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Introduction

Let K be a compact subset of the n-dimensional complex Euclidean space
C". Let C(K) be the Banach algebra of all complex valued continuous func-
tions defined on K, equipped with the sup-norm. There are several important
closed subalgebras of C(K). The problem of uniform approximation is to find
the conditions that some of these subalgebras coincide with each other. Among
these, we shall mainly deal with the problem for the subalgebra H(K), the
closure in C(K) of the class of functions each of which is the restriction of a
function holomorphic in a neighborhood of K. When n=1, this is the problem
of rational approximation. When #>1, known results for H(K), for the most
part, were concerned with the case when K is the closure of a bounded domain
with smooth boundary or a compact subset of a smooth real submanifold of
c".

The problem of finding the conditions under which H(K) coincides with
C(K), when K is a compact subset of a smooth real submanifold of C”, origi-
nated with Wermer [13] and has been studied by several authors (Hormander-
Wermer [5], Nirenberg-Wells [7], Cirka [1], and Harvey-Wells [2]). The
result of Hormander-Wermer is the following:

Let M be a smooth real submanifold of C" without complex tangent. Then,
for every compact subset K of M, H(K)=C(K) holds.

In this paper, we shall deal with the case when K is a subset of the zero
set T of a nonnegative strictly plurisubharmonic function. Such a set T will
be called a totally real set. (This use of terminology is supported by the fact
that a smooth real submanifold M of C" is a totally real set if and only if M has
no complex tangents (Corollary of Proposition 6).) It is known that a totally
real set is locally a subset of a totally real submanifold (Harvey-Wells [3]).
Therefore, the local approximation theorem for totally real sets follows at once
from the theorem of Hoérmander-Wermer cited above. The main purpose
of this paper is to establish the following global approximation theorem:

Let T be a totally real set. Then, for every compact subset K of T, H(K)
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=C(K) holds.

The main tool that we shall make use of is the L?-estimate for solutions of
d-problem due to Hérmander [4].

In order to establish the uniform approximation theorem for H(K), we
shall consider, in Section 2, some convexity conditvion on K that is a variant of the
uniform H-convexity condition introduced by Cirka [1]. It will be proved in
Section 5 that a compact totally real set satisfies a certain convexity condition of
this kind.

In Section 3, we shall give a local representation of CR-submanifolds
(Theorem 1). In Section 4, we shall define a totally real set and study some of
its properties. Section 5 will be devoted to the proof of the main theorem
(Theorem 2). The essential part of the proof consists of Lemma 4 and 6. In
Section 6, we shall give an example of a smooth real submanifold M containing
a set of points at which M has non zero complex tangents, while H(K)=C(K)
holds for every compact subset of M. To derive this example, we need to
generalize a theorem due to Mergeljan. Section 7 is concerned with the prob-
lem of the (peak) interpolation for a nondegenerate analytic polyhedron or a
strictly pseudoconvex domain (not necessarily with smooth boundary), as an
application of the main theorem. This problem has been extensively discussed
for a polydisk (cf. Stout [11]). In the last section, we shall prove an approxima-
tion theorem for CR-functions in some globally presented case. It seems to the
author that the main difficulty in proving the approximation theorem for CR-
functions in general form consists in the proof of the extension lemma corre-
sponding to Lemma 6.

1. Notations and preliminaries

We denote by C” the complex n-dimensional Euclidean space. When we
must emphasize the complex coordinates 2=(z;, ***, 2,), it will be denoted by C~.
Similarly, C¢, ...» or RY, .. . denotes the subspace with the coordinates
(21 **+, 2) or (uy, -+, ) respectively. For any point 2 of C”, |z| denotes the
Euclidean norm of 2. For a subset S of C”, we define the distnace function
ds(2)=inf {|{—=|: =S} and the &-neighborhood U (S)= {z: ds(2)<&} of S.
B,(a, r) denotes the n-dimensional ball {zC": |2—a| <r}. If f is a continuous
function defined on .S, the sup- and L*-norms are denoted by ||fl|s and || fll.%s
respectively.

Let U be an open subset of C". For any real valued function p&C*U)
and for any vector £ of C”, we write

Hlp; £](2) =§%’g—2 g€, =eU.

If H[p; E](2)>0 holds for every nonzero £ and for every point z of U, then p is
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called a strictly plurisubharmonic function in U. Let P(U) be the class of C*
functions nonnegative and strictly plurisubharmonic in U.

Lemma 1. Let U be an open subset of C". Let p and o be strictly plurisub-
harmonic functions defined in U. Suppose that there exists a real number ¢ such
that

G, = {z€U: p(3)<c}
is relatively compact in U. Then, for any real number &,
G, = {z€G,: o(2)<¢&}

is holomorphically convex. In particular, G, is holomorphically convex.

Proof. Set
1 1
“)= o T o)
Then, we have, for any vector £C" and for any 2G,,

. __ 1 : 2 0p(2) ¢ |*

H ’ = ———H ’ k

s 8 = e T O G 3 e,
1 : 2 00 (2) ¢ |?

———— H]o; k

T emor 1 I e R e,

The right member is positive for nonzero vector £. If 2 is a point of 9G,, then
p(2)=c or o(2)=E& holds. From this it follows that, for any real number a, the
set {z=G: u(z)<a} is compact. This proves the lemma.

If w=2] ay(2)ds, is a C= form of type (0, 1) defined in an open set U, then
k

we write

|o(z)| = D a(z)!.

If V is any relatively compact open subset of U, then the sup- and L?-norms of o
on V are denoted by ||o||y and ||w|| 2 respectively. The main tool which we
shall make use of is the following theorem. (This is a special form of the
theorem proved by Hrémander [4].)

Hormander’s theorem. Let K be a compact subset of a bounded open set

U. Suppose that o is a C* form of type (0, 1) satisfying 8w =0 in U. Then, for

every holomorphically convex open set G such that K G&U, there exists a C~
funciion u such that

l
S
I
)

and el 220) < Yl ]l 226
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where 7y is a constant depending only on K.

We shall also make use of the following lemma due to Hérmander-Wermer
[5]-
Lemma 2. Let u be a C* function defined in a neighborhood of the closed ball
B=B,(a, ). Then
lu(a)| < vo{€7"lull L2¢m+ElOull 5}

holds, where v, is an absolute constant.

Let K be a compact subset of C". A subalgebra A of C(K) is called a
uniform algebra on K, if it is closed in C(K), contains the constants, and
separates the points of K. If A is a uniform algebra on K, then K is naturally
immbedded in the maximal ideal space M(A) of A, and the Silov boundary
T'(A) of A is contained in K. We shall consider some uniform algebras on K.
A(K) is the algebra of functions in C(X) which is holomorphic in the interior of
K. H(K) is the algebra of functions approximated uniformly on K by functions
each holomorphic in a neighborhood of K. If Kc U, H(K, U) is the algebra of
uniform limits on K of functions holomorphic in U. If {f;, -, f,} is a set of
functions in C(K) separating the points of K, [fi, -+, f.; K] is the algebra of
uniform limits of polynomials of f,, ---, f,,. In particular, [z, -+, z,; K] is de-
noted by P(K). Evidently, we have

P(K) = H(K, C")CH(K, U)C H(K)C A(K)C C(K) .

2. Holomorphically convexity

Let K be a compact subset of C". K is called a H-convex set, if the maxi-
mal ideal space M(H(K)) of H(K) coincides with K. It is known that, if K is the
intersection of holomorphically convex open sets containing K, then K is H-
convex (cf. Rossi [9]). To establish the approximation theorem for H(K), we
need to impose a stronger convexity condition on K.

Let (=) be a nonnegative continuous function defined in an open subset U
of C". A compact subset K of U is said to be in the class (5), if we can find
constants 7 and &, so that, for every &, 0<E<E,, there exists a holomorphically
convex open set G, U satisfying

6)) U(K)CG.C {z€U: §(z)<7E} .
K is called a 8-convex set, if, in addition to (1), the condition
2) K = Er>]0 G,

is satisfied. A J-convex set is H-convex by definition. When &(2) is the
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distance function dg(z), (1) implies 32). The dg-convexity is nothing but the
uniform H-convexity introduced by Cirka [1]. We shall give some examples of
d-convex sets.

ExampLE 1. Let G be a bounded strictly pseudoconvex domain defined
by a strictly plurisubharmonic function o in an open set U containing G: G=
{z€U: o(2)<0}. Suppose that do does not vanish on 0G. Let V be a relati-
vely compact open subset of U containing G. Then, there exist positive con-
stants ¢; and ¢, such that

adg()<o(2)<cdy(z), =2€V\G.

We choose &, so that the open set {zEV: o(2) <&} is relatively compact in V.
It follows from Lemma 1 that, for any &, 0<E<E,, the open set

G, = {z€V: ()<}
is holomorphically convex. Setting 7=c7"c,, we have
U(G)CG.C {zeV:dy(z)<nE} .

Therefore, G is dg-convex. Moreover, if we set §(2)=max {o(), 0}, then G 1s
also a 8-convex set.

ExampLE 2. Let U be an open subset of C". Let f,, 1<v<s, s<n, be
functions in C~(U). Suppose that f, are holomorphic in 2,4, *+, 2, in U and
that

ofs . v=1, s
dt[——"; ; ] 0 U.
|8, k1 sl T on

Let K be a dj-convex compact subset of U, and let K* be the graph of

(flr ""fs) on K:
K* = {(z,w)eC"*: w, = f(21, -, 2,), 1<v<s}.

If G, is a holomorphically convex open subset of U in the definition of the d,-
convexity of K, then the open set

V.= {(z, m)eC: 3w, —f(2)|2<&, 2€G}

is holomorphically convex (cf. Sakai [10]). We can choose a positive constant
¢ so that, for every sufficiently small €>0,
U(K*)CV, . C{(2, w)EC"**: dgs(z, w)<cE} .

holds. Therefore, K* is dys-convex.
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ExamPLE 3. A real C~ submanifold M of C” is said to be finite, if M is a
manifold with boundary and if 0/ is a real C* submanifold of C". If Misa
compact or finite C= submanifold of C” and has no complex tangents, then M is
dy convex. This is derived from the fact that d,(s)? is strictly plurisubharmonic
in a neighborhood of M (cf. Hérmander-Wermer [5]). More generally, if p is a
function in P(U) and if the zero set K of p is compact, then K is 8-convex,
where 8§ is the function defined by

3z = 33|22

* | 0z,

(see Lemma 5, Section 5).

Let 8 be a nonnegative continuous function in U and m a positive integer.
A function FEC=(U) is said to be in the class M, (U, §), if, for any relatively
compact open subset V of U, there exists a constant ¢ such that

|9F(2)| <cd(2)", =z€V.

Proposition 1. Let K be a compact subset of U in the class (). If
FeM,(U, 8),then F | belongs to H(K).

Proof. Set w=0F in U. Let &, and 7 be the constants in (1), and let & be
an arbitrary number with 0<€<&,. We use the notation ¢ for unspecific con-
stants that are independent of &. By Hormander’s theorem, we can find a func-
tion = C=(G,) such that

ou, = o and ||ue||L2(GE)$'Y”w”L2(cg) .

Let z be an arbitrary point of K. The ball B=B,(z, €) is contained in G,. It
follows from Lemma 2 that

lue(2) | < Vol " luell 2ico+Ellollc} -

Since F & M, (U, 8), (1) yields ||w||¢,<¥E""'. Therefore, we obtain |u,(2)| < YE.
We set F.=F—u.in G,. Then F, is holomorphic in G,. For every z of K, we
have

[ F(z)—Fy(2)| = |u(2) | <€,

which proves the proposition.

Let G be a bounded domain in C". Let A~(G) denote the closure in C(G)
of the class of functions of 4(G) each of which can be extended as a C* function
in a neighborhood of G.

Corollary. If G is a bounded domain such that G is dg-convex, then
A~(G)=H(G) holds.
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Proof. Let F be a C function defined in a neighborhood U of G and
holomorphic in G. Since 9F=0in G, we have FE M, (U, d;). Therefore,
F | ; belongs to H(G).

A C= map ¢=(¢, **, ¢,) of an open subset U of C”" into C” is said to be in
the class H,(U, 8), if every ¢ is in H,(U, 9).

Proposition 2. Let & be a nonnegative continuous function defined in an open
set U and K a compact subset of U in the class R(5). Let ¢ be a map in M, (U, ).
If " is a function in H($(K)), then f=f"o¢p is in H(K).

Proof. There exists a sequence of functions {g/} each holomorphic in a
neighborhood UY of K’=¢(K) such that f’ is the uniform limit of {g/} on K.
Set g,=glog and U,=¢"(U!). Since ¢ & M, (U, 8) we have g, & M, .,(U,, 8).
Therefore, by Pioposition 1, we have g,| , € H(K). Since f is the uniform limit
of {g,} on K, we have f € H(K), as required.

Corollary. Let ¢ be a diffeomorphism in M, (U, 8). Set §==8o¢p™". If
K is in R(8) and if K'=¢(K) is in (&), then H(K) and H(K') are isomorphic as
uniform algebras.

Proof. The inverse map ¢! is in M, ,(U’, &), where U’'=¢(U). Hence,
we have the Corollary.

3. CR-submanifolds

Let M be a real C~ submanifold of C". We denote by T, (M) the real
tangent space of M at z. We say that .M fhas the complex rank r at 2, if the
complex tangent space

CT(M) = T,(M)NiT (M)

has the complex dimension r. M is called a CR-submanifold of complex rank 7,
if it has a constant complex rank 7 at every point, which will be denoted by r(/).
The following lemma gives an example of a CR-submanifold of C".

Lemma 3. Let f=(f,, -+, f,) be a C* imbedding of an subset N of R into
C.. Then, the image M=f(N) is a CR-submanifold of C}, of complex rankr, if and

oy if
rank[a—]iz : k=1, m’"]: d—r
o, w1, d

holds at every point of N.

Proof. Let 2°be any point of N and set «=f(x"). M has a nonzero complex
tangent at «, if and only if there exist two nonzero vectors ¢, s€ R* such that
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(1) 2% oy, = i W), 1<k<n.
v Ox, v 0x,

If t=0, then (1) implies that

Eg—&(xo)sv:(), Zg_vf(xo)svzo’ 1<k<n,
Xy vooxy

v

where f,=u,+1v,. Since rank[%, %; k=1, '"’n]:d, we have s=0. Set
ox, Ox, v=1,--,d

E=t—1is. Then £ is nonzero solution of
) 2 gﬁ (E =0, 1<k<n,
v Ox,

if and only if # and s are nonzero and satisfy (1). 'Thus, the complex dimension of
CT,(M) coincides with the number of linearly independent complex vectors &
satisfying (2). This proves the lemma.

Let M be a CR-submanifold of complex rank ». We say that M is holo-
morphic if, for every point 2 of M, there exists a neighborhood U, of z in C”
such that M N U, is represented as a real C parametric family of complex
submanifolds of C" of complex dimension r. If 7(M)=0, then M is trivially
holomorphic. A CR-submanifold of positive rank is not necessarily holomorphic.
For example, the hypersphere S?*~! in C", n>1, is a CR-submanifold of complex
rank n—1. However, S*"! can contain no comgplex submanifolds of C" of
positive dimensions. To see this, we suppose that S?~! contains a complex
submanifold X of C". We may assume that X contains the point 2°=(1,0, --+,0).
Then the function f(2)=4%(142,) induces a holomorphic function F on X. |F|
attains its maximal value 1 in X only at 2°. It follows from the maximal modulus
principle that X reduces to {2°%.

We shall now give a local representation of holomorphic CR-submanifolds.
For simplicity, we use the abbreviations

u,z(ul) "',ut)7 7)':(‘1)1,"‘,‘2),),

M= (wt+r+b °ty wn) )

W’ = (Wi, ***, Wesy) and w

where w,=u,-+1v, and 0<¢t<t+r<n.

Let V be an open subset of C}. Suppose that N=V N(Ri x C}’) is not
empty. If ¢ is a diffeomorphism of ¥ into C? which is in G(V, dy), then
é|y is holomorphic in @” on N. Therefore, M=g(N) is a holomorphic CR-
submanifold of C7.

Conversely, we have the following theorem.

Theorem 1. Let M be a holomorphic CR-submanifold of C%. For any
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positive integer m and for any point 2 of M, there exist a neighborhood U, of z in
C?, a neighborhood V of the origin of C,, and a C*= diffeomorphism ¢ of V onto U,
satisfying the following conditions:

(i) N=¢(MNU,) is an open subset of Ry X Ci, where r=r(M) and
t=dimp M—2r; ‘

(ii) every component ¢, of ¢ is holomorphic in w,y, -+, w,;

(iil) ¢ MV, dy).

Proof. Since M is holomorphic, we can choose a neighborhood U’ of z, a
neighborhood N’ of the origin in Ry X C}, and a C* map » of N’ into C”
with y(0)=z%, satisfying the following conditions:

@) V(N)=MnUz;

(b) every component v, of yr is holomorphic in %" on N’.

By Lemma 3, we can assume that

(c) det[aw"; k=1, t—l—r] F+0 on N'.
Ou, v=1, - t+r

We define the function r€C=(Q), Q=N’'X R} x C%./~!, by
T 7/ 74 s ! allj‘k / 74
(@, 0y w,) = (W, w )—I—zglgu— (', w")v,

o : _M_ ’ Z;
+ —l'_’—n‘! yl,-§m=1 au’ﬁ"'a“vm (u y W )7)1;1 ‘vvm .
It follows at once from (b) that g% =0 for p—t-+1, -, n. For p=1, -+, £, we

Wy

have
. +1
ﬁ ap \pk — Vy “.‘UVP
Pl auvl---auvﬁw“
+ B iIH'I ap+1\l"k _i (Avv LY )N )
(P+‘1)! v T auvl... auv“l aw“ ! .
. +1
_ it /S
2p vy, auvl-uau«,pauﬁ
il 0P+, 0 (@0 )
i 0Ty ce2,
(PFD)! 2 s Oy 0 B0
it 9p+1
_ ‘Pk .vvl...v,up
ZP ! V), auy.auvl..-auvp
l'p ap+1
‘Irk V., ***Vp

1 4

- E vy p Oty Ouy +++ au#p
=0.
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Therefore, we have

8\]7,, _ l‘m 6m+l‘\,b‘k (u/ ‘ZU”)‘U e
Y A~ A~ A Y v v
0w, m!v. "vm 0W.Ou, -+~ Ou, !

From this it follows that J& H,.(Q, dy).
Let us now define the C* map ¢=(¢,, :**, ¢,) of Q into C" by

Ti(w) (1<k<t+r)

Bu(20y, 5 w,) = { q}k(w)_‘_wk (t+r+1<k<n).

Then ¢ is clearly in the class .H,,(Q, dy), and hence, for any point w of N’ and

for any index », 1<v<t+4r, we have f}—\E’i(w)z E)“p"‘(w)z Oy (w). Therefore,
8201, 6”1: auv

the Jacobian of ¢ at w is

J(w) = det[M; k=1,"-,n] 2
Ow, v=1, s, n
= |det [M : k=1, -, H—r:l 2
6'”\. D:l, e tbr
= ldetl:%f",) : k=1, -, t_|_,-] 2
au\, V:]_’ ceey t+f

It follows from (c) that the last member does not vanish on N’ and bence in a
neighborhood of N’ in C%. Therefore, we can find a neighborhood ¥V of the
origin in CJ, such that ¢ is diffeomorphic in V. Setting N=N'NV and
U,=¢(V), we have the theorem.

4. Totally real sets

A subset T of C" is called a totally real set, if there exist an open subset U
of C” containing T and a function p in $(U) such that

T = {z€U: p(z) = 0} .

p is then called a defining function of T. We note that if T is totally real, then
p(2)=dp(2)=0 holds for z&T.

Proposition 3. If every point z of T has a neighberhood U, in C" such that
TN U, is totally real, then T is totally real.

Proof. We can find a locally finite open covering {U,} of T such that, in
each U,, there exists a function p, € P(U,) satisfying T'N U,= {z€ U, : p,(2)=0}.
Let {\,} be a partition of unity subordinate to {U,}. We set

p(2) = ;‘ M(R)Pu(2) zelU = U U,.
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For any vector & of C", we have
H[P; t‘:.:] = 2 7\'\cI-I[p'u; §]+2v PvHP\’v; E]

:‘;'Tk(az,. oz, * 0z, 0z S

i

If £=0, the first sum is positive. The second and the third sums vanish on T,
since p,(2)=dp,(2)=0 for z&T NU,. Therefore, we can find a neighborhood
V of T so that p is a defining function of T in P(U).

Proposition 4. Let T be atotally real set defined by p= P(U). If f, (1<v<H)
are functions in C=(U), then

T,= {2€T: f(2) =0, 1<v<t}
is a totally real set.

Proof. Set p)(2)=p(2)+>3| f,(2),|% 2= U. Then we have

Hip; 1= Hps 61+ DI L e+ n Loe

a?fv E azf v_gE
R 6,05, "" R 6a,0m, o
For any nonzero vector £, the right member is positive at every point of T).
Hence there exists a neighborhood V" of T such that p, is in L(V).

Corollary. Let T be a totally real set defined by pcP(U). If V is a
relatively compact open subset of U with the smooth boundary, then TNV isa
totally real set.

Proof. We can choose a C* function A(z) such that A(2)=0 for sV and
M2)>0 for zeUNV. Since TNV={z&T: \M2)=0}, TNV is totally real.

Proposition 5. If T, and T, are totally real sets in C; and C'; respectively,
then T=T,X T, is totally real in C;x C,.

Proof. Let p, be defining functions of T, respectively. Then, p(z, w)=
p1(2)+ po(w) is a defining function of T.

Let f,(2,) be holomorphic functions in open subsets U, of C;}, (1<v<N)
respectively. Set T,={z,€U,: |f,(2,)|=1}, 1<v<N. Suppose that every
fi(z,) does not vanish on T. Then every T, is a totally real set in C;, defined
by py(2,)=(lfu(2,)|?>—1)’. Therefore, T=T,X -+ X T} is a totally real set in C¥.

Proposition 6. Let & be a nomnegative continuous function defined in an
open set U and ¢ a diffeomorphism in (U, 8). Let T be a subset of the zero set
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of 8 (assumed to be nonempty). Then T is totally real if and only if T'=¢(T) is
totally real.

Proof. Set U'=g(U)and 8'==8og™". Since ¢ is in (U, &), it suffices
to prove that if 7" is totally real then so is 7. There exists an open set I’ such
that 7/CV’C U’ and a function p’€P/(V’) such that T'={weV"’: p/(w)=0}.
We write ¢ as w,=¢,(2), 1<v<n. Then, for any point & V=¢ (V') and for
any vector £ C”", we have

Hip; E)(2) = H[p'; n.](w)+ E;" Eu(2)EE,

where 7, is the vector (7,(2), **+, 7,(2)) defined by

wA = PP @, 1<es,

and

0%’ " s 2./ iy
0°p’ 0¢, 0y 0°p’ 09, 0gy
ZT‘" ow,0w, 0z; 0%, +§6w LOow, 02; 0%,
O 04,00, 100 Py | 00 0,
2 ® 0, 0w, 02; 0%, T 2 0w, 02,0%, . ‘v‘] 0w, 02,0z,

Since ¢ Iy (V, 8), the first three sums of the last expression vanish on 7.
Since dp’=0 on T, the other terms vanish on 7. Therefore, we have &;,(2)=0

for z&T. If £%0, then we have 7,=£0, since det l:a¢":,=l:0 on T. Thus we can
2
find a neighborhood V of T such that pe P(V).

Corollary. Let M be a real C* submanifold of C*. Then M is totally real
if and only if r(M)=0.

Proof. Suppose that 7(M)=0. Then, for any point 2° of I, there exists a
neighborhood U of 2° such that MNU is mapped by a diffeomorphism
= ﬂ,( U, dyny) onto an open subset N of the real subspace R of C%, where
d=dimy M and v'=(u,, -**, u;). Since R%, is clearly a totally real set in C}, we
can assume that NN is totally real by Corollary of Proposition 4. It follows from
Proposition 3 and 6 that ] is totally real.

Conversely, we suppose that M is totally real. For every point 2 of M
there exist a neighborhood U, and a real submanifold M with 7(M;)=0 such
that M N U,CcM; (Harvey-Wells [3]). Since T,M N U,)C T(M?) and
iT(MNU,)CiT (M), we have CT (M N U,)= {0} as required.

It should be noted that some of the properties of totally real sets has been
studied in Harvey-Wells [2], [3]. We note also that the necessary part of Propo-
sition 6 is due to Hérmander-Wermer [5]. Our proof is a different one.
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5. Uniform approximation on totally real sets
The purpose of this section is to prove the following theorem.

Theorem 2. Let T be a totally real set in C". Then, for every compact
subset K of T, H(K)=C(K) holds.

We begin by proving the following lemmas. We write
6 1/2
lgrad p(3)| = (2122 o)1)
k azk M

Lemma 4. Let T be a totally real set defined by p=P(U). Then, there
exists an open set V such that TCUCV and that u(z)=|grad p(2)|?® is in P(V).
(T is contained in the zero set of u.)

Proof. For any vector £ of C",we have

. 0%p op
Hlu; £ = 2@& azazk‘§§>azk Ek('z,az oz az,,g'gf)az,,
+35 ;%2 N Rab Pp g2,

i 02,08,

The first and the second sums vanish on T, since dp(z)=0 for z&T. The fourth
2

Fp ] is nonsingular.

zi ’Zk

Therefore, we can find a neighborthood V of T such that H[u; £]>0 for any

zeV and for any nonzero £.

sum is positive for any nonzero &, since the matrix [

Lemma 5. Let K be a compact totally real set defined by p=P(U). Set
3(2)=|grad p(2)|. Then, K is 5-convex.

Proof. By Lemma 4, there exists an open set V" such that KC V' cU and
that &% is in P(V). Since K is the zero set of p, we can choose a positive con-
stant ¢ so that the open set

G,= {z€V: p(z)<c}

is relatively compact in V. Since dp(z)=0 for zEK, there exists a positive
constant 7 such that

8(2) <ndg(2), 2eG,.
It follows from Lemma 1 that, for any positive number &, the open set
G, = {z€G,: §(2)<n¢}

is holomorphically convex. Setting &,=dist(K, G,), we have, foa rny €, 0<E<E,,
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U(K)CG.,C{zEV: §(2)<7€} .
Since ¢ can be chosen arbitrarily small, we have K= ﬂoG, which completes the
&>
lemma.

Lemma 6. Let T be a totally real set defined by p=P(U). For any
positive integer m and for any function fe C=(U), there exists a function
FeM,(U,|grad p|) such that F(2)=f(2) for z&T

Proof. The system of equations

1) f+z}g,,() _(®=0, seU, 1<i<s
2
has a unique solution (g,), g, C~(U), since the matrix [66 g - is nonsingular.
2,02,
Differentiating (1) by 2;, we have
dg, % *f 9%
0z,02,05, 03,03, BRI P TS oz,

Since the right member is symmetric with respect to z and j, we have

Zag, p _ 0g, 0%

o 0z, 02,07, ‘T 03, 02,08,

(2)

For every a, the system of equations

) 8g" + ngp =0, 1<j<n

62562

has a unique solution (ga,g), 248EC=(U). Substituting (3) to (2), we have

?p 9 o%p 9% 1<i i<
238 "‘az,,az 03402, = 25 80 03,08, 02505, 7"

or equivalently,

0%p ..
=0 1< ’ < )
ﬁ(gwﬂ —£8w) az 62 53403, , i, j<n

@,

which implies that g,s—gg,.

Suppose that, for a multi-index J=(j,, -**,j,), s is already defined. Let
Ja denotes the multi-index (jy, ***,j,, @). Then (g;,) will be defined as a unique
solution of the system of equations
=0, 1<j<n.

dgs op
) 03, +2g""a 02,
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Thus we define g; for all multi-indices J inductively.

We shall now prove the symmetry of g; with respect to J by induction. Suppose
that g; are symmetric for all multi-indices J of length p. Fix any positive
number », 1 <y <p, and for any indices «, B3, we write

& . . V 3
l:(j, ."7.’.1)"“’Jp)’ Jl=(.71) .--’a’ '”’JP)
14
and ]”=(jly'") B""’jp)a

A v v
where j, means that j, shall be omitted and & (or B) in J’ (or J” resp.) means
that « (or B resp.) shall be posed at »-th position. By the assumption of induc-
tion, we have

6g,+2g , p

) 0z; 02,02,

=0, 1<i<n.

Differen tiating (5) by Z; and using the argument analogous to one in the case of
p=1, we have
2
P _ 0,
6 62 0z50%,

E (8r8—81"a) 1<i, j<n.
Therefore, we obtain g;/s=g;”4, which implies the symmetry of g; with respect
to all multi-indices J of length p4-1.

Now, we define the function F e C=(U) by

n 1 0 0
(6) F(2) = f()+ ;P—' jl,z?lipgil-..jp(z) % apz(,Z)

Since dp(2)=0 for 2T, we have F(2)=f(z) for 2€T. Differentiating (6) by
2,, we have

oF _ of (S 08jyip 0P Op
0z, 62,,+2 ’6 62 +p21p' 112-,;, oz, az,l 09z;,

o1 ., 9 (bp . O
+ pgl (p+ 1)' ip‘Z,ipﬂ g:l---j,“ 62,, <azi1 az.fpn

bl os s 0 O

m! =m0, 0z; 0z

By the way of construction of g; ...;», we have

1 8 (6_P .. 0P
(p+1! jl"gpﬂ Eiv-ipn 0%, \0z;, 821‘p+1>
1 2 p_0p .. 0p

- P_' 1'11‘2'3»5:; g Sivip 02,02, 0z;, 0

'
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1 8giz-""p op Q .
pl o™i, 0%, 0z, 03

'

Thus, we obtain
OF _ 1 <\ 0,00 O
5, mli=im 0%, 0z; 0Oz,

b

which implies that F belongs to M, (U, |grad p|). The lemma is proved.

Proof of Theorem 2. If K is a compact subset of T, then there exists an
open set V, KcVcU, with the smooth boundary. It follows from Corollary
of Proposition 2 that TCV is totally real. Since H(T' N V)| c H(K)C C(K)=
C(T N V)|, it is sufficient to prove the theorem in the casc when K is totally
real. Let peP(U) be a defining function of K, and set = |grad p|. Then, by
Lemma 5, K is 6-convex. Let f be an arbitrary function in C*(U). Then, by
Lemma 6, f | has a C~ extension F in M, (U, 8). It follows from Proposi-
tion 1 that f|x=F | = H(K), which proves the theorem.

Theorem 2, when T is a C* totally real submanifold M of C”, was proved
by Hormander-Wermer [5] for 2k>dim, M2, and by Harvey-Wells [2] for
k=1, Nirenberg-Wells [7] proved a corresponding result when M is a C* totally
real submanifold of a complex manifold.

Theorem 2 implies that any compact subset K of a totally real set T is
H-convex. This fact is due to a strong convexity of 7. (K is contained in 2
compact totally real set K,. K, is 8-convex, 8= |grad p,|, (Lemma 5), and K is
Og,-convex (Harvey-Wells [2]).)

6. A theorem of Mergeljan

Let f be a real valued continuous function defined on the closed unit disk
D in C'. For every real number u, the level set {z=D: f(2)=u} will be denoted
by L,. We consider a uniform algebra

B = {geC(D): |g,,€A(L,) for every ucf(D)} .
Mergeljan [6] proved the following theorem.

Theorem of Mergeljan. If, for every usf(D), L, does not divide the
plane, then [z, f; Dl=B holds. In particular, if every L, has no interior points in
addition, then [z, f; D]=C(D) holds.

We shall generalize this theorem to the higher dimensional case. Let K
be a compact subset of C; and T a totally real subset of C%. Let f=(f, -, f,)
be a continuous map of K into 7. For any point w of f(K), we set
L,={z€K: f(z)=w}. We consider a uniform algebra
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B = {geC(K): g|,,€A(L,) for every we f(K)} .

If g is in A=[z, ..., 2, fi, **, fw; K], then, for every we f(K), g|.,€P(L,),
and therefore we have AC 3. If A= holds, then we have P(L,)=A4(L,) for
every we f(K).

Theorem 3. Suppose that there exists a polynomially convex compact set T,
such that (K)CT,cT. If P(L,)=A(L,) holds for every we f(K), then we have
A=3B. In particular, if P(L,)=C(L,) holds for every we f(K), then A=C(K).

Proof. Fix an arbitrary function g in B and an arbitrary positive number
€. Let o be any point of f(K). Since P(L,)=A(L,), we can find a polynomial
P(z) such that [|g—P,||,,<&/2. By the continuity of g—P,, there exists a
positive number & such that ||g—P,||,, <& for every L, contained in the 8-
neighborhood of L, in C;. By the continuity of f, we can find a positive number
7 such that L, is contained in the §-neighborhood of L, for every we f(K) with
|w—a| <n. Thus we have ||g—P,||,, <& for every we& f(K) with |w—a| <7.
By the compactness of f(K), we can choose a finite open covering {V,})-, of
f(K) in €7 and a set of polynomials {P,(2)}3_; so that, for every » and for every
weEf(K)NV,, llg—P,|l;, <& holds. Let {\,(w)} be a partition of unity sub-
ordinate to {V/,}. Since T is totally real and T\, is polynomially covenx, we have
P(T,)=C(T,) by Theorem 2 and Oka’s approximation theorem. Therefore, for
every v, there exists a polynomial Q,(w) in @ such that

H)\w_Qv”To<8[¥ [1Pulle] ™ -

We set h(z):f‘_,v O,(f(2))P,(2). Then & belongs to A.

Let 2 be an arbitrary point of K. We denote by A the set of indices v for
which the point f(2) belongs to V,. Since A,(f(2))=0 for any v& A, we have

| 8(x)—=h(x)| < 23 M(f())] £(2)—Py(2)]
+ 2 () — QAN |Py(=)]
<EDMMENHEE NPl 2 Pu(=) | <26
From this it follows that g belongs to A.

Corollary. Suppose that f, are real valued continuous functions defined
on K, 1<k<m. If P(L)=A(L,) holds for every uc f(K), then we have A=B.
In particular, if P(L,)=C(L,) holds for every uc f (K), then we have A=C(K).

Proof. We canconsider f=(f;, ***,f,) as a continuous map of K into a real
subspace Ry of C%;. R} is a totally real set in C%. For a sufficiently large
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polydisk Dy, Ty=D, N R is a polynomially convex set containing f(K). Thus,
all the conditions of Theorem 5 are satisfied.

As an application of this corollary, we give an example to show that a com-
pact set K satisfying H(K)=C(K) is not necessarily a subset of a totally real
set.

Let K= f[ K, be a compact subset of C; and let f, be real valued continuous
v=1

functions defined on K, respectively. Suppose that, for every u,& f,(K,), the
level set L, = {z,€K,: f,(2,)=u,} has no interior points and does not deivide
C:,. Then, we havve P(L,)=C(L,,). Set f(z)=(fi(z1), ***, fu(2n)), 2EK.
Then for every vector uE f(K), we have L,= ]_;[L,W, and therefore P(L,)=C(L,).

This follows from Stone-Weierstrass’s theorem, since the totality of polynomials
that are real valued on K separates the points of K. It follows from Corollary
of Theorem 3 that A=[z,, :**, 2,, f1, ***, f,; K] coincides with C(K). Set

K* = {(z’f(z))EC(Z:,W): w, =fv(zv) ’ 1£v£n} .

The projection of C¢} ., onto C7 induces isomorphisms of P(K*) onto /A and of
C(K*) onto C(K). Thus we have P(K*)=C(K*) (=H(K*)).

However, K* is not necessarily totally real. We consider a simple case
when f,(2,)=¢,(x,), where ¢,(x) are C~ functions defined on an open interval
I=(—2, 2) of a real variable x. Suppose that, for every », and for every s€q,([),
the level set {x<I: g,(x)=s} is a discrete set. Set K,={2,€C1,: |2,| <1}.
Then, we have H(K*)=C(K*) by the argument above. Set

M = {(z, f())ECE »y: w, = f(2,), 2, €I, 1<v<n}.
Then, M is a C* real submanifold of C# ,,. It follows from Lemma 3 that the
complex rank of M at the point (2°, f(2°) of M is given by n—rank [% (z°)jl .
k

We impose an additional assumption that every ¢4(x) has an isolated zero at x=0.
Set

Ey= {z€C};: x,=0, 1<v<n},
and
E = {(3f(x)ECE.w: 3EE} .

Since

of, _ 91(0). 0 }
rank | 22 (2) | = rank I: -
(55, 0

at every point k€ E,, M has the complex rank #» at every point of E. Thus, K*
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can not be a subset of a totally real set in C?; .. We remark that E is an z-
dimensional totally real subspace of C; ..

7. Interpolation sets

Let G be a bounded domain in C”. A closed subset K of the Silov
boundary of A(G) is called an interpolation set for A(G), if A(G)|x=C(K). If,
for every function f in C(K), there exists a function F in A(G) such that
F(2)=f(2) for 2€K and |F(2)| <l|f||x for 2G\K, then K is called a peak
interpolation set for A(G). It is known that an interpolation set K is a peak in-
terpolation-set if and only if K is a peak set for A(G), that is, there exists a
function f in A(G) such that f(z)=1 for €K and | f ()| <1 for z€G\K.

When G is a compact polydisk D", the Silov boundary of A(D") is the n-
dimensional torus 7". 1In [11], Stout proved that a closed subset K of T" is a
peak interpolation set if and only if K is the zero set of a function in A(D").
We shall consider the case when G is an analytic polyhedron or a strictly pseudo-
convex domain.

We use the following lemma known in the theory of uniform algebras (cf.
Stout [12], Chap. 4).

Lemma 7. Suppose that K satisfies the following conditions:
(1) G\K is simply connected;
(ii) there exists a function he A(Q) such that

K = {zeG: Wz)=0}.
Then, K is a peak set for A(G), and A(G)| g is a closed subalgebra of C(K).
Theorem 4. Let G be a bounded analytic polyhedron in C" defined by
G = {zeU: |f(2)|<1, 1<v<n},

where U is an open set containing G, and f, are functions holomorphic in U. Suppose

that det [?—fl‘:’ has no zeros on the set
82,,

= {zeU: |f(2)|=1, 1<v<n}.

If K is a closed subset of T satisfying the condition (i) and (ii) of Lemma 7, then K
is a peak interpolation set for A(G).

Proof. It suffices to prove that A(G)|x is dense in C(K), by Lemma 7.
Choose a positive number 7>1 so that the open set

V={z€U: |f(2)|<r, 1<v<n}
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is relatively compact in U. We first prove that K is Oy-convex. If 2°isa point
of V\G, then we can find a function g holomorphic in ¥ suhc that |g(z°)| >[lgllc,
since G is Oy-convex. If 2, is a point of G\K, we have |A(2°)| >0 by the condi-
tion (ii) of Lemma 7. There exists a function % holomorphic 1n a neighborhood
of @ such that ||h—%||;<|h(z%)]/4 (cf. Petrosjan [8]). Since G is Oy-convex,
we can find a function g holomorphic in V such that 1h—glle< | A(z°)| [4-
Therefore, we have | g(2°)| >|lgllx. Thus, K is ©y-convex. From this it follows
that H(K, V)=H(K). Since H(K, V) is contained in the closure of A(G)| in
C(K) and since A(G) | is closed in C(K), it remains to prove that H(K)=C(K).
We consider the function
p(s) = S (1f(=) 121y

in U. Then we have
Hip; 8)2) = 2D (1) - )1 LB g )
v k ®
+2 L@ LB g,
v ® 2,
Since det [%]*0 and |f,(2)|=1o0nT, pis in P(U,) for a neighborhood U, of
2

T, and therefore I" is totally real. Thus the theorem follows from Theorem 2.

In the next place, we consider the case of strictly pseudoconvex domains
(not necessarily with smooth boundaries).

Theorem 5. Let G be a bounded strictly pseudoconvex domain in C" defined

by
G = {zeU: o(2)<0},

where U is an open set containing G and o is strictly plurisubharmonic in U. Let
K be a closed subset of 0G satisfying the condition (i) of Lemma 7 and the following
condition:

(i) there exists a function h holomorphic in U such that K= {z€ G: h(2)=0}
and dh has no zero on K.

Then K is a peak interpolation set for A(G).

Proof. Since the condition (ii)’ is stronger than (ii) of Lemma 7, it suffices
to prove that A(G)| ¢ is dense in C(K). We can assume that U is holomorphically
convex and the zero set X of £ in U is a closed submanifold of U.

Let = be any point of K. Then there exist a neighborhood U, of z with
U,C U and a local complex coordinate {=(¢;, +++, §,) in U, such that XN U,=
{teU,:¢,=0}. Let &ty -+, L,-1) be the restriction of o to X N U, and set

P(§)=5'(€1, °t%y gn—l)‘!‘lg:tlz’ tEUz'
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Then p is a function in P(U,) and satisfies
KnU,= {{eU,: p(t)=0}.

It follows from Proposition 1 that K is totally real. Thus we have H(K)=
C(K).

Since & is a strictly plurisubharmonic function on X and since K=
{{’'eX: #(£")<0}, K is Ox-convex. Since X is the zero set of & in U, K is
Oy-convex. Thus we can conclude that 4(G)|x=C(K), by using an argument

similar to one used in the proof of Theorem 4.

We remark that, when n=1, the condition (ii)’ reduces our problem to a very
simple one, since then K is a finite point set. When n>>1, it is not trivial. We
consider, for example, the case when G is the unit ball in CZ and h(z)=21z;—1.

k

Then, all the conditions of Theorem 5 are satisfied for K= {(xy, :**, ¥,) ER}:
2lxi=1}. In this case, K is an (n—1)-diemnsional totally real submanifold of
k

C:.

8. CR-functions

Let T be a totally real set in C% and G a holomorphically convex open subset
of C};. The projections of C¥=C"%x C"% onto C?% and C’ are denoted by =, and
m, respectively. Let K be a compact set of CV. For any 2z of C7, we set
K, =#»7'(2) N K and K}=m,(K)).

Theorem 6. Let K be a compact subset of CY satisfying the following con-
ditions:

(i) m(K)=T;

(ii) for every 2T, there exists a complex analytic subvariety X, of G such
that K is a O ~convex compact subset of X,.

If fis a C function defined in a neighborhood U of K in C¥ which is
holomorphic in w on X,N\ U for every 2 T, then f belongs to H(K).

Proof. Let a be any point of 7. By the compactness of K,, for every
number §>0, there exists a 7>>0 such that K, is contained in the -neighborhood
of K, in C¥, for every 2T with |z2—a|<7n. Since K} is Oy,-convex, and
since X, is a closed subvariety of G, there exists a function g,(w) holomorphic
in G such that

| fla, w)—ga(w)| <€[2, weK,.
By the continuity of f—g,, there exists 7>>0 such that

| fz, w)—g(w)| <&, weK!
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holds for every x€ T with |z—a| <n.
By the compactness of T, we can find a finite open covering {V,}i-; of T in
C; and a set of functions {g,(w)}:-; each holomorphic in G and satisfying

I f (2, w)—g,(w)] <E, zeTNV,, wekK;.

Choose a partition of unity {x,(2)} subordinate to {V,}. Since T is totally real,
there exists a set of functions {%,(2)} each holomorphic in a neighborhood ¥V of
T in C7 satisfying

@) <eBllgullaol ™, 2T

We set fo(2, w)=21 h,(2)g ().
Let (2, w) be any point of K. We denote by A the set of indices » for which
2 belongs to V,. 'Then we have

[ f(z, w)—foz, )| < \‘A:_llhv(z) | f(z, w)—g(w)|

+ 2 M) —h(@)| 1 2u(@)]
<E DM@+ [Dlgull] g <26

Since f,(2, w) is holomorphic in the open set V'XG, we have f|EH(K), as
required.

Let M be a holomorphic CR-submanifold of C¥. A C> function f defined
on M is called a CR-function, if f is holomorphic with respect to the complex
coordinates in M. Let K be a compact subset of /4. We denote by CR(K)
the closure in C(K) of the class of functions each of which is the restriction of a
CR-function defined on a neighborhood of K in M. If r(M)=0, then CR(K)
trivially coincides with C(K). Let T be a totally real submanifold of C; and G
a holomorphically convex compact subset of C%. If M is a closed real sub-
manifold of TXG such that, for every 2T, M,=m,(M,) is an r-dimensional
closed complex analytic submanifold of G, then M is a CR-submanifold of C¥
of complex rank r. In this case, we have the following corollary.

Corollary. Let K be a compact subset of M such that every K is O ,-convex.
Then we have H(K)=CR(K).
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