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ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS
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Let A be a commutative ring with unity. A higher derivation Δ = {1, Au

Δ2, •••} of A is called locally finite if for any a^A there exists an index/ such

that An(a)=0 for all w>/. In a previous paper some properties of locally finite

iterative higher derivations (abbreviated as lfih-derivations) and some applica-

tions of them were presented ([2]). In this paper the author gives another

application of lfih-derivations, i.e., a characterization of two-dimensional poly-

nomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where

the method is geometric while the present one is algebraic and elementary. As

a Corollary a characterization of a line in an affine plane is given in terms of

lfih-derivation where a line in an affine plane is meant a curve C which can be

taken as a coordinate axis of A2. We call a curve C:f (x, y)=0 a quasi-line if

the coordinate ring k[x, y]l(f) is isomorphic to one-parameter polynomial ring.

It is known that if the ground field is the complex number field C, then a quasi-

line is always a line (cf. [1]). Combined with the present investigation it turns

out that if the plane curve C:f(x,y)=0 is a quasi-line over C, then the derivation

Df = (dfjdy) (9//9#)— is locally nilpotent, i.e., the higher derivation
ox dy

(1, Dfy —D}, ••• J is a lfih-derivation and vice versa. The direct proof of this

fact is expected very much.

Let A be a commutative ring with 1. A higher derivation Δ = ( l , Δly Δ2, •••)

is a set of linear endomorphisms of A into itself satisfying the conditions:

where Δo denotes the identity mapping of A. Let ΦΔ be the homomorphism

of the ring A into A[[T]] defined by

We say that Δ is locally finite if / M Φ Δ is contained in the polynomial ring

i.e., for any aEϊA, there exists an integer^' such that An(a)=0 for all n>j.

is called an iterative higher derivation if the additional conditions
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are satisfied by Δ. Let a be an element of the ring A. We say that a is a
Δ-constant if Δ, (α)=0 for all i ^ l . This is equivalent to saying that ΦA(a)=a.
Sometimes we use the notation AΓ\0) to denote the ring of Δ-constants, and
A(a)=0 to denote a being a Δ-constant.

Lemma 1. Let Abe a locally finite higher derivation of an integral domain
A. Then the constant ring B=AΓ\0) is inertly embedded in A.

Proof. Let b be an element of B and let b=cd be a decomposition of b in
A. Then we have φ(b)=φ(c)φ(d) where φ=Φ^. By assumption φ(b) is in A
and φ(c), φ(d) are elements of a polynomial ring A[T]. Hence φ(c)y φ(d) are
also in A. It means that φ(c)=c and φ(d)=d, i.e., c and ά are in B.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic
and let A be an integral domain containing k. Assume that A satisfies the following
conditions:

i) There exists a non-trivial Ifth-derivation A over k.
ii) The constant ring Ao of A is a principal ideal domain finitely generated

over k.
iii) Any prime element of Ao remains prime in A.

Then A is a polynomial ring in one variable over Ao.

Proof. Let A{ be the set of elements ξ in A such that ΔM(£)=0 for n>i.
Ao is the ring of Δ-constants and A/s are ^40-modules. It is proved in [2] that
there exists an integer s (2^0) such that

AQ = Aι = "Άps^aAps = ••• = A2p
s-ιCiA?ps = •••

where C denotes proper containment. The integer mps is called the m-th jump
index (m=l, 2, •••). For simplicity we set q=ps and Mn = Anq. It is also
proved in [2] that for any element ξ in Ml9 we have

Φ(ξ) = Z+aoT+cdTf+.-'+cCsΓ

where α's are in Ao and φ=^φ^ Let Ix be the set of elements in Ao which
appear as coefficients of T9 in φ(ξ) for some £eMχ. It is easily seen that Ix

is an ideal of Ao. Similarly let In be the set of elements which appear as
coefficients of Tnq in φ(ξ) for some ^ G l n . Then In is also an ideal of Ao.
Let an be a generator of the In and let x be an element of Mγ such that
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We shall prove simultaneously the following

(1). («.) = («!),
(2). MΛ = A0+Alp+-+Aίpf9 (n=l,2, ..)

by induction on n. First we shall remark that (1)Λ implies (2)rt. In fact let ξ
be in Mn. Then ΔΛ9(£) is in In=(an). From (l)n it follows that there exists
a constant c in ^40 such that Anq(ξ)=caϊ. Then 0(£—c#Λ) is of degree <nq,
hence ξ—cxn^Mn_ι. Now assume (l)n, (2)Λ and we shall prove (l) n + i . Since
α ϊ + 1 e / n + 1 = ( α Λ + 1 ) , there is a constant c in ^40 such that aϊ+ι=can+1. Let f be
an element of Mn+1 such that

Then 0(£f-*n + 1) is of degree <(n+ί)qy hence c f - * n + 1 e M n . By (2)n there
are δ/s in Ao such that

We shall show that c is a unit of Ao. Assume that c is a non-unit in ^40. Let/
be a prime element which divides c. Taking the residue class modulo fA we
get an algebraic relation

By assumption (iii)/is also a prime element of A. Hence AjfA is an integral
domain. Since k is algebraically closed and Ao is finitely generated over k, we
have AolfAo=k. Hence there exists y in k suh that #—7. It means that
x—Ύ=fy with some y^A. Then we have Φ{x—Ύ)=fφ{y), i.e., AQ(x)=fAq(y).
Since Aq(y)€Ξlι=(ai)—(Aq(x)) we get a contradiction. Thus we have proven

CO

(1)Λ+1. Since A= U Mny we obtain the desired result A=A0[x].
M = l

REMARK. If A is a UFD, then the condition (iii) is automatically satisfied.

Theorem 2. Let k be as in Theorem 1, and let A be a finitely generated
normal integral domain over k such that

(i) dimA=2
(ii) A*=k* where * denotes the set of units.

(iii) Either A is UFD or Q(A) is unirational over k.

Let A be a non-trivial lfih-derivat}on of A over k. Then the constant ring
Ao of A is a polynomial ring over k. More precisely let f be an irreducible element
in Ao. ThenA0=k[f],

Proof. Ao is not reduced to k because there exists an element u in Ao and
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a variable t over Ao such that Alu^—AJiu'1]^]. (cf. Appendix, [2]). Let /
be an element of AQ\k which is irreducible in A. The existence of such an
element/ is assured by the Lemma 1. We shall show that A0=k[f], Since
AQ[u~v\^A\u~v\\tA[u~ι\, AQIU'1] is a finitely generated integral domain over A.
In case A is a UFD, AQIU"1] is also a UFD owing to the Lemma 1. Moreover
the transcednence degree of the quotient field K of Ao is 1. Hence if is a purely
transcendental extension of k. If A is not a UFD we assumed that Q(A)
is unirational. Then by the generalized Lϋroth's theorem K is also a one-
dimensional purely transcendental extension of k. Let B be the integral closure
of £[/] in K. Then i? is also finitely generated over k and B*=k* because B
is contained in A. Hence there exists an element t in B such that B=k[t],
Since/ is contained in B we can write f=X(t). But/is irreducible in Ay hence
degree of λ in t must be 1. It proves that k[t]=k[f]=B. Now assume A0^B.
Since AQ and B have the same quotient field, Ao contains an element of the form
Ύ(f)/s(f) where (?(/), s(f))=ί and dtgs(f)^ί. Then Ao must contain a
non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. Let k be an algebraically closed field of arbitrary characteristic
and let A be a finitely generated integral domain over k* Assume that A satisfies
the following conditions:

(i) dimA=2
(ii) A*=k*

(iii) A is UFD.

Assume that A has a non-trivial Ifih-derivation Δ over k. Then A is a two-
dimensional polynomial ring over k. More precisely if the constant ring Ao of A is
written as k[f], then A=k[f, g]for some other element g in A.

The assumption (iii) is essential as is shown in the following

EXAMPLE l.<*> Let A=c\x, y, ί ί Z z D Ί Then as is easily seen ^4*=C*
L x Λ

and A has a locally nilpotent derivation D such that

x

By a simple calculation we see D'^^JfeΓ^v^"" 1 )] . The element
L x J x

not a prime element in A. Hence A is neither UFD nor a polynomial ring.

(*) This example is due to K. Yoshida.
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As an application of Theorem 3 we give a necessary and sufficient condition
for a plane curve C:f(xy y)=0 to be a line. We recollect here some definitions.
A plane curve C: f(xy y)=0 defined over a field k is called a quasi-line over k if
the coordinate ring A=k[xy y]/(f) is isomorphic to a polynomial ring in one
variable. C is called a line if there exists another curve Γ: g(xy y)=0 such that
we have k[xy y]=k[fy #] . ( ** )

Theorem 4. Let k be an algebraically closed field and let C:f(xyy)=0 be
an irreducible curve over k. Then the following conditions are equivalent to each
other.

(i) C is a line
(ii) There is a Ifih-derivation Δ such that Δ ( / ) = 0 .

(iii) Cu:f(x, y)—u=0 is a quasi-line over k(u) where u is an indeterminate.

Proof. The implication (i)->(ii), (i)->(iii) is obvious (ii)->(i) follows from
Theorem 2 and 3. It remains to show that (iii) implies (i). Assume (iii). Since
k(u)[xy y]l(f—u) is isomorphic to k(f)[xy y]y there exists an element t in k[xy y]
such that k(f)[xyy]=k(f)[t]. Let Δ' be the Ifih-derivation of k(f)[t] over
k(f) such that

Then there exists an element a in k[f] such that aA'=A sends k[xy y] into
itself, where aΔ' is higher derivation

Clearly Δ ( / ) = 0 and/is a prime element in k[xy y]. Hence Δ"1(0)=Λ[/] and
by Theorem 3,/is a line.

In case where the characteristic of k is zero we can say more. First we
prove a Lemma.

Lemma 2. Let C: f(xy y)=0 be a line in a plane. Then (§£, | Π = 1.
\ox oy/

Proof. Since C is a line, there exists a curve Γ: g(xy y)—0 such that
k[xy y]=k[fy g]. Then there exists F(Xy Y) and G(Xy Y) in k[Xy Y] such that

G(f,g)=y.

Then we have

(**) In [4] our "line" and "quasi-line" are called "embedded line auu mie respectively.
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9/ dx 8^ 8Λ?

Wd£dFdg_ = 0 (2\
9/ dy dg dy ~~

OLr Of OLr Og ^ ,*^

9/ dx dy dx

9/ dy dg 9y ~~ ^

Now assume ( —A -^-) CΞm for some maximal ideal m. Then from (2) either
\dx dy/

— or — is contained in m. The first case cannot occur because of (1) and the

second case contradicts (4). Thus [-A — ) is a unit ideal.
\9# dy)

Theorem 5. Let k be an algebraically closed field of characteristic zero and
let C: f(x9 y)=0 be an irreducible curve over k. Then C is a line if and only if the
derivation

f~~Ίϊydx ftv 9y

is locally nilpotent.

Proof. Assume that C:f(x, y)=0 is a line. Let Γ: g(x, y)—0 be a curve
such that k[ff g\—k\xy y]. Then there exists a locally nilpotent derivation Δ of

k[x, y] such that Δ / = 0 and Δ ^ = l . Since — and — form a basis of deriva-

tions of k[xf y] we can write

Δ — a——b— with a, b^k[x, y] .
dx dy

Since Δ/=0 we have

a^x~bdy=={) ( 1 )

τ , / 9/ , / 9/ . . Λ 8/ , , 3 / Φ , , A > T̂
Let a -f-=b -^-=\, i.e., a=\-^-, b = X-^~. Then we have A = \Df.I dy I dy dy dx '

We show that X^k[x,y], From Lemma 2 it follows that a^-+β-^-= 1 for
dx dy

some a> β in k[xy y]. Hence X=ba-{-aβ^k[xy y]. On the other hand the ex-
istence of g^k[x,y\ such that Δ ^ = l implies (a, b)=l. Since λ is a common
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divisor of a and b we see that λ G i * . This means that Df is locally nilpotent.
The "if" part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of
characteristic zero ([1]). In the case where the characteristic of k is a positive
prime integer p there is a counter example.

EXAMPLE 2(***> A curve C: f(x, y)=0 such that

is a quasi-line but not a line where p is the characteristic of k and q is an integer
> 2 not divisible by p.

Proof. If we set

u = y—{yp—xqy

then x=up2 and y=u+upq modulo f(xyy). Hence f(χfy)=0 is a quasi-line. To
see that c is not a line it suffices to show that there is no locally finite higher
derivation killing/. Assume the contrary and let Δ be a lfih-derivation killing

=ΦΔ. Let

φ(x) = χ

Φ(y)=y+Ilbiτ
i.

From0(/)=/weget

First we easily see that # t =0 if ί ΐ 0 (mod/)2). We set ap^i=ai. Then we have

First we remark that

CLttΞA* ( 2 )

for any / where A=k[x,y]. Now assume that n^l. We compute the coe-
fficient of Tp*n{q~l). Since Tp*n{q~l) does not appear in the middle term we have
the relation:

4£c«-D = Σ ap

ir aq
i1+ + ί ί=«C«-i) 1 q

From (2) α j^ crf̂ , α£(*~1} are in Ap\ Hence x* must also be in Ap2. This is

(***) This example is a generalization of the one given in [4].
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impossible. This proves n=0> i.e., x must be a Δ-constant. Hence y is also a
Δ-constant. Thus there is no non-trivial lfih-derivation Δ such that Δ ( / ) = 0 .
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Added in Proof. In Theorem 3 we assumed that k is algebraically closed.
This assumption is essential as is shown in the following Example. Let
B=R[X, Y]/X2+ Y2+l. Then B is a UFD and satisfies 5 * = Λ * . The ring
A=B[Z] satisfies all the requirement in Theorem 3, but A is not a polynomial
ring of two variables over the field R.




