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ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS
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Let 4 be a commutative ring with unity. A higher derivation A= {1, A,,
A,, +++} of A is called locally finite if for any a& A4 there exists an index j such
that A,(@)=0 for allz>j. In a previous paper some properties of locally finite
iterative higher derivations (abbreviated as lfih-derivations) and some applica-
tions of them were presented ([2]). In this paper the author gives another
application of Ifih-derivations, i.e., a characterization of two-dimensional poly-
nomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where
the method is geometric while the present one is algebraic and elementary. As
a Corollary a characterization of a line in an affine plane is given in terms of
Ifih-derivation where a line in an affine plane is meant a curve C which can be
taken as a coordinate axis of A%, We call a curve C:f (x, y)=0 a quasi-line if
the coordinate ring k[, y]/(f) is isomorphic to one-parameter polynomial ring.
It is known that if the ground field is the complex number field C, then a quasi-
line is always a line (cf. [1]). Combined with the present investigation it turns
out that if the plane curve C': f (», y)=0 is a quasi-line over C, then the derivation

D,=(6f/6y)%—(6f/6x) a% is locally nilpotent, ie., the higher derivation

<1, Dy, ZL'D}’ ) is a lfih-derivation and vice versa. The direct proof of this

fact is expected very much.

Let A be a commutative ring with 1. A higher derivation A=(1, A}, Az, +++)
is a set of linear endomorphisms of 4 into itself satisfying the conditions:

A (ab) = zd‘ Ad@)A,_(b)

where A, denotes the identity mapping of 4. Let ®, be the homomorphism
of the ring 4 into A[[T]] defined by

®,(a) = i}) Dya)T" .

We say that A is locally finite if I,,®, is contained in the polynomial ring A[T],
i.e., for any a€ 4, there exists an integer j such that ‘A,(a)=0 for all n>j. A
is called an iterative higher derivation if the additional conditions
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it
A, =( i’)A,-,,,.

are satisfied by A. Let a be an element of the ring 4. We say that a is a
A-constant if A,(a)=0 for alli=1. This is equivalent to saying that ®s(a)=a.
Sometimes we use the notation A™}(0) to denote the ring of A-constants, and
A(a)=0 to denote @ being a A-constant.

Lemma 1. Let A be a locally finite higher derivation of an integral domain
A. Then the constant ring B=A"Y(0) is inertly embedded in A.

Proof. Let b be an element of B and let b=cd be a decomposition of 4 in
A. Then we have ¢(b)=g¢(c)p(d) where ¢=®,. By assumption ¢(b) is in 4
and ¢(c), #(d) are elements of a polynomial ring A[T]. Hence ¢(c), #(d) are
also in 4. It means that ¢(c)=c and ¢(d)=d, i.e., ¢ and d are in B.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic
and let A be an integral domain containing k. Assume that A satisfies the following
conditions:

i) There exists a non-trivial lfih-derivation A over k.
ii) The constant ring A, of A is a principal ideal domain finitely generated
over k.
iii) Amny prime element of A, remains prime in A.

Then A is a polynomial ring in one variable over A,.

Proof. Let A; be the set of elements & in A such that A,(§)=0 for n>1.
A, is the ring of A-constants and A;’s are Ay-modules. It is proved in [2] that
there exists an integer s (=0) such that

Ay= A, = "'Ap"—1CAp‘ = ees == Azp‘—ICA?p‘ = e

where C denotes proper containment. The integer mp° is called the m-th jump
index (m=1, 2, --:). For simplicity we set g=p° and M,=4,,. It is also
proved in [2] that for any element & in M,, we have

#E) = Et+ayT+a, T4 +a,T*

where a’s are in A, and ¢=¢,. Let I, be the set of elements in A, which
appear as coefficients of 7% in ¢(&) for some £&M,. It is easily seen that I,
is an ideal of 4, Similarly let I, be the set of elements which appear as
coefficients of 7" in ¢(£) for some §M,. Then I, is also an ideal of A,.
Let a, be a generator of the 7, and let x be an element of M, such that

&(x) = x+-+a,T7.
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We shall prove simultaneously the following

(Ds (@) = (al),
(2)y, M, = Ay +Ap+-+Ax", (n=1, 2, --+)

by induction on n. First we shall remark that (1), implies (2),. . In fact let &
be in M,. Then A, (&) is in I,=(a,). From (1), it follows that there exists
a constant ¢ in A4, such that A, (§)=cal. Then ¢(§—cx") is of degree <ng,
hence E—cx"eM,_,. Now assume (1),, (2), and we shall prove (1),4;. Since
at*'el,,,=(a,4), there is a constant ¢ in 4, such that a}*'=ca,,,. Let & be
an element of M,,, such that

HE) = + o Fa, T,

Then ¢(cE—x"*?) is of degree <(n+1)q, hence cE—x*'e M,. By (2), there
are b;’s in A, such that

k= x"“—[—i% b;x" .

We shall show that ¢ is a unit of 4,. Assume that ¢ is a non-unit in 4,. Let f
be a prime element which divides ¢. Taking the residue class modulo f4 we
get an algebraic relation

b8 =0.

By assumption (iii) f is also a prime element of 4. Hence 4/fA4 is an integral
domain. Since & is algebraically closed and A4, is finitely generated over &, we
have A,/fA,=k. Hence there exists ¢ in k suh that ®=v. It means that
x—y=fy with some yEA4. Then we have ¢g(x—¥)=fd(y), i.e., A (x)=fA(¥).
Since A (y)el,=(a,)=(A,(x)) we get a contradiction. Thus we have proven

(1)y+1. Since 4= CJM,,, we obtain the desired result 4=2A4[x].
n=1
ReMaARrk. If 4 is a UFD, then the condition (iii) is automatically satisfied.

Theorem 2. Let k be as in Theorem 1, and let A be a finitely generated
normal integral domain over k such that

(i) dim A=2
(if) A*=Fk* where * denotes the set of units.
(ii1) Either A is UFD or Q(A) is unirational over k.

Let A be a non-trivial lfih-derivation of A over k. Then the constant ring
A, of A is a polynomial ring over k. More precisely let f be an irreducible element
in Ay Then Ay=Ek[f].

Proof. A, is not reduced to k because there exists an element « in 4, and
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a variable ¢ over A4, such that A[u "=A4,[u""][t]. (cf. Appendix, [2]). Let f
be an element of Ay \k which is irreducible in 4. The existence of such an
element f is assured by the Lemma 1. We shall show that 4,=k[f]. Since
Au=Alu"[tA[u""], AJu""] is a finitely generated integral domain over k.
In case A isa UFD, A[u""] is also a UFD owing to the Lemma 1. Moreover
the transcednence degree of the quotient field K of 4,is 1. Hence K is a purely
transcendental extension of k. If 4 is not a UFD we assumed that Q(A)
is unirational. Then by the generalized Luroth’s theorem K is also a one-
dimensional purely transcendental extension of .. Let B be the integral closure
of X[ f]in K. Then B is also finitely generated over k and B*=k* because B
is contained in 4. Hence there exists an element ¢ in B such that B=k[z].
Since f is contained in B we can write f=X(#). But f is irreducible in 4, hence
degree of A in ¢ must be 1. It proves that k[f]=k[f]=B. Now assume A,+B.
Since A4, and B have the same quotient field, 4, contains an element of the form
Y(f)/s(f) where (v(f), s(f))=1 and deg s(f)=1. Then A, must contain a
non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. Let k be an algebraically closed field of arbitrary characteristic
and let A be a finitely generated integral domain over k. Assume that A satisfies
the following conditions:

() dim A=2
(i) A*=k*
(iii) A4 is UFD.

Assume that A has a non-trivial lfih-derivation A over k. Then A is a two-
dimensional polynomial ring over k. More precisely if the constant ring A, of A is
written as R[ f ], then A=K][ f, g| for some other element g in A.

The assumption (iii) is essential as is shown in the following

ExampLE 1.9 Let A=C[x, A -Z(—y———l—)] Then as is easily seen 4*=C*
x

and A has a locally nilpotent derivation D such that

Dx = 2y—1, Dy =2Y0=1)
X

By a simple calculation we see D"(O):k[l(-y—_—l)]. The element Y¥=1) i
x x

not a prime element in 4. Hence 4 is neither UFD nor a polynomial ring.

(*¥) This example is due to K. Yoshida.
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As an application of Theorem 3 we give a necessary and sufficient condition
for a plane curve C': f(x, ¥)=0 to be a line. We recollect here some aefinitions.
A plane curve C: f(x, y)=0 defined over a field % is called a quasi-line over % if
the coordinate ring A=k[x, y]/(f) is isomorphic to a polynomial ring in one
variable. C'is called a line if there exists another curve I': g(x, y)=0 such that
we have R[x, y]=k[ f, g].**

Theorem 4. Let k be an algebraically closed field and let C': f(x, y)=0 be
an irreducible curve over k. Then the following cenditions are equivalent to each
other.

(i) Cisaline
(ii) There is a lfih-derivation A such that A( f)=0.
(i) C,: f(x, y)—u=0 is a quasi-line over k(u) where u is an indeterminate.

Proof. The implication (i)—(ii), (i)—>(iii) is obvious (ii)—(i) follows from
Theorem 2and 3. It remains to show that (iii) implies (i). Assume (iii). Since
k(u)[x, y]/( f—u) is isomorphic to k( f)[x, y], there exists an element ¢ in k[x, y]

such that k(f)[x, y]=k(f)[t]. Let A’ be the lfih-derivation of k(f)[t] over
k(f) such that

Ay = (™ Yo
n
Then there exists an element a in K[ f] such that aA’=A sends k[x, y] into
itself, where aA’ is higher derivation
aA’ = (1, aAl, &?A}, -+, a"A}, -++).

Clearly A(f)=0 and fis a prime element in k[x, y]. Hence A~Y(0)=k[f] and
by Theorem 3, fis a line.

In case where the characteristic of % is zero we can say more. First we
prove a Lemma.

Lemma 2. Let C: f(x, y)=0 be a line in a plane. Then (g—f, g—f )———1.
x 0y

Proof. Since C is a line, there exists a curve I': g(x, y)=0 such that
k[x, y]=Fk[f, g]. Then there exists F(X, Y) and G(X, Y) in k[X, Y] such that

Ffg)==
G(f,8)=y.

Then we have

(**) In [4] our “line” and ‘‘quasi-line” are called ‘““embedded line anu mne respecuvery.
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Now assume (ﬁf_’ B_f) Cm for some maximal ideal m. Then from (2) either
ox 0Oy
%E or gﬁ is contained in 7. The first case cannot occur because of (1) and the
4 y
second case contradicts (4). Thus (g, ﬂ) is a unit ideal.
Ox 0Oy

Theorem 5. Let k be an algebraically closed field of characteristic zero and
let C: f(x, y)=0 be an irreducible curve over k. Then C is a line if and only if the
derivation

p._0o 0 o a
= 2T %
dy 0x 0Ox Oy
is locally nilpotent.

Proof. Assume that C: f(x, y)=0 is a line. Let I': g(x, y)=0 be a curve
such that &[ f, g]=Fk[x, y]. Then there exists a locally nilpotent derivation A of

k[x, y] such that Af=0 and Ag=1. Since ai and 81 form a basis of deriva-
x y
tions of k[x, y] we can write

A= ai——bﬁ— with a, bEk[x, y] .
ox Oy
Since A f=0 we have
of 4 0f
9 _p9% _o
“ox oy (D

Let a —6£=b/ﬁj—(=7\., i.e., a=x?~f—, b=hg. Then we have A=2AD,.
oy oy dy Ox
We show that AEk[x,y]. From Lemma 2 it follows that ag—f—l— g gf— =1 for
% y

some a, B in k[x, y]. Hence A=ba-+aB€k[x, y]. On the other hand the ex-
istence of gEk[x, y] such that Ag=1 implies (@, b)=1. Since A\ is a common
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divisor of a and b we see that A&k*. This means that D, is locally nilpotent.
The “if” part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of
characteristic zero ([1]). In the case where the characteristic of % is a positive
prime integer p there is a counter example.

ExampLE 2:**) A curve C': f(x, y)=0 such that
S, y)= ¥t

is a quasi-line but not a line where p is the characteristic of k and ¢ is an integer
>2 not divisible by p.

Proof. If we set
u=y—(y*—)"

then x=u"" and y=u-+u** modulo f(x,y). Hence f(x,y)=0isa quasi-line. To
see that ¢ is not a line it suffices to show that there is no locally finite higher
derivation killing f. Assume the contrary and let A be a Ifih-derivation killing
fand ¢=Pa. Let

B(x) = "H',Z ;T
#(9) =y+2 6T .
From &( f )=f we get
( y’2—|—2 BETY)—(x+X) a; T¢ )—(@+3 AT =y? —x—xP1 oenn (1)
First we easily see that a;=0 if ¢ -$0 (mod p?). We set az;=c;. Then we have
P+ DT — (32 aTH)— (' + 3 af T =y —x—ae
First we remark that
a; 4 (2)

for any ¢ where A=~k[x, y]. Now assume that n=1. We compute the coe-
flicient of T***@™Y,  Since T?**(¢~Y does not appear in the middle term we have
the relation:

2 -1
bprg-n = 23 ol -af +gxtar@?
iyt ¥ ig=nE-1)

- . 2 . . .
From (2) a‘?l---a’,-’ oy D are in A?”*. Hence x* must also be in A4%*. This is

(**¥) This example is a generalization of the one given in [4].
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impossible. This proves n=0, i.e., x must be a A-constant. Hence y is also a
A-constant. 'Thus there is no non-trivial Ifih-derivation A such that A( f)=0.
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Added in Proof. In Theorem 3 we assumed that & is algebraically closed.
This assumption is essential as is shown in the following Example. Let
B=R[X, Y]/X?4Y?+1. Then B is a UFD and satisfies B¥*=R*. The ring
A=B[Z] satisfies all the requirement in Theorem 3, but 4 is not a polynomial
ring of two variables over the field R.





