ON DOUBLY TRANSITIVE PERMUTATION GROUPS

YUTAKA HIRAMINE

(Received April 22, 1977)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. Using the notation of [9], we denote a normal subgroup of G_{α} by N^{α} . Then, for $\beta \in \Omega$ other, we define N^{β} so that $g^{-1}N^{\beta}g=N^{\gamma}$ where $\gamma=\beta^{g}$.

In this paper we shall prove the following:

Theorem 1. Let G be a doubly transitive permutation group on a finite set Ω . Suppose that α is an element of Ω . If G_{α} has a normal simple subgroup N^{α} which is isomorphic to PSL(2, q), Sz(q) or PSU(3, q) with $q=2^n$, $n\geq 2$, then one of the following holds:

- (i) $|\Omega|=6$, $G \simeq A_6$ or S_6 and $N^{\bullet} \simeq PSL(2, 4)$.
- (ii) $|\Omega|=11$, $G\simeq PSL(2, 11)$ and $N^{\alpha}\simeq PSL(2, 4)$.
- (iii) G has a regular normal subgroup.

We introduce some notations: Let G be a permutation group on Ω . For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X) = \{\alpha \in \Omega \mid \alpha^x = \alpha \text{ for all } x \in X\}$, $X(\Delta) = \{x \in X \mid \Delta^x = \Delta\}$, $X_{\Delta} = \{x \in X \mid \alpha^x = \alpha \text{ for all } \alpha \in \Delta\}$ and $X^{\Delta} = X(\Delta)/X_{\Delta}$, the restriction of X on Δ . If p is a prime, we denote by $O^p(X)$, the subgroup of X generated by all p'-elements in X. Other notations are standard ([6], [16]).

2. Preliminary results

Lemma 2.1. Let G be a doubly transitive permutation group on Ω of even degree and $N^{\mathfrak{a}}$ a nonabelian simple normal subgroup of $G_{\mathfrak{a}}$ with $\alpha \in \Omega$. If $C_{\mathfrak{a}}(N^{\mathfrak{a}}) \neq 1$, then $N^{\mathfrak{a}}_{\beta} = N^{\mathfrak{a}} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_{\mathfrak{a}}(N^{\mathfrak{a}})$ is semi-regular on $\Omega - \{\alpha\}$.

Proof. Set $C^{\sigma} = C_G(N^{\sigma})$. By Corollary B3 and Lemma 2.8 of [17], C^{σ} is semi-regular on $\Omega - \{\alpha\}$ or N^{σ} is a T.I. set in G. Since $|\Omega|$ is even and N^{σ} is $\frac{1}{2}$ -transitive on $\Omega - \{\alpha\}$, $|N^{\sigma}: N^{\sigma}_{\beta}|$ is odd for $\alpha \neq \beta \in \Omega$. Hence N^{σ} is not semiregular on $\Omega - \{\alpha\}$. By Theorem A of [9], N^{σ} is not a T.I. set in G. Hence C^{σ} is semi-regular on $\Omega - \{\alpha\}$.

Set $\Delta = F(N_{\beta}^{\alpha})$. Since $C^{\alpha} \leq G(\Delta)$, $[C^{\alpha}, G_{\Delta}] \leq C^{\alpha} \cap G_{\Delta} = 1$. By Corollary

B1 of [17], $N_{\alpha}^{\beta} \leq G_{\Delta}$ and so $[C^{\alpha}, N_{\alpha}^{\beta}] = 1$. Let $1 \neq x \in C^{\alpha}$ and set $\beta^{x} = \gamma$. Then $N_{\alpha}^{\beta} = x^{-1}N_{\alpha}^{\beta}x = N_{\alpha}^{\gamma}$. Hence $N_{\alpha}^{\beta} \leq N_{\gamma}^{\beta}$. Since $\beta \neq \gamma$ and G is doubly transitive on Ω , $|N_{\alpha}^{\beta}| = |N_{\gamma}^{\beta}|$. Hence $N_{\alpha}^{\beta} = N_{\gamma}^{\beta}$. Similarly we have $N_{\alpha}^{\gamma} = N_{\beta}^{\gamma}$. Hence $N_{\gamma}^{\beta} = N_{\gamma}^{\beta}$ and so $N_{\gamma}^{\gamma} = N_{\gamma}^{\beta} \cap N^{\gamma}$. Since G is doubly transitive on Ω , $N_{\alpha}^{\beta} = N^{\alpha} \cap N^{\beta}$.

Lemma 2.2. Let G be a transitive permutation group on a set Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$|F(M)| = |N_c(M)| \times |ccl_c(M) \cap H|/|H|$$
.

Here $ccl_{G}(M) \cap H = \{g^{-1}Mg \mid g^{-1}Mg \subseteq H, g \in G\}.$

Proof. Set $W = \{(L, \alpha) | L \in ccl_G(M), \alpha \in F(L)\}$ and $W_{\alpha} = \{L | L \in ccl_G(M), F(L) \ni \alpha\}$. By the transitivity of G, $|W_{\alpha}| = |W_{\beta}|$ holds for every α , $\beta \in \Omega$. Counting the number of elements of W in two ways, we obtain $|G: N_G(M)| \times |F(M)| = |G: H| \times |ccl_G(M) \cap H|$. Thus we have Lemma 2.2.

Lemma 2.3. Let $G \simeq PSL(2, q)$, Sz(q) or PSU(3, q) with $q=2^n>2$ and suppose that G is a transitive permutation group on a set Ω of odd degree. Let H be a stabilizer of a point of Ω . Then we have the following:

- (i) H has a unique Sylow 2-subgroup S of G and H=DS for a Hall 2'-subgroup D of H where $D \le Z_{g^2-1}$.
 - (ii) Let L be a subgroup of G such that |L| = |H|. Then $L \in ccl_G(H)$.
 - (iii) S is semi-regular on $\Omega F(S)$ and $|F(S)| = |F(H)| = |N_G(S)| H|$.
- (iv) Set $D = V \times K$ where $V \leq Z_{q+1}$, $K \leq Z_{q-1}$. Then K acts semiregularly on $\Omega F(K)$ and if $K \neq 1$, |F(K)| = 2|F(S)|.

Proof. Since G is generated by its two distinct Sylow 2-subgroups and $1 \neq |G:H|$ is odd, H contains a unique Sylow 2-subgroup S of G where $S = O_2(H)$. By the structure of $N_G(S)$ we have (i) (cf. § 3 of [2]).

To prove (ii) we may assume that $S \le L$. As above $S = O_2(L)$ and $L = D_1 S$ where $D_1 \le Z_{q^2-1}$. Since $N_G(S)/S$ is cyclic and |H| = |L|, we get H = L. Thus (ii) holds.

Let $t \in I(S)$. Applying Lemma 2.2, $|F(t)| = |N_G(t)| \times |ccl_G(t) \cap H|/|H|$ = $(|N_G(t)| \times |ccl_G(t) \cap N_G(S)|/|N_G(S)|) \times (|N_G(S)|/|H|)$. Since $N_G(S)$ is a stabilizer of the usual doubly transitive permutation representation of G, we have $|N_G(t)| \times |ccl_G(t) \cap N_G(S)|/|N_G(S)| = 1$, hence $|F(t)| = |N_G(S): H|$. On the other hand, $|F(S)| = |N_G(S)| \times |ccl_G(S) \cap H|/|H| = |N_G(S): H|$. Therefore S acts semi-regularly on $\Omega - F(S)$. As $N_G(H) = N_G(S)$, similarly we have |F(S)| = |F(H)|. Thus (iii) holds.

Let x be a nontrivial element of K. Then we have $|F(\langle x \rangle)| = |N_G(\langle x \rangle)| \times |ccl_G(\langle x \rangle) \cap H|/|H| = (|N_G(\langle x \rangle)| \times |ccl_G(\langle x \rangle) \cap N_G(S)|/|N_G(S)|)(|N_G(S)|/|H|)$. As before we have $|N_G(\langle x \rangle)| \times |ccl_G(\langle x \rangle) \cap N_G(S)|/|N_G(S)| = 2$. Hence $|F(x)| = 2 \cdot |N_G(S)| \cdot H|$ and this is independent of the choice of $x \in K^{\sharp}$. Thus (iv)

holds.

- **Lemma 2.4.** Let $G \simeq PSL(2, q)$, Sz(q) or PSU(3, q) with $q=2^n>2$ and S be a Sylow 2-subgroup of G, $H=N_G(S)$, t an involution outside H, $D=H\cap H^t$, $V=C_D(t)$ and $K=\{d\in D\mid d^t=d^{-1}\}$. Then the following hold:
 - (i) $N_G(\langle k \rangle) = \langle t \rangle D$ whenever $1 \neq k \in K$.
- (ii) If $G \simeq PSU(3, q)$ and $1 \neq U$ is a subgroup of V, then $N_G(U) = C_G(V) = N \times V$ where N is a subgroup of G isomorphic to PSL(2, q).
- Proof. (i) follows from the structure of PSL(2, q), Sz(q) or PSU(3, q) (§ 3 of [2]).

We now regard PSU(3,q) as a usual doubly transitive permutation group on a set Ω with q^3+1 points. Then V is semi-regular on $\Omega-F(V)$ and $G(F(U))/G_{F(U)}$ is doubly transitive on F(U)=F(V). Clearly $N_G(U)\leq G(F(U))$ and $G_{F(U)}=V$. Hence $N_G(U)\leq N_G(V)$. Since V is cyclic, $N_G(V)\leq N_G(U)$ and so $N_G(U)=N_G(V)$. We now set $M=O^{2'}(N_G(V))$. Then as [Z(S),V]=1 and Z(S) is a Sylow 2-subgroup of $N_G(V)$, M centralizes V. By the Frattini argument $N_G(V)=(N_G(V)\cap N(Z(S))M=N_H(V)M=DZ(S)\cdot M\leq C_G(V)$. Hence $N_G(V)=C_G(V)$. By the direct computation, we obtain (ii).

- **Lemma 2.5.** Let $G \simeq PSL(2, q)$, Sz(q) or PSU(3, q) with $q=2^n>2$ and let S be a Sylow 2-subgroup of G.
 - (i) If T is a maximal subgroup of S, then $N_G(T)=S$.
- (ii) Unless $G \simeq PSU(3, q)$ where $q=2^n$ and n is odd, then by conjugation $N_G(S)$ acts regularly on the set of all maximal subgroups of S.

Proof. Since $N_G(S)$ is strongly embedded in G, $S \leq N_G(T) \leq N_G(S)$ and so $N_G(T) = RS$ where R is a Hall 2'-subgroup of $N_G(T)$. As |S:T| = 2, R centralizes $S/T \simeq Z_2$ and hence there exists an element $t \in C_S(R) - T$. If $G \simeq PSL(2, q)$ or Sz(q), then R=1 (§ 3 of [2]). If $G \simeq PSU(3, q)$ and $R \neq 1$, then by (ii) of Lemma 2.4, $t \in I(S) = \Omega_1(S) \leq T$, a contradiction. Thus (i) holds.

Let Γ be the set of all maximal subgroups of S. Then by conjugation, $N_G(S)$ acts on Γ and $(N_G(S))_T = S$ for $T \in \Gamma$ by (i). Under the assumption of (ii), we can easily verify $|\Gamma| = |N_G(S)|$: |S|. From this (ii) follows at once.

- **Lemma 2.6.** Let $G \simeq PSL(2, q)$, Sz(q) or PSU(3, q) with $q=2^n>2$ and A be the full automorphism gruop of G. Let S be a Sylow 2-subgroup of G. Then $C_A(S)=Z(S)$. Here we identify G with the inner automorphism group of G.
- Proof. Let Ω be the set of all Sylow 2-subgroups of G. Then A acts faithfully on Ω and the action of G on Ω is the same as the usual doubly transitive permutation representation. Hence S is regular on $\Omega \{S\}$ and so $C_A(S)$ is a 2-subgroup of A. If $G \simeq Sz(q)$, A/G is cyclic of odd order and so $C_A(S) \leq G$. Hence $C_A(S) = C_G(S) = Z(S)$. If $G \simeq PSL(2, q)$, S is abelian, so that $C_A(S) = S$

=Z(S). If $G \simeq PSU(3, q)$, there exists a field automorphism such that $\langle f \rangle S$ is a Sylow 2-subgroup of $N_A(S)$. From this $C_A(S) \leq O_2(N_A(S)) \leq \langle f \rangle S$. If $gs \in C_A(S) - S$ where $g \in \langle f \rangle$ and $s \in S$, then g centralizes Z(S) and so g is a field automorphism of order 2 by the structural property of A. Since g centralizes s, s must be contained in Z(S). Therefore g centralizes S, while g is a field automorphism of order 2. This is a contradiction. Thus $C_A(S) = S \cap C_A(S) = Z(S)$.

Lemma 2.7. Let $G \simeq PSU(3, q)$, $q=2^n$ such that n is even. Then $Aut(G) = \langle f \rangle G$ for a field automorphism f of G (see [14]). Let B be a Borel subgroup and let D be a diagonal subgroup of G. Then B=DS and $S=O_2(B)$ for some Sylow 2-subgroup S of G. Set $D=V\times K$ with $V\simeq Z_{q+1}$, $K\simeq Z_{q-1}$. Then $C_A(Z(S))=\langle \tau \rangle VS$ where $A=\langle f \rangle G$ and $\{\tau\}=I(\langle f \rangle)$.

Proof. By the structural properties of A, [V,Z(S)]=1 and $C_{\langle f \rangle}(Z(S))=\langle \tau \rangle$. Since $N_A(Z(S)) \triangleright O_2(N_G(Z(S)))=S$, $N_A(Z(S))=\langle f \rangle N_G(S)$. Hence $C_A(Z(S))=C(Z(S))\cap \langle f \rangle DS=C_{\langle f \rangle K}(Z(S))VS$. Let $gk\in C_{\langle f \rangle K}(Z(S))$ with $g\in \langle f \rangle$, $k\in K$. Since g is a field automorphism of G, it centralizes a nontrivial element s in Z(S). Then k centralizes s and so k=1, for otherwise $s\in C_G(k)=VK$, a contradiction. So $C_{\langle f \rangle K}(Z(S))=C_{\langle f \rangle}(Z(S))=\langle \tau \rangle$. Thus $C_A(Z(S))=\langle \tau \rangle VS$.

3. The case $|\Omega|$ is even

Let G be a doubly transitive permutation group on a finite set Ω of even degree satisfying the assumption of our theorem. Let $\alpha \in \Omega$ and $\{\alpha\}$, $\Delta_1, \dots, \Delta_r$ be the set of all N^{σ} -orbits on Ω . Since N^{σ} is normal in G_{σ} , $|\Delta_i| = |\Delta_j|$ for $1 \le i, j \le r$. Hence $|\Omega| = 1 + |\Delta_i| r$ and so both $|\Delta_i|$ and r are odd. From this, N^{σ}_{β} contains a unique Sylow 2-subgroup of N^{σ} for $\beta \neq \alpha$ by (i) of Lemma 2.3. Set $S = O_2(N^{\sigma}_{\beta})$.

- (3.1) The following hold.
- (i) For each Δ_i with $1 \le i \le r$, there exists $\beta_i \in \Delta_i$ such that $N_{\beta}^{\alpha} = N_{\beta_i}^{\alpha}$.
- (ii) $F(S) = F(N_{\beta}^{\alpha})$, $|F(S)| = |N_{N}^{\alpha}(S): N_{\beta}^{\alpha}| \times r + 1$ and S is semi-regular on $\Omega F(S)$.
 - (iii) Set $C^{\alpha} = C_{\alpha}(N^{\alpha})$. Then $C^{\alpha} = O(G_{\alpha})$ and is semi-regular on $\Omega \{\alpha\}$.

Proof. Let $\gamma \in \Delta_i$. Since $|N_{\beta}^{\alpha}| = |N_{\gamma}^{\alpha}|$, by (ii) of Lemma 2.3, $N_{\beta}^{\alpha} = (N_{\gamma}^{\alpha})^x$ for some $x \in N^{\alpha}$. Put $\gamma^x = \beta_i$. Then $\beta_i \in \Delta_i$ and $N_{\beta}^{\alpha} = N_{\beta_i}^{\alpha}$. Thus (i) holds.

Hence by (iii) of Lemma 2.3, for each Δ_i with $1 \le i \le r$, $F(S) \cap \Delta_i = F(N_{\beta}^{\omega}) \cap \Delta_i$, $|F(S) \cap \Delta_i| = |N_N^{\omega}(S)$: $N_{\beta}^{\omega}|$ and S is semi-regular on $\Delta_i - (\Delta_i \cap F(S))$. Thus (ii) holds.

Since $[O(G_{\alpha}), N^{\alpha}] \leq O(G_{\alpha}) \cap N^{\alpha}$ and N^{α} is a non abelian simple group, $[O(G_{\alpha}), N^{\alpha}] = 1$ and so $O(G_{\alpha}) \leq C^{\alpha}$. By Lemma 2.1, C^{α} is semi-regular on

 $\Omega - \{\alpha\}$. Since $G_{\alpha} \triangleright C^{\alpha}$, C^{α} is $\frac{1}{2}$ -transitive on $\Omega - \{\alpha\}$. Hence $|C^{\alpha}| \mid |\Omega| - 1$. From this C^{α} is of odd order and hence $C^{\alpha} \le O(G_{\alpha})$. Thus $C^{\alpha} = O(G_{\alpha})$.

As a Chevalley group, N^{ω} has a Borel subgroup $N_{N^{\omega}}(S)$. Let D be a diagonal subgroup of $N_{N^{\omega}}(S)$. Then $N_{N^{\omega}}(S) = DS$. We now denote G_{ω}/C^{ω} by \overline{G}_{ω} . By the properties of PSL(2,q), Sz(q) or PSU(3,q) ([14]), there exists a field automorphism \overline{f} such that $\langle \overline{f} \rangle \overline{N}^{\omega}/\overline{N}^{\omega}$ is a Sylow 2-subgroup of $\overline{G}_{\omega}/\overline{N}^{\omega}$. Since $C^{\omega} = O(G_{\omega})$, we may assume f is a 2-element in G_{ω} . Since $DC^{\omega} \cap N^{\omega} = D$ and $SC^{\omega} \cap N^{\omega} = S$, D and S are f-invariant. Clearly $\langle f \rangle S$ is a Sylow 2-subgroup of G_{ω} . Since $\langle \overline{f} \rangle \cap \overline{N}^{\omega} = 1$, $\langle f \rangle \cap S \leq C^{\omega}$ and so $\langle f \rangle \cap S = 1$. Thus we have the following.

- (3.1)' There exists a 2-element f in G_{α} satisfying the following.
- (i) f acts on N^{ω} as a field automorphism of N^{ω} .
- (ii) D and S are f-invariant and $\langle f \rangle \cap S = 1$.
- (iii) $\langle f \rangle S$ is a Sylow 2-subgroup of G_{α} .
- (3.2) $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta}$ is cyclic of odd order.

Proof. By Lemma 2.1 and (iii) of (3.1), we may assume that $C^{\mathfrak{a}}=1$. First we claim that $|S:S\cap N^{\beta}|=1$ or 2. Since $S/S\cap N^{\beta}\simeq SN^{\beta}/N^{\beta}$ is isomorphic to a 2-subgroup of the outer automorphism group of N^{β} , $S/S\cap N^{\beta}$ is cyclic. But S/S' is an elementary abelian 2-group and so $S/S\cap N^{\beta}\simeq 1$ or Z_2 and hence $|S:S\cap N^{\beta}|=1$ or 2.

To prove (3.2), it suffices to show that $|S:S\cap N^{\beta}| \neq 2$. Assume that $|S:S\cap N^{\beta}| = 2$. Then as S and $S\cap N^{\beta}$ are normal subgroups of N^{α}_{β} . Then it follows from (i) of Lemma 2.5 that $N^{\alpha}_{\beta} = S$ and $|N^{\alpha}_{\beta}:N^{\alpha}\cap N^{\beta}| = 2$. Since a Sylow 2-subgroup of $G_{\alpha\beta}/N^{\alpha}$ is cyclic and $G_{\alpha\beta}/N^{\alpha}_{\beta} \simeq G_{\alpha\beta}N^{\alpha}/N^{\alpha}$, a Sylow 2-subgroup of $G_{\alpha\beta}/N^{\alpha}_{\beta}$ is cyclic. As $N^{\alpha}_{\beta}N^{\beta}_{\alpha}/N^{\alpha}_{\beta}$ is a normal subgroup of $G_{\alpha\beta}/N^{\alpha}_{\beta}$ of order 2, $I(G_{\alpha\beta}) \subseteq N^{\alpha}_{\beta}N^{\alpha}_{\alpha}$. Let f be as defined in (3.1)'. Then $f \neq 1$ as $N^{\alpha}_{\beta}N^{\alpha}_{\beta}$ $\leq N^{\alpha}$. Let $\tau \in I(\langle f \rangle)$. Since $\tau \in N_{G_{\alpha}}(S)$, $S=N^{\alpha}_{\beta}$ and $|F(S)-\{\alpha\}|$ is odd, there exists γ such that $\gamma \in F(\tau) \cap F(N^{\alpha}_{\beta})$ and $\gamma \neq \alpha$. Clearly $N^{\alpha}_{\beta} \leq N^{\alpha}_{\gamma}$, so that $N^{\alpha}_{\beta} = N^{\alpha}_{\gamma}$. Therefore we may assume $F(\tau) \supseteq \beta$ and $\tau \in G_{\alpha\beta}$. By Corollary B1 of [17] $F(N^{\alpha}_{\beta}) = F(N^{\alpha}_{\alpha})$. From this $F(\tau) \supseteq F(N^{\alpha}_{\beta}N^{\beta}_{\alpha}) = F(N^{\alpha}_{\beta})$ because $\tau \in I(G_{\alpha\beta}) \subseteq N^{\alpha}_{\beta}N^{\beta}_{\alpha}$. So $\langle \tau \rangle N^{\alpha}_{\beta} \leq (\langle \tau \rangle N^{\alpha} \cap N(N^{\alpha}_{\beta}))_{F(N^{\alpha}_{\beta})}$. Let D be as defined in (3.1)'. Then $D \leq N_{N^{\alpha}}(N^{\alpha}_{\beta})$ and D is τ -invariant. Hence $[D, \tau] \leq (\langle \tau \rangle N^{\alpha} \cap N(N^{\alpha}_{\beta}))_{F(N^{\alpha}_{\beta})} \cap D=1$. Therefore τ centralizes D. Since τ is a field automorphism of N^{α} of order 2 and D is a diagonal subgroup of N^{α} , this is a contradiction.

- (3.3) The following hold.
- (i) $N^{\alpha} \cap N^{\beta} = N^{\gamma} \cap N^{\delta}$ for, γ , $\delta \in F(N^{\alpha} \cap N^{\beta})$ with $\gamma \neq \delta$.
- (ii) $G(F(S))=N_G(N^{\alpha}\cap N^{\beta}).$
- (iii) Let M be a subgroup of $N^{\alpha} \cap N^{\beta}$ which contains S. Then F(M)=

- F(S) and $N_G(M)$ is doubly transitive on F(S).
 - (iv) $C_{Ga}(S) = Z(S) \times C^{a}$.
- (v) Let M be as defined in (iii) and suppose $C^{\bullet} \neq 1$. Then $O_2(C_G(M))^{F(S)}$ is a regular normal elementary abelian 2-subgroup of $N_G(M)^{F(S)}$.

Proof. Let $\gamma, \delta \in F(N^{\omega} \cap N^{\beta})$ with $\gamma \neq \delta$. We may assume $\alpha \neq \gamma$. Since G is doubly transitive on Ω , $|N^{\omega} \cap N^{\beta}| = |N^{\omega} \cap N^{\gamma}|$. By the choice of $\gamma, N^{\omega} \cap N^{\beta} \leq N^{\omega}_{\gamma}$ and $N_{N^{\omega}}(S)/S$ is cyclic. Hence $N^{\omega} \cap N^{\beta} = N^{\omega} \cap N^{\gamma}$. Similarly $N^{\gamma} \cap N^{\omega} = N^{\gamma} \cap N^{\delta}$. Thus (i) holds.

Since $N_G(N^{\mathfrak{a}} \cap N^{\mathfrak{b}}) \leq N_G(S)$, $N_G(N^{\mathfrak{a}} \cap N^{\mathfrak{b}}) \leq G(F(S))$. Let $x \in G(F(S))$. Then α^x , $\beta^x \in F(S)$ and $F(S) = F(N^{\mathfrak{a}}_{\mathfrak{b}})$ by (ii) of (3.1). Hence α^x , $\beta^x \in F(N^{\mathfrak{a}} \cap N^{\mathfrak{b}})$. Therefore by (i) $N^{\mathfrak{a}^x} \cap N^{\mathfrak{b}^x} = N^{\mathfrak{a}} \cap N^{\mathfrak{b}}$ and so $x \in N_G(N^{\mathfrak{a}} \cap N^{\mathfrak{b}})$. Thus (ii) holds.

Suppose $S \leq M \leq N^{\alpha} \cap N^{\beta}$. If $M^{g} \leq G_{\alpha\beta}$ for some $g \in G_{\alpha}$. Then $M^{g} \leq N^{\alpha} \cap G_{\alpha\beta} = N^{\alpha}_{\beta}$. Hence $M^{g} = M$ because $S \leq M$ and N^{α}_{β}/S is cyclic of odd order. By the Witt's Theorem $N_{G\alpha}(M)$ is transitive on $F(M) - \{\alpha\}$. Similarly $N_{G\beta}(M)$ is transitive on $F(M) - \{\beta\}$. We may assume |F(M)| > 2. Hence $N_{G}(M)$ is doubly transitive on F(M). By (ii) of (3.1), F(M) = F(S). Thus (iii) holds.

We denote G_{α}/C^{α} by \bar{G}_{α} . Clearly $C_{\bar{G}_{\alpha}}(\bar{N}^{\alpha})=\bar{1}$. Applying Lemma 2.6, $C_{\bar{G}_{\alpha}}(\bar{S})=Z(\bar{S})$, hence $C_{G_{\alpha}}(S)\leq Z(S)\times C^{\alpha}$. The converse implication is obvious. Thus (iv) holds.

Suppose $C^{\sigma} \neq 1$. Then since C^{σ} is semi-regular on $\Omega - \{\alpha\}$, $C_G(M)^{F(S)} \geq (C^{\sigma})^{F(S)} \neq 1$. As $N_G(M)^{F(S)}$ is doubly transitive by (iii), $C_G(M)^{F(S)}$ is transitive. By (iv), $(C^{\sigma})^{F(S)} \leq C_{G\sigma}(M)^{F(S)} \leq (Z(S) \times C^{\sigma})^{F(S)}$ and so $C_{G\sigma}(M)^{F(S)} = (C^{\sigma})^{F(S)}$. Hence $C_G(M)^{F(S)}$ is a Frobenius group and so $O_2(C_G(M)^{F(S)}) \neq 1$ because |F(S)| is even. Since $C_G(M)_{F(S)} \leq (Z(S) \times C^{\sigma})_{F(S)} = Z(S)$, $O_2(C_F(M)^{F(S)}) = O_2(C_G(M))^{F(S)}$ and this is regular on F(S). As $N_G(M)^{F(S)} \triangleright O_2(C_G(M))^{F(S)}$, $O_2(C_G(M))^{F(S)}$ must be a regular normal elementary abelian 2-subgroup of $N_G(M)^{F(S)}$. Thus (v) holds.

- (3.4) There exists an involution t such that $ccl_G(t) \cap S \neq \phi$, $\alpha^t = \beta$ and $F(t) \cap F(S) = \phi$. Set $\mu = |N_{N^{\alpha}}(S): N^{\alpha}_{\beta}|$ and $|S| = q^t$. Then we have
 - (i) $|\Omega| = (q^i + 1)\mu r + 1$.
- (ii) $|C_s(t)| \ge \sqrt{q}$, $\sqrt{2q}$ or q according as $N^a \simeq PSL(2, q)$, Sz(q) or PSU(3, q), respectively. Furthermore $|C_s(t)| |F(S)| = \mu r + 1$.
 - (iii) If $\mu=1$, then $|\Omega|=6$ and $G \simeq A_6$ or S_6 .
 - (iv) $|\Omega|_2 = |F(S)|_2 \cdot |G: N_G(S)|_2$.

Proof. Since $|\Delta_i| = |N^{\alpha}: N^{\alpha}_{\beta}| = |N^{\alpha}: N_{N^{\alpha}}(S)| \times |N_{N^{\alpha}}(S): N^{\alpha}_{\beta}| = (q^i + 1)\mu$ and $|\Omega| = |\Delta_i|r + 1$. Hence (i) holds.

Since G is doubly transitive on Ω , there exists an involution t such that $ccl_G(t) \cap S \neq \phi$ and $\alpha^t = \beta$. Then t normalizes $O_2(N^{\omega} \cap N^{\beta}) = S$. Claim $F(t) \cap F(S) = \phi$. Suppose not and let $\gamma \in F(t) \cap F(S)$. As $S \leq N^{\omega}_{\gamma}$, $S \leq N^{\omega} \cap N^{\gamma}$ by (i) of (3.3). Let g be such that $t^g \in S$. Then $t \in N^{\delta} \cap G_{\gamma} = N^{\delta}_{\gamma}$ where $\delta = \alpha^{g^{-1}}$ and

hence $t \in N^{\gamma}$. Since t normalizes S and $\langle t \rangle S \leq N^{\gamma}$, t must be contained in S, a contradiction. Hence $F(t) \cap F(S) = \phi$. From this $C_S(t)$ acts semi-regularly on F(t) and so |F(t)| is divisibly by $|C_S(t)|$. Since $t^g \in S$, $|F(t)| = |F(t^g)| = |F(S)|$, hence $|C_S(t)| |F(S)|$.

If $N^{\omega} \simeq PSL(2, q)$, then $|\Omega_1(S/S')| = |S| = q$ and by Lemma 1 of [7], $|C_S(t)| \ge \sqrt{q}$. If $N^{\omega} \simeq Sz(q)$, then $|\Omega_1(S/S')| = q$. Since q is an odd power of 2 in this case, similarly $|C_S(t)| \ge \sqrt{2q}$. If $N^{\omega} \simeq PSU(3, q)$, then $|\Omega_1(S/S')| = q^2$ and so similarly $|C_S(t)| \ge q$. Thus we have (ii).

Suppose $\mu=1$. Then N^{σ} is doubly transitive on each N^{σ} -orbit $\pm \{\alpha\}$. Applying Theorem D of [10], r=1. Therefore, $|F(S)| = \mu r + 1 = 2$ and so by (i) and (ii), q=4, $N^{\sigma} \approx PSL(2, 4)$ and $|\Omega|=6$. Thus (iii) holds.

Since $|\Omega| = |G:N_G(S)| \times |N_G(S):N_{G_{\alpha}}(S)|/|G_{\alpha}:N_{G_{\alpha}}(S)|$ and $|G_{\alpha}:N_{G_{\alpha}}(S)|$ is odd, (iv) holds.

(3.5) Let π be the set of primes which divides q-1 and K a Hall π -subgroup of $N^{\alpha} \cap N^{\beta}$. If $K \neq 1$, then $C^{\alpha} = 1$.

Proof. Suppose $K \neq 1$ and $C^{\bullet} \neq 1$. Set $\Gamma_i = \Delta_i \cap F(S)$ and $\Lambda_i = \Delta_i \cap F(K)$. Then by (i) of (3.1) and Lemma 2.3, for each i with $1 \le i \le r$ $|\Lambda_i| = 2|\Gamma_i| =$ $2|N_N\alpha(S):N_{\beta_i}^\alpha|=2|N_N\alpha(S):N_{\beta}^\alpha|$ and K is semi-regular on $\Delta_i-\Lambda_i$. By (v) of (3.3), $O_2(C_G(KS))^{F(S)}$ is a regular normal elementary abelian 2-subgroup of $N_G(KS)^{F(S)}$. Set $E=O_2(C_G(KS))$. It follows from (iv) of (3.3) that $E_{F(S)} \leq (Z(S) \times C^{\omega})_{F(S)}$. Since F(Z(S)) = F(S) by (ii) of (3.1) and $(C^{\omega})_{F(S)} = 1$ by (iii) of (3.1), $(Z(S) \times C^{\bullet})_{F(S)} = Z(S)$. On the other hand $Z(S) \cap C(K) = 1$ (cf. § 3) of [2]) and so $E_{F(S)}=1$. Hence $E \simeq E^{F(S)}$. Since E is regular on F(S), |F(S)| $=|E^{F(S)}|$ and so we have |F(S)|=|E|. Since KS is a subgroup of N_{β}^{α} which contains S, by (ii) of (3.1) we have F(S)=F(KS). From this F(S) is a subset of F(K). Hence $|F(K)-F(S)|=|F(K)-\{\alpha\}|-|F(S)-\{\alpha\}|=\sum\limits_{i=1}^r|\Lambda_i|-\sum\limits_{i=1}^r|\Gamma_i|=r\times|N_N\alpha(S)\colon N_\beta^\alpha|$. Since r is odd, |F(K)-F(S)| is odd. On the other hand E fixes F(K)-F(S) setwise because E centralizes S and K. fore E fixes an element $\gamma \in F(K) - F(S)$ as E is a 2-subgroup of G. Since $N_{\gamma}^{\alpha}/O_2(N_{\gamma}^{\alpha})$ is cyclic of odd order, $K \leq N_{\gamma}^{\alpha}$ and $|K \cdot O_2(N_{\gamma}^{\alpha})| |N^{\alpha} \cap N^{\gamma}|$, we have $K \cdot O_2(N_{\gamma}^{\alpha}) \leq N^{\alpha} \cap N^{\gamma}$. Hence $K \leq N^{\gamma}$ and so $|C_{N^{\gamma}}(K)|$ is odd by (i) of Lemma 2.4. Since $C_{G_{\gamma}}(K)/C_N^{\gamma}(K)C^{\gamma} \simeq C_{G_{\gamma}}(K)N^{\gamma}C^{\gamma}/N^{\gamma}C^{\gamma}$, a Sylow 2-subgroup of $C_{G_n}(K)$ is cyclic. But $E \le C_{G_n}(K)$ and hence $|E| = |F(S)| = 2 = \mu r + 1$. From this $\mu=r=1$. By (iii) of (3.4) $C^{\infty}=1$, which is contrary to the assumption $C^{\alpha} \neq 1$. So (3.5) holds.

(3.6) Suppose $K \neq 1$ and let S_1 be a subgroup of S. If $S_1^g \leq N_G(S)$ and $S_1^g \leq S$ for some $g \in G$, then $S_1 \leq Z_2 \times Z_4$ and $|S_1| |2|G_{\alpha}/N^{\alpha}|$.

Proof. Set $S_1^{\ell} = T$. By (ii) of (3.1), T is semi-regular on $\Omega - F(T)$. Claim

 $F(T)\cap F(S)=\phi$. Suppose not and let $\gamma\in F(T)\cap F(S)$. Then $T\leq N_{\gamma}^{ab}$ and $S\leq N_{\gamma}^{a}$. By (3.2) $T\leq N^{ab}\cap N^{\gamma}$ and $S\leq N^{ab}\cap N^{\gamma}$ and so $TS\leq N^{\gamma}$. Since S is a Sylow 2-subgroup of N^{γ} , TS=S. Hence $T\leq S$, a contradiction. Thus $F(T)\cap F(S)=\phi$. From this T acts semi-regularly on F(S). By (ii) of (3.3), T normalizes $N^{ab}\cap N^{\beta}$ and so $T\leq N_G(S)\cap N_G(KS)$. By the Frattini argument $KST=N_{KST}(K)\cdot KS=N_{ST}(K)\cdot KS$, so that $N_{ST}(K)^{F(S)}=T^{F(S)}$ as F(S)=F(KS). For an arbitrary $\gamma\in F(S)$, $N_{ST}(K)_{\gamma}=N_S(K)=C_S(K)=1$, whence $N_{ST}(K)\simeq N_{ST}(K)^{F(S)}$. Hence $T\simeq N_{ST}(K)$. Now $N_{ST}(K)$ acts on F(K)-F(S) and |F(K)-F(S)| is odd. Hence $N_{ST}(K)$ fixes some $\delta\in F(K)-F(S)$. Since $K\leq N_{\delta}^{a}$ and $|K\cdot O_2(N_{\delta}^{a})|\,|\,|N^{a}\cap N^{\delta}|$, we have $K\leq N^{a}\cap N^{\delta}$ as in the proof of (3.5). By (i) of Lemma 2.4, $N_N^{\delta}(K)=D(u)>D$ where u is an involution and D is a cyclic subgroup of N^{δ} of odd order. Since $N_{G\delta}(K)/N_N^{\delta}(K)\simeq N_{G\delta}(K)N^{\delta}/N^{\delta}$ and a Sylow 2-subgroup of $S_{\delta}^{\delta}(N)$ is cyclic, a Sylow 2-subgroup of $S_{\delta}^{\delta}(N)$ is isomorphic to a subgroup of $S_{\delta}^{\delta}(N)$ is cyclic, a Sylow 2-subgroup of $S_{\delta}^{\delta}(N)$ is of exponent at most 4, (3.6) follows immediately.

- (3.7) One of the following holds.
- (i) $|\Omega| = 6$ and $G \simeq A_6$ or S_6 .
- (ii) $N^{\alpha} \cap N^{\beta}$ is a π' -group.

Proof. Let K be a Hall π -subgroup of $N^{\omega} \cap N^{\beta}$ and suppose $G \not= A_6$, S_6 and $K \neq 1$. Let t be an involution as in (3.4) and Q a Sylow 2-subgroup of G containing $\langle t \rangle S$. Then $Q \triangleright S$. For otherwise, let $x \in N_Q(N_Q(S)) - N_Q(S)$, then $S^x \neq S$ and S^x normalizes S. Applying (3.6) to S^x , $S \simeq Z_2 \times Z_2$ and $N^{\omega} \simeq PSL(2, 4)$. But since $K \neq 1$, $|N^{\omega} \cap N^{\beta}| = 12$ and hence $\mu = 1$. It follows from (iii) of (3.4) that $G \simeq A_6$ or S_6 , which is contrary to the assumption.

Since $Q \triangleright S$ and all involutions in S are conjugate in G, t is conjugate to s for an involution $s \in Z(Q) \cap S$. As s is an extremal element in Q, there is an element $g \in G$ such that $t^g = s$ and $(C_Q(t))^g \leq Q$. Set $T = (C_s(t))^g$. If $T \leq S$, as S is semi-regular on $\Omega - F(S)$, $F(S)^g = F(S)$. Hence $F(t) = F(s)^{g^{-1}} = F(S)$, contrary to the choice of t. Therefore $T \leq S$. Applying (3.6) again, $C_s(t) \leq Z_2 \times Z_4$, $|C_s(t)| |2 \cdot |G_a/N^a|$.

If $N^{\sigma} \simeq PSL(2, q)$, by (ii) of (3.4), $\sqrt{q} \leq |C_s(t)| |2 \cdot |G_{\sigma}/N^{\sigma}|$ and so $q=2^2$ or 2^4 . As before, $q \neq 2^2$, hence $q=2^4$, $N^{\sigma} \simeq PSL(2, 2^4)$. Then r=1 because the outer automorphism group of $PSL(2, 2^4)$ is cyclic of order 4. Since $\mu \neq 1$ and $K \neq 1$, $(\mu, |K|, |F(K)|, |\Omega|)$ is (3, 5, 7, 52) or (5, 3, 11, 86) by (iv) of Lemma 2.3 and (i) of (3.4). By the Witt's Theorem, $N_G(K)$ is doubly transitive on F(K). Hence |G| is divisible by |F(K)|. Since $C^{\sigma}=1$ by (3.5), we have $|G| ||\Omega| \cdot |\operatorname{Aut}(PSL(2, 2^4))|$. Hence we can verify $|F(K)| \not ||G|$ in both cases. This is a contradiction.

If $N^{\alpha} \simeq Sz(q)$, similarly we obtain $\sqrt{2q} < |C_s(t)| |2|G_{\alpha}/N^{\alpha}|$. But in this case since the outer automorphism group of N^{α} is cyclic of odd order, $|G_{\alpha}/N^{\alpha}|$

is odd and so $\sqrt{2q} \le 2$. Hence $q \le 2$, a contracdiction.

If $N^{\sigma} \simeq PSU(3, q)$, similarly $q \leq |C_s(t)| |2|G_{\sigma}/N^{\sigma}|$. Hence $q=2^2$, $N^{\sigma} \simeq PSU(3, 2^2)$. As in the first case, r=1 and $(\mu, |K|, |F(K)|, |\Omega|) = (5, 3, 11, 326)$ and so $11 = |F(K)| |\Omega| \cdot |Aut(PSU(3, 2^2))|$, a contradiction.

In (3.8)–(3.11), we shall prove that $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$. First we note the following.

(3.8) If
$$C^{\omega} \neq 1$$
, $N_{\beta}^{\alpha} = N^{\omega} \cap N^{\beta}$.

Then $\mu = p$.

Proof. Since N^{α} is a nonabelian simple group, (3.8) follows immediately form Lemma 2.1.

(3.9) Let p be a prime with $p \mid |N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}|$ and assume the following: (*) $p \pm 3$ if $N^{\alpha} \simeq PSU/(3, 2^{n})$ and n is odd.

Proof. It follows from (3.8) that $C^{\sigma}=1$. Hence G_{σ}/N^{σ} is isomorphic to a subgroup of the outer automorphism group of N^{σ} and so under the hypothesis (*), a Sylow p-subgroup of G_{σ}/N^{σ} is normal and cyclic ([14]). Set $=N_{G}(S)_{F(S)}$. Since $W/N^{\sigma}_{\beta} \leq G_{\sigma\beta}/N^{\sigma}_{\beta} \simeq G_{\sigma\beta}N^{\sigma}/N^{\sigma}$, a Sylow p-subgroup of W/N^{σ}_{β} is normal and cyclic. Hence all elements in W of order p is contained in $N^{\sigma}_{\beta}N^{\sigma}_{\beta}$ because $|N^{\sigma}_{\alpha}N^{\sigma}_{\beta}/N^{\sigma}_{\beta}| = |N^{\sigma}_{\alpha}:N^{\sigma}\cap N^{\sigma}| = |N^{\sigma}_{\beta}:N^{\sigma}\cap N^{\beta}|$ and $p \mid |N^{\sigma}_{\beta}:N^{\sigma}\cap N^{\beta}|$. Let P be a Sylow p-subgroup of W. Then $\Omega_{1}(P) \leq N^{\sigma}_{\beta}N^{\sigma}_{\alpha}$. Set $Q = \Omega_{1}(P)$. Since $N^{\sigma}_{\beta}N^{\sigma}_{\alpha}/N^{\sigma}_{\beta} \simeq N^{\sigma}_{\alpha}/N^{\sigma}_{\beta} \simeq N^{\sigma}_{\alpha}/N^{\sigma}_{\beta} \simeq N^{\sigma}_{\beta}/N^{\sigma}_{\alpha} \simeq N^$

By the Frattini argument, $N_G(S) = (N_G(S) \cap N(P))W$. Let M be a normal subgroup of $N_G(S) \cap N(P)$ such that $M^{F(S)}$ is a minimal normal subgroup of $N_G(S)^{F(S)}$. We choose M so that its order is minimal. Since $N_G(S)^{F(S)}$ is doubly transitive, $M^{F(S)}$ is an elementary abelian 2-subgroup or a direct product of isomorphic non abelian simple groups. As Q' is cyclic, $M/C_M(Q')$ is abelian and its Sylow 2-subgroup is cyclic. Hence by the minimality of M, $M=C_M(Q')$.

Set $\bar{Q} = Q/Q'$. We argue that $C_M(\bar{Q}) \leq W$. To prove this, it suffices to show that $M \neq C_M(\bar{Q})$. If $M = C_M(\bar{Q})$, M stabilizes the normal series $Q \triangleright Q' \triangleright 1$ and hence $O^p(M)$ centralizes P by Theorem 5.3.2 and Theorem 5.3.1 of [6]. Obviously $O^p(M) \nleq W$ and so $O^p(M) = M$ by the minimality of M. Therefore M centralizes P. Let X be an element of M such that $\alpha^x = \beta$, then $P \cap N^\alpha_\beta \leq N^\alpha \cap N^{\alpha^x} = N^\alpha \cap N^\beta$. But since $P \cap N^\alpha_\beta$ is a Sylow p-subgroup of N^α_β , $p \not |N^\alpha_\beta : N^\alpha \cap N^\beta|$, a contradiction.

Set $C=C_M(\Omega_1(\bar{Q}))$. Then $M/C \leq GL(2, p)$ because the *p*-rank of \bar{Q} is at most 2. By the minimality of M, $M/C \leq SL(2, p)$. On the other hand $O^p(C) \leq C_M(\bar{Q}) \leq W$. Therefore $C^{F(S)}$ is a normal *p*-subgroup of $N_G(S)^{F(S)}$. Since

 $p \neq 2$, $C^{F(S)} = 1$ and so $C \leq W$. Hence $M^{F(S)}$ is isomorphic to a homomorphic image of a subgroup of SL(2, p).

Hence if $M^{F(S)}$ is an elementary abelian 2-group, we have $M^{F(S)} \simeq Z_2 \times Z_2$ and |F(S)| = 4. From (ii) and (iii) of (3.4), $\mu = 3$ and r = 1. By (ii) of (3.4), $N^{\alpha} \simeq PSL(2, 4)$, PSL(2, 16) or PSU(3, 4) and hence $|G_{\alpha}: N^{\alpha}| = 1$, 2 or 4, which is contrary to $p \mid N^{\alpha}_{\alpha}: N^{\beta} \cap N^{\alpha} \mid = |N^{\alpha}_{\alpha}N^{\alpha}/N^{\alpha}|$.

If $M^{F(S)}$ is a direct product of isomorphic non abelian simple groups by Dickson's Theorem (Hauptsatz 8.27 [8]) $M^{F(S)} \simeq PSL(2,p)$ with p>5 or A_5 . Claim $M^{F(S)} \not\simeq A_5$. Suppose $M^{F(S)} \simeq A_5$, then $N_G(S)^{F(S)} \simeq A_5$ or S_5 and so |F(S)|=6, $\mu=5$ and r=1. By (ii) of (3.4), we obtain $q=2^2$ and $N^{\sigma} \simeq PSL(2,4)$. Hence $5 \not\upharpoonright |N_N^{\sigma}(S): N_{\beta}^{\sigma}| = \mu = 5$, a contradiction. Thus $M^{F(S)} \simeq PSL(2,p)$ with p>5. Hence $|N_G(S)^{F(S)}: M^{F(S)}|=1$ or 2. From this as |F(S)| is even, $M^{F(S)}$ is also doubly transitive. Again by Dickson's Theorem, we know all maximal subgroups of PSL(2,p) with p>5 and hence PSL(2,p) with p>5 has a unique doubly transitive permutation representation of even degree, which is the known one. From this |F(S)| = p+1. Since $|F(S)| = \mu r + 1 = \mu + 1$, we obtain $\mu=p$.

(3.10) If $N^{\alpha} \simeq PSU(3, q)$ and n is odd, then $3 \nmid |N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}|$.

Proof. By (3.8), we may assume $C^{\alpha}=1$. Set $W=N_G(S)_{F(S)}$ and let P be a Sylow 3-subgroup of W. As $G_{\alpha\beta}/N_{\beta}^{\alpha} \simeq G_{\alpha\beta}N^{\alpha}/N^{\alpha} \leq G_{\alpha}/N^{\alpha}$, a Sylow 3-subgroup of W/N_{β}^{α} is an abelian 3-group of rank at most 2, so that $P' \leq N_{\beta}^{\alpha}$ and similarly $P' \leq N_{\alpha}^{\beta}$. Hence $P' \leq N^{\alpha} \cap N^{\beta}$ and P' is cyclic.

Similarly as in the proof of (3.9) we can choose a normal subgroup M of $N_G(S) \cap N(P)$. Denote P/P' by \bar{P} . Then $\Omega_1(\bar{P})$ is an elementary abelian 3-subgroup of rank at most 3. Then as in the proof of (3.9), M centralizes P' and $C_M(\Omega_1(\bar{P}))$ is contained in W. Hence $M/C \leq SL(3, 3)$ where $C = C_M(\Omega^1(\bar{P}))$.

If $M^{F(S)}$ is an elementary abelian 2-group, by the structure of SL(3, 3), $M^{F(S)} \simeq Z_2 \times Z_2$ and so |F(S)| = 4, $\mu = 3$ and r = 1. Let $p_1 \in \pi$. Since n is odd, $3 \notin \pi$. Therefore $p_1 \neq 3$. By (3.7), $p_1 \not \mid |N^{\alpha} \cap N^{\beta}|$. Hence $p_1 \mid |N^{\alpha}_{\beta}: N^{\alpha} \cap N^{\beta}|$ and applying (3.9) to p_1 , we have $\mu = p_1 = 3$, a contradiction.

If $M^{F(S)}$ is a direct product of isomorphic non abelian simple groups, we have $M^{F(S)} \simeq SL(3,3)$ because every proper subgroup of SL(3,3) is solvable. Hence $|N_G(S)^{F(S)}: M^{F(S)}| = 1$ or 2 and so $M^{F(S)}$ is also doubly transitive. By (ii) of (3.1), $N_N^{\omega}(S)_{F(S)} = N_{\beta}^{\omega}$. Therefore, $N_N^{\omega}(S)^{F(S)}$ is cyclic of order μ . Since $|SL(3,3)| = 2^4 3^3 13$, $\mu = 3$ or 13. If $\mu = 3$, applying (3.7) and (3.9), π is empty, a contradiction. If $\mu = 13$, then $(M_{\omega})^{F(S)} \triangleright N_N^{\omega}(S)^{F(S)} \simeq Z_{13}$. Hence $(M_{\omega})^{F(S)}$ is isomorphic to the normalizer of a Sylow 13-subgroup in SL(3,3), while this permutation representation of SL(3,3) is not doubly transitive. Thus (3.10) is proved.

 $(3.11) \quad N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}.$

Proof. Suppose not and let p be a prime with $p \mid |N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}|$. Then it follows from (3.7), (3.9) and (3.10) that $q-1=p^{e}$ for some integer $e \geq 2$. If e is even, $p^{e} \equiv 1 \pmod{4}$, while $q-1 \equiv -1 \pmod{4}$, a contradiction. If e is odd, $2^{n} = q = c(p+1)$ where $c = p^{e-1} - p^{e-2} + \cdots - p + 1$. We note that $e \geq 3$. Since e is odd, e = 1, a contradiction. Thus $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$.

- (3.12) Suppose $N^{\alpha} \simeq PSL(2, q)$ or Sz(q) and $G \not\simeq A_6$, S_6 . Then
- (i) $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ is a Sylow 2-subgroup of N^{α} .
- (ii) If $N^{\alpha} \simeq PSL(2, q)$, then |F(S)| = q and $|\Omega| = q^2$.
- (iii) If $N^{\alpha} \simeq Sz(q)$, then $|F(S)| = q^2$ and $|\Omega| = q^4$.
- (iv) There is an element x in G such that $S \neq S^x$, $[S, S^x] = 1$ and $F(S) \cap F(S^x) = \phi$.

Proof. By assumption, $N_{N^{\alpha}}(S) = (q-1)q^i$ where $|S| = q^i$. Hence (i) follows immediately from (3.7) and (3.11).

We now argue that |F(S)| is a power of 2. By (v) of (3.3), it suffices to consider the case $C^{\alpha}=1$. Applying (ii) of (3.4), $q||F(S)|^2$. By (i), $\mu=|N_N\alpha(S):N_{\beta}^{\alpha}|=q-1$ and so $|F(S)|=\mu r+1=(q-1)r+1$. Hence $q|(r-1)^2$, while r is a divisor of n where $2^n=q$ because $C^{\alpha}=1$ and G_{α}/N^{α} is isomorphic to a subgroup of the outer automorphism group of N^{α} . Therefore r=1 and |F(S)|=q, a power of 2.

Hence by (iv) of (3.4), |F(S)| = (q-1)r+1 $|\Omega| = (q^i+1)(q-1)r+1$ and so q|(q-1)r+1 and (q-1)r+1 $|q^i|$. From this, (i,r)=(1,1), (2,1) or (2,q+1). If (i,r)=(1,1) or (2,q+1), we obtain (ii) or (iii), respectively. We argue (i,r)=(2,1). Suppose (i,r)=(2,1). Then $N^{\alpha} \cong Sz(q)$, |F(S)| = q and $|\Omega| = q(q^2-q+1)$. In this case, since $|G_{\alpha}/C^{\alpha}N^{\alpha}|$ is odd, we have $I(G_{\alpha\beta})=I(N^{\alpha}\cap N^{\beta})$. From this, all involutions in a fixed Sylow 2-subgroup of $G_{\alpha\beta}$ have a common fixed point set. By [12], G has a regular normal subgroup and so $q^2-q+1=1$, a contradiction.

Since by (iv) of (3.4) $|\Omega| = |F(S)| \times |G: N_G(S)|_2$, $|G: N_G(S)|_2$ is divisible by 2. Let S_1 be a Sylow 2-subgroup of $N_G(S)$ and S_2 a Sylow 2-subgroup of $N_G(S_1)$. Since $2||G: N_G(S)|$, $S_1 \neq S_2$. Let $x \in S_2 - S_1$, then $S \neq S^x$ and $S_1 \triangleright S$, S^x . Suppose $\gamma \in F(S) \cap F(S^x)$. Then by (i), $SS^x \leq N^\gamma$ and so $S = S^x$, a contradiction. Therefore $F(S) \cap F(S^x) = \phi$ and hence $[S, S^x] = 1$ by (ii) of (3.1). Thus (iii) holds.

- (3.13) The following hold.
- (i) $N^{\alpha} \not\simeq Sz(q)$.
- (ii) Suppose $N'' \simeq PSL(2, q)$ and let S' be as defined in (3.12). Then $O_2(C_G(S))$ is a Sylow 2-subgroup of $C_G(S)$ and $O_2(C_G(S)) = S \times S'$.

Proof. Suppose $N^{\alpha} \simeq PSL(2, q)$ or Sz(q). If $C^{\alpha} \neq 1$, $O_2(C_G(S))^{F(S)}$ is a regular normal subgroup of $N_G(S)^{F(S)}$ by (v) of (3.3). If $C^{\alpha} = 1$, by (iv) of (3.3)

 $C_{Go}(S)=Z(S)$ and so $C_G(S)_{F(S)}=Z(S)$. By (3.12), $C_G(S)^{F(S)}\geq (S^x)^{F(S)}\pm 1$, and $|F(S)|=q^i=|S|$ and so $C_G(S)=Z(S)\times S^x$. Hence in both cases $O_2(C_G(S))$ is regular on F(S).

Since by (iv) of (3.3) $C_G(S)_{F(S)} = C_{Ga\beta}(S) = Z(S)$ and by (ii), (iii) of (3.12) $q^i = |S^x| = F|(S)| = |C_G(S): C_{Ga}(S)|$, we have $O_2(C_G(S)) = Z(S) \times S^x$ and this is a Sylow 2-subgroup of $C_G(S)$. Since $Z(O_2(C_G(S)))^{F(S)} = Z(S^x)^{F(S)}$, $N_G(S) \triangleright Z(O_2(C_G(S)))$ and |F(S)| = |S|, $|Z(S^x)^{F(S)}| = |S|$. Hence |Z(S)| = |S| and S is abelian. So (3.13) follows.

- (3.14) Suppose $N^{\sigma} \simeq PSL(2, q)$ and $G \not\simeq A_6$, S_6 . Put $E = O_2(C_G(S)) = S \times S^{\sigma}$, $W = \{T \mid T \in ccl_G(S), T \leq E\}$. Then we have the following:
 - (i) |W| = q and $\Omega = \bigcup_{T} F(T)$ where T runs over every element of W.
 - (ii) $N_c(E) \cap ccl_c(s) \subseteq E$ for all $s \in I(S)$.
 - (iii) If $E \cap E^g \cap ccl_G(s) \neq \phi$ for some $g \in G$, then $g \in N_G(E)$.

Proof. Let D be a Hall 2'-subgroup of $N_N (S)$. Then $D \cong \mathbb{Z}_{q-1}$ and by (i) of (3.12) D is semi-regular on $\Omega - \{\alpha\}$. If $d \in \mathbb{N}_D(S^z)$, $\langle d \rangle$ acts semi-regularly on $F(S^z)$ since $\alpha \notin F(S^z)$. Hence the order of d divides |F(S)|. But |F(S)| = q by (ii) of (3.12), hence $|\langle d \rangle| |(q, q-1)=1$ and so d=1. Therefore $N_D(S^z)=1$. Hence $|\{S^{zd}|d \in D\}| = q-1$ and $\{S^{zd}|d \in D\} \subseteq W$ as D normalizes E. If $S=S^{zd}$ for some $d \in D$, $S^z=S^{d^{-1}}=S$, a contradiction. Hence $|W| \geq q$. If there exist S_1 , $S_2 \in W$ such that $S_1 \neq S_2$ and $F(S_1) \cap F(S_2) = \phi$. Let $\gamma \in F(S_1) \cap F(S_2)$. Then S_1 , $S_2 \leq N^\gamma$ by (i) of (3.12) and so $\langle S_1, S_2 \rangle = N^\gamma$, which is contrary to $\langle S_1, S_2 \rangle \leq E$. Hence $F(S_1) \cap F(S_2) = \phi$ for $S_1, S_2 \in W$ such that $S_1 \neq S_2$. Since |F(S)| = q and $|\Omega| = q^2$ by (ii) of (3.12), we have $|W| \leq q$. Thus (i) holds.

Let $s \in I(S)$ and suppose $s^g \in N_G(E) - E$ for some $g \in G$. Then $s^g \in N^\gamma$ where $\gamma = \alpha^g$. By (i) we choose $T \in W$ so that $\gamma \in F(T)$. Then $\langle s^g, T \rangle = N^\gamma$ as $s^g \notin T$ and T is a Sylow 2-subgroup of N^γ . On the other hand $\langle s^g, T \rangle \leq \langle s^g \rangle E$, which is a 2-subgroup of $N_G(E)$, a contradiction. Thus (ii) holds.

Let $1 \neq t \in E \cap E^g \cap ccl_G(s)$ for $g \in G$ and $s \in I(S)$. Then there are $S_1 \leq E$ and $S_2 \leq E^g$ such that $t \in S_1 \cap S_2$ and S_1 , $gS_2g^{-1} \in W$. Since $F(S_1) = F(t) = F(S_2)$ by (ii) of (3.1), $\langle S_1, S_2 \rangle \leq N^{\gamma} \cap N^{\delta}$ for γ , $\delta \in F(t)$. Hence $S_1 = S_2$ by (i) of (3.12). Applying (ii) of (3.13) to S_1 , we obtain $E = O_2(C_G(S_1)) = O_2(C_G(S_2)) = E^g$. Thus (iii) holds.

(3.15) Suppose $N^{\alpha} \simeq PSL(2, q)$ and $G \not\simeq A_6$, S_6 . Then G has a regular normal subgroup.

Proof. We count the set $\{(\gamma, T) | \gamma \in F(T), T \in ccl_G(S)\}$ in two ways and we have $q^2 \times (q+1) = |ccl_G(S)| \times q$ by (3.12). Hence $|ccl_G(S)| = q(q+1)$. On the other hand we have $|ccl_G(S)| = |G: N_G(E)| \times q$ by (i), (ii) of (3.14). From this, $|G: N_G(E)| = q+1$.

Set $\Gamma = ccl_G(E)$. We now consider the action of G on Γ . By definition, G is transitive on Γ and $N_G(E)$ is a stabilizer of $E \in \Gamma$. We argue that S is regular on $\Gamma - \{E\}$. Suppose not and let $1 \neq s \in S$ such that $s^{-1}E^g s = E^g$ for some $E^g \in \Gamma - \{E\}$. Then $gsg^{-1} \in N_G(E)$. By (ii) of (3.14), $gsg^{-1} \in E$ and hence $gsg^{-1} \in E \cap gEg^{-1}$. By (iii) of (3.14), $E = gEg^{-1}$. Hence $E = E^g$, a contradiction. Since $S \leq N_G(E)$ and $|S| = |\Gamma| - 1$, S is regular on $\Gamma - \{E\}$ and G^{Γ} is doubly transitive. Since S is abelian and regular on $\Gamma - \{E\}$, $G^{\Gamma} \cap C(S^{\Gamma}) = S^{\Gamma}$. From this, $E^{\Gamma} = S^{\Gamma}$ because $E \geq S$ and E is abelian. Therefore $G_{\Gamma} \neq 1$. Set $M = G_{\Gamma}$. Suppose $M \cap N^{\alpha} \neq 1$, then $M \geq N^{\alpha}$ as N^{α} is simple. Hence $N^{\alpha} \leq N_G(E)$ and so N^{α} normalizes $E \cap G_{\alpha} = S$, a contradiction. Thus $M \cap N^{\alpha} = 1$. Hence $M_{\alpha} \leq C_G(N^{\alpha}) = C^{\alpha}$, so that $M_{\alpha} = 1$ or $M_{\alpha} \neq 1$ and M is a Frobenius group on Ω by (iii) of (3.1). In both cases, G has a regular normal subgroup.

We now consider the case that $N^{\omega} = PSU(3, q)$. By (3.7) and (3.11), $N_{\beta}^{\omega} = US$ where U is a Hall 2'-subgroup of N_{β}^{ω} and $U \leq Z_{q+1/\epsilon}$ with $\epsilon = (q+1, 3)$. As in the proof of (3.1)', we set $N_{N_{\beta}}(S) = DS$ and $D = V \times K$. Here $V \simeq Z_{q+1/\epsilon}$ and $K \simeq Z_{q-1}$. Since $N_{N_{\beta}}(S) \triangleright N_{\beta}^{\omega}$, we may assume $U = V \cap N_{\beta}^{\omega}$.

(3.16) Suppose $N^{\alpha} \simeq PSU(3, q)$. Then $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$ is a Sylow 2-subgroup of N^{α} . In particular $\mu = q^2 - 1/\varepsilon$.

Proof. Suppose not and $U \neq 1$. If $U^g \leq G_{m\beta}$ for $g \in G$, $U^g \leq N_m^{g^g} \cap N_\beta^{g^g}$ $=N^{\alpha^{\beta}}\cap N^{\alpha}\cap N^{\beta^{\beta}}\cap N^{\beta}\leq N^{\alpha}\cap N^{\beta}$. Hence U is conjugate to U^{β} in $N^{\alpha}\cap N^{\beta}\leq G_{\alpha\beta}$. By the Witt's Theorem $N_c(U)$ is doubly transitive on F(U). By (ii) of Lemma 2.4, $N_N = (U) = N \times V$ where $N \simeq PSL(2, q)$. Hence $N_G(U)^{F(U)}$ satisfies the assumption of Theorem 1. By (i) of (3.1), the number of fixed points of Uon Δ_i is constant for each N^{α} -orbit Δ_i and so $|F(U)| = |F(U) \cap \Delta_i| \times r + 1$ $= (|N_N \alpha(U)| \times |N_{\beta}^{\alpha}: N_N \alpha(U)|/|N_{\beta}^{\alpha}|) \times r + 1 = (|PSL(2,q)| \times |V|/|Z(S)| \times |U|)$ $\times r+1=(q^2-1)\times r\times |V:U|+1$. Hence |F(U)| is even and $|F(U)|\neq 6$. Applying (3.12) to $N_G(U)^{F(U)}$, we obtain $|F(U)|=q^2$, $|F(U)\cap F(Z(S))|=q$. Hence $r=1, U=V, N_{\beta}^{\alpha}=VS \text{ and } |F(V)|=q^{2} \text{ and so } \mu=|N_{N}^{\alpha}(S):N_{\beta}^{\alpha}|=q-1.$ by (ii) of (3.1) $F(U) \supseteq F(S)$, |F(Z(S))| = |F(S)| = q. Furthermore by (3.15), $N_G(V)^{F(V)}$ has a regular normal elementary abelian 2-subgroup, say $E^{F(V)}$. Clearly $E^{F(V)} \leq C_c(V)^{F(V)}$. Hence we may assume that E is a 2-subgroup of $C_G(V)$. Put $P=E_{F(V)}$. Then $|E|=|P|q^2$. By (i) of (3.4), $|\Omega|=q^4-q^3+q$ and so $2q \not\mid |\Omega - F(V)|$. Hence there exists $\gamma \in \Omega - F(V)$ such that $|E: E_{\gamma}| \leq q$. Let T be a Sylow 2-subgroup of G_{γ} containing E_{γ} . Since $E_{\gamma}/E_{\gamma} \cap T \cap N^{\gamma}$ is isomorphic to a subgroup of $T/T \cap N^{\gamma}$ and $T/T \cap N^{\gamma} \simeq TN^{\gamma}/N^{\gamma} \leq G_{\gamma}/N^{\gamma}$, $E_{\gamma}/E_{\gamma} \cap T \cap N^{\gamma}$ is cyclic. If $E_{\gamma} \cap T \cap N^{\gamma} = 1$, E_{γ} is cyclic and so $|E_{\gamma}/E_{\gamma} \cap P| \le 2$. Then $|E_{\gamma} \cap P| \ge |E_{\gamma}|/2 \ge |P|/2 > |P|$, a contradiction. Hence $E_{\gamma} \cap T \cap N^{\gamma}$ ± 1 . Let $z \in E_{\gamma} \cap T \cap N^{\gamma}$ with $z \pm 1$. Since |F(z)| = q < |F(P)|, $z \in E$ and $E^{F(V)}$ is regular, we have $F(z) \cap F(V) = \phi$. Hence V acts semi-regularly on F(z). From this, $q = |F(z)| = (q+1/\varepsilon) \times k$ for some integer $k \ge 1$. Since q is a power

of 2, $q+1/\varepsilon=1$, a contradiction.

- (3.17) Suppose $N^{\omega} \simeq PSU(3, q)$. Then the following hold.
- (i) $|\Omega| = q^5 q^3 + q^2$, $|F(S)| = q^2$.
- (ii) $N_G(S)^{F(S)}$ has a regular normal subgroup.

Proof. If $C^{\sigma} \neq 1$, (ii) follows from (v) of (3.3) and so |F(S)| is a power of 2. By (3.4) and (3.16), $|F(S)| = (q^2 - 1)r/\varepsilon + 1$ and $(q^2 - 1)r/\varepsilon + 1 |(q^3 + 1)(q^2 - 1)r/\varepsilon + 1$, hence $(q^2 - 1)r/\varepsilon + 1|q^3$. By calculation, we obtain $r = \varepsilon$. So (i) follows.

We now assume $C^{\omega}=1$. By (ii) of (3.4), $q \mid |F(S)| = (q^2-1)r/\varepsilon+1$, so that $r=qk+\varepsilon$ for an integer $k\geq 0$. Since $C^{\omega}=1$, r is a divisor of $|G_{\omega}/N^{\omega}|$. Hence $r\mid 2n\varepsilon$, so that $r\mid n\varepsilon$. Therefore $n\varepsilon\geq r=qk+\varepsilon=2^n\times k+\varepsilon$. Hence k=0 and $r=\varepsilon$. From this (i) follows.

Let f be a field automorphism as defined in (3.1)' and let T be a Sylow 2-subgroup of $N_G(S)$ which contains $\langle f \rangle S$. Since $|N_G(S):N_{Go}(S)|=|F(S)|=q^2$ by (i), $|T|=2^mq^5$ where $|\langle f \rangle|=2^m$. Since $T \triangleright S$ and $\Omega-F(S)=q^3(q^2-1)$ there exists $\gamma \in \Omega-F(S)$ such that $|T:T_\gamma|=q^3$, hence $|T_\gamma|=2^mq^2$ and $T=ST_\gamma$. Set $W=T_\gamma \cap N^\gamma$. Then W is semi-regular on F(S) because $\gamma \in \Omega-F(S)$. In particular $|W| \leq |F(S)|=q^2$. We note that $|T_\gamma N^\gamma/N^\gamma| \leq 2^m$. Since $T_\gamma/W \simeq T_\gamma N^\gamma/N^\gamma$, we have $|W| \geq q^2$. Hence $|W|=q^2$ and W is regular on F(S). Moreover $|T_\gamma:W|=2^m$.

Since $N_{Ga\beta}(S)/S \cong N_{Ga\beta}(S)N^a/N^a$ by (3.16), $N_{Ga\beta}(S)^{F(S)}$ is isomorphic to a homomorphic image of a subgroup of the outer automorphism group of N^a . Hence $N_{Ga\beta}(S)^{F(S)}$ is abelian when n is even or f=1. In this case by [1], (ii) holds because $|F(S)|=q^2$. We now assume n is odd and $|\langle f \rangle|=2^m=2$. Since $T=ST_\gamma$ and $|T_\gamma:W|=2$, $|T^{F(S)}:W^{F(S)}|=2$. Claim $f^{F(S)} \neq 1$. For otherwise $f \in N_G(S)_{F(S)}$ and $[f,D] \leq N_G(S)_{F(S)} \cap D=1$ as D is f-invariant and $D \leq N_G(S)$. But since $f \neq 1$, f does not centralize f. Therefore $f^{F(S)} \neq 1$. As $f \in G_a$, $f^{F(S)} \notin W^{F(S)}$. Hence $f^{F(S)} \in W^{F(S)}$ is regular, $f^{F(S)}$ is not conjugate to any element in $f^{F(S)}$. Hence $f^{F(S)}$ is not contained in $f^{F(S)}$ is not conjugate to any element in $f^{F(S)}$. Hence $f^{F(S)}$ is a Sylow 2-subgroup of $f^{F(S)} \in W^{F(S)}$ by Lemma 2 of [3]. Since $f^{F(S)} \in W^{F(S)}$ is a Sylow 2-subgroup of $f^{F(S)} \in W^{F(S)}$ is a homomorphic image of a subgroup of the outer automorphism group of $f^{F(S)} \in W^{F(S)}$ is abelian. Again by [1], $f^{F(S)} \in W^{F(S)}$ has a regular normal subgroup as $f^{F(S)} = g^2$. Thus (ii) also holds in this case

(3.18)
$$N^{\alpha} \neq PSU(3, q)$$
.

Proof. Let f be as in (3.1)'. By the same argument as in the proof of (ii) of (3.17), we have $I(\langle f \rangle) \not\equiv N_G(S)_{F(S)}$ and so S is a Sylow 2-subgroup of $N_G(S)_{F(S)}$. By (ii) of (3.17), there is a normal subgroup L of $N_G(S)$ such that $L \geq N_G(S)_{F(S)}$ and $L^{F(S)}$ is an elementary abelian 2-subgroup of $N_G(S)^{F(S)}$. Let T be a Sylow 2-subgroup of $\langle f \rangle L$ which contains f. Set $E = T \cap L$. Then E

is a Sylow 2-subgroup of L. Since S is a unique Sylow 2-subgroup of $N_G(S)_{F(S)}$, $E/S \simeq L^{F(S)}$ is an elementary abelian 2-subgroup of order q^2 . As $\langle f \rangle \cap E = \langle f \rangle \cap E \cap G_{\alpha} = \langle f \rangle \cap S = 1$, $T = \langle f \rangle E \triangleright E$.

Since $T \triangleright S$ and $|\Omega - F(S)| = q^3(q^2 - 1)$ by (i) of (3.17), we can choose $\gamma \in \Omega - F(S)$ such that $|T: T_{\gamma}| = q^3$. Hence $|T_{\gamma}| = 2^m q^2$ where 2^m is the order of f. Since $T_{\gamma}/T_{\gamma} \cap C^{\gamma}N^{\gamma} \simeq T_{\gamma}N^{\gamma}C^{\gamma}/C^{\gamma}N^{\gamma}$ is cyclic of order at most 2^m , $|T_{\gamma} \cap C^{\gamma}N^{\gamma}| = |T_{\gamma} \cap N^{\gamma}| \ge q^2$. Moreover $T_{\gamma} \cap N^{\gamma}/T_{\gamma} \cap N^{\gamma} \cap E \simeq (T_{\gamma} \cap N^{\gamma})E/E$ is cyclic of order at most 2^m , we have $|T_{\gamma} \cap N^{\gamma} \cap E| \ge q^2/2^m$. Since the order of f is a divisor of 2^n , we have $|T_{\gamma} \cap N^{\gamma} \cap E| \ge q(2^n/2^m) \ge q$.

If $T_{\gamma} \cap N^{\gamma} \cap E$ contains no element of order 4, then $T_{\gamma} \cap N^{\gamma} \cap E$ is an elementary abelian 2-subgroup of N^{γ} of order q and hence $T_{\gamma} \cap N^{\gamma}/T_{\gamma} \cap N^{\gamma} \cap E$ is an elementary abelian 2-group. Therefore $|(T_{\gamma} \cap N^{\gamma})E/E| \leq 2$ and so $|T_{\gamma} \cap N^{\gamma} \cap E| \geq q^2/2 > q$, a contradiction.

If $T_{\gamma} \cap N^{\gamma} \cap E$ contains an element x of order 4, then $1 \neq x^2 \in S$ because E/S is an elementary abelian 2-group. Since $\gamma \in F(x^2)$, by (ii) of (3.1) we have $\gamma \in F(S)$, which is contrary to $\gamma \in \Omega - F(S)$. Thus (3.18) holds.

In this section we have proved the following:

Theorem 2. Suppose G^{Ω} satisfies the hypothesis of Theorem 1 and $|\Omega|$ is even. Then $N^{\alpha} \neq Sz(q)$, PSU(3, q), $N^{\alpha} \simeq PSL(2, q)$ and either

- (i) $G^{\Omega} \simeq A_6$ or S_6 or
- (ii) $|\Omega| = q^2$, $|N^{\alpha}_{\beta}| = |N^{\alpha} \cap N^{\beta}| = q$ and G has a regular normal subgroup.

4. The case $|\Omega|$ is odd

Let G be a doubly transitive permutation group on Ω of odd degree satisfying the assumption of Theorem 1. By Theorem A of [10] and Theorem B of [11], we may assume $C_G(N^{\alpha})=1$. Hence G_{α}/N^{α} is isomorphic to a subgroup of the outer automorphism group of N^{α} . Let $\{\alpha\}$, Δ_1 , Δ_2 , ..., Δ_r , be the set of all N^{α} -orbits on Ω . Clearly r is a divisor of $|G_{\alpha}/N^{\alpha}|$.

From now on we assume that G has no regular normal subgroup and prove that $G \simeq PSL(2, 11)$. Let M be a minimal normal subgroup of G. Then by assumption, $M_a \neq 1$.

(4.1) M is simple and $N^{\omega} \leq M$.

Proof. Since G is doubly transitive and $M_{\alpha} \neq 1$, M is a simple group (cf. Exercise 12.4 of [16]). If $N^{\alpha} \leq M$, then $M_{\alpha} \cap N^{\alpha} = 1$ as N^{α} is simple and hence $M_{\alpha} \leq C_{G}(N^{\alpha}) = 1$, a contradiction. Thus $N^{\alpha} \leq M$.

As in (3.1)', there is a 2-element f of M_{α} such that f acts on N^{α} as a field automorphism, $\langle f \rangle S \triangleright S$, $\langle f \rangle \cap S = 1$ and $\langle f \rangle S$ is a Sylow 2-subgroup of M_{α} , where $N_{N^{\alpha}}(S) = DS$ is a Borel subgroup of N^{α} , S is a unipotent subgroup of N^{α} , and D is a diagonal subgroup of N^{α} .

(4.2) If $f \neq 1$, then $I(N_{\beta}^{\alpha}) \not\equiv N^{\alpha} \cap N^{\beta}$ for $\beta \neq \alpha$.

Proof. Suppose $f \neq 1$ and $\tau \in I(\langle f \rangle)$. Since M is a simple group with a Sylow 2-subgroup $\langle f \rangle S$, $\tau^g \in S$ for some $g \in M_a$ by Lemma 2 of [3]. Set $\gamma = \alpha^{g^{-1}}$. Then $\tau \in N_a^{\gamma}$ and clearly $\tau \notin N^{\gamma} \cap N^{\alpha}$, so that $I(N_a^{\gamma}) \notin N^{\gamma} \cap N^{\alpha}$. By the transitivity of G, we obtain $I(N_{\beta}^{\alpha}) \notin N^{\alpha} \cap N^{\beta}$ for any $\beta \neq \alpha$.

(4.3) Suppose $f \neq 1$. Then $N^{\alpha} \not\simeq Sz(q)$, PSU(3, q).

Proof. If $N^{\alpha} \simeq Sz(q)$, $|G_{\alpha}/N^{\alpha}|$ is odd and hence f=1, a contradiction. Therefore $N^{\alpha} \not\simeq Sz(q)$.

Suppose $N^{\alpha} \simeq PSU(3, q)$ and let $\tau \in I(\langle f \rangle)$. Let $s \in Z(\langle f \rangle S) \cap I(S)$. As in the proof of (4.2), $ccl_M(\tau) \cap S \neq \phi$. Then since s is an extremal element there is $g \in M$ such that $\tau^g = s$ and $(C_{\langle f \rangle S}(\tau))^g \leq \langle f \rangle S$. Since τ is a field automorphism of order 2, $Z(S) \leq C_{\langle f \rangle S}(\tau)$. Put $\beta = \alpha^{g-1}$. Then $\tau \in N^{\beta}_{\alpha}$ and $Z(S) \leq N^{\alpha}_{\beta}$. By (4.2) $Z(S) \not \leq N^{\alpha} \cap N^{\beta}$ and so $|Z(S): Z(S) \cap N^{\alpha} \cap N^{\beta}| = 2$ because $Z(S)/Z(S) \cap N^{\alpha} \cap N^{\beta} \simeq Z(S)(N^{\alpha} \cap N^{\beta})/N^{\alpha} \cap N^{\beta} \leq N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq N^{\alpha}_{\beta}/N^{\beta}/N^{\beta} \leq G_{\beta}/N^{\beta}$.

Claim $N_{\beta}^{\alpha} \leq N_{N}^{\alpha}(S)$. Suppose not. Then $N_{\beta}^{\alpha} \cap N_{N}^{\alpha}(S)$ is a strongly embedded subgroup of N_{β}^{α} . Since $|N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta}|$ is even and $N_{\beta}^{\alpha} \geq Z(S) \geq Z_{2} \times Z_{2}$, by Bender's Theorem ([2]), $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta}$ is not solvable, while $N_{\beta}^{\alpha}/N^{\beta} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta}$ is solvable, a contradiction.

Let V_1 be a τ -invariant Hall 2'-subgroup of N^{α}_{β} . Then since V_1 normalizes $\Omega_1(O_2(N^{\alpha}_{\beta})) = Z(S)$, V_1 centralizes $Z(S)/Z(S) \cap N^{\alpha} \cap N^{\beta} \cong Z_2$. Hence by (i) of Lemma 2.4, $V_1 \leq Z_{q+1}$ and so $[V_1, Z(S)] = 1$ by (ii) of Lemma 2.4. Therefore $I(N^{\alpha}_{\beta}) \subseteq Z(N^{\alpha}_{\beta})$. Similarly $I(N^{\beta}_{\alpha}) \subseteq Z(N^{\beta}_{\alpha})$. Since $\tau \in I(N^{\alpha}_{\beta})$, we have $N^{\alpha} \cap N^{\beta} \leq C(\tau) \cap N_N^{\alpha}(S)$. Since τ is a field automorphism of N^{α} of order 2, $C(\tau) \cap N_N^{\alpha}(S) = KZ(S)$ where K is a cyclic subgroup of $N_N^{\alpha}(S)$ of order q-1. Hence $N^{\alpha} \cap N^{\beta} \leq KZ(S) \cap N^{\alpha}_{\beta} = Z(S)(K \cap V_1O_2(N^{\alpha}_{\beta})) = Z(S)$ and so $|Z(S): N^{\alpha} \cap N^{\beta}| = 2$.

We claim that F(z)=F(Z(S)) for $z\in I(N^{\alpha}_{\beta})$. Let Δ_i be an arbitrary N^{α} orbit on $\Omega-\{\alpha\}$. Since all elementary abelian 2-subgroups of N^{α} of order qare conjugate in N^{α} , there exists $\gamma\in\Delta_i$ with $Z(S)\leq N^{\alpha}_{\gamma}$. Hence by Lemma 2.2, $|F(z)\cap\Delta_i|=|C_{N^{\alpha}}(z)|\times|Z(S)^{\sharp}|/|N^{\alpha}_{\gamma}|=(q+1/\varepsilon)\times q^3(q-1)/|N^{\alpha}_{\gamma}|$ for $z\in I(N^{\alpha}_{\beta})$. On the other hand $|F(Z(S))\cap\Delta_i|=|N_{N^{\alpha}}(Z(S))|/|N^{\alpha}_{\gamma}|=(q^2-1/\varepsilon)\times q^3/|N^{\alpha}_{\beta}|$. Hence $F(z)\cap\Delta_i=F(Z(S))\cap\Delta_i$ and so F(z)=F(Z(S)). In particular $F(\tau)=F(Z(S))$ because $\tau\in I(N^{\alpha}_{\beta})$ and $N^{\alpha}\cap N^{\beta}=1$.

We claim that $(V_1)_{F(Z(S))}=1$. Set $S_1=O_2(N^{\alpha}_{\beta})$. Let $d \in V_1$ with $d \neq 1$, Δ_i be a N^{α} -orbit which contains β and let D_1 be a τ -invariant Hall 2'-subgroup of $N_{N^{\alpha}}(S)$ which contains V_1 . Put $X=\langle d \rangle Z(S)$. Then by Lemma 2.2, $|F(X)\cap \Delta_i|=|N_{N^{\alpha}}(X)|/|N^{\alpha}_{\beta}|:N_{N^{\alpha}_{\beta}}(X)|/|N^{\alpha}_{\beta}|=|D_1Z(S)|/|N^{\alpha}_{\beta}:V_1Z(S)|/|N^{\alpha}_{\beta}|=(q^2-1/\varepsilon)|S_1|/|N^{\alpha}_{\beta}|=|F(Z(S))\cap \Delta_i|/|S:S_1|$. Since $S_1/N^{\alpha}\cap N^{\beta}$ is cyclic and $N^{\alpha}\cap N^{\beta}\leq Z(S)$, $S\neq S_1$. Therefore $F(X)\neq F(Z(S))$ and so $(V_1)_{F(Z(S))}=1$.

Since $D_1 \leq N_N \alpha(Z(S))$ and $\tau \in N_{G\alpha}(Z(S))_{F(Z(S))}, [\tau, D_1] \leq N_G(Z(S))_{F(Z(S))} \cap D_1$

 $=(V_1)_{F(Z(S))}=1$. Hence $D_1 \leq C(\tau) \cap N_N \sigma(S) = KZ(S)$ with $K \simeq Z_{q-1}$, which is contrary to $|D_1| = (q^2-1)/\varepsilon$. So (4.3) is proved.

- (4.4) Suppose $N^{\alpha} \simeq PSL(2, q)$ and $f \neq 1$. Then the following hold.
- (i) N_{β}^{α} is a 2-subgroup of N^{α} and $|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}| = 2$.
- (ii) Let $\tau \in I(\langle f \rangle)$. Then for some $\beta \neq \alpha$, $\tau \in N^{\beta}_{\alpha} N^{\alpha}_{\beta}$, $|C_{s}(\tau)| = \sqrt{q}$ and $N^{\alpha} \cap N^{\beta} \leq C_{s}(\tau) \leq N^{\alpha}_{\beta}$.

Proof. As in the proof of (4.3), there exist $s \in I(S)$ and $g \in M$ such that $\tau^g = s$ and $(C_{\langle f \rangle S}(\tau))^g \le \langle f \rangle S$. Put $\beta = \alpha^{g^{-1}}$. Then $\tau \in N^{\beta}_{\alpha} - N^{\alpha}_{\beta}$ and $C_{S}(\tau) \le N^{\alpha}_{\beta}$. Since τ is a field automorphism of N^{α} of order 2, $|C_{S}(\tau)| = \sqrt{q}$. Claim $N^{\alpha}_{\beta} \le N_{N^{\alpha}}(S)$. If $q = 2^2$, as $C_{S}(\tau) \le N^{\alpha}_{\beta}$, a Sylow 2-subgroup of N^{α} is non cyclic. Hence as in the proof of (4.3), $N^{\alpha}_{\beta} \le N_{N^{\alpha}}(S)$. If $q = 2^2$, $N^{\alpha} \simeq A_5$ and so $\langle \tau \rangle N^{\alpha} = M_{\alpha} = G_{\alpha} \simeq S_5$. In particular r = 1. Hence $N^{\alpha}_{\beta} \le N_{N^{\alpha}}(S)$. For otherwise $|N^{\alpha}_{\beta}| = 6$ or 10 and $|\Omega| = 11$ or 7, respectively. By [13], such groups do not exist. Thus in both cases $N^{\alpha}_{\beta} \le N_{N^{\alpha}}(S)$. On the other hand $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta}$ is cyclic of even order. By (i) of Lemma 2.4, N^{α}_{β} must be an abelian 2-subgroup of N^{α} and $|N^{\alpha}_{\beta}: N^{\alpha} \cap N^{\beta}| = 2$. Since $N^{\alpha}_{\alpha} \simeq N^{\alpha}_{\beta}$ and $\tau \in N^{\beta}_{\alpha}$, we obtain $N^{\alpha} \cap N^{\beta} \le C_{S}(\tau)$. Thus (i) and (ii) hold.

- (4.5) Suppose $N^{\alpha} \simeq PSL(2, q)$ and $f \neq 1$. Let $T = N_{\beta}^{\alpha} N_{\alpha}^{\beta}$. Then
- (i) $N_c(T)$ is doubly transitive on F(T).
- (ii) $N_N \alpha(T) = S$ and $S_{\gamma} = N_{\beta}^{\alpha}$ for every $\gamma \in F(T)$.

Proof. Since $G_{\alpha\beta}/N_{\beta}^{\alpha}$ is cyclic and by (i) of (4.4) $T/N_{\beta}^{\alpha} \simeq Z_2$, $I(G_{\alpha\beta}) \subseteq T$. Clearly $\langle I(G_{\alpha\beta}) \rangle = T$. Hence by the Witt's Theorem, we have (i).

Let K_1 be a Hall 2'-subgroup of $N_{N^{\alpha}}(T)$. Then K_1 normalizes $T \cap N^{\alpha} = N^{\alpha}_{\beta}$. Since $T/N^{\alpha}_{\beta} \cong Z_2$, $[K_1, T/N^{\alpha}_{\beta}] = 1$ and so $T = C_T(K_1)N^{\alpha}_{\beta}$. If $K_1 \neq 1$, by (i) of Lemma 2.4 $C_T(K_1) = 1$. Hence $K_1 = 1$ and $N_N \alpha(T) = S$.

Let $\gamma \in F(T) - \{\alpha\}$. Then obviously $N_{\beta}^{\alpha} \leq S_{\gamma} \leq N_{\gamma}^{\alpha}$. Since G is doubly transitive on Ω , $|N_{\beta}^{\alpha}| = |N_{\gamma}^{\alpha}|$, so that $N_{\beta}^{\alpha} = S_{\gamma} = N_{\gamma}^{\alpha}$. Thus (ii) holds.

- (4.6) Suppose $N^{\omega} \simeq PSL(2, q)$ and $f \neq 1$. Put $q=2^n$. Then
- (i) $(n, |N_{\beta}^{\alpha}|) = (2, 2), (2, 2^2), (4, 2^3) \text{ or } (6, 2^4).$
- (ii) If $(n, |N_{\beta}^{\alpha}|) = (6, 2^4), N_G(T)^{F(T)} \simeq A_5$.

Proof. $|G_{\omega}/N^{\alpha}| | n$ and $f \neq 1$, n is even and so we set n=2m. By (ii) of (4.4), $|N^{\alpha}_{\beta}| = 2^{m+\epsilon}$ where $\epsilon = 0$ or 1. Since $N_{G\alpha\beta}(T)/T \leq G_{\alpha\beta}/T \simeq (G_{\alpha\beta}/N^{\alpha}_{\beta})/(T/N^{\alpha}_{\beta})$ and $G_{\alpha\beta}/N^{\alpha}_{\beta} \simeq G_{\alpha\beta}N^{\alpha}/N^{\alpha} \leq G_{\alpha}/N^{\alpha}$, $N_{G\alpha\beta}(T)^{F(T)}$ is cyclic and $|N_{G\alpha\beta}(T)^{F(T)}| | m$. By (4.5), $N_G(T)^{F(T)}$ is doubly transitive and $S^{F(T)} \simeq S/N^{\alpha}_{\beta}$ is semi-regular on $F(T) - \{\alpha\}$. Since $N_{G\alpha\beta}(T)^{F(T)}$ is cyclic, by [1] $N_G(T)^{F(T)} \simeq PSL(2, q_1)$ where q_1 is a power of 2 or $N_G(T)^{F(T)}$ has a regular normal subgroup. If $(n, |N^{\alpha}_{\beta}|) \neq (2, 2)$, $(2, 2^2)$ and $(4, 2^3)$, $S^{F(T)}$ contains a four-group, which is semi-regular on $F(T) - \{\alpha\}$. Hence $N_G(T)^{F(T)}$ contains no regular normal subgroup and so

630 Y. Hiramine

 $N_G(T)^{F(T)} \simeq PSL(2, q_1)$. Since $N_{N^{\alpha}}(T)^{F(T)} = S^{F(T)} \simeq S/N^{\alpha}_{\beta}$ and $N_{G_{\alpha}}(T)^{F(T)} \supset N_{N^{\alpha}}(T)^{F(T)}$, $q_1 = 2^{m-\epsilon} > 2$. Hence $2^{m-\epsilon} - 1 = |N_{G_{\alpha\beta}}(T)^{F(T)}|$, so that $2^{m-\epsilon} - 1 | m$. From this, $\epsilon = 1$, m = 3 and $N_G(T)^{F(T)} \simeq A_5$. Thus (4.6) holds.

(4.7) f=1.

Proof. Suppose $f \neq 1$. Then by (4.3) and (4.6), it suffices to consider the case (i) of (4.6).

If $N^{\sigma} \simeq PSL(2, 2^2)$ and $|N^{\sigma}_{\beta}| = 2$, $G_{\sigma} = N^{\beta}_{\sigma} N^{\sigma} \simeq \operatorname{Aut}(N^{\sigma}) \simeq S_6$. Hence r=1. Therefore $|\Omega| = 1 + |N^{\sigma}: N^{\sigma}_{\beta}| = 31$ and $|G| = |\Omega| |G_{\sigma}| = 2^3 \cdot 3 \cdot 5 \cdot 31$. By the Sylow's theorem, G has a regular normal subgroup of order 31. But this is a contradiction as $G \geq N^{\sigma}$.

If $N^{\sigma} \simeq PSL(2, 2^2)$ and $|N^{\alpha}_{\beta}| = 2^4$, as above $G_{\sigma} = N^{\beta}_{\alpha} N^{\sigma}$ and hence r=1. From this $|\Omega| = 1 + |N^{\sigma}: N^{\sigma}_{\beta}| = 16$, a contradiction.

If $N^{\alpha} = PSL(2, 2^4)$ and $|N^{\alpha}_{\beta}| = 2^3$, $|Aut(N^{\alpha}): N^{\alpha}| = 4$ and so $|G_{\alpha}: N^{\beta}_{\alpha}N^{\alpha}| \le 2$. Hence r=1 or 2 and $|\Omega| = 511$ or 1021 respectively. By Lemma 2.2, for $s \in N^{\alpha}_{\beta} - \{1\} |F(s) - \{\alpha\}| = 14$ or 28 respectively. Let τ be a field automorphism of N^{α} of order 2 as in (4.4). Then $C_{N^{\alpha}}(\tau) = PSL(2, 2^2)$ and $|F(\tau) - \{\alpha\}| = 14$ or 28 since τ is conjugate to s. From this an element x of $C_{N^{\alpha}}(\tau)$ of order 5 fixes at least four points in Ω . Since $5 \not\vdash |\Omega|$, $\langle x \rangle$ is a Sylow 5-subgroup of G and so $x^{g} \in N^{\alpha}$ for some $g \in G$. But $F(x^{g}) = \{\alpha\}$ because $|N^{\alpha}_{\gamma}| = |N^{\alpha}_{\beta}| = 2^3$ for all $\gamma \neq \alpha$. Therefore |F(x)| = 1, which is contrary to $|F(x)| \ge 4$.

If $N^{\alpha} \simeq PSL(2, 2^6)$ and $|N^{\alpha}_{\beta}| = 2^4$, by (ii) of (4.6), $|N_{G\alpha\beta}(T)^{F(T)}| = 3$. Hence $3 \mid |G_{\alpha\beta}: N^{\alpha}_{\beta}|$. Since $|G_{\alpha\beta}: N^{\alpha}_{\beta}| = |G_{\alpha\beta}N^{\alpha}: N^{\alpha}|$ and $|N^{\beta}_{\alpha}N^{\alpha}: N^{\alpha}| = 2$ by (i) of (4.4), we have $G_{\alpha\beta}N^{\alpha} = G_{\alpha} \simeq \operatorname{Aut}(N^{\alpha})$. In particular r=1 and $|\Omega| = 16381$. Moreover $|F(s) - \{\alpha\}| = 60$. As before $|F(\tau) - \{\alpha\}| = 60$, $C_{N^{\alpha}}(\tau) \simeq PSL(2, 2^3)$ and an element of $C_{N^{\alpha}}(\tau)$ of order 7 fixes at least five points. But since $7 \not | |\Omega|$ and $7 \not | |N^{\alpha}_{\beta}|$, every element of order 7 fixes exactly one point, a contradiction.

(4.8)
$$G^{\Omega} \simeq PSL(2, 11), |\Omega| = 11.$$

Proof. By (4.7), $|M_{\alpha}: N^{\alpha}|$ is odd and so a Sylow 2-subgroup of N^{α} is also that of M. By [4], [5] and [15], it suffices to consider the following cases:

- (i) $N^{\bullet} \simeq PSL(2, 2^2)$, $M \simeq PSL(2, q_1)$, $q_1 \equiv 3$ or 5 (mod 8), $q_1 > 3$.
- (ii) $N^{\omega} \simeq PSL(2, 2^3)$, $C_M(t) \simeq Z_2 \times PSL(2, 3^{2m+1})$, $t \in I(M)$ $(m \ge 1)$.
- (iii) $N^{\alpha} \simeq PSL(2, 2^3)$, $M \simeq J_1$, the smallest Janko group.

First we consider the case (i). If $|N^{\alpha}_{\beta}|$ is odd, every involution in M has a unique fixed point and so $M \simeq PSL(2,5)$ by [2]. But then $M = N^{\alpha}$, a contradiction. Hence $|N^{\alpha}_{\beta}| = 2$, 4, 6, 10 or 12. On the other hand r = 1 or 2 because $|\operatorname{Aut}(N^{\alpha}): N^{\alpha}| = 2$. From this $|\Omega| = 1 + |N^{\alpha}: N^{\alpha}_{\beta}| r = 7$, 11, 13, 21, 31 or 61. Since $M \simeq PSL(2, q_1)$ and $|M| = |\Omega| |N^{\alpha}|$, we get $|\Omega| = 11$, $|N^{\alpha}_{\beta}| = 6$ and $M \simeq PSL(2, 11)$. Thus $|\Omega| = 11$ and $G \simeq PSL(2, 11)$.

Next we consider the case (ii). As in the case (i), $|N_{\beta}^{\alpha}|$ is even. Let $t \in I(N_{\beta}^{\alpha})$. Since $|M_{\alpha}: N^{\alpha}| = 1$ or 3, $I(M_{\alpha}) = \{t^{\beta} \mid g \in M_{\alpha}\}$ and so $C_{M}(t)$ is transitive on F(t). Hence $|F(t)| = |C_{M}(t): C_{M_{\alpha}}(t)|$. Since $|C_{M_{\alpha}}(t)| = |C_{M_{\alpha}}(t)N^{\alpha}: N^{\alpha}| |C_{N_{\alpha}}(t)|$, $|F(t)| \ge (3^{2m+1}-1)3^{2m+1}(3^{2m+1}+1)/24$. Since $|M_{\alpha}: N^{\alpha}| = 1$ or 3, r = 1 or 3. Therefore $|F(t)| = 1 + (|C_{N_{\alpha}}(t)| |I(N_{\beta}^{\alpha})| / |N_{\beta}^{\alpha}|) \cdot r < 1 + 8 \times 3 = 25$. Hence $25 > (3^{2m+1}-1)^{3}/24$ and so $3^{2m+1} < 11$, a contradiction.

Finally we consider the case (iii). Since $N^{\alpha} \simeq PSL(2, 2^3)$, $3^2 | |N^{\alpha}|$. But $3^2 \times |M| = |J_1| = 2^3 \cdot 3 \cdot 7 \cdot 11 \cdot 19$, a contradiction.

OSAKA KYOIKU UNIVERSITY

References

- [1] M. Aschbacher: Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra 18 (1971), 114-136.
- [2] H. Bender: Transitive Gruppen gerader Ordnung, in dene jede Involutionen gerade einen Punkt festlasst, J. Algebra 17 (1971), 527-554.
- [3] F. Buekenhout and P. Rowlinson: On (1,4)-groups II, J. London Math. Soc. (2) 8 (1974), 507-513.
- [4] M.J. Collins: The characterization of the Suzuki groups by their Sylow 2-subgroups, Math. Z. 123 (1971), 32-48.
- [5] M.J. Collins: The characterization of the unitary groups $U_3(2^n)$ by their Sylow 2-subgroups, Bull. London Math. Soc. 4 (1972), 49-53.
- [6] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [7] Y. Hiramine: On multiply transitive groups, Osaka J. Math, to appear.
- [8] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
- [9] M.E. O'Nan: Normal structure of the one-point stabilizer of a doubly-transitive permutation group I, Trans. Amer. Math. Soc. 214 (1975), 1-42.
- [10] M.E. O'Nan: Normal structure of the one-point stabilizer of a doubly-transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [11] M. O'Nan: Doubly transitive groups of odd degree whose one point stabilizers are local, J. Algebra, 39 (1976), 440-482.
- [12] E. Shult: On doubly transitive groups of even degree, to appear.
- [13] C.C. Sims: Computional methods in the study of permutation groups, (in Computional Problem in Abstract Algebra), Pergamon Press, London, 1970, 169-183.
- [14] R. Steinburg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
- [15] J.H. Walter: The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.
- [16] H. Wielandt: Finite permutation groups, Academic Press, New York 1964.
- [17] M.E. O'Nan: A characterization of Ln(q) as a permutation group, Math. Z. 127 (1972), 301-314.