ON DOUBLY TRANSITIVE PERMUTATION GROUPS

Yutaka HIRAMINE

(Received April 22, 1977)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. Using the notation of [9], we denote a normal subgroup of G_{a} by N^{α}. Then, for $\beta \in \Omega$ other, we define N^{β} so that $g^{-1} N^{\beta} g=N^{\gamma}$ where $\gamma=\beta^{g}$.

In this paper we shall prove the following:
Theorem 1. Let G be a doubly transitive permutation group on a finite set Ω. Suppose that α is an element of Ω. If G_{a} has a normal simple subgroup N^{a} which is isomorphic to $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ with $q=2^{n}, n \geq 2$, then one of the following holds:
(i) $|\Omega|=6, G \simeq A_{6}$ or S_{6} and $N^{a} \simeq P S L(2,4)$.
(ii) $|\Omega|=11, G \simeq P S L(2,11)$ and $N^{a} \simeq P S L(2,4)$.
(iii) G has a regular normal subgroup.

We introduce some notations: Let G be a permutation group on Ω. For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X)=\left\{\alpha \in \Omega \mid \alpha^{x}=\alpha\right.$ for all $\left.x \in X\right\}, X(\Delta)=\{x \in X \mid$ $\left.\Delta^{x}=\Delta\right\}, X_{\Delta}=\left\{x \in X \mid \alpha^{x}=\alpha\right.$ for all $\left.\alpha \in \Delta\right\}$ and $X^{\Delta}=X(\Delta) / X_{\Delta}$, the restriction of X on Δ. If p is a prime, we denote by $O^{p}(X)$, the subgroup of X generated by all p^{\prime}-elements in X. Other notations are standard ([6], [16]).

2. Preliminary results

Lemma 2.1. Let G be a doubly transitive permutation group on Ω of even degree and N^{∞} a nonabelian simple normal subgroup of G_{a} with $\alpha \in \Omega$. If $C_{G}\left(N^{\alpha}\right) \neq 1$, then $N_{\beta}^{\alpha}=N^{\infty} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_{G}\left(N^{\alpha}\right)$ is semi-regular on $\Omega-\{\alpha\}$.

Proof. Set $C^{\infty}=C_{G}\left(N^{a}\right)$. By Corollary B3 and Lemma 2.8 of [17], C^{a} is semi-regular on $\Omega-\{\alpha\}$ or N^{α} is a T.I. set in G. Since $|\Omega|$ is even and N^{α} is $\frac{1}{2}$-transitive on $\Omega-\{\alpha\},\left|N^{\alpha}: N_{\beta}^{\alpha}\right|$ is odd for $\alpha \neq \beta \in \Omega$. Hence N^{α} is not semiregular on $\Omega-\{\alpha\}$. By Theorem A of [9], N^{α} is not a T.I. set in G. Hence C^{α} is semi-regular on $\Omega-\{\alpha\}$.

Set $\Delta=F\left(N_{\beta}^{\alpha}\right)$. Since $C^{\infty} \leq G(\Delta),\left[C^{a}, G_{\Delta}\right] \leq C^{\infty} \cap G_{\Delta}=1 . \quad$ By Corollary

B1 of [17], $N_{\alpha}^{\beta} \leq G_{\Delta}$ and so $\left[C^{\infty}, N_{\alpha}^{\beta}\right]=1$. Let $1 \neq x \in C^{\infty}$ and set $\beta^{x}=\gamma$. Then $N_{\alpha}^{\beta}=x^{-1} N_{\alpha}^{\beta} x=N_{\alpha}^{\gamma}$. Hence $N_{\alpha}^{\beta} \leq N_{\gamma}^{\beta}$. Since $\beta \neq \gamma$ and G is doubly transitive on $\Omega,\left|N_{\alpha}^{\beta}\right|=\left|N_{\gamma}^{\beta}\right|$. Hence $N_{\alpha}^{\beta}=N_{\gamma}^{\beta}$. Similarly we have $N_{\alpha}^{\gamma}=N_{\beta}^{\gamma}$. Hence $N_{\gamma}^{\beta}=N_{\beta}^{\gamma}$ and so $N_{\gamma}^{\beta}=N^{\beta} \cap N^{\gamma}$. Since G is doubly transitive on $\Omega, N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$.

Lemma 2.2. Let G be a transitive permutation group on a set Ω, H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$
|F(M)|=\left|N_{G}(M)\right| \times\left|c c l_{G}(M) \cap H\right| /|H|
$$

Here $\operatorname{ccl}_{G}(M) \cap H=\left\{g^{-1} M g \mid g^{-1} M g \subseteq H, g \in G\right\}$.
Proof. Set $W=\left\{(L, \alpha) \mid L \in c c l_{G}(M), \alpha \in F(L)\right\}$ and $W_{\alpha}=\left\{L \mid L \in c c l_{G}(M)\right.$, $F(L) \ni \alpha\}$. By the transitivity of $G,\left|W_{\infty}\right|=\left|W_{\beta}\right|$ holds for every $\alpha, \beta \in \Omega$. Counting the number of elements of W in two ways, we obtain $\left|G: N_{G}(M)\right| \times$ $|F(M)|=|G: H| \times\left|c c l_{G}(M) \cap H\right|$. Thus we have Lemma 2.2.

Lemma 2.3. Let $G \simeq \operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ with $q=2^{n}>2$ and suppose that G is a transitive permutation group on a set Ω of odd degree. Let H be a stabilizer of a point of Ω. Then we have the following:
(i) H has a unique Sylow 2-subgroup S of G and $H=D S$ for a Hall 2^{\prime}-subgroup D of H where $D \leq Z_{q}{ }^{2}-1$.
(ii) Let L be a subgroup of G such that $|L|=|H|$. Then $L \in c c l_{G}(H)$.
(iii) $\quad S$ is semi-regular on $\Omega-F(S)$ and $|F(S)|=|F(H)|=\mid N_{G}(S)$: $H \mid$.
(iv) Set $D=V \times K$ where $V \leq Z_{q+1}, K \leq Z_{q-1}$. Then K acts semiregularly on $\Omega-F(K)$ and if $K \neq 1,|F(K)|=2|F(S)|$.

Proof. Since G is generated by its two distinct Sylow 2-subgroups and $1 \neq|G: H|$ is odd, H contains a unique Sylow 2-subgroup S of G where $S=$ $O_{2}(H)$. By the structure of $N_{G}(S)$ we have (i) (cf. § 3 of [2]).

To prove (ii) we may assume that $S \leq L$. As above $S=O_{2}(L)$ and $L=D_{1} S$ where $D_{1} \leq Z_{q^{2}-1}$. Since $N_{G}(S) / S$ is cyclic and $|H|=|L|$, we get $H=L$. Thus (ii) holds.

Let $t \in I(S)$. Applying Lemma 2.2, $|F(t)|=\left|N_{G}(t)\right| \times\left|c c l_{G}(t) \cap H\right| /|H|$ $=\left(\left|N_{G}(t)\right| \times\left|c c l_{G}(t) \cap N_{G}(S)\right| /\left|N_{G}(S)\right|\right) \times\left(\left|N_{G}(S)\right| /|H|\right)$. Since $N_{G}(S)$ is a stabilizer of the usual doubly transitive permutation representation of G, we have $\left|N_{G}(t)\right| \times\left|c c l_{G}(t) \cap N_{G}(S)\right| /\left|N_{G}(S)\right|=1$, hence $|F(t)|=\mid N_{G}(S)$: $H \mid$. On the other hand, $|F(S)|=\left|N_{G}(S)\right| \times\left|c c l_{G}(S) \cap H\right| /|H|=\left|N_{G}(S): H\right|$. Therefore S acts semi-regularly on $\Omega-F(S)$. As $N_{G}(H)=N_{G}(S)$, similarly we have $|F(S)|=|F(H)| . \quad$ Thus (iii) holds.

Let x be a nontrivial element of K. Then we have $|F(\langle x\rangle)|=\left|N_{G}(\langle x\rangle)\right| \times$ $\left|c c l_{G}(\langle x\rangle) \cap H\right| /|H|=\left(\left|N_{G}(\langle x\rangle)\right| \times\left|c c l_{G}(\langle x\rangle) \cap N_{G}(S)\right| /\left|N_{G}(S)\right|\right)\left(\left|N_{G}(S \mid) /|H|\right)\right.$. As before we have $\left|N_{G}(\langle x\rangle)\right| \times\left|c c l_{G}(\langle x\rangle) \cap N_{G}(S)\right| /\left|N_{G}(S)\right|=2$. Hence $|F(x)|$ $=2 \cdot\left|N_{G}(S): H\right|$ and this is independent of the choice of $x \in K^{*}$. Thus (iv)
holds.
Lemma 2.4. Let $G \simeq P S L(2, q), S z(q)$ or $P S U(3, q)$ with $q=2^{n}>2$ and S be a Sylow 2-subgroup of $G, H=N_{G}(S)$, t an involution outside $H, D=H \cap H^{t}$, $V=C_{D}(t)$ and $K=\left\{d \in D \mid d^{t}=d^{-1}\right\}$. Then the following hold:
(i) $N_{G}(\langle k\rangle)=\langle t\rangle D$ whenever $1 \neq k \in K$.
(ii) If $G \simeq \operatorname{PSU}(3, q)$ and $1 \neq U$ is a subgroup of V, then $N_{G}(U)=C_{G}(V)$ $=N \times V$ where N is a subgroup of G isomorphic to $\operatorname{PSL}(2, q)$.

Proof. (i) follows from the structure of $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ (§ 3 of [2]).

We now regard $\operatorname{PSU}(3, q)$ as a usual doubly transitive permutation group on a set Ω with $q^{3}+1$ points. Then V is semi-regular on $\Omega-F(V)$ and $G(F(U)) / G_{F(U)}$ is doubly transitive on $F(U)=F(V)$. Clearly $N_{G}(U) \leq G(F(U))$ and $G_{F(U)}=V$. Hence $N_{G}(U) \leq N_{G}(V)$. Since V is cyclic, $N_{G}(V) \leq N_{G}(U)$ and so $N_{G}(U)=N_{G}(V)$. We now set $M=O^{2^{\prime}}\left(N_{G}(V)\right)$. Then as $[Z(S), V]=1$ and $Z(S)$ is a Sylow 2 -subgroup of $N_{G}(V), M$ centralizes V. By the Frattini argument $N_{G}(V)=\left(N_{G}(V) \cap N(Z(S)) M=N_{H}(V) M=D Z(S) \cdot M \leq C_{G}(V)\right.$. Hence $N_{G}(V)=C_{G}(V)$. By the direct computation, we obtain (ii).

Lemma 2.5. Let $G \simeq \operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ with $q=2^{n}>2$ and let S be a Sylow 2-subgroup of G.
(i) If T is a maximal subgroup of S, then $N_{G}(T)=S$.
(ii) Unless $G \simeq \operatorname{PSU}(3, q)$ where $q=2^{n}$ and n is odd, then by conjugation $N_{G}(S)$ acts regularly on the set of all maximal subgroups of S.

Proof. Since $N_{G}(S)$ is strongly embedded in $G, S \leq N_{G}(T) \leq N_{G}(S)$ and so $N_{G}(T)=R S$ where R is a Hall 2 '-subgroup of $N_{G}(T)$. As $|S: T|=2, R$ centralizes $S / T \simeq Z_{2}$ and hence there exists an element $t \in C_{S}(R)-T$. If $G \simeq$ $\operatorname{PSL}(2, q)$ or $S z(q)$, then $R=1$ ($\S 3$ of [2]). If $G \simeq \operatorname{PSU}(3, q)$ and $R \neq 1$, then by (ii) of Lemma 2.4, $t \in I(S)=\Omega_{1}(S) \leq T$, a contradiction. Thus (i) holds.

Let Γ be the set of all maximal subgroups of S. Then by conjugation, $N_{G}(S)$ acts on Γ and $\left(N_{G}(S)\right)_{T}=S$ for $T \in \Gamma$ by (i). Under the assumption of (ii), we can easily verify $|\Gamma|=\left|N_{G}(S): S\right|$. From this (ii) follows at once.

Lemma 2.6. Lєt $G \simeq P S L(2, q), S z(q)$ or $P S U(3, q)$ with $q=2^{n}>2$ and A be the full automorphism gruop of G. Let S be a Sylow 2-subgroup of G. Then $C_{A}(S)=Z(S)$. Here we identify G with the inner automorphism group of G.

Proof. Let Ω be the set of all Sylow 2-subgroups of G. Then A acts faithfully on Ω and the action of G on Ω is the same as the usual doubly transitive permutation representation. Hence S is regular on $\Omega-\{S\}$ and so $C_{A}(S)$ is a 2-subgroup of A. If $G \simeq S z(q), A / G$ is cyclic of odd order and so $C_{A}(S) \leq G$. Hence $C_{A}(S)=C_{G}(S)=Z(S)$. If $G \simeq P S L(2, q), S$ is abelian, so that $C_{A}(S)=S$
$=Z(S)$. If $G \simeq P S U(3, q)$, there exists a field automorphism such that $\langle f\rangle S$ is a Sylow 2-subgroup of $N_{A}(S)$. From this $C_{A}(S) \leq O_{2}\left(N_{A}(S)\right) \leq\langle f\rangle S$. If $g s \in C_{A}(S)-S$ where $g \in\langle f\rangle$ and $s \in S$, then g centralizes $Z(S)$ and so g is a field automorphism of order 2 by the structural property of A. Since g centralizes s, s must be contained in $Z(S)$. Therefore g centralizes S, while g is a field automorphism of order 2. This is a contradiction. Thus $C_{A}(S)=$ $S \cap C_{A}(S)=Z(S)$.

Lemma 2.7. Let $G \simeq \operatorname{PSU}(3, q), q=2^{n}$ such that n is even. Then $\operatorname{Aut}(G)$ $=\langle f\rangle G$ for a field automorphism f of $G($ see [14]). Let B be a Borel subgroup and let D be a diagonal subgroup of G. Then $B=D S$ and $S=O_{2}(B)$ for some Sylow 2-subgroup S of G. Set $D=V \times K$ with $V \simeq Z_{q+1}, K \simeq Z_{q-1}$. Then $C_{A}(Z(S))$ $=\langle\tau\rangle V S$ where $A=\langle f\rangle G$ and $\{\tau\}=I(\langle f\rangle)$.

Proof. By the structural properties of $A,[V, Z(S)]=1$ and $C_{\langle f\rangle}(Z(S))=\langle\tau\rangle$. Since $N_{A}(Z(S)) \triangleright O_{2}\left(N_{G}(Z(S))\right)=S, N_{A}(Z(S))=\langle f\rangle N_{G}(S)$. Hence $C_{A}(Z(S))=$ $C(Z(S)) \cap\langle f\rangle D S=C_{\left\langle_{f}\right\rangle K}(Z(S)) V S$. Let $g k \in C_{\langle f\rangle K}(Z(S))$ with $g \in\langle f\rangle, k \in K$. Since g is a field automorphism of G, it centralizes a nontrivial element s in $Z(S)$. Then k centralizes s and so $k=1$, for otherwise $s \in C_{G}(k)=V K$, a contradiction. So $C_{\langle f\rangle K}(Z(S))=C_{\langle f\rangle}(Z(S))=\langle\tau\rangle$. Thus $C_{A}(Z(S))=\langle\tau\rangle V S$.

3. The case $|\Omega|$ is even

Let G be a doubly transitive permutation group on a finite set Ω of even degree satisfying the assumption of our theorem. Let $\alpha \in \Omega$ and $\{\alpha\}, \Delta_{1}, \cdots, \Delta_{r}$ be the set of all N^{ω}-orbits on Ω. Since N^{a} is normal in $G_{a},\left|\Delta_{i}\right|=\left|\Delta_{j}\right|$ for $1 \leq i, j \leq r$. Hence $|\Omega|=1+\left|\Delta_{i}\right| r$ and so both $\left|\Delta_{i}\right|$ and r are odd. From this, N_{β}^{α} contains a unique Sylow 2-subgroup of N^{a} for $\beta \neq \alpha$ by (i) of Lemma 2.3. Set $S=O_{2}\left(N_{\beta}^{\alpha}\right)$.
(3.1) The following hold.
(i) For each Δ_{i} with $1 \leq i \leq r$, there exists $\beta_{i} \in \Delta_{i}$ such that $N_{\beta}^{\alpha}=N_{\beta_{i}}^{\alpha}$.
(ii) $F(S)=F\left(N_{\beta}^{\alpha}\right),|F(S)|=\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right| \times r+1$ and S is semi-regular on $\Omega-F(S)$.
(iii) Set $C^{\infty}=C_{G}\left(N^{\alpha}\right)$. Then $C^{\omega}=O\left(G_{a}\right)$ and is semi-regular on $\Omega-\{\alpha\}$.

Proof. Let $\gamma \in \Delta_{i}$. Since $\left|N_{\beta}^{\alpha}\right|=\left|N_{\gamma}^{\alpha}\right|$, by (ii) of Lemma 2.3, $N_{\beta}^{\alpha}=\left(N_{\gamma}^{\alpha}\right)^{x}$ for some $x \in N^{\alpha}$. Put $\gamma^{x}=\beta_{i}$. Then $\beta_{i} \in \Delta_{i}$ and $N_{\beta}^{\alpha}=N_{\beta_{i}}^{\alpha}$. Thus (i) holds.

Hence by (iii) of Lemma 2.3, for each Δ_{i} with $1 \leq i \leq r, F(S) \cap \Delta_{i}=F\left(N_{\beta}^{a}\right) \cap$ $\Delta_{i},\left|F(S) \cap \Delta_{i}\right|=\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|$ and S is semi-regular on $\Delta_{i}-\left(\Delta_{i} \cap F(S)\right)$. Thus (ii) holds.

Since $\left[O\left(G_{\alpha}\right), N^{\alpha}\right] \leq O\left(G_{\alpha}\right) \cap N^{\alpha}$ and N^{α} is a non abelian simple group, $\left[O\left(G_{a}\right), N^{a}\right]=1$ and so $O\left(G_{a}\right) \leq C^{a}$. By Lemma 2.1, C^{a} is semi-regular on
$\Omega-\{\alpha\}$. Since $G_{a} \triangleright C^{\infty}, C^{a}$ is $\frac{1}{2}$-transitive on $\Omega-\{\alpha\}$. Hence $\left|C^{a}\right|||\Omega|-1$. From this C^{∞} is of odd order and hence $C^{\infty} \leq O\left(G_{a}\right)$. Thus $C^{\infty}=O\left(G_{a}\right)$.

As a Chevalley group, N^{a} has a Borel subgroup $N_{N^{a}}(S)$. Let D be a diagonal subgroup of $N_{N^{\alpha}}(S)$. Then $N_{N^{\alpha}}(S)=D S$. We now denote G_{α} / C^{α} by \bar{G}_{α}. By the properties of $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ ([14]), there exists a field automorphism \bar{f} such that $\langle\bar{f}\rangle \bar{N}^{\omega} / \bar{N}^{\alpha}$ is a Sylow 2-subgroup of $\bar{G}_{\alpha} / \bar{N}^{\alpha}$. Since $C^{\infty}=O\left(G_{a}\right)$, we may assume f is a 2-element in G_{a}. Since $D C^{a} \cap N^{a}=D$ and $S C^{\infty} \cap N^{\infty}=S, D$ and S are f-invariant. Clearly $\langle f\rangle S$ is a Sylow 2-subgroup of G_{∞}. Since $\langle\bar{f}\rangle \cap \bar{N}^{a}=1,\langle f\rangle \cap S \leq C^{a}$ and so $\langle f\rangle \cap S=1$. Thus we have the following.
(3.1) ${ }^{\prime}$ There exists a 2-element f in G_{a} satisfying the following.
(i) f acts on N^{a} as a field automorphism of $N^{a d}$.
(ii) D and S are f-invariant and $\langle f\rangle \cap S=1$.
(iii) $\langle f\rangle S$ is a Sylow 2-subgroup of G_{a}.
(3.2) $N_{\beta}^{\alpha} / N^{\infty} \cap N^{\beta}$ is cyclic of odd order.

Proof. By Lemma 2.1 and (iii) of (3.1), we may assume that $C^{\infty}=1$. First we claim that $\left|S: S \cap N^{\beta}\right|=1$ or 2 . Since $S / S \cap N^{\beta} \simeq S N^{\beta} / N^{\beta}$ is isomorphic to a 2-subgroup of the outer automorphism group of $N^{\beta}, S / S \cap N^{\beta}$ is cyclic. But S / S^{\prime} is an elementary abelian 2-group and so $S / S \cap N^{\beta} \simeq 1$ or Z_{2} and hence $\left|S: S \cap N^{\beta}\right|=1$ or 2 .

To prove (3.2), it suffices to show that $\left|S: S \cap N^{\beta}\right| \neq 2$. Assume that $\left|S: S \cap N^{\beta}\right|=2$. Then as S and $S \cap N^{\beta}$ are normal subgroups of N_{β}^{α}. Then it follows from (i) of Lemma 2.5 that $N_{\beta}^{\alpha}=S$ and $\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|=2$. Since a Sylow 2-subgroup of G_{α} / N^{a} is cyclic and $G_{\alpha \beta} / N_{\beta}^{\alpha} \simeq G_{\alpha \beta} N^{a} / N^{\alpha}$, a Sylow 2-subgroup of $G_{\alpha \beta} / N_{\beta}^{\alpha}$ is cyclic. As $N_{\beta}^{\alpha} N_{\alpha}^{\beta} / N_{\beta}^{\alpha}$ is a normal subgroup of $G_{\alpha \beta} / N_{\beta}^{\alpha}$ of order $2, I\left(G_{\alpha \beta}\right) \subseteq N_{\beta}^{\alpha} N_{\alpha}^{\beta}$. Let f be as defined in (3.1)'. Then $f \neq 1$ as $N_{\beta}^{\alpha} N_{\alpha}^{\beta}$ $\neq N^{\omega}$. Let $\tau \in I(\langle f\rangle)$. Since $\tau \in N_{G_{\alpha}}(S), S=N_{\beta}^{\alpha}$ and $|F(S)-\{\alpha\}|$ is odd, there exists γ such that $\gamma \in F(\tau) \cap F\left(N_{\beta}^{\alpha}\right)$ and $\gamma \neq \alpha$. Clearly $N_{\beta}^{\alpha} \leq N_{\gamma}^{\alpha}$, so that $N_{\beta}^{\alpha}=N_{\gamma}^{\alpha}$. Therefore we may assume $F(\tau) \ni \beta$ and $\tau \in G_{\alpha \beta}$. By Corollary B1 of [17] $F\left(N_{\beta}^{\alpha}\right)=F\left(N_{\alpha}^{\beta}\right)$. From this $F(\tau) \supseteq F\left(N_{\beta}^{\alpha} N_{\alpha}^{\beta}\right)=F\left(N_{\beta}^{\alpha}\right)$ because $\tau \in I\left(G_{\alpha \beta}\right)$ $\subseteq N_{\beta}^{\alpha} N_{\alpha}^{\beta} . \quad$ So $\langle\tau\rangle N_{\beta}^{\alpha} \leq\left(\langle\tau\rangle N^{\alpha} \cap N\left(N_{\beta}^{\alpha}\right)\right)_{F\left(N_{\beta}^{\alpha}\right)}$. Let D be as defined in (3.1)'. Then $D \leq N_{N^{\alpha}}\left(N_{\beta}^{\alpha}\right)$ and D is τ-invariant. Hence $[D, \tau] \leq\left(\langle\tau\rangle N^{\alpha} \cap N\left(N_{\beta}^{\alpha}\right)\right)_{F\left(N_{\beta}^{\alpha}\right)}$ $\cap D=1$. Therefore τ centralizes D. Since τ is a field automorphism of N^{ω} of order 2 and D is a diagonal subgroup of N^{∞}, this is a contradiction.
(3.3) The following hold.
(i) $N^{\alpha} \cap N^{\beta}=N^{\gamma} \cap N^{\delta}$ for, $\gamma, \delta \in F\left(N^{\alpha} \cap N^{\beta}\right)$ with $\gamma \neq \delta$.
(ii) $\quad G(F(S))=N_{G}\left(N^{\alpha} \cap N^{\beta}\right)$.
(iii) Let M be a subgroup of $N^{a} \cap N^{\beta}$ which contains S. Then $F(M)=$
$F(S)$ and $N_{G}(M)$ is doubly transitive on $F(S)$.
(iv) $C_{G_{x}}(S)=Z(S) \times C^{a}$.
(v) Let M be as defined in (iii) and suppose $C^{\infty} \neq 1$. Then $O_{2}\left(C_{G}(M)\right)^{F(S)}$ is a regular normal elementary abelian 2-subgroup of $N_{G}(M)^{F(S)}$.

Proof. Let $\gamma, \delta \in F\left(N^{\omega} \cap N^{\beta}\right)$ with $\gamma \neq \delta$. We may assume $\alpha \neq \gamma$. Since G is doubly transitive on $\Omega,\left|N^{a} \cap N^{\beta}\right|=\left|N^{a} \cap N^{\gamma}\right|$. By the choice of $\gamma, N^{a} \cap N^{\beta}$ $\leq N_{\gamma}^{\alpha}$ and $N_{N^{\alpha}}(S) / S$ is cyclic. Hence $N^{\omega} \cap N^{\beta}=N^{a} \cap N^{\gamma}$. Similarly $N^{\gamma} \cap N^{a}$ $=N^{\gamma} \cap N^{\delta}$. Thus (i) holds.

Since $N_{G}\left(N^{\alpha} \cap N^{\beta}\right) \leq N_{G}(S), \quad N_{G}\left(N^{\alpha} \cap N^{\beta}\right) \leq G(F(S))$. Let $x \in G(F(S))$. Then $\alpha^{x}, \beta^{x} \in F(S)$ and $F(S)=F\left(N_{\beta}^{\alpha}\right)$ by (ii) of (3.1). Hence $\alpha^{x}, \beta^{x} \in F\left(N^{a} \cap N^{\beta}\right)$. Therefore by (i) $N^{\alpha^{x}} \cap N^{\beta^{x}}=N^{a} \cap N^{\beta}$ and so $x \in N_{G}\left(N^{a} \cap N^{\beta}\right)$. Thus (ii) holds.

Suppose $S \leq M \leq N^{a} \cap N^{\beta}$. If $M^{g} \leq G_{\alpha \beta}$ for some $g \in G_{\alpha}$. Then $M^{g} \leq$ $N^{\omega} \cap G_{\alpha \beta}=N_{\beta}^{\alpha}$. Hence $M^{g}=M$ because $S \leq M$ and N_{β}^{α} / S is cyclic of odd order. By the Witt's Theorem $N_{G_{\alpha}}(M)$ is transitive on $F(M)-\{\alpha\}$. Similarly $N_{G_{\beta}}(M)$ is transitive on $F(M)-\{\beta\}$. We may assume $|F(M)|>2$. Hence $N_{G}(M)$ is doubly transitive on $F(M)$. By (ii) of (3.1), $F(M)=F(S)$. Thus (iii) holds.

We denote G_{a} / C^{∞} by \bar{G}_{a}. Clearly $C_{\bar{G}_{a}}\left(\bar{N}^{\alpha}\right)=\overline{1}$. Applying Lemma 2.6, $C_{\bar{G}_{a}}(\bar{S})=Z(\bar{S})$, hence $C_{G_{a}}(S) \leq Z(S) \times C^{\infty}$. The converse implication is obvious. Thus (iv) holds.

Suppose $C^{\infty} \neq 1$. Then since C^{∞} is semi-regular on $\Omega-\{\alpha\}, C_{G}(M)^{F(S)} \geq$ $\left(C^{\alpha}\right)^{F(S)} \neq 1$. As $N_{G}(M)^{F(S)}$ is doubly transitive by (iii), $C_{G}(M)^{F(S)}$ is transitive. By (iv), $\left(C^{a}\right)^{F(S)} \leq C_{G a}(M)^{F(S)} \leq\left(Z(S) \times C^{\alpha}\right)^{F(S)}$ and so $C_{G a}(M)^{F(S)}=\left(C^{a}\right)^{F(S)}$. Hence $C_{G}(M)^{F(S)}$ is a Frobenius group and so $O_{2}\left(C_{G}(M)^{F(S)}\right) \neq 1$ because $|F(S)|$ is even. Since $C_{G}(M)_{F(S)} \leq\left(Z(S) \times C^{\alpha}\right)_{F(S)}=Z(S), O_{2}\left(C_{F}(M)^{F(S)}\right)=O_{2}\left(C_{G}(M)\right)^{F(S)}$ and this is regular on $F(S)$. As $N_{G}(M)^{F(S)} \triangleright O_{2}\left(C_{G}(M)\right)^{F(S)}, O_{2}\left(C_{G}(M)\right)^{F(S)}$ must be a regular normal elementary abelian 2-subgroup of $N_{G}(M)^{F(S)}$. Thus (v) holds.
(3.4) There exists an involution t such that $c c l_{G}(t) \cap S \neq \phi, \alpha^{t}=\beta$ and $F(t) \cap F(S)=\phi . \quad$ Set $\mu=\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|$ and $|S|=q^{i}$. Then we have
(i) $|\Omega|=\left(q^{i}+1\right) \mu r+1$.
(ii) $\left|C_{S}(t)\right| \geq \sqrt{q}, \sqrt{2 q}$ or q according as $N^{a} \simeq \operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$, respectively. Furthermore $\left|C_{s}(t)\right|||F(S)|=\mu r+1$.
(iii) If $\mu=1$, then $|\Omega|=6$ and $G \simeq A_{6}$ or S_{6}.
(iv) $|\Omega|_{2}=|F(S)|_{2} \cdot\left|G: N_{G}(S)\right|_{2}$.

Proof. Since $\left|\Delta_{i}\right|=\left|N^{a}: N_{\beta}^{a}\right|=\left|N^{a}: N_{N^{\alpha}}(S)\right| \times\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|=\left(q^{i}+1\right) \mu$ and $|\Omega|=\left|\Delta_{i}\right| r+1$. Hence (i) holds.

Since G is doubly transitive on Ω, there exists an involution t such that $c c l_{G}(t) \cap S \neq \phi$ and $\alpha^{t}=\beta$. Then t normalizes $O_{2}\left(N^{\alpha} \cap N^{\beta}\right)=S$. Claim $F(t) \cap$ $F(S)=\phi$. Suppose not and let $\gamma \in F(t) \cap F(S)$. As $S \leq N_{\gamma}^{\alpha}, S \leq N^{\alpha} \cap N^{\gamma}$ by (i) of (3.3). Let g be such that $t^{g} \in S$. Then $t \in N^{\delta} \cap G_{\gamma}=N_{\gamma}^{\delta}$ where $\delta=\alpha^{g-1}$ and
hence $t \in N^{\gamma}$. Since t normalizes S and $\langle t\rangle S \leq N^{\gamma}, t$ must be contained in S, a contradiction. Hence $F(t) \cap F(S)=\phi$. From this $C_{S}(t)$ acts semi-regularly on $F(t)$ and so $|F(t)|$ is divisibly by $\left|C_{s}(t)\right|$. Since $t^{g} \in S,|F(t)|=\left|F\left(t^{g}\right)\right|=$ $|F(S)|$, hence $\left|C_{S}(t)\right|||F(S)|$.

If $N^{a} \simeq P S L(2, q)$, then $\left|\Omega_{1}\left(S / S^{\prime}\right)\right|=|S|=q$ and by Lemma 1 of [7], $\left|C_{s}(t)\right| \geq \sqrt{q}$. If $N^{a} \simeq S z(q)$, then $\left|\Omega_{1}\left(S / S^{\prime}\right)\right|=q$. Since q is an odd power of 2 in this case, similarly $\left|C_{s}(t)\right| \geq \sqrt{2 q}$. If $N^{\infty} \simeq P S U(3, q)$, then $\left|\Omega_{1}\left(S / S^{\prime}\right)\right|=q^{2}$ and so similarly $\left|C_{s}(t)\right| \geq q$. Thus we have (ii).

Suppose $\mu=1$. Then N^{a} is doubly transitive on each N^{a}-orbit $\neq\{\alpha\}$. Applying Theorem D of [10], $r=1$. Therefore, $|F(S)|=\mu r+1=2$ and so by (i) and (ii), $q=4, N^{a} \simeq P S L(2,4)$ and $|\Omega|=6$. Thus (iii) holds.

Since $|\Omega|=\left|G: N_{G}(S)\right| \times\left|N_{G}(S): N_{G_{\infty}}(S)\right| /\left|G_{\infty}: N_{G_{\infty}}(S)\right|$ and $\left|G_{\infty}: N_{G_{\infty}}(S)\right|$ is odd, (iv) holds.
(3.5) Let π be the set of primes which divides $q-1$ and K a Hall π-subgroup of $N^{a} \cap N^{\beta}$. If $K \neq 1$, then $C^{a}=1$.

Proof. Suppose $K \neq 1$ and $C^{\infty} \neq 1$. Set $\Gamma_{i}=\Delta_{i} \cap F(S)$ and $\Lambda_{i}=\Delta_{i} \cap F(K)$. Then by (i) of (3.1) and Lemma 2.3, for each i with $1 \leq i \leq r\left|\Lambda_{i}\right|=2\left|\Gamma_{i}\right|=$ $2\left|N_{N^{\alpha}}(S): N_{\beta_{i}}^{\alpha}\right|=2\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|$ and K is semi-regular on $\Delta_{i}-\Lambda_{i}$.
By (v) of (3.3), $O_{2}\left(C_{G}(K S)\right)^{F(S)}$ is a regular normal elementary abelian 2-subgroup of $N_{G}(K S)^{F(S)}$. Set $E=O_{2}\left(C_{G}(K S)\right)$. It follows from (iv) of (3.3) that $E_{F(S)} \leq\left(Z(S) \times C^{a}\right)_{F(S)}$. Since $F(Z(S))=F(S)$ by (ii) of (3.1) and $\left(C^{a}\right)_{F(S)}=1$ by (iii) of (3.1), $\left(Z(S) \times C^{a}\right)_{F(S)}=Z(S)$. On the other hand $Z(S) \cap C(K)=1$ (cf. § 3 of [2]) and so $E_{F(S)}=1$. Hence $E \simeq E^{F(S)}$. Since E is regular on $F(S),|F(S)|$ $=\left|E^{F(S)}\right|$ and so we have $|F(S)|=|E|$. Since $K S$ is a subgroup of N_{β}^{α} which contains S, by (ii) of (3.1) we have $F(S)=F(K S)$. From this $F(S)$ is a subset of $F(K)$. Hence $|F(K)-F(S)|=|F(K)-\{\alpha\}|-|F(S)-\{\alpha\}|=\sum_{i=1}^{r}\left|\Lambda_{i}\right|-$ $\sum_{i=1}^{r}\left|\Gamma_{i}\right|=r \times\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|$. Since r is odd, $|F(K)-F(S)|$ is odd. On the other hand E fixes $F(K)-F(S)$ setwise because E centralizes S and K. Therefore E fixes an element $\gamma \in F(K)-F(S)$ as E is a 2-subgroup of G. Since $N_{\gamma}^{\alpha} / O_{2}\left(N_{\gamma}^{\alpha}\right)$ is cyclic of odd order, $K \leq N_{\gamma}^{\alpha}$ and $\left|K \cdot O_{2}\left(N_{\gamma}^{\alpha}\right)\right|\left|\left|N^{\alpha} \cap N^{\gamma}\right|\right.$, we have $K \cdot O_{2}\left(N_{\gamma}^{\alpha}\right) \leq N^{\infty} \cap N^{\gamma}$. Hence $K \leq N^{\gamma}$ and so $\left|C_{N^{\gamma}}(K)\right|$ is odd by (i) of Lemma 2.4. Since $C_{G_{\gamma}}(K) / C_{N^{\gamma}}(K) C^{\gamma} \simeq C_{G_{\gamma}}(K) N^{\gamma} C^{\gamma} / N^{\gamma} C^{\gamma}$, a Sylow 2-subgroup of $C_{G_{\gamma}}(K)$ is cyclic. But $E \leq C_{G_{\gamma}}(K)$ and hence $|E|=|F(S)|=2=\mu r+1$. From this $\mu=r=1$. By (iii) of (3.4) $C^{\infty}=1$, which is contrary to the assumption $C^{\infty} \neq 1$. So (3.5) holds.
(3.6) Suppose $K \neq 1$ and let S_{1} be a subgroup of S. If $S_{1}{ }^{g} \leq N_{G}(S)$ and $S_{1}{ }^{g} \neq S$ for some $g \in G$, then $S_{1} \leq Z_{2} \times Z_{4}$ and $\left|S_{1}\right||2| G_{a} / N^{a} \mid$.

Proof. Set $S_{1}{ }^{g}=T$. By (ii) of (3.1), T is semi-regular on $\Omega-F(T)$. Claim
$F(T) \cap F(S)=\phi . \quad$ Suppose not and let $\gamma \in F(T) \cap F(S)$. Then $T \leq N_{\gamma}^{\alpha_{\gamma}^{g}}$ and $S \leq N_{\gamma}^{\alpha} . \quad$ By (3.2) $T \leq N^{\omega^{g}} \cap N^{\gamma}$ and $S \leq N^{\omega} \cap N^{\gamma}$ and so $T S \leq N^{\gamma}$. Since S is a Sylow 2-subgroup of $N^{\gamma}, T S=S$. Hence $T \leq S$, a contradiction. Thus $F(T) \cap F(S)=\phi . \quad$ From this T acts semi-regularly on $F(S) . \quad$ By (ii) of (3.3), T normalizes $N^{\omega} \cap N^{\beta}$ and so $T \leq N_{G}(S) \cap N_{G}(K S)$. By the Frattini argument $K S T=N_{K S T}(K) \cdot K S=N_{S T}(K) \cdot K S$, so that $N_{S T}(K)^{F(S)}=T^{F(S)}$ as $F(S)=F(K S)$. For an arbitrary $\gamma \in F(S), N_{S T}(K)_{\gamma}=N_{S}(K)=C_{S}(K)=1$, whence $N_{S T}(K) \simeq$ $N_{S T}(K)^{F(S)}$. Hence $T \simeq N_{S T}(K)$. Now $N_{S T}(K)$ acts on $F(K)-F(S)$ and $|F(K)-F(S)|$ is odd. Hence $N_{S T}(K)$ fixes some $\delta \in F(K)-F(S)$. Since $K \leq N_{\delta}^{\alpha}$ and $\left|K \cdot O_{2}\left(N_{\delta}^{\alpha}\right)\right|\left|\left|N^{a} \cap N^{\delta}\right|\right.$, we have $K \leq N^{a} \cap N^{\delta}$ as in the proof of (3.5). By (i) of Lemma 2.4, $N_{N^{\delta}}(K)=D\langle u\rangle \triangleright D$ where u is an involution and D is a cyclic subgroup of N^{δ} of odd order. Since $N_{G_{\delta}}(K) / N_{N} \delta(K) \simeq N_{G_{\delta}}(K) N^{\delta} / N^{\delta}$ and a Sylow 2 -subgroup of G_{δ} / N^{δ} is cyclic, a Sylow 2-subgroup of $N_{G_{\delta}}(K)$ is isomorphic to a subgroup of $Z_{2} \times Z_{m}$ for some integer m. Since $T \leq S^{g}$ and S is of exponent at most $4,(3.6)$ follows immediately.
(3.7) One of the following holds.
(i) $|\Omega|=6$ and $G \simeq A_{6}$ or S_{6}.
(ii) $N^{a} \cap N^{\beta}$ is a π^{\prime}-group.

Proof. Let K be a Hall π-subgroup of $N^{\alpha} \cap N^{\beta}$ and suppose $G \neq A_{6}, S_{6}$ and $K \neq 1$. Let t be an involution as in (3.4) and Q a Sylow 2 -subgroup of G containing $\langle t\rangle S$. Then $Q \triangleright S$. For otherwise, let $x \in N_{Q}\left(N_{Q}(S)\right)-N_{Q}(S)$, then $S^{x} \neq S$ and S^{x} normalizes S. Applying (3.6) to $S^{x}, S \simeq Z_{2} \times Z_{2}$ and $N^{a} \simeq$ $\operatorname{PSL}(2,4)$. But since $K \neq 1,\left|N^{a} \cap N^{\beta}\right|=12$ and hence $\mu=1$. It follows from (iii) of (3.4) that $G \simeq A_{6}$ or S_{6}, which is contrary to the assumption.

Since $Q \triangleright S$ and all involutions in S are conjugate in G, t is conjugate to s for an involution $s \in Z(Q) \cap S$. As s is an extremal element in Q, there is an element $g \in G$ such that $t^{g}=s$ and $\left(C_{Q}(t)\right)^{g} \leq Q$. Set $T=\left(C_{s}(t)\right)^{g}$. If $T \leq S$, as S is semi-regular on $\Omega-F(S), F(S)^{g}=F(S)$. Hence $F(t)=F(s)^{g-1}=F(S)$, contrary to the choice of t. Therefore $T \nsubseteq S$. Applying (3.6) again, $C_{S}(t) \leq Z_{2} \times Z_{4}$, $\left|C_{S}(t)\right||2 \cdot| G_{a}\left|N^{\infty}\right|$.

If $N^{a} \simeq P S L(2, q)$, by (ii) of (3.4), $\sqrt{q} \leq\left|C_{s}(t)\right||2 \cdot| G_{a}\left|N^{a}\right|$ and so $q=2^{2}$ or 2^{4}. As before, $q \neq 2^{2}$, hence $q=2^{4}, N^{a} \simeq P S L\left(2,2^{4}\right)$. Then $r=1$ because the outer automorphism group of $\operatorname{PSL}\left(2,2^{4}\right)$ is cyclic of order 4. Since $\mu \neq 1$ and $K \neq 1,(\mu,|K|,|F(K)|,|\Omega|)$ is $(3,5,7,52)$ or $(5,3,11,86)$ by (iv) of Lemma 2.3 and (i) of (3.4). By the Witt's Theorem, $N_{G}(K)$ is doubly transitive on $F(K)$. Hence $|G|$ is divisible by $|F(K)|$. Since $C^{\infty}=1$ by (3.5), we have $|G|||\Omega| \cdot| \operatorname{Aut}\left(P S L\left(2,2^{4}\right)\right) \mid$. Hence we can verify $|F(K)| X|G|$ in both cases. This is a contradiction.

If $N^{a} \simeq S z(q)$, similarly we obtain $\sqrt{2 q}<\left|C_{s}(t)\right||2| G_{a}\left|N^{a}\right|$. But in this case since the outer automorphism group of N^{a} is cyclic of odd order, $\left|G_{a}\right| N^{a} \mid$
is odd and so $\sqrt{2 q} \leq 2$. Hence $q \leq 2$, a contracdiction.
If $N^{a} \simeq P S U(3, q)$, similarly $q \leq\left|C_{s}(t)\right||2| G_{a}\left|N^{\infty}\right|$. Hence $q=2^{2}, N^{a} \simeq$ $\operatorname{PSU}\left(3,2^{2}\right)$. As in the first case, $r=1$ and $(\mu,|K|,|F(K)|,|\Omega|)=(5,3,11,326)$ and so $11=|F(K)|| | \Omega|\cdot| \operatorname{Aut}\left(\operatorname{PSU}\left(3,2^{2}\right)\right) \mid$, a contradiction.

In (3.8)-(3.11), we shall prove that $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$. First we note the following.
(3.8) If $C^{\infty} \neq 1, N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$.

Proof. Since N^{a} is a nonabelian simple group, (3.8) follows immediately form Lemma 2.1.
(3.9) Let p be a prime with $p\left|\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|\right.$ and assume the following:

$$
\begin{equation*}
p \neq 3 \text { if } N^{a} \simeq P S U /\left(3,2^{n}\right) \text { and } n \text { is odd. } \tag{*}
\end{equation*}
$$

Then $\mu=p$.
Proof. It follows from (3.8) that $C^{a}=1$. Hence G_{a} / N^{a} is isomorphic to a subgroup of the outer automorphism group of N^{a} and so under the hypothesis $(*)$, a Sylow p-subgroup of G_{a} / N^{α} is normal and cyclic ([14]). Set $=N_{G}(S)_{F(S)}$. Since $W / N_{\beta}^{\alpha} \leq G_{\alpha \beta} / N_{\beta}^{\alpha} \simeq G_{\alpha \beta} N^{\alpha} / N^{\alpha}$, a Sylow p-subgroup of W / N_{β}^{α} is normal and cyclic. Hence all elements in W of order p is contained in $N_{\beta}^{\alpha} N_{\alpha}^{\beta}$ because $\left|N_{\alpha}^{\beta} N_{\beta}^{\alpha}\right| N_{\beta}^{\alpha}\left|=\left|N_{\alpha}^{\beta}: N^{\beta} \cap N^{\alpha}\right|=\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|\right.$ and $\left.p\right|\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|$. Let P be a Sylow p-subgroup of W. Then $\Omega_{1}(P) \leq N_{\beta}^{\alpha} N_{\alpha}^{\beta}$. Set $Q=\Omega_{1}(P)$. Since $N_{\beta}^{\alpha} N_{\alpha}^{\beta} / N_{\beta}^{\alpha} \simeq N_{\alpha}^{\beta} / N^{\alpha} \cap N^{\beta}$, by (3.2) $N_{\beta}^{\alpha} N_{\alpha}^{\beta} / N_{\beta}^{\alpha}$ is cyclic and so Q^{\prime} is a cyclic subgroup of N_{β}^{α}, similarly $Q^{\prime} \leq N_{\alpha}^{\beta}$. Hence $Q^{\prime} \leq N^{\alpha} \cap N^{\beta}$ and the p-rank of Q / Q^{\prime} is at most 2.

By the Frattini argument, $N_{G}(S)=\left(N_{G}(S) \cap N(P)\right) W$. Let M be a normal subgroup of $N_{G}(S) \cap N(P)$ such that $M^{F(S)}$ is a minimal normal subgroup of $N_{G}(S)^{F(S)}$. We choose M so that its order is minimal. Since $N_{G}(S)^{F(S)}$ is doubly transitive, $M^{F(S)}$ is an elementary abelian 2-subgroup or a direct product of isomorphic non abelian simple groups. As Q^{\prime} is cyclic, $M / C_{M}\left(Q^{\prime}\right)$ is abelian and its Sylow 2-subgroup is cyclic. Hence by the minimality of $M, M=C_{M}\left(Q^{\prime}\right)$.

Set $\bar{Q}=Q / Q^{\prime}$. We argue that $C_{M}(\bar{Q}) \leq W$. To prove this, it suffices to show that $M \neq C_{M}(\bar{Q})$. If $M=C_{M}(\bar{Q}), M$ stabilizes the normal series $Q \triangleright Q^{\prime} \triangleright 1$ and hence $O^{p}(M)$ centralizes P by Theorem 5.3.2 and Theorem 5.3.1 of [6]. Obviously $O^{p}(M) \nleftarrow W$ and so $O^{p}(M)=M$ by the minimality of M. Therefore M centralizes P. Let x be an element of M such that $\alpha^{x}=\beta$, then $P \cap N_{\beta}^{\alpha} \leq$ $N^{a} \cap N^{a^{x}}=N^{a} \cap N^{\beta}$. But since $P \cap N_{\beta}^{\alpha}$ is a Sylow p-subgroup of N_{β}^{α}, $p \nmid\left|N_{\beta}^{\alpha}: N^{\omega} \cap N^{\beta}\right|$, a contradiction.

Set $C=C_{M}\left(\Omega_{1}(\bar{Q})\right)$. Then $M / C \leq G L(2, p)$ because the p-rank of \bar{Q} is at most 2. By the minimality of $M, M / C \leq S L(2, p)$. On the other hand $O^{p}(C) \leq$ $C_{M}(\bar{Q}) \leq W$. Therefore $C^{F(S)}$ is a normal p-subgroup of $N_{G}(S)^{F(S)}$. Since
$p \neq 2, C^{F(S)}=1$ and so $C \leq W$. Hence $M^{F(S)}$ is isomorphic to a homomorphic image of a subgroup of $S L(2, p)$.

Hence if $M^{F(S)}$ is an elementary abelian 2-group, we have $M^{F(S)} \simeq Z_{2} \times Z_{2}$ and $|F(S)|=4$. From (ii) and (iii) of (3.4), $\mu=3$ and $r=1$. By (ii) of (3.4), $N^{a} \simeq \operatorname{PSL}(2,4), \quad \operatorname{PSL}(2,16)$ or $\operatorname{PSU}(3,4)$ and hence $\left|G_{a}: N^{\infty}\right|=1,2$ or 4 , which is contrary to $p\left|\left|N_{\alpha}^{\beta}: N^{\beta} \cap N^{a}\right|=\left|N_{\alpha}^{\beta} N^{a} / N^{a}\right|\right.$.

If $M^{F(S)}$ is a direct product of isomorphic non abelian simple groups by Dickson's Theorem (Hauptsatz 8.27 [8]) $M^{F(S)} \simeq P S L(2, p)$ with $p>5$ or A_{5}. Claim $M^{F(S)} \not ㇒ A_{5}$. Suppose $M^{F(S)} \simeq A_{5}$, then $N_{G}(S)^{F(S)} \simeq A_{5}$ or S_{5} and so $|F(S)|=6, \mu=5$ and $r=1 . \quad$ By (ii) of (3.4), we obtain $q=2^{2}$ and $N^{a} \simeq P S L(2,4)$. Hence $5 X\left|N_{N^{a}}(S): N_{\beta}^{a}\right|=\mu=5$, a contradiction. Thus $M^{F(S)} \simeq P S L(2, p)$ with $p>5$. Hence $\left|N_{G}(S)^{F(S)}: M^{F(S)}\right|=1$ or 2. From this as $|F(S)|$ is even, $M^{F(S)}$ is also doubly transitive. Again by Dickson's Theorem, we know all maximal subgroups of $\operatorname{PSL}(2, p)$ with $p>5$ and hence $\operatorname{PSL}(2, p)$ with $p>5$ has a unique doubly transitive permutation representation of even degree, which is the known one. From this $|F(S)|=p+1$. Since $|F(S)|=\mu r+1=\mu+1$, we obtain $\mu=p$.
(3.10) If $N^{a} \simeq \operatorname{PSU}(3, q)$ and n is odd, then $3 X\left|N_{\beta}^{\alpha}: N^{a} \cap N^{\beta}\right|$.

Proof. By (3.8), we may assume $C^{\omega}=1$. Set $W=N_{G}(S)_{F(s)}$ and let P be a Sylow 3-subgroup of W. As $G_{\alpha \beta} / N_{\beta}^{\alpha} \simeq G_{\alpha \beta} N^{\omega} / N^{\omega} \leq G_{\alpha} / N^{a}$, a Sylow 3-subgroup of W / N_{β}^{α} is an abelian 3-group of rank at most 2 , so that $P^{\prime} \leq N_{\beta}^{\alpha}$ and similarly $P^{\prime} \leq N_{a}^{\beta}$. Hence $P^{\prime} \leq N^{a} \cap N^{\beta}$ and P^{\prime} is cyclic.

Similarly as in the proof of (3.9) we can choose a normal subgroup M of $N_{G}(S) \cap N(P)$. Denote P / P^{\prime} by \bar{P}. Then $\Omega_{1}(\bar{P})$ is an elementary abelian 3-subgroup of rank at most 3. Then as in the proof of (3.9), M centralizes P^{\prime} and $C_{M}\left(\Omega_{1}(\bar{P})\right)$ is contained in W. Hence $M / C \leq S L(3,3)$ where $C=C_{M}\left(\Omega^{1}(\bar{P})\right)$.

If $M^{F(S)}$ is an elementary abelian 2-group, by the structure of $S L(3,3)$, $M^{F(S)} \simeq Z_{2} \times Z_{2}$ and so $|F(S)|=4, \mu=3$ and $r=1$. Let $p_{1} \in \pi$. Since n is odd, $3 \notin \pi$. Therefore $p_{1} \neq 3$. By (3.7), $p_{1} X\left|N^{a} \cap N^{\beta}\right|$. Hence $p_{1}| | N_{\beta}^{\alpha}: N^{a} \cap N^{\beta} \mid$ and applying (3.9) to p_{1}, we have $\mu=p_{1}=3$, a contradiction.

If $M^{F(S)}$ is a direct product of isomorphic non abelian simple groups, we have $M^{F(S)} \simeq S L(3,3)$ because every proper subgroup of $S L(3,3)$ is solvable. Hence $\left|N_{G}(S)^{F(S)}: M^{F(S)}\right|=1$ or 2 and so $M^{F(S)}$ is also doubly transitive. By (ii) of (3.1), $N_{N^{\alpha}}(S)_{F(S)}=N_{\beta}^{\alpha}$. Therefore, $N_{N^{\alpha}}(S)^{F(S)}$ is cyclic of order μ. Since $|S L(3,3)|=2^{4} 3^{3} 13, \mu=3$ or 13. If $\mu=3$, applying (3.7) and (3.9), π is empty, a contradiction. If $\mu=13$, then $\left(M_{a}\right)^{F(S)} \triangleright N_{N^{a}}(S)^{F(S)} \simeq Z_{13}$. Hence $\left(M_{a}\right)^{F(S)}$ is isomorphic to the normalizer of a Sylow 13-subgroup in $S L(3,3)$, while this permutation representation of $S L(3,3)$ is not doubly transitive. Thus (3.10) is proved.

$$
\begin{equation*}
N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta} . \tag{3.11}
\end{equation*}
$$

Proof. Suppose not and let p be a prime with $p\left|\left|N_{\beta}^{\alpha}: N^{a} \cap N^{\beta}\right|\right.$. Then it follows from (3.7), (3.9) and (3.10) that $q-1=p^{e}$ for some integer $e \geq 2$. If e is even, $p^{e} \equiv 1(\bmod 4)$, while $q-1 \equiv-1(\bmod 4)$, a contradiction. If e is odd, $2^{n}=q=c(p+1)$ where $c=p^{e-1}-p^{e-2}+\cdots-p+1$. We note that $e \geq 3$. Since c is odd, $c=1$, a contradiction. Thus $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$.
(3.12) Suppose $N^{a} \simeq P S L(2, q)$ or $S z(q)$ and $G \neq A_{6}, S_{6}$. Then
(i) $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$ is a Sylow 2-subgroup of N^{a}.
(ii) If $N^{\omega} \simeq P S L(2, q)$, then $|F(S)|=q$ and $|\Omega|=q^{2}$.
(iii) If $N^{a} \simeq S z(q)$, then $|F(S)|=q^{2}$ and $|\Omega|=q^{4}$.
(iv) There is an element x in G such that $S \neq S^{x},\left[S, S^{x}\right]=1$ and $F(S) \cap$ $F\left(S^{*}\right)=\phi$.

Proof. By assumption, $N_{N^{\alpha}}(S)=(q-1) q^{i}$ where $|S|=q^{i}$. Hence (i) follows immediately from (3.7) and (3.11).

We now argue that $|F(S)|$ is a power of 2 . By (v) of (3.3), it suffices to consider the case $C^{\omega}=1$. Applying (ii) of (3.4), $q\left||F(S)|^{2}\right.$. By (i), $\mu=$ $\left|N_{N^{a}}(S): N_{\beta}^{\alpha}\right|=q-1$ and so $|F(S)|=\mu r+1=(q-1) r+1$. Hence $q \mid(r-1)^{2}$, while r is a divisor of n where $2^{n}=q$ because $C^{\infty}=1$ and G_{a} / N^{∞} is isomorphic to a subgroup of the outer automorphism group of N^{a}. Therefore $r=1$ and $|F(S)|=q$, a power of 2 .

Hence by (iv) of (3.4), $|F(S)|=(q-1) r+1| | \Omega \mid=\left(q^{i}+1\right)(q-1) r+1$ and so $q \mid(q-1) r+1$ and $(q-1) r+1 \mid q^{i}$. From this, $(i, r)=(1,1),(2,1)$ or $(2, q+1)$. If $(i, r)=(1,1)$ or $(2, q+1)$, we obtain (ii) or (iii), respectively. We argue $(i, r) \neq(2,1)$. Suppose $(i, r)=(2,1)$. Then $N^{a} \simeq S z(q),|F(S)|=q$ and $|\Omega|=$ $q\left(q^{2}-q+1\right)$. In this case, since $\left|G_{\alpha} / C^{\alpha} N^{\alpha}\right|$ is odd, we have $I\left(G_{\alpha \beta}\right)=I\left(N^{\alpha} \cap N^{\beta}\right)$. From this, all involutions in a fixed Sylow 2-subgroup of $G_{\alpha \beta}$ have a common fixed point set. By [12], G has a regular normal subgroup and so $q^{2}-q+1=1$, a contradiction.

Since by (iv) of (3.4) $|\Omega|=|F(S)| \times\left|G: N_{G}(S)\right|_{2},\left|G: N_{G}(S)\right|_{2}$ is divisible by 2. Let S_{1} be a Sylow 2-subgroup of $N_{G}(S)$ and S_{2} a Sylow 2-subgroup of $N_{G}\left(S_{1}\right)$. Since $2\left|\left|G: N_{G}(S)\right|, S_{1} \neq S_{2}\right.$. Let $x \in S_{2}-S_{1}$, then $S \neq S^{x}$ and $S_{1} \triangleright S, S^{x}$. Suppose $\gamma \in F(S) \cap F\left(S^{x}\right)$. Then by (i), $S S^{x} \leq N^{\gamma}$ and so $S=S^{x}$, a contradiction. Therefore $F(S) \cap F\left(S^{x}\right)=\phi$ and hence $\left[S, S^{x}\right]=1$ by (ii) of (3.1). Thus (iii) holds.
(3.13) The following hold.
(i) $N^{a} \neq S z(q)$.
(ii) Suppose $N^{a} \simeq P S L(2, q)$ and let S^{x} be as defined in (3.12). Then $O_{2}\left(C_{G}(S)\right)$ is a Sylow 2-subgroup of $C_{G}(S)$ and $O_{2}\left(C_{G}(S)\right)=S \times S^{x}$.

Proof. Suppose $N^{a} \simeq P S L(2, q)$ or $S z(q)$. If $C^{a} \neq 1, O_{2}\left(C_{G}(S)\right)^{F(S)}$ is a regular normal subgroup of $N_{G}(S)^{F(S)}$ by (v) of (3.3). If $C^{\infty}=1$, by (iv) of (3.3)
$C_{G_{\omega}}(S)=Z(S)$ and so $C_{G}(S)_{F(S)}=Z(S)$. By (3.12), $C_{G}(S)^{F(S)} \geq\left(S^{x}\right)^{F(S)} \neq 1$, and $|F(S)|=q^{i}=|S|$ and so $C_{G}(S)=Z(S) \times S^{x}$. Hence in both cases $O_{2}\left(C_{G}(S)\right)$ is regular on $F(S)$.

Since by (iv) of (3.3) $C_{G}(S)_{F(S)}=C_{G_{a \beta}}(S)=Z(S)$ and by (ii), (iii) of (3.12) $q^{i}=\left|S^{x}\right|=F|(S)|=\left|C_{G}(S): C_{G_{\theta}}(S)\right|$, we have $O_{2}\left(C_{G}(S)\right)=Z(S) \times S^{x}$ and this is a Sylow 2-subgroup of $C_{G}(S)$. Since $Z\left(O_{2}\left(C_{G}(S)\right)\right)^{F(S)}=Z\left(S^{x}\right)^{F(S)}, N_{G}(S) \triangleright$ $Z\left(O_{2}\left(C_{G}(S)\right)\right.$) and $|F(S)|=|S|,\left|Z\left(S^{x}\right)^{F(S)}\right|=|S|$. Hence $|Z(S)|=|S|$ and S is abelian. So (3.13) follows.
(3.14) Suppose $N^{a} \simeq P S L(2, q)$ and $G \neq A_{6}, S_{6}$. Put $E=O_{2}\left(C_{G}(S)\right)=$ $S \times S^{x}, W=\left\{T \mid T \in c c l_{G}(S), T \leq E\right\}$. Then we have the following:
(i) $|W|=q$ and $\Omega=\bigcup_{T} F(T)$ where T runs over every element of W.
(ii) $N_{G}(E) \cap c c l_{G}(s) \subseteq E$ for all $s \in I(S)$.
(iii) If $E \cap E^{g} \cap c c l_{G}(s) \neq \phi$ for some $g \in G$, then $g \in N_{G}(E)$.

Proof. Let D be a Hall 2^{\prime}-subgroup of $N_{N^{\alpha}}(S)$. Then $D \simeq Z_{q-1}$ and by (i) of (3.12) D is semi-regular on $\Omega-\{\alpha\}$. If $d \in N_{D}\left(S^{x}\right),\langle d\rangle$ acts semi-regularly on $F\left(S^{x}\right)$ since $\alpha \notin F\left(S^{x}\right)$. Hence the order of d divides $|F(S)|$. But $|F(S)|=q$ by (ii) of (3.12), hence $|\langle d\rangle| \mid(q, q-1)=1$ and so $d=1$. Therefore $N_{D}\left(S^{x}\right)=1$. Hence $\left|\left\{S^{x d} \mid d \in D\right\}\right|=q-1$ and $\left\{S^{x d} \mid d \in D\right\} \subseteq W$ as D normalizes E. If $S=S^{x d}$ for some $d \in D, S^{x}=S^{d^{-1}}=S$, a contradiction. Hence $|W| \geq q$. If there exist $S_{1}, S_{2} \in W$ such that $S_{1} \neq S_{2}$ and $F\left(S_{1}\right) \cap F\left(S_{2}\right) . \neq \phi \quad$ Let $\gamma \in F\left(S_{1}\right) \cap$ $F\left(S_{2}\right)$. Then $S_{1}, S_{2} \leq N^{\gamma}$ by (i) of (3.12) and so $\left\langle S_{1}, S_{2}\right\rangle=N^{\gamma}$, which is contrary to $\left\langle S_{1}, S_{2}\right\rangle \leq E$. Hence $F\left(S_{1}\right) \cap F\left(S_{2}\right)=\phi$ for $S_{1}, S_{2} \in W$ such that $S_{1} \neq S_{2}$. Since $|F(S)|=q$ and $|\Omega|=q^{2}$ by (ii) of (3.12), we have $|W| \leq q$. Thus (i) holds.

Let $s \in I(S)$ and suppose $s^{g} \in N_{G}(E)-E$ for some $g \in G$. Then $s^{g} \in N^{\gamma}$ where $\gamma=\alpha^{g}$. By (i) we choose $T \in W$ so that $\gamma \in F(T)$. Then $\left\langle s^{g}, T\right\rangle=N^{\gamma}$ as $s^{g} \in T$ and T is a Sylow 2-subgroup of N^{γ}. On the other hand $\left\langle s^{g}, T\right\rangle \leq\left\langle s^{g}\right\rangle E$, which is a 2 -subgroup of $N_{G}(E)$, a contradiction. Thus (ii) holds.

Let $1 \neq t \in E \cap E^{g} \cap c c l_{G}(s)$ for $g \in G$ and $s \in I(S)$. Then there are $S_{1} \leq E$ and $S_{2} \leq E^{g}$ such that $t \in S_{1} \cap S_{2}$ and $S_{1}, g S_{2} g^{-1} \in W$. Since $F\left(S_{1}\right)=F(t)=F\left(S_{2}\right)$ by (ii) of (3.1), $\left\langle S_{1}, S_{2}\right\rangle \leq N^{\gamma} \cap N^{\delta}$ for $\gamma, \delta \in F(t)$. Hence $S_{1}=S_{2}$ by (i) of (3.12). Applying (ii) of (3.13) to S_{1}, we obtain $E=O_{2}\left(C_{G}\left(S_{1}\right)\right)=O_{2}\left(C_{G}\left(S_{2}\right)\right)=E^{g}$. Thus (iii) holds.
(3.15) Suppose $N^{a} \simeq P S L(2, q)$ and $G \neq A_{6}, S_{6}$. Then G has a regular normal subgroup.

Proof. We count the set $\left\{(\gamma, T) \mid \gamma \in F(T), T \in c c l_{G}(S)\right\}$ in two ways and we have $q^{2} \times(q+1)=\left|c c l_{G}(S)\right| \times q$ by (3.12). Hence $\left|c c l_{G}(S)\right|=q(q+1)$. On the other hand we have $\left|c c l_{G}(S)\right|=\left|G: N_{G}(E)\right| \times q$ by (i), (ii) of (3.14). From this, $\left|G: N_{G}(E)\right|=q+1$.

Set $\Gamma=c c l_{G}(E)$. We now consider the action of G on Γ. By definition, G is transitive on Γ and $N_{G}(E)$ is a stabilizer of $E \in \Gamma$. We argue that S is regular on $\Gamma-\{E\}$. Suppose not and let $1 \neq s \in S$ such that $s^{-1} E^{g} s=E^{g}$ for some $E^{g} \in \Gamma-\{E\}$. Then $g s g^{-1} \in N_{G}(E)$. By (ii) of (3.14), $g s g^{-1} \in E$ and hence $g s g^{-1} \in E \cap g E g^{-1}$. By (iii) of (3.14), $E=g E g^{-1}$. Hence $E=E^{g}$, a contradiction. Since $S \leq N_{G}(E)$) and $|S|=|\Gamma|-1, S$ is regular on $\Gamma-\{E\}$ and G^{Γ} is doubly transitive. Since S is abelian and regular on $\Gamma-\{E\}, G^{\Gamma} \cap C\left(S^{\Gamma}\right)=S^{\Gamma}$. From this, $E^{\Gamma}=S^{\Gamma}$ because $E \geq S$ and E is abelian. Therefore $G_{\Gamma} \neq 1$. Set $M=G_{\Gamma}$. Suppose $M \cap N^{a} \neq 1$, then $M \geq N^{a}$ as N^{a} is simple. Hence $N^{a} \leq N_{G}(E)$ and so N^{ω} normalizes $E \cap G_{\infty}=S$, a contradiction. Thus $M \cap N^{a}=1$. Hence $M_{\omega} \leq C_{G}\left(N^{\omega}\right)=C^{\infty}$, so that $M_{\omega}=1$ or $M_{\infty} \neq 1$ and M is a Frobenius group on Ω by (iii) of (3.1). In both cases, G has a regular normal subgroup.

We now consider the case that $N^{a} \simeq P S U(3, q) . \quad B y$ (3.7) and (3.11), $N_{\beta}^{\alpha}=U S$ where U is a Hall 2^{\prime}-subgroup of N_{β}^{α} and $U \leq Z_{q+1 / \varepsilon}$ with $\varepsilon=(q+1,3)$. As in the proof of (3.1)', we set $N_{N^{\alpha}}(S)=D S$ and $D=V \times K$. Here $V \simeq Z_{q+1 / \mathrm{s}}$ and $K \simeq Z_{q-1}$. Since $N_{N^{\alpha}}(S) \triangleright N_{\beta}^{\alpha}$, we may assume $U=V \cap N_{\beta}^{\alpha}$.
(3.16) Suppose $N^{\alpha} \simeq \operatorname{PSU}(3, q)$. Then $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$ is a Sylow 2-subgroup of N^{a}. In particular $\mu=q^{2}-1 / \varepsilon$.

Proof. Suppose not and $U \neq 1$. If $U^{g} \leq G_{\alpha \beta}$ for $g \in G, U^{g} \leq N_{\alpha}^{a^{g}} \cap N_{\beta}^{\boldsymbol{\beta}^{g}}$ $=N^{a^{g}} \cap N^{\alpha} \cap N^{\beta^{g}} \cap N^{\beta} \leq N^{\alpha} \cap N^{\beta}$. Hence U is conjugate to U^{g} in $N^{\alpha} \cap N^{\beta} \leq G_{\alpha \beta}$. By the Witt's Theorem $N_{G}(U)$ is doubly transitive on $F(U)$. By (ii) of Lemma 2.4, $N_{N^{\alpha}}(U)=N \times V$ where $N \simeq P S L(2, q)$. Hence $N_{G}(U)^{F(U)}$ satisfies the assumption of Theorem 1. By (i) of (3.1), the number of fixed points of U on Δ_{i} is constant for each N^{ω}-orbit Δ_{i} and so $|F(U)|=\left|F(U) \cap \Delta_{i}\right| \times r+1$ $=\left(\left|N_{N^{\alpha}}(U)\right| \times\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}(U)\right| /\left|N_{\beta}^{\alpha}\right|\right) \times r+1=(|P S L(2, q)| \times|V| /|Z(S)| \times|U|)$ $\times r+1=\left(q^{2}-1\right) \times r \times|V: U|+1$. Hence $|F(U)|$ is even and $|F(U)| \neq 6$. Applying (3.12) to $N_{G}(U)^{F(U)}$, we obtain $|F(U)|=q^{2},|F(U) \cap F(Z(S))|=q$. Hence $r=1, U=V, N_{\beta}^{\alpha}=V S$ and $|F(V)|=q^{2}$ and so $\mu=\left|N_{N^{\alpha}}(S): N_{\beta}^{\alpha}\right|=q-1$. Since by (ii) of (3.1) $F(U) \supseteq F(S),|F(Z(S))|=|F(S)|=q$. Furthermore by (3.15), $N_{G}(V)^{F(V)}$ has a regular normal elementary abelian 2-subgroup, say $E^{F(V)}$. Clearly $E^{F(V)} \leq C_{G}(V)^{F(V)}$. Hence we may assume that E is a 2-subgroup of $C_{G}(V)$. Put $P=E_{F(V)}$. Then $|E|=|P| q^{2} . \quad$ By (i) of (3.4), $|\Omega|=q^{4}-q^{3}+q$ and so $2 q X|\Omega-F(V)|$. Hence there exists $\gamma \in \Omega-F(V)$ such that $\left|E: E_{\gamma}\right| \leq q$. Let T be a Sylow 2-subgroup of G_{γ} containing E_{γ}. Since $E_{\gamma} / E_{\gamma} \cap T \cap N^{\gamma}$ is isomorphic to a subgroup of $T / T \cap N^{\gamma}$ and $T / T \cap N^{\gamma} \simeq T N^{\gamma} / N^{\gamma} \leq G_{\gamma} / N^{\gamma}$, $E_{\gamma} / E_{\gamma} \cap T \cap N^{\gamma}$ is cyclic. If $E_{\gamma} \cap T \cap N^{\gamma}=1, E_{\gamma}$ is cyclic and so $\left|E_{\gamma}\right| E_{\gamma} \cap P \mid \leq 2$. Then $\left|E_{\gamma} \cap P\right| \geq\left|E_{\gamma}\right| / 2 \geq|P| q\left|2>|P|\right.$, a contradiction. Hence $E_{\gamma} \cap T \cap N^{\gamma}$ $\neq 1$. Let $z \in E_{\gamma} \cap T \cap N^{\gamma}$ with $z \neq 1$. Since $|F(z)|=q<|F(P)|, z \in E$ and $E^{F(V)}$ is regular, we have $F(z) \cap F(V)=\phi$. Hence V acts semi-regularly on $F(z)$. From this, $q=|F(z)|=(q+1 / \varepsilon) \times k$ for some integer $k \geq 1$. Since q is a power
of $2, q+1 / \varepsilon=1$, a contradiction.
(3.17) Suppose $N^{\infty} \simeq P S U(3, q)$. Then the following hold.
(i) $|\Omega|=q^{5}-q^{3}+q^{2},|F(S)|=q^{2}$.
(ii) $N_{G}(S)^{F(S)}$ has a regular normal subgroup.

Proof. If $C^{\infty} \neq 1$, (ii) follows from (v) of (3.3) and so $|F(S)|$ is a power of 2. By (3.4) and (3.16), $|F(S)|=\left(q^{2}-1\right) r / \varepsilon+1$ and $\left(q^{2}-1\right) r / \varepsilon+1\left|\left(q^{3}+1\right)\left(q^{2}-1\right) r\right|$ $\varepsilon+1$, hence $\left(q^{2}-1\right) r / \varepsilon+1 \mid q^{3}$. By calculation, we obtain $r=\varepsilon$. So (i) follows.

We now assume $C^{\infty}=1$. By (ii) of (3.4), $q\left||F(S)|=\left(q^{2}-1\right) r / \varepsilon+1\right.$, so that $r=q k+\varepsilon$ for an integer $k \geq 0$. Since $C^{a}=1, r$ is a divisor of $\left|G_{\infty} / N^{a}\right|$. Hence $r \mid 2 n \varepsilon$, so that $r \mid n \varepsilon$. Therefore $n \varepsilon \geq r=q k+\varepsilon=2^{n} \times k+\varepsilon$. Hence $k=0$ and $r=\varepsilon$. From this (i) follows.

Let f be a field automorphism as defined in (3.1)' and let T be a Sylow 2-subgroup of $N_{G}(S)$ which contains $\langle f\rangle S$. Since $\left|N_{G}(S): N_{G \infty}(S)\right|=|F(S)|$ $=q^{2}$ by (i), $|T|=2^{m} q^{5}$ where $|\langle f\rangle|=2^{m}$. Since $T \triangleright S$ and $\Omega-F(S)=q^{3}\left(q^{2}-1\right)$ there exists $\gamma \in \Omega-F(S)$ such that $\left|T: T_{\gamma}\right|=q^{3}$, hence $\left|T_{\gamma}\right|=2^{m} q^{2}$ and $T=S T_{\gamma}$. Set $W=T_{\gamma} \cap N^{\gamma}$. Then W is semi-regular on $F(S)$ because $\gamma \in \Omega-F(S)$. In particular $|W| \leq|F(S)|=q^{2}$. We note that $\left|T_{\gamma} N^{\gamma} / N^{\gamma}\right| \leq 2^{m}$. Since $T_{\gamma} / W \simeq$ $T_{\gamma} N^{\gamma} / N^{\gamma}$, we have $|W| \geq q^{2}$. Hence $|W|=q^{2}$ and W is regular on $F(S)$. Moreover $\left|T_{\gamma}: W\right|=2^{m}$.

Since $N_{G_{\alpha \beta}}(S) / S \simeq N_{G_{\alpha \beta}}(S) N^{\alpha} / N^{\alpha}$ by (3.16), $N_{G_{\alpha \beta}}(S)^{F(S)}$ is isomorphic to a homomorphic image of a subgroup of the outer automorphism group of N^{∞}. Hence $N_{G_{\alpha \beta}}(S)^{F(S)}$ is abelian when n is even or $f=1$. In this case by [1], (ii) holds because $|F(S)|=q^{2}$. We now assume n is odd and $|\langle f\rangle|=2^{m}=2$. Since $T=S T_{\gamma}$ and $\left|T_{\gamma}: W\right|=2,\left|T^{F(S)}: W^{F(S)}\right|=2$. Claim $f^{F(S)} \neq 1$. For otherwise $f \in N_{G}(S)_{F(S)}$ and $[f, D] \leq N_{G}(S)_{F(S)} \cap D=1$ as D is f-invariant and $D \leq N_{G}(S)$. But since $f \neq 1, f$ does not centralize D. Therefore $f^{F(S)} \neq 1$. As $f \in G_{a}$, $f^{F(S)} \notin W^{F(S)}$. Hence $T^{F(S)}=\langle f\rangle^{F(S)} W^{F(S)} \triangleright W^{F(S)}$. Since $W^{F(S)}$ is regular, $f^{F(S)}$ is not conjugate to any element in $W^{F(S)}$. Hence $f^{F(S)}$ is not contained in $O^{2}\left(N_{G}(S)^{F(S)}\right)$ by Lemma 2 of [3]. Since $\left\langle f^{F(S)}\right\rangle$ is a Sylow 2-subgroup of $\left(N_{G}(S)^{F(S)}\right)_{\alpha \beta}, O^{2}\left(N_{G}(S)^{F(S)}\right)_{\alpha \beta}$ is of odd order. As before $\left(N_{G}(S)^{F(S)}\right)_{\alpha \beta}$ is isomorphic to a homomorphic image of a subgroup of the outer automorphism group of $N^{\alpha}, O^{2}\left(N_{G}(S)^{F(S)}\right)_{\alpha \beta}$ is abelian. Again by [1], $O^{2}\left(N_{G}(S)^{F(S)}\right)$ has a regular normal subgroup as $|F(S)|=q^{2}$. Thus (ii) also holds in this case
(3.18) $\quad N^{a} \neq \operatorname{PSU}(3, q)$.

Proof. Let f be as in (3.1)'. By the same argument as in the proof of (ii) of (3.17), we have $I(\langle f\rangle) \leftrightarrows N_{G}(S)_{F(s)}$ and so S is a Sylow 2-subgroup of $N_{G}(S)_{F(s)}$.

By (ii) of (3.17), there is a normal subgroup L of $N_{G}(S)$ such that $L \geq N_{G}(S)_{F(S)}$ and $L^{F(S)}$ is an elementary abelian 2-subgroup of $N_{G}(S)^{F(S)}$. Let T be a Sylow 2-subgroup of $\langle f\rangle L$ which contains f. Set $E=T \cap L$. Then E
is a Sylow 2-subgroup of L. Since S is a unique Sylow 2-subgroup of $N_{G}(S)_{F(S)}$, $E / S \simeq L^{F(S)}$ is an elementary abelian 2-subgroup of order q^{2}. As $\langle f\rangle \cap E=$ $\langle f\rangle \cap E \cap G_{a}=\langle f\rangle \cap S=1, T=\langle f\rangle E \triangleright E$.

Since $T \triangleright S$ and $|\Omega-F(S)|=q^{3}\left(q^{2}-1\right)$ by (i) of (3.17), we can choose $\gamma \in \Omega-F(S)$ such that $\left|T: T_{\gamma}\right|=q^{3}$. Hence $\left|T_{\gamma}\right|=2^{m} q^{2}$ where 2^{m} is the order of f. Since $T_{\gamma} / T_{\gamma} \cap C^{\gamma} N^{\gamma} \simeq T_{\gamma} N^{\gamma} C^{\gamma} / C^{\gamma} N^{\gamma}$ is cyclic of order at most $2^{m}, \mid T_{\gamma} \cap$ $C^{\gamma} N^{\gamma}\left|=\left|T_{\gamma} \cap N^{\gamma}\right| \geq q^{2}\right.$. Moreover $T_{\gamma} \cap N^{\gamma} / T_{\gamma} \cap N^{\gamma} \cap E \simeq\left(T_{\gamma} \cap N^{\gamma}\right) E / E$ is cyclic of order at most 2^{m}, we have $\left|T_{\gamma} \cap N^{\gamma} \cap E\right| \geq q^{2} / 2^{m}$. Since the order of f is a divisor of $2 n$, we have $\left|T_{\gamma} \cap N^{\gamma} \cap E\right| \geq q\left(2^{n} / 2^{m}\right) \geq q$.

If $T_{\gamma} \cap N^{\gamma} \cap E$ contains no element of order 4 , then $T_{\gamma} \cap N^{\gamma} \cap E$ is an elementary abelian 2-subgroup of N^{γ} of order q and hence $T_{\gamma} \cap N^{\gamma} / T_{\gamma} \cap N^{\gamma} \cap E$ is an elementary abelian 2-group. Therefore $\left|\left(T_{\gamma} \cap N^{\gamma}\right) E / E\right| \leq 2$ and so $\left|T_{\gamma} \cap N^{\gamma} \cap E\right| \geq q^{2} / 2>q$, a contradiction.

If $T_{\gamma} \cap N^{\gamma} \cap E$ contains an element x of order 4 , then $1 \neq x^{2} \in S$ because E / S is an elementary abelian 2-group. Since $\gamma \in F\left(x^{2}\right)$, by (ii) of (3.1) we have $\gamma \in F(S)$, which is contrary to $\gamma \in \Omega-F(S)$. Thus (3.18) holds.

In this section we have proved the following:
Theorem 2. Suppose G^{Ω} satisfies the hypothesis of Theorem 1 and $|\Omega|$ is even. Then $N^{a} \neq S z(q), \operatorname{PSU}(3, q), N^{a} \simeq P S L(2, q)$ and either
(i) $G^{\Omega} \simeq A_{6}$ or S_{6} or
(ii) $|\Omega|=q^{2},\left|N_{\beta}^{\alpha}\right|=\left|N^{\alpha} \cap N^{\beta}\right|=q$ and G has a regular normal subgroup.

4. The case $|\Omega|$ is odd

Let G be a doubly transitive permutation group on Ω of odd degree satisfying the assumption of Theorem 1. By Theorem A of [10] and Theorem B of [11], we may assume $C_{G}\left(N^{\alpha}\right)=1$. Hence G_{a} / N^{a} is isomorphic to a subgroup of the outer automorphism group of N^{a}. Let $\{\alpha\}, \Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}$ be the set of all N^{ω}-orbits on Ω. Clearly r is a divisor of $\left|G_{a}\right| N^{a} \mid$.

From now on we assume that G has no regular normal subgroup and prove that $G \simeq P S L(2,11)$. Let M be a minimal normal subgroup of G. Then by assumption, $M_{\omega} \neq 1$.
(4.1) $\quad M$ is simple and $N^{\omega} \leq M$.

Proof. Since G is doubly transitive and $M_{\infty} \neq 1, M$ is a simple group (cf. Exercise 12.4 of [16]). If $N^{a} \nleftarrow M$, then $M_{a} \cap N^{a}=1$ as N^{a} is simple and hence $M_{\infty} \leq C_{G}\left(N^{a}\right)=1$, a contradiction. Thus $N^{a} \leq M$.

As in (3.1)', there is a 2-element f of M_{∞} such that f acts on N^{∞} as a field automorphism, $\langle f\rangle S \triangleright S,\langle f\rangle \cap S=1$ and $\langle f\rangle S$ is a Sylow 2-subgroup of M_{α}, where $N_{N^{a}}(S)=D S$ is a Borel subgroup of N^{a}, S is a unipotent subgroup of N^{ω}, and D is a diagonal subgroup of N^{ω}.
(4.2) If $f \neq 1$, then $I\left(N_{\beta}^{\alpha}\right) \nsubseteq N^{\alpha} \cap N^{\beta}$ for $\beta \neq \alpha$.

Proof. Suppose $f \neq 1$ and $\tau \in I(\langle f\rangle)$. Since M is a simple group with a Sylow 2-subgroup $\langle f\rangle S, \tau^{g} \in S$ for some $g \in M_{\alpha}$ by Lemma 2 of [3]. Set $\gamma=\alpha^{g^{-1}}$. Then $\tau \in N_{\alpha}^{\gamma}$ and clearly $\tau \nsubseteq N^{\gamma} \cap N^{a}$, so that $I\left(N_{\alpha}^{\gamma}\right) \subseteq N^{\gamma} \cap N^{\alpha}$. By the transitivity of G, we obtain $l\left(N_{\beta}^{\alpha}\right) \subseteq N^{\omega} \cap N^{\beta}$ for any $\beta \neq \alpha$.
(4.3) Suppose $f \neq 1$. Then $N^{a} \neq S z(q), \operatorname{PSU}(3, q)$.

Proof. If $N^{a} \simeq S z(q),\left|G_{\alpha} / N^{\infty}\right|$ is odd and hence $f=1$, a contradiction. Therefore $N^{a} \neq S z(q)$.

Suppose $N^{\alpha} \simeq P S U(3, q)$ and let $\tau \in I(\langle f\rangle)$. Let $s \in Z(\langle f\rangle S) \cap I(S)$. As in the proof of (4.2), $c c l_{M}(\tau) \cap S \neq \phi$. Then since s is an extremal element there is $g \in M$ such that $\tau^{g}=s$ and $\left(C_{\left\langle_{f}\right\rangle s}(\tau)\right)^{g} \leq\langle f\rangle S$. Since τ is a field automorphism of order $2, Z(S) \leq C_{\langle f\rangle}(\tau)$. Put $\beta=\alpha^{g-1}$. Then $\tau \in N_{\alpha}^{\beta}$ and $Z(S) \leq N_{\beta}^{\alpha}$. By (4.2) $Z(S) \nleftarrow N^{a} \cap N^{\beta}$ and so $\left|Z(S): Z(S) \cap N^{a} \cap N^{\beta}\right|=2$ because $Z(S) \mid Z(S) \cap$ $N^{\alpha} \cap N^{\beta} \simeq Z(S)\left(N^{\alpha} \cap N^{\beta}\right) / N^{\alpha} \cap N^{\beta} \leq N_{\beta}^{\alpha} / N^{a} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \leq G_{\beta} / N^{\beta}$.

Claim $N_{\beta}^{\alpha} \leq N_{N^{\alpha}}(S)$. Suppose not. Then $N_{\beta}^{\alpha} \cap N_{N^{\alpha}}(S)$ is a strongly embedded subgroup of N_{β}^{α}. Since $\left|N_{\beta}^{\alpha}\right| N^{\alpha} \cap N^{\beta} \mid$ is even and $N_{\beta}^{\alpha} \geq Z(S) \geq Z_{2} \times Z_{2}$, by Bender's Theorem ([2]), $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta}$ is not solvable, while $N_{\beta}^{\alpha} / N^{\beta} \cap N^{\beta} \simeq$ $N_{\beta}^{\alpha} N^{\beta} / N^{\beta}$ is solvable, a contradiction.

Let V_{1} be a τ-invariant Hall 2^{\prime}-subgroup of N_{β}^{α}. Then since V_{1} normalizes $\Omega_{1}\left(O_{2}\left(N_{\beta}^{\alpha}\right)\right)=Z(S), V_{1}$ centralizes $Z(S) / Z(S) \cap N^{a} \cap N^{\beta} \simeq Z_{2}$. Hence by (i) of Lemma 2.4, $V_{1} \leq Z_{q+1}$ and so [$\left.V_{1}, Z(S)\right]=1$ by (ii) of Lemma 2.4. Therefore $I\left(N_{\beta}^{\alpha}\right) \subseteq Z\left(N_{\beta}^{\alpha}\right)$. Similarly $I\left(N_{\alpha}^{\beta}\right) \subseteq Z\left(N_{\alpha}^{\beta}\right)$. Since $\tau \in I\left(N_{\alpha}^{\beta}\right)$, we have $N^{\alpha} \cap N^{\beta}$ $\leq C(\tau) \cap N_{N^{a}}(S)$. Since τ is a field automorphism of N^{a} of order $2, C(\tau) \cap$ $N_{N^{\alpha}}(S)=K Z(S)$ where K is a cyclic subgroup of $N_{N^{a}}(S)$ of order q-1. Hence $N^{\alpha} \cap N^{\beta} \leq K Z(S) \cap N_{\beta}^{\alpha}=Z(S)\left(K \cap V_{1} O_{2}\left(N_{\beta}^{\alpha}\right)\right)=Z(S)$ and so $\left|Z(S): N^{\alpha} \cap N^{\beta}\right|=2$.

We claim that $F(z)=F(Z(S))$ for $z \in I\left(N_{\beta}^{\alpha}\right)$. Let Δ_{i} be an arbitrary $N^{\alpha}-$ orbit on $\Omega-\{\alpha\}$. Since all elementary abelian 2 -subgroups of N^{ω} of order q are conjugate in N^{a}, there exists $\gamma \in \Delta_{i}$ with $Z(S) \leq N_{\gamma}^{\alpha}$. Hence by Lemma 2.2, $\left|F(z) \cap \Delta_{i}\right|=\left|C_{N^{\alpha}}(z)\right| \times\left|Z(S)^{*}\right| /\left|N_{\gamma}^{\alpha}\right|=(q+1 / \varepsilon) \times q^{3}(q-1) /\left|N_{\gamma}^{\alpha}\right|$ for $z \in I\left(N_{\beta}^{\alpha}\right)$. On the other hand $\left|F(Z(S)) \cap \Delta_{i}\right|=\left|N_{N^{\alpha}}(Z(S))\right| /\left|N_{\gamma}^{\alpha}\right|=\left(q^{2}-1 / \varepsilon\right) \times q^{3} /\left|N_{\beta}^{\alpha}\right|$. Hence $F(z) \cap \Delta_{i}=F(Z(S)) \cap \Delta_{i}$ and so $F(z)=F(Z(S))$. In particular $F(\tau)=$ $F(Z(S))$ because $\tau \in I\left(N_{\alpha}^{\beta}\right)$ and $N^{a} \cap N^{\beta} \neq 1$.

We claim that $\left(V_{1}\right)_{F(z(s))}=1$. Set $S_{1}=O_{2}\left(N_{\beta}^{\alpha}\right)$. Let $d \in V_{1}$ with $d \neq 1, \Delta_{i}$ be a N^{ω}-orbit which contains β and let D_{1} be a τ-invariant Hall 2^{\prime}-subgroup of $N_{N^{a}}(S)$ which contains V_{1}. Put $X=\langle d\rangle Z(S)$. Then by Lemma 2.2, $\left|F(X) \cap \Delta_{i}\right|=\left|N_{N^{\alpha}}(X)\right|\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}(X)\right| /\left|N_{\beta}^{\alpha}\right|=\left|D_{1} Z(S)\right|\left|N_{\beta}^{\alpha}: V_{1} Z(S)\right| /\left|N_{\beta}^{\alpha}\right|$ $=\left(q^{2}-1 / \varepsilon\right)\left|S_{1}\right| /\left|N_{\beta}^{\alpha}\right|=\left|F(Z(S)) \cap \Delta_{i}\right| /\left|S: S_{1}\right|$. Since $S_{1} / N^{a} \cap N^{\beta}$ is cyclic and $N^{a} \cap N^{\beta} \leq Z(S), S \neq S_{1}$. Therefore $F(X) \neq F(Z(S))$ and so $\left(V_{1}\right)_{F(Z(S))}=1$.

Since $D_{1} \leq N_{N^{\alpha}}(Z(S))$ and $\tau \in N_{G a}(Z(S))_{F(Z(S))},\left[\tau, D_{1}\right] \leq N_{G}(Z(S))_{F(Z(s))} \cap D_{1}$
$=\left(V_{1}\right)_{F(Z(S))}=1$. Hence $D_{1} \leq C(\tau) \cap N_{N^{a}}(S)=K Z(S)$ with $K \simeq Z_{q-1}$, which is contrary to $\left|D_{1}\right|=\left(q^{2}-1\right) / \varepsilon$. So (4.3) is proved.
(4.4) Suppose $N^{a} \simeq P S L(2, q)$ and $f \neq 1$. Then the following hold.
(i) N_{β}^{α} is a 2-subgroup of N^{ω} and $\left|N_{\beta}^{\alpha}: N^{\omega} \cap N^{\beta}\right|=2$.
(ii) Let $\tau \in I(\langle f\rangle)$. Then for some $\beta \neq \alpha, \tau \in N_{\alpha}^{\beta}-N_{\beta}^{\alpha},\left|C_{s}(\tau)\right|=\sqrt{q}$ and $N^{a} \cap N^{\beta} \leq C_{S}(\tau) \leq N_{\beta}^{\alpha}$.

Proof. As in the proof of (4.3), there exist $s \in I(S)$ and $g \in M$ such that $\tau^{g}=s$ and $\left(C_{\langle f\rangle}(\tau)\right)^{g} \leq\langle f\rangle S$. Put $\beta=\alpha^{g^{-1}}$. Then $\tau \in N_{\alpha}^{\beta}-N_{\beta}^{\alpha}$ and $C_{S}(\tau) \leq N_{\beta}^{\alpha}$. Since τ is a field automorphism of N^{ω} of order $2,\left|C_{S}(\tau)\right|=\sqrt{q}$. Claim $N_{\beta}^{\alpha} \leq N_{N^{a}}(S)$. If $q \neq 2^{2}$, as $C_{S}(\tau) \leq N_{\beta}^{\alpha}$, a Sylow 2-subgroup of N^{a} is non cyclic. Hence as in the proof of (4.3), $N_{\beta}^{a} \leq N_{N^{a}}(S)$. If $q=2^{2}, N^{a} \simeq A_{5}$ and so $\langle\tau\rangle N^{a}$ $=M_{\infty}=G_{a} \simeq S_{5}$. In particular $r=1$. Hence $N_{\beta}^{\alpha} \leq N_{N} \alpha(S)$. For otherwise $\left|N_{\beta}^{\alpha}\right|=6$ or 10 and $|\Omega|=11$ or 7 , respectively. By [13], such groups do not exist. Thus in both cases $N_{\beta}^{\alpha} \leq N_{N^{\alpha}}(S)$. On the other hand $N_{\beta}^{\alpha} / N^{\infty} \cap N^{\beta}$ is cyclic of even order. By (i) of Lemma 2.4, N_{β}^{α} must be an abelian 2 -subgroup of N^{α} and $\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|=2$. Since $N_{\alpha}^{\beta} \simeq N_{\beta}^{\alpha}$ and $\tau \in N_{\alpha}^{\beta}$, we obtain $N^{a} \cap N^{\beta}$ $\leq C_{s}(\tau)$. Thus (i) and (ii) hold.
(4.5) Suppose $N^{\alpha} \simeq P S L(2, q)$ and $f \neq 1$. Let $T=N_{\beta}^{\alpha} N_{\alpha}^{\beta}$. Then
(i) $N_{G}(T)$ is doubly transitive on $F(T)$.
(ii) $N_{N^{\alpha}}(T)=S$ and $S_{\gamma}=N_{\beta}^{\alpha}$ for every $\gamma \in F(T)$.

Proof. Since $G_{\alpha \beta} / N_{\beta}^{\alpha}$ is cyclic and by (i) of (4.4) $T / N_{\beta}^{\alpha} \simeq Z_{2}, I\left(G_{\alpha \beta}\right) \subseteq T$. Clearly $\left\langle I\left(G_{\alpha \beta}\right)\right\rangle=T$. Hence by the Witt's Theorem, we have (i).

Let K_{1} be a Hall 2^{\prime}-subgroup of $N_{N^{a}}(T)$. Then K_{1} normalizes $T \cap N^{a}$ $=N_{\beta}^{\alpha}$. Since $T / N_{\beta}^{\alpha} \simeq Z_{2},\left[K_{1}, T / N_{\beta}^{\alpha}\right]=1$ and so $T=C_{T}\left(K_{1}\right) N_{\beta}^{\alpha}$. If $K_{1} \neq 1$, by (i) of Lemma $2.4 C_{T}\left(K_{1}\right)=1$. Hence $K_{1}=1$ and $N_{N} \alpha(T)=S$.

Let $\gamma \in F(T)-\{\alpha\}$. Then obviously $N_{\beta}^{\alpha} \leq S_{\gamma} \leq N_{\gamma}^{\alpha}$. Since G is doubly transitive on $\Omega,\left|N_{\beta}^{\alpha}\right|=\left|N_{\gamma}^{\alpha}\right|$, so that $N_{\beta}^{\alpha}=S_{\gamma}=N_{\gamma}^{\alpha}$. Thus (ii) holds.
(4.6) Suppose $N^{a} \simeq P S L(2, q)$ and $f \neq 1$. Put $q=2^{n}$. Then
(i) $\left(n,\left|N_{\beta}^{\infty}\right|\right)=(2,2),\left(2,2^{2}\right),\left(4,2^{3}\right)$ or $\left(6,2^{4}\right)$.
(ii) If $\left(n,\left|N_{\beta}^{\alpha}\right|\right)=\left(6,2^{4}\right), N_{G}(T)^{F(T)} \simeq A_{5}$.

Proof. $\left|G_{a}\right| N^{a}| | n$ and $f \neq 1, n$ is even and so we set $n=2 m$. By (ii) of (4.4), $\left|N_{\beta}^{\alpha}\right|=2^{m+\varepsilon}$ where $\varepsilon=0$ or 1 . Since $N_{G_{a \beta}}(T) / T \leq G_{\alpha \beta} / T \simeq\left(G_{\alpha \beta} / N_{\beta}^{\alpha}\right) /\left(T / N_{\beta}^{\alpha}\right)$ and $G_{\alpha \beta} / N_{\beta}^{\alpha} \simeq G_{\alpha \beta} N^{\alpha} / N^{\alpha} \leq G_{a} / N^{\alpha}, N_{G_{\alpha \beta}}(T)^{F(T)}$ is cyclic and $\left|N_{G_{\alpha \beta}}(T)^{F(T)}\right| \mid m$. By (4.5), $N_{G}(T)^{F(T)}$ is doubly transitive and $S^{F(T)} \simeq S / N_{\beta}^{\alpha}$ is semi-regular on $F(T)-\{\alpha\}$. Since $N_{G_{\alpha \beta}}(T)^{F(T)}$ is cyclic, by [1] $N_{G}(T)^{F(T)} \simeq \operatorname{PSL}\left(2, q_{1}\right)$ where q_{1} is a power of 2 or $N_{G}(T)^{F(T)}$ has a regular normal subgroup. If ($n,\left|N_{\beta}^{\alpha}\right|$) $\neq(2,2),\left(2,2^{2}\right)$ and $\left(4,2^{3}\right), S^{F(T)}$ contains a four-group, which is semi-regular on $F(T)-\{\alpha\}$. Hence $N_{G}(T)^{F(T)}$ contains no regular normal subgroup and so
 $N_{N^{\alpha}}(T)^{F(T)}, q_{1}=2^{m-\varepsilon}>2$. Hence $2^{m-\varepsilon}-1=\left|N_{G_{a \beta}}(T)^{F(T)}\right|$, so that $2^{m-\varepsilon}-1 \mid m$. From this, $\varepsilon=1, m=3$ and $N_{G}(T)^{F(T)} \simeq A_{5}$. Thus (4.6) holds.
(4.7) $f=1$.

Proof. Suppose $f \neq 1$. Then by (4.3) and (4.6), it suffices to consider the case (i) of (4.6).

If $N^{a} \simeq P S L\left(2,2^{2}\right)$ and $\left|N_{\beta}^{\alpha}\right|=2, G_{a}=N_{a}^{\beta} N^{a} \simeq \operatorname{Aut}\left(N^{\alpha}\right) \simeq S_{6}$. Hence $r=1$. Therefore $|\Omega|=1+\left|N^{a}: N_{\beta}^{a}\right|=31$ and $|G|=|\Omega|\left|G_{a}\right|=2^{3} \cdot 3 \cdot 5 \cdot 31$. By the Sylow's theorem, G has a regular normal subgroup of order 31. But this is a contradiction as $G \geq N^{a}$.

If $N^{\omega} \simeq P S L\left(2,2^{2}\right)$ and $\left|N_{\beta}^{\alpha}\right|=2^{4}$, as above $G_{a}=N_{\alpha}^{\beta} N^{\alpha}$ and hence $r=1$. From this $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=16$, a contradiction.

If $N^{a} \simeq P S L\left(2,2^{4}\right)$ and $\left|N_{\beta}^{\alpha}\right|=2^{3},\left|\operatorname{Aut}\left(N^{\alpha}\right): N^{a}\right|=4$ and so $\left|G_{\infty}: N_{\alpha}^{\beta} N^{\infty}\right|$ ≤ 2. Hence $r=1$ or 2 and $|\Omega|=511$ or 1021 respectively. By Lemma 2.2, for $s \in N_{\beta}^{\alpha}-\{1\}|F(s)-\{\alpha\}|=14$ or 28 respectively. Let τ be a field automorphism of N^{ω}. of order 2 as in (4.4). Then $C_{N^{\alpha}}(\tau) \simeq \operatorname{PSL}\left(2,2^{2}\right)$ and $|F(\tau)-\{\alpha\}|=14$ or 28 since τ is conjugate to s. From this an element x of $C_{N^{\alpha}}(\tau)$ of order 5 fixes at least four points in Ω. Since $5 \nmid|\Omega|,\langle x\rangle$ is a Sylow 5-subgroup of G and so $x^{g} \in N^{\alpha}$ for some $g \in G$. But $F\left(x^{g}\right)=\{\alpha\}$ because $\left|N_{\gamma}^{\alpha}\right|=\left|N_{\beta}^{\alpha}\right|=2^{3}$ for all $\gamma \neq \alpha$. Therefore $|F(x)|=1$, which is contrary to $|F(x)| \geq 4$.

If $N^{a} \simeq P S L\left(2,2^{6}\right)$ and $\left|N_{\beta}^{\alpha}\right|=2^{4}$, by (ii) of (4.6), $\left|N_{G_{a \beta}}(T)^{F(T)}\right|=3$. Hence $3\left|\left|G_{\alpha \beta}: N_{\beta}^{\alpha}\right|\right.$. Since $| G_{\alpha \beta}: N_{\beta}^{\alpha}\left|=\left|G_{\alpha \beta} N^{\alpha}: N^{\alpha}\right|\right.$ and $| N_{\alpha}^{\beta} N^{\alpha}: N^{\alpha} \mid=2$ by (i) of (4.4), we have $G_{\alpha \beta} N^{\alpha}=G_{\alpha} \simeq \operatorname{Aut}\left(N^{\alpha}\right)$. In particular $r=1$ and $|\Omega|$ $=16381$. Moreover $|F(s)-\{\alpha\}|=60$. As before $|F(\tau)-\{\alpha\}|=60, C_{N^{\alpha}}(\tau)$ $\simeq P S L\left(2,2^{3}\right)$ and an element of $C_{N^{\alpha}}(\tau)$ of order 7 fixes at least five points. But since $7 X|\Omega|$ and $7 X\left|N_{\beta}^{\alpha}\right|$, every element of order 7 fixes exactly one point, a contradiction.
(4.8) $\quad G^{\Omega} \simeq P S L(2,11),|\Omega|=11$.

Proof. By (4.7), $\left|M_{a}: N^{a}\right|$ is odd and so a Sylow 2-subgroup of N^{∞} is also that of M. By [4], [5] and [15], it suffices to consider the following cases:
(i) $\quad N^{a} \simeq \operatorname{PSL}\left(2,2^{2}\right), M \simeq \operatorname{PSL}\left(2, q_{1}\right), q_{1} \equiv 3$ or $5(\bmod 8), q_{1}>3$.
(ii) $\quad N^{\infty} \simeq \operatorname{PSL}\left(2,2^{3}\right), C_{M}(t) \simeq Z_{2} \times P S L\left(2,3^{2 m+1}\right), t \in I(M)(m \geq 1)$.
(iii) $\quad N^{a} \simeq P S L\left(2,2^{3}\right), M \simeq J_{1}$, the smallest Janko group.

First we consider the case (i). If $\left|N_{\beta}^{\alpha}\right|$ is odd, every involution in M has a unique fixed point and so $M \simeq P S L(2,5)$ by [2]. But then $M=N^{\infty}$, a contradiction. Hence $\left|N_{\beta}^{\alpha}\right|=2,4,6,10$ or 12 . On the other hand $r=1$ or 2 because $\left|\operatorname{Aut}\left(N^{a}\right): N^{\alpha}\right|=2$. From this $|\Omega|=1+\left|N^{a}: N_{\beta}^{\alpha}\right| r=7,11,13,21,31$ or 61. Since $M \simeq P S L\left(2, q_{1}\right)$ and $|M|=|\Omega|\left|N^{\infty}\right|$, we get $|\Omega|=11,\left|N_{\beta}^{\alpha}\right|=6$ and $M \simeq P S L(2,11) . \quad$ Thus $|\Omega|=11$ and $G \simeq P S L(2,11)$.

Next we consider the case (ii). As in the case (i), $\left|N_{\beta}^{\alpha}\right|$ is even. Let $t \in I\left(N_{\beta}^{\alpha}\right)$. Since $\left|M_{\infty}: N^{a}\right|=1$ or $3, I\left(M_{\omega}\right)=\left\{t^{g} \mid g \in M_{\omega}\right\}$ and so $C_{M}(t)$ is transitive on $F(t)$. Hence $|F(t)|=\left|C_{M}(t): C_{M_{\alpha}}(t)\right|$. Since $\left|C_{M_{\omega}}(t)\right|=$ $\left|C_{M_{\alpha}}(t) N^{\alpha}: N^{\infty}\right|\left|C_{N^{\alpha}}(t)\right|,|F(t)| \geq\left(3^{2 m+1}-1\right) 3^{2 m+1}\left(3^{2 m+1}+1\right) / 24$. Since $\left|M_{a}: N^{\infty}\right|$ $=1$ or $3, r=1$ or 3 . Therefore $|F(t)|=1+\left(\left|C_{N^{\alpha}}(t)\right|\left|I\left(N_{\beta}^{\alpha}\right)\right| /\left|N_{\beta}^{\alpha}\right|\right) \cdot r<1+8$ $\times 3=25$. Hence $25>\left(3^{2 m+1}-1\right)^{3} / 24$ and so $3^{2 m+1}<11$, a contradiction.

Finally we consider the case (iii). Since $N^{a} \simeq P S L\left(2,2^{3}\right), 3^{2}| | N^{a} \mid$. But $3^{2} X|M|=\left|J_{1}\right|=2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 19$, a contradiction.

Osaka Kyoiku University

References

[1] M. Aschbacher: Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra 18 (1971), 114-136.
[2] H. Bender: Transitive Gruppen gerader Ordnung, in dene jede Involutionen gerade einen Punkt festlasst, J. Algebra 17 (1971), 527-554.
[3] F. Buekenhout and P. Rowlinson: On (1,4)-groups II, J. London Math. Soc. (2) 8 (1974), 507-513.
[4] M.J. Collins: The characterization of the Suzuki groups by their Sylow 2-subgroups, Math. Z. 123 (1971), 32-48.
[5] M.J. Collins: The characterization of the unitary groups $U_{3}\left(2^{n}\right)$ by their Sylow 2-subgroups, Bull. London Math. Soc. 4 (1972), 49-53.
[6] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[7] Y. Hiramine: On multiply transitive groups, Osaka J. Math, to appear.
[8] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
[9] M.E. O'Nan: Normal structure of the one-point stabilizer of a doubly-transitive permutation group I, Trans. Amer. Math. Soc. 214 (1975), 1-42.
[10] M.E. O'Nan: Normal structure of the one-point stabilizer of a doubly-transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
[11] M. O'Nan: Doubly transitive groups of odd degree whose one point stabilizers are local, J. Algebra, 39 (1976), 440-482.
[12] E. Shult: On doubly transitive groups of even degree, to appear.
[13] C.C. Sims: Computional methods in the study of permutation groups, (in Computional Problem in Abstract Algebra), Pergamon Press, London, 1970, 169-183.
[14] R. Steinburg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
[15] J.H. Walter: The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.
[16] H. Wielandt: Finite permutation groups, Academic Press, New York 1964.
[17] M.E. O'Nan: A characterization of Ln(q) as a permutation group, Math. Z. 127 (1972), 301-314.

