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1. Introduction

Let G be a doubly transitive permutation group on a finite set Q) and ¢ EQ.
Using the notation of [9], we denote a normal subgroup of G, by N®. Then,
for B€Q other, we define N so that g~'NPg=N" where y=5%.

In this paper we shall prove the following:

Theorem 1. Let G be a doubly transitive permutation group on a finite set
Q. Suppose that a is an element of Q. If G, has a normal simple subgroup N°
which is isomorphic to PSL(2, q), Sz(q) or PSU(3, q) with q=2", n>2, then one
of the following holds:
(i) 1Q|=6, G=A4, or S5 and N*~=PSL(2, 4).
(i) 1Q|=11, G=PSL(2, 11) and N*=PSL(2, 4).
(iii) G has a regular normal subgroup.

We introduce some notations: Let G be a permutation group on Q. For
X <G and ACQ, we define F(X)={ac=Q|a*=a for all k€ X}, X(A)= {xEX]|
A=A}, X,={xeX|a*=a for all a=A} and X*=X(A)/X,, the restriction
of X on A. If p is a prime, we denote by O?(X), the subgroup of X generated
by all p’-elements in X. Other notations are standard ([6], [16]).

2. Preliminary results

Lemma 2.1. Let G be a doubly transitive permutation group on Q of even
degree and N® a nonabelian simple normal subgroup of G, with a €Q. If
Co(N®)*1, then Ng=N"NNP for a =B Q and C;(N®) is semi-regular on
Q—{a}.

Proof. Set C*=C¢(N®). By Corollary B3 and Lemma 2.8 of [17], C* is
semi-regular on Q— {a} or N®is a T.I. set in G. Since || is even and N® is
1-transitive on Q— {a}, |N®: N§| is odd for a +8 Q. Hence N® is not
semiregular on Q— {a}. By Theorem A of [9], N® is not a T.L set in G.
Hence C? is semi-regular on Q— {a}.

Set A=F(N§). Since C*<G(A), [C? G,]<C*NGs=1. By Corollary
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Bl of [17], NE<G,and so [C*, N&]=1. Let 1&x=C” and set 8*=7v. Then
NB=x"'NBx=N). Hence NE<N%. Since B+ and G is doubly transitive
on O, [N8|=|N¥|. Hence Nf=N%. Similarly we have N}=N}. Hence
N8=N}and so N§=NPNN". Since G is doubly transitive on Q, Nz=N"NNP.

Lemma 2.2. Let G be a transitive permutation group on a set Q, H a sta-
bilizer of a point of Q) and M a nonempty subset of G. Then

|F(M)| = |Ng(M)| X |ecl(M)NH|[|H] .
Here ccl,(M)NH={g 'Mg|g'Mg<H, g=G}.

Proof. Set W={(L, a)|Lecclg(M), aF(L)} and W,={L|LEccl;(M),
F(L)>a}. By the transitivity of G, |W,|=|Wg| holds for every a, B8 € Q.
Counting the number of elements of I in two ways, we obtain |G: Ng(M)| X
|F(M)|=|G: H| X |ecleg(M)NH|. Thus we have Lemma 2.2.

Lemma 2.3. Let G=PSL(2, q), Sz(q) or PSU(3, q) with q=2">2 and
suppose that G is a transitive permutation group on a set Q of odd degree. Let H
be a stabilizer of a point of Q0. Then we have the fellowing:

(1) H has a unique Sylow 2-subgroup S of G and H=DS for a Hall
2'-subgroup D of H where D Z 2_,.
(ii) Let L be a subgroup of G such that |L|=|H|. Then L<ccl;(H).

(i) S is semi-regular on Q—F(S) and |F(S)|=|F(H)|=|NS): H|.

(iv) Set D=VXK where V<Z ., K<Z, . Then K acts semiregularly
on Q—F(K) and if K =1, |F(K)|=2|F(S)].

Proof. Since G is generated by its two distinct Sylow 2-subgroups and
1% |G: H| is odd, H contains a unique Sylow 2-subgroup S of G where S=
O,(H). By the structure of N4(S) we have (i) (cf. § 3 of [2]).

To prove (ii) we may assume that S<L. As above S=O,(L) and L=D,S
where D, <Z ;. Since N(S)/S is cyclic and |H |=|L|, we get H=L. Thus
(ii) holds.

Let tI(S). Applying Lemma 2.2, |F(f)|= |Ng(t)| X |cclc ()N H ||| H |
— (IN6(D)] X |ecls () NNG(S)|[IN(S) )X (ING(S) |/ 1 H). Since N(S) is a
stabilizer of the usual doubly transitive permutation representation of G, we
have |Ng(2)| X |ccle(() N Ng(S)|/IN¢(S)| =1, hence |F(¢)|=|N4S): H|. On
the other hand, |F(S)|=|N4(S)| X |cclc(S)NH|/|H|=|NgS): H|. There-
fore S acts semi-regularly on Q—F(S). As Ny(H)=N(S), similarly we have
|F(S)|=|F(H)|. Thus (iii) holds.

Let x be a nontrivial element of K. Then we have | F(<x))|=|N(<x>)| X
leelo (<) N |H | =(INo (<) X [eclo(<x>) N NG(S) |/ ING(S) ) No(S )IED)-
As before we have | Ng(<x>)| X |ecls (<x0) N N(S)|/INg(S)|=2. Hence | F(x)|
=2+|Ng(S): H| and this is independent of the choice of xK*. Thus (iv)
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holds.

Lemma 24. Let G=PSL(2, q), Sz(q) or PSU(3, q) with q=2">2 and S
be a Sylow 2-subgroup of G, H=N(S), t an involution outside H, D=H N H',
V=Cp(t) and K={dED|d'=d™'}. Then the following hold:
(1) N(Kk>)=<t)D whenever 1k K.
(i1) If G=PSU(3, q) and 1%£U is a subgroup of V, then N (U)=CTV)
=NXV where N is a subgroup of G isomorphic to PSL(2, q).

Proof. (i) follows from the structure of PSL(2, q), Sz(q) or PSU(3, q)
(§ 3 of [2]).

We now regard PSU(3, ¢) as a usual doubly transitive permutation group
on a set Q with ¢*+1 points. Then V is semi-regular on Q—F (V) and
G(F(U))|G @ is doubly transitive on F(U)=F(V). Clearly No(U)<G(F(U))
and Gypn=V. Hence Ngy(U)<N(V). Since Vis cyclic, No(V)<N(U) and
s0 Ng(U)=N¢(V). We now set M=0%(Ny(V)). Then as [Z(S), V]=1 and
Z(S) is a Sylow 2-subgroup of N(V), M centralizes V. By the Frattini
argument N o(V)=(N(V)NN(Z(S))M=Nyz(V)M=DZ(S)-M <CyV). Hence
Ng(V)=C4(V). By the direct computation, we obtain (ii).

Lemma 2.5. Let G=PSL(2, q), Sz(q) cr PSU(3, q) with ¢=2">2 and
let S be a Sylow 2-subgroup of G.

(1) If T is a maximal subgroup of S, then N o(T)=S.

(i1) Unless G=PSU(3, q) where q=2" and n is odd, then by conjugation
N(S) acts regularly on the set of all maximal subgroups of S.

Proof. Since Ng(S) is strongly embedded in G, S<NT)<N(S) and
80 N¢(T)=RS where R is a Hall 2’-subgroup of Ny(T). As |S:T|=2, R
centralizes S/T'=Z, and hence there exists an element tCy(R)—T. If G=
PSL(2, q) or Sz(q), then R=1 (§3 of [2]). If G=PSU(3, q) and R=1, then
by (ii) of Lemma 2.4, t€1(S)=Q,(S)< T, a contradiction. Thus (i) holds.

Let T be the set of all maximal subgroups of S. Then by conjugation,
N¢(S) acts on T" and (Ng(S));=S for T T by (i). Under the assumption of
(ii), we can easily verify |I'|=|Ng(S): S|. From this (ii) follows at once.

Lemma 2.6. Let G=PSL(2, q), Sz(q) or PSU(3, q) with q=2">2 and A
be the full automorphism gruop of G. Let S be a Sylow 2-subgroup of G. Then
C 4(S)=Z(S). Here we identify G with the inner automorphism group of G.

Proof. Let Q be the set of all Sylow 2-subgroups of G. Then 4 acts
faithfully on Q and the action of G on Q is the same as the usual doubly transi-
tive permutation representation. Hence S is regular on Q— {S} and so C 4(S)
is a 2-subgroup of 4. If G=S2(q), A/G is cyclic of odd order and so C,(S)<G.
Hence C 4(S)=C4(S)=2Z(S). If G=PSL(2, q), S is abelian, so that C 4(S)=S
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=Z(8S). If G=PSU(3, q), there exists a field automorphism such that {f>S
is a Sylow 2-subgroup of N 4(S). From this C,(S)<SO(NL(S)Zf>S. If
gs€C 4(S)—S where g&{f> and s&S, then g centralizes Z(S) and so gisa
field automorphism of order 2 by the structural property of 4. Since g cen-
tralizes s, s must be contained in Z(S). Therefore g centralizes S, while g
is a field automorphism of order 2. This is a contradiction. Thus C4(S)=

SNC(S)y=2Z(S).

Lemma 2.7. Let G=PSU(3, q), g=2" such that n is even. Then Aut(G)
={f>G for a field automorphism f of G (see [14]). Let B be a Borel subgroup and
let D be a diagonal subgroup of G. Then B=DS and S=O,(B) for some Sylow
2-subgroup S of G. Set D=VXK with V=2 ,, K=Z, . Then C 4Z(S))
={OVS where A={f>G and {T}=I(f>).

Proof. By the structural properties of 4, [V, Z(S)]=1 and C¢»(Z(S))=<{r.
Since N (Z(S)> OANLZ(SN) =S, NAZ(S) =< f>N(S). Hence C(Z(S))=
C(Z(S))NfODS=C s (Z(S))VS. Let gkeCyyx(Z(S)) with ge{f), keK.
Since g is a field automorphism of G, it centralizes a nontrivial element s in Z(.S).
Then k centralizes s and so k=1, for otherwise s& Cg(k)=VK, a contradiction.
So C¢sx(Z(S))=C¢(Z(S))=<7>. Thus C 4(Z(S))=<m>VS.

3. The case |Q] is even

Let G be a doubly transitive permutation group on a finite set Q of even
degree satisfying the assumption of our theorem. Let a€Q and {a}, A, -+, A,
be the set of all N®-orbits on Q. Since N® is normal in G,, |A;|= |A,-| for
1<i,j<r. Hence |Q|=1+|A;|r and so both |A;| and 7 are odd. From this,

@ contains a unique Sylow 2-subgroup of N® for B« by (i) of Lemma 2.3.

Set S=0,(Ng).

(3.1) The following hold.

(i) For each A; with 1<i<r, there exists 8;EA; such that Ng=N3,.

(ii) F(S)=F(Ng), |F(S)|=|Nya(S): Ng| Xr+1 and § is semi-regular
on Q—F(S).

(i) Set C*=C¢(N®). Then C*=0(G,) and is semi-regular on Q— {a}.

Proof. Let yEA,;. Since |Ng|=|N%|, by (ii) of Lemma 2.3, Ng=(N%)”
for some xN®. Put ¥*=p;. Then B;€A, and Ng=Nj. Thus (i) holds.

Hence by (iii) of I.emma 2.3, for each A; with 1<i<r, F(S)NA,=F(N3)N
A, |F(S)NA;|=|Nye(S): Ng| and S is semi-regular on A;,—(A; N F(S)).
Thus (ii) holds.

Since [O(G,), N*]<O(G,)NN® and N? is a non abelian simple group,
[O(G,), N”]=1 and so O(G,)<C®. By Lemma 2.1, C® is semi-regular on
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Q—{a}. Since G,>C? C?is 4-transitive on Q— {a}. Hence |C*|||Q|—1.
From this C?® is of odd order and hence C*<O(G,). Thus C*=0(G,).

As a Chevalley group, N” has a Borel subgroup Ny«(S). Let D be a
diagonal subgroup of Nya(S). Then Ny«(S)=DS. We now denote G,/C*
by G, By the properties of PSL(2, q), Sz(q) or PSU(3, q) ([14]), there exists
a field automorphism f such that (f>N®/N®is a Sylow 2-subgroup of G,/N°.
Since C*=0(G,), we may assume f is a 2-element in G,. Since DC*NN*=D
and SC*NN®=S, D and S are f-invariant. Clearly {f)> Sis a Sylow 2-sub-

group of G,. Since (fONN?=1,<{f>NS<C® and so {f>NS=1. Thus we
have the following.

(3.1) 'There exists a 2-element f in G, satisfying the following.
(i) facts on N® as a field automorphism of N®.

(ii) D and S are f-invariant and {f> N S=1.

(ii1) <f> Sis a Sylow 2-subgroup of G,,.

(3.2) NE/N®N N is cyclic of odd order.

Proof. By Lemma 2.1 and (iii) of (3.1), we may assume that C*=1. First
we claim that |S: SNNf|=1 or 2. Since S/S NNF=SNF/NP is isomorphic
to a 2-subgroup of the outer automorphism group of NP, S/SNNP?is cyclic.
But S/S’ is an elementary abelian 2-group and so S/S N Nf=1 or Z, and hence
|S: SNNB|=1 or 2.

To prove (3.2), it suffices to show that |S: SN NP|=+2. Assume that
|S: SANP|=2. Then as S and SN NP are normal subgroups of N3. Then
it follows from (i) of Lemma 2.5 that N3=S and |N§: N*NNFf|=2. Since a
Sylow 2-subgroup of G,/N® is cyclic and G ,s/N§=G ,sN*/N®, a Sylow 2-sub-
group of G,s/Nj is cyclic. As NgNB/N§is a normal subgroup of G,s/N§ of
order 2, I(G,s)SNgNE. Let f be as defined in (3.1Y. Then f3=1as N3N&
£N°® Let r€l({f)). Since 7€ N (S), S=N§ and |F(S)—{a}| is odd,
there exists ¥ such that yEF ()N F(N§g) and v+ «. Clearly Ng<N§, so that

8=N7. Therefore we may assume F(7)> 8 and TG s. By Corollary B1 of
[17] F(N§)=F(N%). From this F(T)DF(N3N8)=F(Nj) because T€I(G )
CNENE. So <T>N§£(<T>N‘”ﬂN(N‘;))F(Ng). Let D be as defined in (3.1).
Then DN ya(Ng) and D is T-invariant. Hence [D, 7] <({TON® NNV §))x¢ ND
ND=1. Therefore 7 centralizes D. Since 7 is a field automorphism of N* of
order 2 and D is a diagonal subgroup of N, this is a contradiction.

(3.3) The following hold.

(i) N*NNP=N"NN? for, v, S F(N*N NP) with y=3.

(i) G(F(S)=N(N"NN?).

(iif) Let M be a subgroup of N®NN? which contains S. Then F(M)=
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F(S) and Ng(M) is doubly transitive on F(.S).

(iv) Ceo(S)=2Z(S)x C".

(v) Let M be as defined in (iii) and suppose C*=1. Then O,(C4(M))*®
is a regular normal elementary abelian 2-subgroup of N4(M)7),

Proof. Let v, 8€F(N*NNP)with y=+8. We may assumea 7. Since G
is doubly transitive on Q, |[N*NN?|=|N®NN"|. By the choice of v, N*N N*
<N$§ and Nya(S)/S is cyclic. Hence N*NNP=N®NN". Similarly N'NN*
=N"NN?® Thus (i) holds.

Since Ng(N*NNP)KN(S), No(IN*NNF)KG(F(S)). Let x=G(F(S)).
Then *, B*€F(S) and F(S)=F(N§) by (ii) of (3.1). Hence a*, B3*€F(IN? N N?).
Therefore by (i) N* N NF=N®NN® and so k€N (N*NNP). Thus (ii) holds.

Suppose S<M<N®NNPF. If M*<G,p for some g=G,. Then M*<
N*NGp=Nj3. Hence M*=M because S<M and N§/S is cyclic of odd order.
By the Witt’s Theorem N, (M) is transitive on F(M)—{a}. Similarly Ngy(M)
is transitive on F(M)—{B}. We may assume |F(M)|>2. Hence NyM) is
doubly transitive on F(M). By (ii) of (3.1), F(M)=F(S). Thus (iii) holds.

We denote G,/C® by G,. Clearly Cs,(N*)=I1. Applying Lemma 2.6,
C5.(S)=2(S), hence C,(S)<Z(S)x C®. The converse implication is obvious.
Thus (iv) holds.

Suppose C?+1. Then since C® is semi-regular on Q— {a}, Co(M)FS >
(C?)FS£1. As No(M)*® is doubly transitive by (iii), Co(M)F is transitive.
By (iv), (C*)FOLCo (MY O <L(Z(S)XC*)F® and so Cgf( M)FSO=(C*)FS,
Hence C(M)F® is a Frobenius group and so Oy(C¢(M)")==1 because |F(S)|
is even. Since Co(M)p5)<(Z(S)X C®)p5y=2(S), Ox(C p((M)F)=0y(C(M))F®
and this is regular on F(S). As Ng(M)TO > 0y(Co(M))F®, Oy)(Co(M))FS must
be a regular normal elementary abelian 2-subgroup of No(M)*®). Thus (v) holds.

(3.4) There exists an involution ¢ such that cclg(£)NS+¢, a'=R and
F()NF(S)=¢. Set u=|Nye(S): Ng| and |S|=¢’. Then we have

() 1Q1=(g+1)ur+1.

(i) |Cs(t)l=v g, V/2q or g according as N*=PSL(2, q), Sz(q) or
PSU(3, g), respectively. Furthermore |Cy(t)| | |F(S)|=pr+1.

(iii) If p=1, then |Q|=6 and G=4; or S,.

(iv) Q)= |F(S)].- | G: NG(S)IZ-

Proof. Since [A;|=|N®: Ng|=|N®:Nya(S)| X |[Nya(S): Ng|=(¢'+1)u
and |Q|=|A;|r+1. Hence (i) holds.

Since G is doubly transitive on Q, there exists an involution ¢ such that
celg(t)NS+¢ and a'=B. Then ¢ normalizes Oy(N*NNP)=S. Claim F(¥)N
F(S)=¢. Suppose not and let yeF(t)NF(S). As S<N$§, SS<N®NN”by (i)
of (3.3). Letg be such that #&.S. Then t€N*NGy=N} where §=a*"" and
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hence t=N". Since ¢t normalizes S and {¢t>S <N?, t must be contained in .S,
a contradiction. Hence F(t)NF(S)=¢. From this Cg(#) acts semi-regularly
on F(t) and so |F(¢)]| is divisibly by |Cy(#)|. Since &S, |F(t)|=|F(¥)|=
| F(S)|, hence |Cs(2)| | | F(S)].

If N®*=PSL(2, q), then |Q,(S/S")|=|S|=¢q and by Lemma 1 of [7],
|Cs(8)| =V q. If N*=Sz(q), then |Q,(S/S’)|=¢. Since qis an odd power of
2 in this case, similarly |Cs(f)| >+/2¢q. If N*=PSU(3,9), then |Q,(S/S")|=¢
and so similarly |Cg(¢)| >¢. Thus we have (ii).

Suppose pw=1. Then N® is doubly transitive on each N®-orbit % {a}.
Applying Theorem D of [10], »=1. Therefore, | F(S)|=pr+1=2 and so by
(i) and (ii), g=4, N*=PSL(2, 4) and |Q|=6. Thus (iii) holds.

Since |Q]=|G: Ng(S)| X |Ng(S): Ngo(S)/|Go: Ngo(S)| and | Ga: N, (S)|
is odd, (iv) holds.

(3.5) Let 7 be the set of primes which divides g—1 and K a Hall z-sub-
group of N*NNP. If K=1, then C*=1.

Proof. Suppose K=+1and C*+1. Set I';=A,;NF(S) and A;=A; N F(K).
Then by (i) of (3.1) and Lemma 2.3, for each i with 1<i<r |A;|=2|T;|=
2|Nya(S): Ng, |=2|Nya(S): N§| and K is semi-regular on A;—A,;.

By (v) of (3.3), O,(C¢(KS))F® is a regular normal elementary abelian 2-sub-
group of N (KS)'®). Set E=0,(C4KS)). It follows from (iv) of (3.3) that
Er<(Z(S)X C*)p. Since F(Z(S))=F(S) by (ii) of (3.1) and (C*)z=1 by
(iii) of (3.1), (Z(S)X C*)p)=Z2(S). On the other hand Z(S)N C(K)=1 (cf. §3
of [2]) and so Ep)=1. Hence E=EF®). Since E is regular on F(S), | F(S)|
= |EF®| and so we have |F(S)|=|E|. Since KS is a subgroup of N§ which
contains S, by (ii) of (3.1) we have F(S)=F(KS). From this F(S) is a subset
of F(K). Hence |F(K)—F(S)| = |F(K)—{a}|—|F(S)— fa}| = 3} Al —
Z'l |T;|=rX |Nya(S): Ng|. Since r is odd, |F(K)—F(S)| is odd. On the
other hand E fixes F(K)—F(S) setwise because E centralizes S and K. There-
fore E fixes an element yEF(K)—F(S) as E is a 2-subgroup of G. Since

$/0(N7) is cyclic of odd order, K< NY and |K-O,(N%)| | |IN*NN"|, we have
K:0)(N9)<N*NN". Hence K<NYandso |Cy¥(K)]| is odd by (i) of Lemma
24. Since Cg(K)/Cy(K)C"=C;(K)N'C'IN'C”, a Sylow 2-subgroup of
Cs(K) is cyclic. But E<XCg (K) and hence |E|=|F(S)|=2=pr+1. From
this u=r=1. By (iii) of (3.4) C®=1, which is contrary to the assumption
C?#1. So (3.5) holds.

(3.6) Suppose K=1 and let .S, be a subgroup of S. If S;#<N(S) and
S 2<LS for some g, then $,<Z,XZ, and |S,||2|G,/N*|.

Proof. Set S,*=T. By (ii) of (3.1), T is semi-regular on Q—F(T). Claim
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F(T)NF(S)=¢. Suppose not and let yeF(T)NF(S). Then T<N% and
S<N% By(3.2) T<N*NNand S<N*NN?and so TS<N”. Since S is
a Sylow 2-subgroup of N?, TS=S. Hence T'<S, a contradiction. Thus
F(T)NF(S)=¢. From this T acts semi-regularly on F(S). By (ii) of (3.3), T
normalizes N®*NN®? and so T<N(S)NNgKS). By the Frattini argument
KST=Ngs(K)-KS=Ng(K)-KS, so that Ng(K)"S=TF® as F(S)=F(KS).
For an arbitrary y&F(S), Ng(K)y=N4(K)=Cs(K)=1, whence Ng(K)=
N5 (K)F®, Hence T=Ng4(K). Now N (K) acts on F(K)—F(S) and
|F(K)—F(S)| is odd. Hence Ny, (K) fixes some S&F(K)—F(S). Since
K<Njand |[K-O(N%)|| IN*NN?|, we have K<N®NN? as in the proof of
(3.5). By (i) of Lemma 2.4, Ny5(K)=D<{u>>D where u is an involution and D
is a cyclic subgroup of N® of odd order. Since N;y(K)/Nys(K)=Ngs(K)N?IN?
and a Sylow 2-subgroup of G;/N°® is cyclic, a Sylow 2-subgroup of Ngy(K) is
isomorphic to a subgroup of Z,x Z,, for some integer m. Since T<.S% and S
is of exponent at most 4, (3.6) follows immediately.

(3.7) One of the following holds.
(1) 1Q|=6 and G=A4;or S,.
(i) N®NNPisa /-group.

Proof. Let K be a Hall z-subgroup of N*N\ N*? and suppose G 7# 4, S;
and K+1. Lett be an involution as in (3.4) and Q a Sylow 2-subgroup of G
containing <t>S. Then Q[>S. For otherwise, let x&No(Ng(S))—Nq(S),
then S*= S and S*normalizes S. Applying (3.6) to S*, S=Z,X Z, and N*=
PSL(2, 4). Butsince K#1, [N*NN?|=12 and hence p=1. It follows from
(iii) of (3.4) that G=A4; or S, which is contrary to the assumption.

Since Q[>.S and all involutions in .S are conjugate in G, ¢ is conjugate to s
for an involution s€Z(Q)N.S. As s is an extremal element in O, there is an
element g&€G such that t*=s and (Co(2))*<Q. Set T=(Cs(t))!. If T<S, as
S is semi-regular on Q—F(S), F(S)*=F(S). Hence F(t)=F(s)* '=F(S), con-
trary to the choice of 2. Therefore T<S. Applying (3.6) again, Cs(t)<Z, X Z,,
|CS(8)] 12+ 1GIN"].

If N*=PSL(2, g), by (ii) of (3.4),v/ ¢ <|C2)|12+|G,/N®| and so g=2?
or 2*. As before, ¢g=&=2?, hence ¢=2*, N*=PSL(2,2*). Then r=1 because the
outer automorphism group of PSL(2, 2*) is cyclic of order 4. Since p=1 and
K=1, (g, |K|, |[F(K}|, |2])is (3, 5, 7, 52) or (5, 3, 11, 86) by (iv) of Lemma
2.3 and (i) of (3.4). By the Witt’s Theorem, N (K) is doubly transitive on
F(K). Hence |G| is divisible by |F(K)|. Since C®=1 by (3.5), we have
|G| 11Q| - |Aut(PSL(2,2*)|. Hence we can verify |F(K)| 4 |G| in both cases.
This is a contradiction.

If N®=Sz(qg), similarly we obtain /29 < |C(#)| |2|G,/N®|. But in this
case since the outer automorphism group of N is cyclic of odd order, |G,/N®|
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is odd and so \/2¢ <2. Hence ¢<2, a contracdiction.

If N®*=PSU(3, g), similarly ¢< |Cy(?)]| 12| G,/N®|. Hence ¢=2* N®=
PSU(3,2%). Asinthe first case, r=1and (g, | K|, | F(K)|, |Q])=(5, 3, 11, 326)
and so 11=|F(K)| | ||+ |Aut(PSU(3, 2%))|, a contradiction.

In (3.8)—(3.11), we shall prove that Ng=N*NNP. First we note the
following.

(3.8) If C*+1, N3=N"NN°®

Proof. Since N”is a nonabelian simple group, (3.8) follows immediately
form Lemma 2.1.

(3.9) Let p be a prime with p| |[N5: N*NNP| and assume the following:
(%) p*+3if N*=PSU/(3, 2") and 7 is odd.
Then p=p.

Proof. It follows from (3.8) that C*=1. Hence G,/N® is isomorphic to
a subgroup of the outer automorphism group of N® and so under the hypothesis
(%), a Sylow p-subgroup of G,/N® is normal and cyclic ([14]). Set =N¢(S)rs-
Since WIN3<G ,6/N3=GN*/N® a Sylow p-subgroup of W/Nj is normal
and cyclic. Hence all elements in W of order p is contained in N3N¥® because
INENG/NG|=|N&: NP NN®|=|Ng: N>*NNP?| and p||Ns: NN N*?|. Let
P be a Sylow p-subgroup of W. Then Q(P)<NZN&. Set O=Q(P). Since

sNEINg=NE&/N*NNP by (3.2) N3N&/Ng is cyclic and so Q’ is a cyclic
subgroup of N§, similarly O’<N®&. Hence Q’<N*NNP® and the p-rank of
0/Q’ is at most 2.

By the Frattini argument, N(S)=(N¢(S)NN(P))W. Let M be a normal
subgroup of Ng(S)NN(P) such that M*® is a minimal normal subgroup of
Ng(S)F®. We choose M so that its order is minimal. Since Ng(S)*® is doubly
transitive, M 7 is an elementary abelian 2-subgroup or a direct product of iso-
morphic non abelian simple groups. As Q’ is cyclic, M/Cy(Q’) is abelian and
its Sylow 2-subgroup is cyclic. Hence by the minimality of M, M=C\,(Q").

Set @Q=0/Q’. We argue that C,(Q)<W. To prove this, it suffices to
show that M #C(Q). If M=C,(Q), M stabilizes the normal series Q[>Q'[>1
and hence O?(M) centralizes P by Theorem 5.3.2 and Theorem 5.3.1 of [6].
Obviously O?(M)<< W and so O?(M)=M by the minimality of M. Therefore
M centralizes P. Let x be an element of M such that a*=g0, then PNN§<
N®*NN*=N®NNP. But since PNN% is a Sylow p-subgroup of N§,
PN ING: N*NNP®|, a contradiction.

Set C=Cy(2(Q)). Then M/C <GL(2, p) because the p-rank of @ is at
most 2. By the minimality of M, M/C <SL(2, p). On the other hand O*(C)<
Cu(Q)<W. Therefore CF® is a normal p-subgroup of N(S)"®. Since
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p=*2, CF®=1and so C<W. Hence M*® is isomorphic to a homomorphic
image of a subgroup of SL(2, p).

Hence if M¥® is an elementary abelian 2-group, we have M*®) =27,X Z,
and |F(S)|=4. From (ii) and (iii) of (3.4), p=3 and r=1. By (ii) of (3.4),
N®=PSL(2, 4), PSL(2,16) or PSU(3, 4) and hence |G,: N®|=1, 2 or 4,
which is contrary to p| |[N&: NENN®|=|NEN®IN®|.

If M7® is a direct product of isomorphic non abelian simple groups by
Dickson’s Theorem (Hauptsatz 8.27 [8]) M*®=PSL(2, p) with p>5 or As.
Claim M*®£4,. Suppose MT®)=A;, then Ng(S)F® =45 or S5 and so
| F(S)| =6, p=>5and r=1. By (ii) of (3.4), we obtain ¢g=2% and N*=PSL(2, 4).
Hence 54 |Nya(S): Ng|=p =5, a contradiction. Thus MF®=PSL(2, p)
with p>5. Hence |Ny(S)F®: MF®|=1or 2. From this as |F(S)| is even,
MF® is also doubly transitive. Again by Dickson’s Theorem, we know all
maximal subgroups of PSL(2, p) with p>5 and hence PSL(2, p) with p>5 has
a unique doubly transitive permutation representation of even degree, which is
the known one. From this |F(S)|=p-+1. Since |F(S)|=pr+1=p+1, we
obtain p=p.

(3.10) If N*=PSU(3, q) and # is odd, then 3 ¥ |N%: N*NN?|.

Proof. By (3.8), we may assume C*=1. Set W=N¢(S)rs and let Pbe a
Sylow 3-subgroup of W. As G /N3j=GsN*/N*<G,/N® a Sylow 3-sub-
group of W/Nj is an abelian 3-group of rank at most 2, so that P’<N§ and
similarly P’<N¥. Hence P’<N®NNP and P’ is cyclic.

Similarly as in the proof of (3.9) we can choose a normal subgroup M of
Ng(S)NN(P). Denote P/P'by P. 'Then Qy(P) is an elementary abelian 3-sub-
group of rank at most 3. Then as in the proof of (3.9), M centralizes P’ and
C u(Qu(P)) is contained in W. Hence M/C < SL(3, 3) where C=C,(Q'(P)).

If MF® is an elementary abelian 2-group, by the structure of SL(3, 3),
MF®=Z,xZ, and so |F(S)|=4, p=3 and r=1. Let p,==. Since n is odd,
3&n. Therefore p,==3. By (3.7), p ¥ IN®*NNP|. Hence p,| |[N§: N*NN?|
and applying (3.9) to p;, we have p=p,=3, a contradiction.

If M*® is a direct product of isomorphic non abelian simple groups, we
have M¥*®) == SL(3, 3) because every proper subgroup of SL(3, 3) is solvable.
Hence |Ng(S)F®: MF®)|=1 or 2 and so MF® is also doubly transitive. By
(i1) of (3.1), Nya(S)r)=Ng. Therefore, Nya(S)F® is cyclic of order p.
Since |SL(3, 3)|=2'3°13, p=3 or 13. If p=3, applying (3.7) and (3.9), = is
empty, a contradiction. If p=13, then (M) > N ya(S)F)=Z;;. Hence
(M ,)F® is isomorphic to the normalizer of a Sylow 13-subgroup in SL(3, 3),
while this permutation representation of SL(3, 3) is not doubly transitive. Thus
(3.10) is proved.

(3.11) Ni=N°nN®.
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Proof. Suppose not and let p be a prime with p| |[N§: N*NN?|. Then
it follows from (3.7), (3.9) and (3.10) that g—1=p* for some integer e>2. Ife
is even, p°=1 (mod 4), while g—1=—1 (mod 4), a contradiction. If e is odd,
2"=q=c(p-+1) where c=p*"'—p* 24+ —p+1. We note that e>3. Since ¢ is
odd, ¢c=1, a contradiction. Thus N4=N*NNS.

(3.12) Suppose N®=PSL(2, q) or Sz(q) and G# A4, Se. Then

(i) Ng=N®NN*isa Sylow 2-subgroup of N°.

(i) If N*=PSL(2, q), then |F(S)|=q and |Q|=¢.

(i) If N®=Sz(g), then |F(S)|=¢’ and |Q|=¢"

(iv) There is an element x in G such that S=S%, [S, $*]=1 and F(S)N
F(S"=¢.

Proof. By assumption, N ya(S)=(¢—1)¢* where |S|=¢’. Hence (i) fol-
lows immediately from (3.7) and (3.11).

We now argue that |F(S)| is a power of 2. By (v) of (3.3), it suffices to
consider the case C*=1. Applying (ii) of (3.4), ¢/ |F(S)|%. By (i), =
|Nya(S): N3|=q—1 and so |F(S)|=pr+1=(q—1)r+1. Hence q|(r—1),
while 7 is a divisor of n where 2"=q because C*=1 and G,/N® is isomorphic
to a subgroup of the outer automorphism group of N® Therefore r=1 and
| F(S)|=4q, a power of 2.

Hence by (iv) of (3.4), |F(S)|=(¢q—1)r+1||Q|=(¢’+1)(g—1)r+1 and so
ql(g—1)r+1 and (¢—1)yr+1|¢. From this, (7, r)=(1, 1), (2, 1) or (2, g-+1).
If (z,7)=(1,1) or (2, ¢+1), we obtain (ii) or (iii), respectively. We argue
(¢, )*=(2, 1). Suppose (i, 7)=(2, 1). Then N*=Sz2(q), |F(S)|=q and |Q|=
¢(#—q+1). Inthis case, since |G,/C*N?®| is odd, we have I(G,g)=I(N* N NP).
From this, all involutions in a fixed Sylow 2-subgroup of G,s have a common
fixed point set. By [12], G has a regular normal subgroup and so ¢¢—g+1=1,
a contradiction.

Since by (iv) of (3.4) |Q|=|F(S)| X |G: Ng(S)|3 |G: N(S)|, is divisible
by 2. Let S; be a Sylow 2-subgroup of N4(S) and S, a Sylow 2-subgroup
of Ng(S,). Since 2||G: Ng(S)|, S,*S,. Let x&S,—S,, then S=%S* and
S>>, S*. Suppose YEF(S)NF(S*). Then by (i), SS*<N” and so S=S57,
a contradiction. 'Therefore F(S)NF(S*)=¢ and hence [S, S*]=1 by (ii) of
(3.1). Thus (iii) holds.

(3.13) 'The following hold.

() N*sS3(g)

(ii) Suppose N*=PSL(2, q) and let S* be as defined in (3.12). Then
Oy(C¢(S)) is a Sylow 2-subgroup of C4(S) and Oy(C¢(8S))=Sx S*.

Proof. Suppose N®*=PSL(2, q) or Sz(g). If C*=%1, Oy(Cy(S))F® is a
regular normal subgroup of N4(S)*® by (v) of (3.3). If C®=1, by (iv) of (3.3)
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Ceo(S)=2Z(S) and so Cy(S)ry=2Z(S). By (3.12), Cx(S)yF®>(S*)F) =1, and
|F(S)|=¢'=18S| and so C¢(S)=Z(S)x S*. Hence in both cases O,(C¢(S)) is
regular on F(S).

Since by (iv) of (3.3) Cu(S)rs)=Clag(S)=2Z(S) and by (ii), (iii) of (3.12)
¢=|S*|=F|(S)|=|C4(S): Ccu(S)|, we have O,(C(S))=Z(S)x S* and this
is a Sylow 2-subgroup of Cg(S). Since Z(Oy(C4(S)))F=Z(S*)F®, N4(S)D>
Z(0,(C¢(S))) and |F(S)|=I|S]|, |Z(S*)F®|=|S|. Hence |Z(S)|=|S| and
S is abelian. So (3.13) follows.

(3.14) Suppose N®*=PSL(2, q) and G# Ag, S;. Put E= 0,(C¢(S))=
SXS*, W={T|Tecclz(S), T<E}. Then we have the following:
(i) |W|=qand Q= glJF( T) where T runs over every element of W.

(it) Ng(E)Neclg(s)<E for all sI(S).
(iii) If E NE%Necly(s)+= ¢ for some gEG, then geN(E).

Proof. Let D be a Hall 2’-subgroup of Ny«(S). Then D=Z,_, and by (i)
of (3.12) D is semi-regular on Q— {a}. If d €Ny(S*), {d> acts semi-regularly
on F(S%) since a £ F(S*). Hence the order of d divides | F(S)|. But |F(S)|=¢
by (ii) of (3.12), hence |<d>||(g, g—1)=1 and so d=1. Therefore N(S*)=1.
Hence |{S*|d€D}|=q¢—1 and {S*|d€D}CW as D normalizes E. If
S=S% for some deD, S*=S8"=S, a contradiction. Hence |W|>gq. If
there exist ), S,& W such that S,=+S, and F(S,)NF(S;).+¢ Let yEF(S;)N
F(S,;). Then S,, S,< N by (i) of (3.12) and s0 <S,, S;>=N?, which is contrary
to {8y, S;><E. Hence F(S,)NF(S,)=¢ for S;, S,€W such that S;=+S,.
Since |F(S)|=g¢ and |Q|=¢ by (ii) of (3.12), we have |W|<gq. Thus (i)
holds.

Let s€I(S) and suppose s*EN4(E)—E for some gG. Then s#*€N"”
where Y=a¥. By (i) we choose T €W so that yeF(T). Then {s*, T>=N" as
s*& T and T is a Sylow 2-subgroup of N”. On the other hand <{s*, T)O<<s*DE,
which is a 2-subgroup of Ng(E), a contradiction. Thus (ii) holds.

Let 1t ENE*Ncelg(s) for geG and s€I(S). Then there are $;<E
and S,<E*® such that t€S,N .S, and S, gS,g'eW. Since F(S))=F(t)=F(S,)
by (ii) of (3.1), {8y, S;>SXNYNN°?for v, S€F(t). Hence S,=.S; by (i) of (3.12).
Applying (ii) of (3.13) to S, we obtain E=0,(C¢(S,))=0,(C¢(S:))=E*. Thus
(iii) holds.

(3.15) Suppose N®*=PSL(2, q) and G% 4,, Sg. Then G has a regular
normal subgroup.

Proof. We count the set {(v, T)|veF(T), T ccl(S)} in two ways and
we have ¢X(g+1)=|cclz(S)| X g by (3.12). Hence |ccl;(S)|=g(g+1). On
the other hand we have |ccl;(S)|=|G: Ng(E)| X ¢ by (i), (ii) of (3.14). From
this, |G: Ny(E)|=q+1.
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Set I'=ccl;(E). We now consider the action of G on T'. By definition, G
is transitive on T" and N(E) is a stabilizer of EET. We argue that S is regular
on '—{E}. Suppose not and let 1%s&.S such that s"'E®s= E* for some
E*cT—{E}. Then gsgT'&N4(E). By (ii) of (3.14), gsgT' € E and hence
gsg"'eENgEg . By (iii) of (3.14), E=gEg~*. Hence E=E*, a contradiction.
Since S<N4(E)) and |S|=|T'|—1, Sis regular on T—{E} and GT is doubly
transitive. Since S is abelian and regular on I'— {E}, GTNC(ST)=ST. From
this, ET=ST because £>S and E is abelian. Therefore Gp+1. Set M=G;.
Suppose M NN®=+1, then M>N*as N® is simple. Hence N*<Ny(E) and
so N® normalizes ENG,=S, a contradiction. Thus MNN®=1. Hence
M L C(N*)=C?, so that M,=1 or M ,=+1 and M is a Frobenius group on Q
by (iii) of (3.1). In both cases, G has a regular normal subgroup.

We now consider the case that N*=PSU(3, ¢). By (3.7) and (3.11),

8=US where U is a Hall 2’-subgroup of N§ and U<Z,,,, with é=(g+1, 3).
As in the proof of (3.1), we set Nya(S)=DS and D=V x K. Here V=2Z
and K=Z,_,. Since Nya(S)>N§g, we may assume U=V N N§.

(3.16) Suppose N*=PSU(3, q). Then Ni=N®NN?*is a Sylow 2-sub-
group of N®. In particular p=¢*—1/¢.

Proof. Suppose not and U=1. If U <G, for g=G, U*<N* NN
=N*NN*NNF*NNP<N°NNP. Hence Uis conjugate to U? in N* N NP<G .
By the Witt’s Theorem Ng(U) is doubly transitive on F(U). By (ii) of Lemma
24, Nyo(U)=N xV where N=PSL(2,q). Hence N (U)"¥) satisfies the
assumption of Theorem 1. By (i) of (3.1), the number of fixed points of U
on A, is constant for each N®-orbit A; and so |F(U)|=|F(U)NA;|xr+1
=(|Nya(U)| X |Ng: Nyag(U)|/INgl) Xr+1=(IPSL(2,q)| X | V|[1Z(S)| X | U1)
Xr+1=(—1)xXrx |V: U|+1. Hence |F(U)| is even and |F(U)|#6. Ap-
plying (3.12) to Ny(U) ™, we obtain |F(U)|=¢, |F(U)NF(Z(S))|=4q. Hence
r=1, U=V, N3g=VS and |F(V)|=¢’ and so p=|Nya(S): N3|=¢—1. Since
by (ii) of (3.1) F(U)2F(S), |F(Z(S))|=|F(S)|=gq. Furthermore by (3.15),
Ng(V)*™) has a regular normal elementary abelian 2-subgroup, say EF™,
Clearly EFW <K Cy(V)*™. Hence we may assume that E is a 2-subgroup of
Cy(V). Put P=Egy. Then |E|=|P|¢. By (i) of (3.4), |1Q|=¢"—¢+¢
and so 2¢ V' |Q—F(V)|. Hence there exists yEQ—F(V) such that | E: Ey| <gq.
Let T be a Sylow 2-subgroup of Gy containing Ey. Since Ey/EyNT NN"is
isomorphic to a subgroup of T/T N N" and T/T N N*=TN?/N'< G4/N?,
EyJEyNT NN"is cyclic. If EyNTNN'=1, Ey is cyclicand so |Ey/EyNP|<2.
Then |EyNP|>|Ey|[2=|P|q/2>|P|, a contradiction. Hence E4,NT NN
*+1. Let 2€EyNT NN" with z=41. Since |F(2)|=¢<|F(P)|, 2€E and
EF™ is regular, we have F(2) N F(V)=¢. Hence V acts semi-regularly on F(z).
From this, g= | F(2)|=(g+1/€) X k for some integer k>1. Since g is a power
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of 2, g+1/€=1, a contradiction.

(3.17) Suppose N®*=PSU(3, q). Then the following hold.

@ 19|=¢—¢+¢, |F(S)|=¢"
(ii) Ng(S)F® has a regular normal subgroup.

Proof. If C®=1, (ii) follows from (v) of (3.3) and so |F(S)]| is a power of
2. By (3.4)and (3.16), | F(S)|=(¢*—1)r/e+1 and (@—1)r/e+1|(¢*+1)(@—1)r/
&+1, hence (¢*—1)r/é+1|¢®. By calculation, we obtain r=&. So (i) follows.

We now assume C*=1. By (ii) of (3.4), ¢| | F(S)|=(¢"—1)r/¢é+1, so that
r=gk-€ for an integer k>0. Since C®=1, r is a divisor of |G,/N®|. Hence
7|2n€, so that r|n€. Therefore n€>r=qgk++£=2"xk+&. Hence k=0 and r=€.
From this (i) follows.

Let f be a field automorphism as defined in (3.1)" and let 7 be a Sylow
2-subgroup of Ng(.S) which contains {f>S. Since |Ng(S): Ngo(S)|=|F(S)|
=¢* by (i), |T|=2"¢* where |<{f>|=2". Since T[>S and Q—F(S)=¢*(¢—1)
there exists YEQ—F(S) such that |T: Ty|=¢? hence |Ty|=2"¢* and T=STy.
Set W=TyNN". Then W is semi-regular on F(S) because y€Q—F(S). In
particular |W| < |F(S)|=¢*. We note that |T,N?/N?|<2". Since Ty/W=
TyN'|N?, we have |W|>¢*. Hence |W|=¢ and W is regular on F(S).
Moreover |Ty: W |=2".

Since Ngys(S)/S==N;ag(S)N®N® by (3.16), N,e(S)F is isomorphic to a
homomorphic image of a subgroup of the outer automorphism group of N°.
Hence N, (S)"® is abelian when 7 is even or f=1. In this case by [1], (ii)
holds because | F(S)| =¢*. We now assume # is odd and |{f>|=2"=2. Since
T=8Tyand |Ty: W|=2, |TF®: WF®|=2. Claim ff®=%1. For otherwise
FEN(S)ws and [ f, D]SN(S)ps)N D=1 as D is f-invariant and D<N(S).
But since f==1, f does not centralize D. Therefore fFS%1. As feG,,
[FOEWFS),  Hence TFO=fYrOWFO>WFS,  Since WF® is regular,
fF® is not conjugate to any element in WF®, Hence fF is not contained in
O(Ng(S)F®) by Lemma 2 of [3]. Since {f*®) is a Sylow 2-subgroup of
(N(S)FS) 8, O(N(S)F)),g is of odd order. As before (N(S)F®),p is iso-
morphic to a homomorphic image of a subgroup of the outer automorphism
group of N®, O*(Ny(S)"®),s is abelian. Again by [1], O*(N(S)F®) has a
regular normal subgroup as | F(S)|=¢?. Thus (ii) also holds in this case

(3.18) N®#£PSU(3, g).

Proof. Let fbeasin(3.1). By the same argument as in the proof of (ii) of
(3.17), we have I( f D) EN(S)r(s) and so S is a Sylow 2-subgroup of N¢(.S)xs).
By (ii) of (3.17), there is a normal subgroup L of N(S) such that
L>Ng(S)rs) and LFS is an elementary abelian 2-subgroup of N¢(S)F®. Let
T be a Sylow 2-subgroup of < f >L which contains f. Set E=T NL. Then E
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is a Sylow 2-subgroup of L. Since S is a unique Sylow 2-subgroup of N¢(S)zs),
E[S=LF® is an elementary abelian 2-subgroup of order ¢>. As {f>NE=
ONENG,=f>NS=1, T={fDE>E.

Since T[>S and |Q—F(S)|=¢¥(¢—1) by (i) of (3.17), we can choose
vy=Q—F(S) such that |T: Ty|=¢®. Hence |Ty|=2"¢* where 2" is the order
of f. Since Ty/TyNC'N'=TyN*C?/C*N" is cyclic of order at most 2", | TyN
C'N?|=|TyNN"| >¢*. Moreover TyNN/TyNN"NE=(TyNN")E|E is cyclic
of order at most 2", we have |TyNNYNE|>¢2". Since the order of fis a
divisor of 2n, we have | TyNNYNE|>¢(2"/2") >4.

If TyNN'NE contains no element of order 4, then TyNN'NE is an
elementary abelian 2-subgroup of N? of order ¢ and hence TyNNY/TyNN'NE
is an elementary abelian 2-groap. Therefore |[(TyNAN")E/E|<2 and so
|TyN NN E| >¢%2>q, a contradiction.

If TyNN"NE contains an element x of order 4, then 1#x*€ S because
E/S is an elementary abelian 2-group. Since ¥ & F(x?), by (ii) of (3.1) we have
v F(S), which is contrary to yEQ—F(S). Thus (3.18) holds.

In this section we have proved the following:

Theorem 2. Suppose G2 satisfies the hypothesis of Theorem 1 and |Q| is
even. Then N*7 Sz(q), PSU(3, q), N*=PSL(2, q) and either

(i) G®=Adgor Sgor

(i) 1Q|=¢, |Ngl=|N*NNP|=q and G has a regular normal subgroup.

4. The case |Q| is odd

Let G be a doubly transitive permutation group on Q of odd degree satis-
fying the assumption of Theorem 1. By Theorem A of [10] and Theorem B of
[11], we may assume C¢(N®)=1. Hence G,/N® is isomorphic to a subgroup of
the outer automorphism group of N®. Let {a}, A}, A, -++, A, be the set of all
N*®-orbits on Q. Clearly  is a divisor of |G,/N®|.

From now on we assume that G has no regular normal subgroup and prove
that G=PSL(2, 11). Let M be a minimal normal subgroup of G. Then by
assumption, M ,=1.

(4.1) M is simple and N*<M.

Proof. Since G is doubly transitive and M,=1, M is a simple group (cf.
Exercise 12.4 of [16]). If N*M, then M,NN®=1 as N” is simple and hence
M ,<Cy(N*)=1, a contradiction. Thus N*<M.

As in (3.1), there is a 2-element f of M, such that f acts on N® as a field
automorphism, {f >SS, {f>NS=1and {f>S is a Sylow 2-subgroup of M,,,
where N ya(S)=DS is a Borel subgroup of N® S is a unipotent subgroup of
N?, and D is a diagonal subgroup of N”.
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(4.2) If f=1, then I(N§)EN"NN? for B=*a.

Proof. Suppose f#1 and 7€I({f)). Since M is a simple group with a
Sylow 2-subgroup {f>S, *€S for some g&M, by Lemma 2 of [3]. Set
y=a®"'. Then T€N? and clearly Tee N’ N N®, so that I(NL)EN'NN® By
the transitivity of G, we obtain I(N§)EN*N NP® for any B=*a.

(4.3) Suppose f#=1. Then N*#£Sz(q), PSU(3, g).

Proof. If N®=Sz2(q), |G,/N”| is odd and hence f=1, a contradiction.
Therefore N Sz(q).

Suppose N*=PSU(3, q) and let T€I({f)). Let s€Z([f>S)NI(S). As
in the proof of (4.2), ccly (T)NS=#¢. Then since s is an extremal element there
is g&M such that 7=y and (C¢,s(7))¥*<{f>S. Since 7 is a field automorphism
of order 2, Z(S)<C¢ps(7). Put B=a*"'. Then TN’ and Z(S)<Nj. By
(4.2) Z(S)XN®NN? and so |Z(S): Z(S)NN*NNP|=2 because Z(S)/Z(S)N
NNNP=Z(S)N*NNPF)IN*NNP<NE/N*NNP=NgNP?/N®<Gg/N°®.

Claim Ng<Nya(S). Suppose not. Then NgNNy«(S)is a strongly em-
bedded subgroup of N§. Since |N5/N*NNP?| is even and N§>Z(S)>2Z, X Z,,
by Bender’s Theorem ([2]), Ng/N*NN®is not solvable, while N§/N® N N® =
N$NP|NP is solvable, a contradiction.

Let V, be a 7-invariant Hall 2’-subgroup of N3. Then since V; normalizes
Q(O(N3)=Z(S), V, centralizes Z(S)/Z(S)NN*NNP=Z, Hence by (i) of
Lemma 2.4, V,<Z ., and so [V, Z(S)]=1 by (ii) of Lemma 2.4. Therefore
I(N§)SZ(N%). Similarly I(N8)SZ(N%). Since T€I(N8), we have NN NP
<C(")NNya(S). Since 7 is a field automorphism of N® of order 2, C(7)N
Nya(S)=KZ(S) where K is a cyclic subgroup of Ny«(S)of order 4—1. Hence
NNN<KZ(S)NNg=Z(S)K NV,0,(Ng))=Z(S) and so | Z(S): N*N NP| =2.

We claim that F(2)=F(Z(S)) for x€I(N§g). Let A; be an arbitrary N*-
orbit on Q—{a}. Since all elementary abelian 2-subgroups of N of order ¢
are conjugate in N?, there exists Y€ A,; with Z(S)<Nj. Hence by Lemma 2.2,
|F(5) N Al = | Cua(2)| X |Z(S) |/ IN% —(g+1/€) x ¢q— 1)/ N3] for s I(N).
On the other hand |F(Z(S))NA;|=|Nys(Z(S))|/IN%|=(¢—1/€)x ¢||NZ|.
Hence F(2)NA;=F(Z(S))NA; and so F(2)=F(Z(S)). In particular F(7)=
F(Z(S)) because TI(N*) and N*NN°®=+1.

We claim that (V))pzsn=1. Set S;=0,(N§g). Let deV, with d=+1, A,
be a N®-orbit which contains B and let D, be a 7-invariant Hall 2’-subgroup
of Ny«(S) which contains V;. Put X=<d)>Z(S). Then by Lemma 2.2,
|F(X)N Al = [ Nyx(X)| IN%: Nug(X)|/ N3 = |DZ(S) | IN5: V,Z(S)|/IN3]
=(¢—1/&)|S,|[/INg| = |F(Z(S))NA;|/] S: S,|. Since S;/N*NN? is cyclic
and N*NNP<Z(S), S%S,. Therefore F(X)=F(Z(S)) and so (V) pzsn=1.

Since Dy <Nya(Z(S)) and 7ENgo(Z(S))rczsns [T Di] <No(Z(S))rczisn N Dy
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=(V)rzsn=1. Hence D;<C(T)N Ny«(S)= KZ(S) with K=Z,_,, which is
contrary to |D,|=(¢*—1)/6. So (4.3) is proved.

(4.4) Suppose N®*=PSL(2, q) and f 1. Then the following hold.

(i) N§isa 2-subgroup of N®and |N§: N*NNP|=2.

(i) Let r€I({f>). Then for some B+a, TeNE—N3, |CyT)|=V ¢
and NN NP<Cy(T)<Ns.

Proof. Asin the proof of (4.3), there exist s€I(S) and g&M such that
m8=s and (C¢ps(T))! < DS. Put B=a#"'. Then TENE—NE and Cy(7)<NE.
Since 7 is a field automorphism of N® of order 2, |C«(7)|=+/¢. Claim
NE<Nyo(S). If g%22, as C((1)< N§, a Sylow 2-subgroup of N” is non cyclic.
Hence as in the proof of (4.3), Ng<Ny«(S). If q=22, N®*~=A4; and so {TON*
=M,=G,=Ss. In particular r=1. Hence N3<N,a«(S). For otherwise
INgl=6or 10 and |Q|=11 or 7, respectively. By [13], such groups do not
exist. Thus in both cases Ng<Nya(S). On the other hand Nj/N*N NP is
cyclic of even order. By (i) of Lemma 2.4, N§ must be an abelian 2-subgroup
of N*and |N§: N°NNP|=2. Since N6 =N$% and TN, we obtain NN N*?
<Cg). Thus (i) and (ii) hold.

(4.5) Suppose N®*=PSL(2, q) and f==1. Let T=N3N%. Then
(i) Ng(T) is doubly transitive on F(T).
(i) Nyeo(T)=S and Sy=Nj for every vy EF(T).

Proof. Since G,s/Nj is cyclic and by (i) of (4.4) TINs=2Z,, I(G ,6)<T.
Clearly {I(G,p)>=T. Hence by the Witt’s Theorem, we have (i).

Let K, be a Hall 2’-subgroup of Nye(T). Then K, normalizes T NN
=Nj. Since TIN§g=Z,, [K,, TIN§]=1 and so T=CHK,)N§. If K,=*1, by
(i) of Lemma 2.4 C(K;)=1. Hence K,=1 and Nya(T)=S.

Let y€F(T)—{a}. Then obviously N3<Sy,<NY. Since G is doubly
transitive on Q, |Ng|=|N%|, so that Ng=S8,=N97. Thus (ii) holds.

(4.6) Suppose N*=PSL(2, gq) and f=%=1. Put ¢g=2". Then
(i) (n IN3)=(2,2), (2, 2%, (4, 2% or (6, 2%).
() T (n, IN31)=(6, 29, No(T)"® =4,

Proof. |G,/N®||nand f=1, n is even and so we set n=2m. By (ii) of
(4.4), ING|=2""* where £&=0or 1. Since N,,(T)/T < Gop/ T==(G s/ N3)/(T|N§)
and G p/NE=G gN®IN*<G,IN®, Ng,(T)"™ is cyclic and |Ng,o(T) | |m.
By (4.5), No(T)*™ is doubly transitive and S¥™ =~ S/N§ is semi-regular on
F(T)—{a}. Since Ng,(T)"™ is cyclic, by [1] Ny(T)" ™ =PSL(2, q,) where
¢ is a power of 2 or N(T)F™ has a regular normal subgroup. If (n, |[Ng|)
*(2, 2), (2, 2%) and (4, 2%), ST™ contains a four-group, which is semi-regular
on F(T)—{a}. Hence Ny(T)"™ contains no regular normal subgroup and so
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N(T)F®=PSL(2, q). Since Nyao(T)"D =S8N =S|N§ 'and N (T)" >
Nyo(T)F®, q=2""*>2. Hence 2"*—1=|Ng,(T)"™|, so that 2"*—1|m.
From this, é&=1, m=3 and Ny(T)"™ =4;. Thus (4.6) holds.

“7) f=1.

Proof. Suppose f=1. Then by (4.3) and (4.6), it suffices to consider the
case (i) of (4.6).

If N*=PSL(2,2%) and |N§|=2, G,=NEN®*=Aut(N")=S,. Hence
r=1. Therefore |Q|=1+|N": Nj|=31 and |G|=|Q||G,|=2%-3-5.31.
By the Sylow’s theorem, G has a regular normal subgroup of order 31. But this
is a contradiction as G > N°.

If N*=PSL(2,2?) and |Nj|=2* as above G,=NEN® and hence r=1.
From this |Q|=1+|N®: N3| =16, a contradiction.

If N*=PSL(2, 2*) and [N§|=2% |Aut(N®): N*|=4 and so |G,: NEN*®|
<2. Hence r=1or 2 and [Q]|=511 or 1021 respectively. By Lemma 2.2, for
seNg— {1} | F(s)— {a} | =14 or 28 respectively. Let 7 be a field automorphism
of N of order 2 as in (4.4). Then Cy«(T)=PSL(2, 2%) and |F(7)— {a} |=14
or 28 since 7T is conjugate to s. From this an element x of Cy«(7) of order 5 fixes
at least four points in Q. Since 5|Q], <x> is a Sylow 5-subgroup of G and
so ¥*N°® for some gG. But F(xf)={a} because |[N§|=|N§|=2? for all
v#a. Therefore |F(x)| =1, which is contrary to | F(x)| >4.

If N®*=PSL(2,2°) and |N§|=2%, by (ii) of (4.6), |Ng(T)"™|=3.
Hence 3| |Gup: N§|. Since |Gups: N§|=|GaN®: N®| and |[NEN®: N®| =2
by (i) of (4.4), we have G,sN*=G,~=Aut(N®). In particular r=1 and [Q|
=16381. Moreover |F(s)—{a}|=60. As before |F(7)—{a}|=060, Cya(7)
=~ PSL(2, 2°) and an element of C ya(7) of order 7 fixes at least five points. Bat
since 74| Q] and 7 ¥ | N3|, every element of order 7 fixes exactly one point, a
contradiction.

(4.8) G®*=PSL(2, 11), |Q|=11.

Proof. By (4.7), |M,: N®| is odd and so a Sylow 2-subgroup of N® is
also that of M. By [4], [5] and [15], it suffices to consider the following cases:

(i) N®=PSL(2, 2%), M=PSL(2, ¢,), ;=3 or 5 (mod 8), ¢,>3.

(i) N®=PSL(2, 2%), Cp(t)=2Z,x PSL(2, 3*"*"), teI(M) (m>1).

(i) N®=PSL(2, 2%), M=],, the smallest Janko group.

. First we consider the case (i). If |N3| is odd, every involution in M has

a unique fixed point and so M =PSL(2, 5) by [2]. But then M==N", a contra-
diction. Hence |Ng|=2, 4, 6, 10 or 12. On the other hand =1 or 2 because
|Aut(N®): N®|=2. From this |Q]|=14|N®: Ng|r=7, 11, 13, 21, 31 or 61.
Since M=PSL(2, ¢) and |M |=|Q||N?|, we get |Q|=11, |[Nj| =6 and
M=PSL(2, 11). Thus |Q|=11 and G=PSL(2, 11).
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Next we consider the case (ii). As in the case (i), |Ng| is even. Let
teIl(N%). Since |M,: N® =1 or 3, (M,)= {t!|gEM.} and so Cy(t) is
transitive on F(f). Hence |F(£)| = |Cult): Cyu,(t)|. Since |Cy,(t)| =
| Cu(O)N®: N®| | Cye(t)], | F(£)] = (3241 —1)32m+Y(32m+14-1)/24. Since | My: N®|
=1lor 3, r=1 or 3. Therefore |F(#)|=1+(|Cye(?)| | I(N3)|/INg|)r<1438
x 3=25. Hence 25>(3?"*'—1)3/24 and so 3*"*'<11, a contradiction.

Finally we consider the case (iii). Since N®==PSL(2, 2°%), 3*)||N®|. But
Y|M|l=|]J,|=233-7-11-19, a contradiction.
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