The surface V is, therefore, a normal surface whose
singular points (if any) are rational double points.

1.9. 1In the paragraphs 1.9~1.11 we shall study the divisor class group C{(V).
Let g=cgh--- g8 (c€k*) be a decomposition of g into distinct irreducible factors,
and let G; be the curve g,=0 on V, for 1<j<n. Assume that FNG=+¢. Let
FNG={P, ..., P{}. For 1<I<e, either F is nonsingular at P{" but G is
not, or G is nonsingular at P{’. We may assume that F is nonsingular at P{",

() but G is not, and G is nonsingular at P{**?, .-, P{®, (The number a
may be 0.) For I<a, let P{", .-, P{" be all points of G on F over P{", and let
v{(j) be the multiplicity of G; at P for 1<i<s; and 1< j<n; let NO(j)=
v(l’)(j)—l—---—l—u(s'l)(j), let v{¥=pRw(1)++++B,v{"(n) and let NV=GND(1)+ -
+B,N(n). For a+1<I<e, let P{", .-, P{) be all points of F on G over P{",
and let u{" be the multiplicity of F at P{" for 1<i<r,. Let MP=p{+ -4
pi?. Since G is nonsingular at P{", there exists a unique G, (1<j<n) such
that P{", ..., P{) lieon G;. Then we set M"(j)=M® and M®(j")=0 for j'+ j.
Let EO=x"YP{P) for 1<I<e.

1.10. 'The structure of the divisor class group CI(V) is given by the following:

Theorem. With the notations as above, the divisor class group CIV) is
isomorphic to:

{ZeW 1.+ ZE@) /{,2:-‘{ N j)g(l)_l_’ :4‘—-': MO )ED; 1<j<n} .

Proof. Embed V,:=A? into the projective plane P? in a canonical way as
an open set, and let l..:=P?>—V,. For 1<I<e, let E{", .-, E{" be all exceptional
curves which arise by the standard transformation of ¥V, with respect to a triplet
(PP, F, G) (or (P{", G, F)) where g=N® (or M®). Let 7: W—P? be a com-
position of standard transformations of P? with respect to triplets (P{", F, G) for
1<I<a and triplets (P{", G, F) for a+1<I<e. Then it is easy to see that the
divisor

(& — 2 NOGEGu+ 33 MOGEL} (1<) <n)

has support on (G ), 7(l..), E{", -+, E{2; (g=N® or M®) for 1<I<e. Hence
we have:

SINOGEOE 3 MOEO~0  (1<j<n).
=1 l=a+

Now, let C be an irreducible curve on ¥ such that z(C) is not a point, and
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let the closure of 7(C) be defined by =0 with h&k[x, y]. Then, by considering
the divisor (%), on W, we easily see that C is linearly equivalent to an integral
combination of €@, .--, €@, Hence , by setting

Gi= {ZEO e ZEO} {3 NO(EO+ 3N MO()ED; 1< j<n} ,
1=1 I=a+1
we have a surjective homomorphism:
0: G— CIV); 6(EY) = &M (1LILe).

Assume that Ker 6+(0), and let d,®+---+d £@=(t), on V, where d,€EZ
(1<I<e) and tek(V). Let (t),,=>)m;C; with irreducible curves C; and m;E Z.
Let t;=k[x, ¥] be such that C; is given by ¢;=0, and write:

(ti)V == 7[’(0;)-'—2.} b;,g(’) With b,-,EZ.
=1
Then we have:
(=21 {miﬂ/(ci)‘f‘f.‘- mb; P} = E‘ dig® .
§ i=1 =1

Therefore, either m;=0 for every i, or z/(C;)=¢ for every i. In the first case, ¢
is a constant €k, whence d,=0 for 1<I/<e. In the second case, C; must
coincide with one of G’s (1<j<n). Then d,;§"4----4-dg“9=0 in G. Thisis
a contradiction. Therefore, 0 is an isomorphism. Q.E.D.

1.11. The affine domain A=~K[x, y, f/g] is a unique factorization domain if
and only if C/(V)=(0). We have the following two consequences of 1.10.

1.11.1. Corollary. With the notation of 1.9, if e>n then A is not a unique
factorization domain.

1.11.2. Corollary. Assume that g is irreducible and that FNG=¢. Then A is
a unique factorization domain if and only if the curves F and G meet each other in
only one point where they intersect each other transversally.

1.12. Let A* be the group of all invertible elements of A=k[x, y, flg]. Then
A* contains k*=k—(0) as a subgroup. By virtue of ([4], Remark 2, p. 174)
we know that A*/k* is a torsion-free Z-module of finite rank and A* is isomor-
phic to a direct product of k* and A*/k*. The purpose of this paragraph is to
determine the group 4*/k*. Let H be the subgroup of Z&W+----4Z&® gen-
erated by

{,f:‘_l.N(l)(j)e(n+I§lM(1)(J~)&u); 1<j<n} .

Let Ty, -+, T, be n-indeterminates, and let n: Z®:=ZT,+ -+ ZT,—~H be a
homomorphism such that, for 1< j<n,
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A(T)) = SANO(GEO+ 53 MOj)ecs.

Let L be the kernel of . Since N®(5) and M®(j) are non-negative integers for
1</<eand 1<j<n, each nonzero element of L is written in the form: v, T+
o 4,T, (7:€Z), where some of ;s are negative. Define a homomorphism
&: L-»K* (where K=k(x, y)) by (7, T+ ++,T,)=gl---gi». Then we have
the following:

Lemma. The homomorphism & induces an isomorphism &: L= A* [k*.
Proof. (1) Since (gj)v=é NO(feh 4 Z‘ MO(f)eP=n(T;) for 1<j<n,
=1 l1=a6+1
we have:
U(VITI+"'+'Y”T“) = (g'{l"' zn)V .

Therefore, if v, Ty +-++7,T,EL then gli---g)* is an invertible element of A4,
which is a constant if and only if ¢,=---=%,=0. Thus, £ is a monomorphism
from L into A*[k*.

(2) Let t be a non-constant invertible element of 4. Write ()y,=2) m;C;

with irreducible curves C; and m; Z. Let C; be defined by #,==0 with ¢, €k[x, y].
As in the proof of 1.10, write:

(t)y = 7/ (C)+D b,£P with b,eZ.
=1
Then we have:
Oy = 3 {min’(CH+ 2 mbu®} = 0.

Therefore, either m;=0 for every #, or z/(C;)=¢ for every i. The first case does
not occur because, if otherwise, # is a constant. In the second case, C; must
coincide with one of G;’s. Hence we could write:

(t)vo = Z:Jl mG; .

Then t=cgP1---gn* with c€k*. It is then clear that m, T+ ---+m,T,EL and
EmT\+-++m,T,)=t. Therefore, £: L—>A*|k* is an isomorphism.  Q.E.D.

1.13. By virtue of 1.10 and 1.12, we have the following:

Theorem. Assume that V has only isolated singularities. Then we have the
following exact sequence of Z-modules:

0 — A*[k* - Z™ > Z© — ClV)— 0,

where Z stands for a free Z-module of rank r; n is the number of distinct irreducible
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Sactors of g; e is the number of distinct points of F N.G.

1.14. Remarks. (1) Itis clear from 1.13 that if g is irreducible then 4*=Fk*.
(2) rank (CI(V))—rank (4*/k*)=e—n.
(3) Though we proved Theorem 1.13 under the assumption that F NG ¢
it is clear that the theorem is valid also in the case where F N G=¢.

2. Locally nilpotent derivation on k[x, y, f/g]

2.1. Let 4 be an affine k-domain. A k-derivation D on A4 is said to be locally
nilpotent if, for every element a of 4, D"(a)=0 for sufficiently large n. If Disa
locally nilpotent k-derivation on 4, we define a k-algebra homomorphism

A: 4 — A[X] (with an indeterminate X)
by A(a) = XY (1/n!))D"(a) X" .
n20

Then it is known (cf. [6]) that A gives rise to an action of the additive group
scheme G, on Spec(A4). Conversely, every action of G, on Spec(A) is expressed
in the above-mentioned way with some locally nilpotent k-derivation on 4. We
set Ay:={acA|D(a)=0}. Then 4, is an inert subring of 4, and A4, is, in fact,
the ring of G,-invariant elements of A with respect to the corresponding G,-
action on Spec(4). For other relevant results on these materials, the readers are

referred to [4] and [6].

2.2. In this section, we set A=ZE[x, y, f|g], and assume that 4 is normal. Assume
that A4 has a nonzero locally nilpotent k-derivation D. Then we assert the follow-

ing:
Lemma. The subring“ A, of D-constants is a finitely generated, normal,
rational k-domain of dimension 1.

Proof. Since A4, is the ring of G,-invariants in a normal domain 4, 4, is
integrally closed in the quotient field Q(A4,) of 4, and A,=A4 N Q(4,), where
0O(4,) is the field of G,-invariants in the quotient field Q(4) of A. Then, by
virtue of Zariski’s Theorem (cf. Nagata [7; p. 52]), A4, is a finitely generated
normal k-domain of dimension 1. Besides, 4, is rational over & by Liroth’s
Theorem because A is rational over k. ‘ . Q.E.D.

2.3. Let V:=Spec(A4). Then V has a nontrivial G,-action corresponding to
the derivation D on 4. Let U:=Spec(4,); U is isomorphic to an open set of
the affine line A' (cf. 2.2). Let ¢: V—U be the morphism defined by the
canonical inclusion 4y—~A. By 2.2, we know that A,=k[t, 1/h(¢)] with h(t) Ek[{].
For almost all elements « of k such that A(a)=0, the fibre ¢ () is a G,-orbit
and is, therefore, isomorphic to the affine line. Let p: "=V be the minimal
resolution of singularities of V. As we saw in 1.8, singular points of V are
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rational double points. Hence, p is a composition of quadratic transformations
with centers at singular points. Let g':=g-p: V’/—U. Almost all fibres of ¢’
are therefore isomorphic to the affine line. Now we shall prove the following:

Lemma. There exist a nonsingular projective surface W and a surjective
morphism p: W—>P" satisfying the following conditions:

(1) Almost all fibres of p are isomorphic to P".

(2) There exists an open immersion v: V'—W such that p-1=1t-q’, where
7: U P! is the canonical open immersion via U< A':=Spec (k[t]).
Then the fibration p has a cross-section S such that S C W—(V").

Proof. Let V be a nonsingular projective surface containing V” as an open
set. Then, a subfield k() of k(V")=k(V) defines a linear pencil A of effective
divisors on ¥ such that a general member of A cuts out a general fibre of ¢ on
V. The base points of A are situated on V—V”. Let §: W—V be the shortest
succession of quadratic transformations of ¥ with centers at the base points of
A such that the proper transform A of A by € has no base points, and let p:
W — P! be the morphism defined by A. Since ¥’ is canonically embedded into
W as an open set, let ¢: V/—W be the canonical immersion. Then it is not hard
to see that p: W—P"' and ¢: V’— W satisfy the conditions (1), (2) of Lemma.
Q.E.D.

2.4. We shall prove the following:

Lemma. (cf.[3]). Let p: W—P"' be a surjective morphism from a nonsin-
gular projective surface W onto P' such that almost all fibves are isomorphic to P*.
Let F=n,C,+--++n,C, be a reducible fibre of p, where C; is an irreducible curve
and n;>0. Then we have: ;

(1) For 1<i<r, C; is isomorphic to P* and (C?)<0.

(2) Fori=j, C; and C; do not intersect or intersect transversally at a single
point.

(3) For distinct indices i, j and I, C;NC;N C,=¢.

(4) One of C;’s, say C,, is an exceptional curve of the first kind. If 7: W—

.
W, is the contraction of C,, then p factors as p: W— W,&Pl, where p,: W,—P* is
a fibration by P'.

Proof. For each i, ni(C?)—{—'_}*;‘,jnj(Ci-Cj):O, wherg (Ci-C)>0 for some j

because F is connected. Hence (C?)<0. To prove the remaining assertions
we have only to show that one of C/’s is an exceptional curve of the first kind.
Let K be the canonical divisor of W. Then (F:K)=—2 because p,(F)=0.
Hence, —2=(F -K)=3)n,(C;- K)=31 n,(2p,(C;)—2—(C?)), where 2p,(C;)—2—

(C?)>=—1 and the equality holds if and only if C; is an exceptional curve of the
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first kind. However, it is impossible that 2p,(C;)—2—(C3)>0 for every i.
Therefore, 2p,(C;)—2—(C%)=—1 for some 3. Q.E.D.

2.5. With the notations of 2.3, Lemma 2.4 implies:

Lemma. Write W—(V")= U C; with irreducible curves C;. Then we have:
i=1

(1) Ewery C; is isomorphic to P'.

(2) Fori=j, C; and C; meet each other (if at all) in a single point where
they intersect transversally.

(3) For distinct indices i, j and I, C;N C;N C=4¢.

)] U C; does not contain any cyclic chains.
i=1

Proof. Note thatone of C;’s is the cross-section S and the other components

are contained in the fibres of p. Then the above assertions follow from 2.4.
Q.E.D.

2.6. Let Vy:=Spec(k[x, y]), and let F, G be asin 1.1. Let G; (1<i<#n) be as
in 1.9. Embed V,into P? in a canonical way. Let l.:=P?*—V,and let F,G,G,
(1< j<n) be the closures of F, G, G, in P? respectively. Let 7: Z—P? be a
composition of the standard transformations of P? with respect to triplets (P, F,
G) (or (P, G, F)), where P runs over all points of FNG. Then we know that
V'’ is embedded into Z as an open set. We may assume, by replacing W if
necessary by a surface which is obtained from W by a succession of the quadratic
transformations, that there exists a birational morphism @: W—Z such that we
have the following commutative diagram:

W——————)Pl

PN

) VI

POy,

2.7. Let PL,eFNG. Assume that F is nonsingular at P, but G is not. Then,
in a neighborhood of 77Y(P;), 7"{(F UG) has the configuration as in the Figure
1. With the notations of the Figure 1, we can show the following assertions:
(1) A general fibre N of p may intersect ¢’(Ey).
(2) P'(E)), -+, P'(Ex-,) are contained in one and only one fibre of p.
Indeed, Ay’=ANV"’ is isomorphic to the affine line, and Tp(A—2n;’) lies on /..
Hence A does not meet any of @(E,), -, (Ey_,). This proves the second
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assertion. By the same reason, we have:
(3) For 1<j<n, (r@)(G,) is contained in a fibre of p. In particular,
(r@Y(G)) is isomorphic to P*.

2.8. We have the following:
Lemma. (1) For 1<j<n, G, has one place at infinity; every singular point

of G, is a one-place point.
(2) For distinct 1, j (1<i, j<n), G;NG,=9.

Proof. Note that if @ is not an isomorphism ¢ is a composition of quadratic
transformations of Z with centers at a point on 7/(/..) and its infinitely near points.
Then, both assertions follow from 2.5 (cf. 2.7). Q.E.D.

2.9. We prove the following:
Lemma. For 1< j<n, the curve G, is nonsingular.

Proof. Note that if P is a singular point of G, then P is a point of FNG,
(cf. 2.7, (3)). Assume that PEFNG, Then, in a neighborhood of 77'(P),
77(F N G,) must have the following configuration as in the Figure 1:

7(G))

where @'(E,), -++, 9/(Ey-,) and (79)(G,) belong to the same fibre of p. Note that
(T@)(G)) intersects @'(E;) transversally in one point if N >s-+1 (cf. Lemma2.4).
Assume that »,>2 and »,,=-+=»,=1. (For the notations, see 1.3.) Such &
exists because we assume that P is a singular point of G;. Then N>s+1, and
it is not hard to see that s=>b+1, and that we have the configuration:

where 7/(G,) touches E,_, with (7/(G,)-E,_,)=v,—1. This contradicts Lemma
2.4, (3). Therefore, the curve G ; is nonsingular. Q.E.D.

2.10. Now we can prove:
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Theorem. Assume that V has only isolated singularities. Then A has a non-
zero locally nilpotent k-derivation if and only if we have gEk[y] after a suitable
change of coordinates x, y of k[x, y].

Proof. Assume that gek[y] after a suitable change of coordinates x, y of
k[x,y]. Then D=gai is a nonzero locally nilpotent k-derivation on 4. We
x

prove the converse. With the notations of 2.1~2.9, G, (1< j<n) is a nonsingular
rational curve with one place at infinity (cf. 2.8, (1) and 2.9). [Note that G;is a
rational curve because (7@)'(G;) is a component of a fibre of p (cf. 2.4).] Hence,
G, is isomorphic to the affine line A'. By virtue of the Embedding Theorem of
Abhyankar-Moh (cf. [1], [5]), we may assume that g,=y after a suitable change
of coordinates x, y of k[x, y]. Then, for 2<j<n, g; is written in the form:
&;=c¢;+yh; with ¢, €k and h,Ek[x, y] because G,;N G;=¢ (cf. 2.8, (2)). On the
other hand, the fact that G, has only one place at infinity implies that the curve
g;=a on A’ is irreducible for every a €k (cf. [5]). Therefore, k; is a constant
k. Thus, gek[y]. Q.E.D.

2.11. Weknow by [4; Theorem 1] that 4 is isomorphic to a polynomial ring over
k if and only if 4 satisfies the following conditions:

(1) A4 is a unique factorization domain,

(2) A*=Fk*,

(3). .4 has a nonzero locally nilpotent k-derivation.
The condition (1) above can be described as follows:

Lemma. Assume that A satisfies the conditions (2) and (3) above. We may
assume that g Ek[y) after a suitable change of coordinates x,y of k[x,y]. Write:
f(x, y)=ay(y)+ai(y)x+--+a,(y)x" with a(y)Ek[y] (0<i<r). Then A is a
unique factorization domain if and only if a,(y) is a unit modulo gk[x, y] and oy)
is nilpotent modulo gk[x, y] for 2<i<r.

Proof. Assume that 4 is a unique factcrization domain. With the nota-
tions of 1.9, a=0 because every G; (1<j<n) is nonsingular and G;N G ;=4 if
t#j. By virtue of 1.13, we have: e=n. Theorem 1.10 then implies that every
G, intersects F transversally. This is easily seen to be equivalent to the condi-
tion on f(x, y) in the above statement. The “if”’ part of Lemma will be clear by
the above argument and Theorem 1.10.
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