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1. Introduction. Suppose that n-dimensional random variable z,=(x,,
%z **+, %,) is distributed according to a probability distribution P, , parameterised
by 6€OCR’, and each x; is independently and identically distributed. In
LeCam [1] it was shown that every estimator ¢, with the form t,,:é,;l—n"[ "‘(é,,).
@§"(2,, 0,) (I(9) means Fisher information number), which is constructed using
a reasonable estimator é,, and tbe logarithmic derivative ®¢(z,, én) relative to 6
of density of P, ,, is asymptotically sufficient in the following sense; ¢, is sufficient
for a family {Q, ,; § €0} of probability distributions and that

lim [1Ps,,— Qo,0ll = 0

uniformly on 2ny compact set in ® (where ||+|| means the totally variation of a
measure). 'This imples that the statistic (6, ®{(z,, 6,)) is asymptotically
sufficient up to order o(1). As a refinement of this result it will be shown in this
paper that for k=1 a statistic £¥=(8,, ®{(z,, b,), -+, ®P(2,, §,)), where D (z,,
0) means the (7—1)th derivative relative to 6 of ®{"(z,, #), is asymptotically
sufficient up to order o(n~*~1/2) in the following sense; t§ is sufficient for a
family {Q, ,; =6} and

lim n®=572| Py, — 0y .|| = 0
n.yo0

uniformly on any compact subset of ®. From our result it follows that if we use
the maximum likelihood estimator 8% as the initial estimator BA” then the statistic
(0%, ®P(z,, %), -+, DP(z,, 0F)) is asymptotically sufficient up to order o(n~*=1/2),
In Ghosh and Subramanyam [4] it was mentioned that for exponential family of
distributions (8%, ®?(z,, %), ®P(z,, 0F), ®(z,, 0F)) is asymptotically sufficient
up to order o(n™') in pointwise sense relative to . Our result is more general
and accurate one.

As an application of our result we try to improve arbitrarily given statistical
tests or estimators. It will be shown that for arbitrarily given test sequence
{#,}, which is asymptotically similar of size & up to order o(n~*~/%) uniformly
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on compacts in hypothesis, there exists a test sequence {ir,} such that v, is a
function of #f and the difference between the powers of ¢, and ., is asymptoti-
cally up to order o(n~*~/2) uniformly on compacts in alternative hypothesis. It
is also shown that for any estimators {f,} belonging to a class D (or D’)(See Sec-
tion 5 for the precise definition of D and D’) there exists a sequence {97} of
estimators such that 8% is a function of ¥ and for every compact subset K of ©

lim sup sup {E[(6¥—0); Py,.J/E(@,—0); P, I} <1.
npoo €K

It seems to the author that the class D’ is so wide that such reasonable estimators
as maximum likelihood estimators, minimum contrast estimators and BAN-
estimators are all contained in it.

A lemma is proved in Section 2, which is a refinement of the inequality con-
cerning large deviation probabilities. In Section 3 main theorem, Theorem
2, will be proved. Section 4 and 5 are devoted to the applications of Theorem 2
to statistical tests and estimates.

2. Alemma. Let ©(=%¢) be an open set in R'. Suppose that for each
0 €0 there corresponds a probability measure P, defined on a measurable space
(X, A). For each neN={l, 2, ---} let (X", A™) be the cartesian product of n
copies of (X, A), and P, , the product measure of n copies of P,. For a function
h and a probability measure P, E[k; P] stands for the expectation of /£ under P.

Lemma. Let ©(=%¢) be a subset of © and &, be a positive number. For
each (0, €)E0,X (0, &) let {Zy(&, 0)}1-1,,... be a sequence of random variables each
of which is independently and identically distributed according to P,. Suppose that;
(1) There exist positive numbers p, and &(ZE,) such that for every (t,&,0)E
(—p1, p1) X (0, &]X ©, the moment generating function (m.g.f.) of Z\(€,0), which
is denoted by (t; &, 0)=E[exp(tZ\(€, 0)); P,], converges uniformly with respect
to (§0) in (0,6]1x6, (2) O<a0=lirr51 +<i)nf oiggoE[(Zl(e, 0)); P,]élirrz\*sup su ]

0

E[(Z\(€, 0)); Pl=a;< oo (3) There exists o,(0<a,<1) and &(0<E,=&;) such
that sup |E[Z,(&, 0); Py]| S,& for every € satisfying 0<EXE,. Then, for any
08,

B satisfing 0< B<(1—a,)*/(2aty) there exists a positive number &, such that for
every nE N and every € with 0<EZE,

sup Py (3] Z,(¢, 6) Zne)< (1—Be)"

Proof. Let &¥=min{E,, &} and & be any number satisfying 0<E<&*. We
have

(J =) inf exp(—t)(t; €, 0) = inf Efexp (H(Z(e, 0)—&); Pi]
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= inf {1—(1/2) [E[Z\(€, 6)—¢; Po]F|E[(Z\(€, 6)—¢&); P
p>t20
+(1/2)E[(Z.(€, 0)—&);Py] (t4E[Z1(€, 6)—&; Po]|E[(Z,(€, 6)—&)*; Po])*
+R(t, &, 0)}
where hm0 sup iup | R(2, &, 0)/t*| =0 (This follows from the assumption (1)). By
t>0 0<e<e*x 9B
the assumption (3) we have E[Z(€, 0)—&; P,]<0 and t,—0 as €&—0 where t,=
—E[Z\(&, 0)—&; Py)|E[(Z\(&, 0)—E)?; P]. Hence for sufficiently small £>0,

@2.1)  J<1—1)2)[E[Z\(&, 0)—&; PJPIE(Z(E, 0)—EY; Pol+R(te, &, 0) .
From assumption (2) and (3) we have
lio inf inf {[E[Z,(&, 0)—&; PIP/EELZ,(& 0)—€Ys P}
(2.2) = {hr?:onf;nfa E[Z(¢,0); Pa]/&F}/{lim sup sup E[(Z(e,0)—€)'s Pal}

2(1—a)/a; .

Let B be any number such that 0< 8 <(1—a,)?/(2e;) and B’ be a number satisfy-
ing B< B’ <(1—a,)?/(2a;). By (2.2) there exists a positive number &'(=&¥*) such
that for every €&’

(23)  inf[{EIZ(E, 0)—¢; PV IELZ,(E, 0)—6); P|Z28°6
€6
By assumption (2) and (3)
llmefoup Eé%; |2.|/€
<[lim sup {sup | E[Zi(¢, 0); Ps]| 4} /€]/[lim inf inf {E[(Z,(€, O)%; Py]—&%]
g0 GEGG 250 eeec
= lim sup [(2€)/€]/a
= 2/“0
Hence it follows that
lim sup sup |R(¢,, &, 0)] /€
>0 = €@,
< {lim sup sup (¢/€%)} X {lim sup sup |R(t,, &, 0)|?/t:
250 96, 850 9@
= (4/at)-0
=0.
Thus there exists a positive number & such that
sup |R(, €, 0)| [E€=6"—B
0€0,

for every & satisfying 0<E<¢&”. Hence from (2.1) and (2.3) for every € satisfying
0<E<min{¢, &’} and every 68,
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J=1—Be+-E{8—(1/2)e [E[Z,(€, 0)—E; PAIFIE[(Z(E, 6)—€); o]
+R(t., &, 0)/c
<1 B -8(8'—(1/2)6[E[Z,(&, 0)—&; PAlF|EL(Zi(E, 6)—); Po))
<1-p&.

Thus we have for every §(0<&E<min{¢, &}), every nEN and every § €06,

Py(3] Z,(&, 0) 2n6)<inf [exp(—te)6(t; &, O)
<(1—B-&)".

This completes the proof.

3. Asymptotically sufficient statistics up to higher orders. Assume
that the map: §— P, is one to one, and that for each § = © P, has a density f(+, )
relative to a sigma-finite measure p on (X, A). We assume that f(x, )>0 for
every x&X and every §=®. We denote by u, the product measure of n copies
of the same component x. We define ®(x, 8)=Ilog f(x, §) for each x€X and

00, and D,(z,, 0):é D(xy, 0) for each nEN, each z,=(xy, x5, **, %,) EX™
v=1

and 0€06. Let k be a positive integer which would be fixed throughout this
paper.

Condition R. (1). ®(x, 0) is (k+2)-times continuously differentiable with
respect to @ in O for each xX. For each j (1= j<k+2) we define ®Y(x, §)=
0iD(x, 6)/067 and DY(z,, 0)=3) DY(x,, 6).

(2). For each § =© there exists a positive number & such that
a. sup E[sup|®t+(x, o)|% P,]< oo

IT-glse [o-g<e

b. sup E[| ®%D(x, T)| cuy(x, T); P,]< oo and E[uy(x, ); Py] <o
T-0l<®

where u,(x, ‘r)=ws_131pS . | f/(%, o)/f(x, T)|
c. Var(®*+(x, 7); P,) (i.e., variance of ®**D (x, 7) under P,) are positive
and finite uniformly for every 7 satisfying |7—@| <€.

(3). Define Z(x; &,0)=sup {®@*(x, 7)—E[®*V(x, 7); P,]; TEO, |7—0| <&}
and Z*(x; &, o)=—inf {®**D(x, ) — E[®**)(x, T); P,]; TE®, |T—0 | <€’} for
each &>0 and c 0. For each § O there exist positive numbers 7 and p such
that for every (¢, &, o)E(—p, p)x (0, 7] X (0 —n, 6+n) the m.g.f.’s of Z(x; &, o)
and Z*(x; €, o) exist and converge uniformly with respect to o in (0 —», 0-7).

REMARK 1. An example satisfying Condition R is the following one. Let
p be a sigma-finite measure on (X, A) and the density function f(x, ) of P,
relative to p be given by
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£(x,6) = h)e(®) exp [2] s(8)ti()]

where ¢(0), 5,(0) (1=i=m) are (k+2)-times continuously differentiable real valued
functions of @ only, and h(x), t,(x) (1=i=m) are O-independent A-measurable

functions of x. Let S= {(s1) 82 *+*5 ) ER™; SXexp [ZE sit; (%)) h(x)d p(x) < oo}
and S(8)= {(s:(9), *--, su(0)); 0=8}. If S(®)Cint S (interior of S) and if 31>

sHED(0)s$+0(0)- Cov (2;, t;; Pg)>0 for every §=0, then Condition R is satisfied
with the family {P,; 0=8}. Here for each ¢ s¢**) means (k+1)-th derivative of
s;, and Cov(t;, ¢;; P,) means the covariance of (¢;, ¢;) under P, for each (3, j).

An estimator of § depending on z,=(x;,%,, -, %,) EX ™ is an A™-measurable
function from X™ to R'. Such estimator will be called strict if its range. isa
subset of ®. In [2] Pfanzagl has shown the existence of a ‘reasonable estimator’
of . We quote here his result without proof.

Theorem 1. (Pfanzagl [2]) Suppose that Condition R is satisfied, then for
any sequence {a,} of positive numbers satisfying n~"?a,,—0 and o,—> as n—>oo
there exists a sequence {14,,},,E ~ Of strict estimators with the following property: For
every compact set K C© there exists a constant x>0 such that

P, ({z,€X™; n"zlé”(zn)—al >a,})<cx-exp(—a,)
for all 0eK and nE N.

For each § satisfying 0<8<1/2 we denote by C,() the class of all sequences
of strict estimators 6, of 6 such that for every compact subset K of ©

sup P, ,(n'? 10,—0| >n¥) = o(n~*-1r2) ,
0EK
The notation o(a,) means that lim o(a,)/a,=0.

ReEMARK 2. By Theorem 1 for every 8(0 <8 < 1/2)C)(5) does not empty. The
maximum likelihood estimator (or more generally minimum contrast estimator)
is contained in N Cy(8) under suitable regularity conditions (cf. Pfanzagle [3],

850

Lemma 3).

Let 8=1/[2(k+2)] and Cy=_U_Cy(3).

Theorem 2. Suppose that Condition R is satisfied, and that 0.} c, then
there exists a sequence {Q, ,; 00O}, nEN, of families of probability measures on
(X", A™) with the following property: (1) For each n€N, the statistic tf=
(6’A,,, DNz, BA,,), e, DP(2,, é,,)) is sufficient for {Q,,;0=0}. (2). For every
compact set K C O,
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sup [|Py,— O Il = o(n=*"17%)
EK

Proof. We shall divide the proof into several steps.

The first step. Suppose that Condition R is satisfied, and that 6.} eCy(3)
where 8, satisfies 0<8,<5,. Let & and ¥ be two numbers satisfying 8, <8<,
and §<v<1/2—(k+1)3, and let &,=n*"¥? and &=n"""2, Define

Wi= {z,€X"; [—0,(z,)| <&, [0:0,]c 6}
Wi= {zeX"; v,(3,)=&}
where [0: 8,]={t0+(1—1)d,; 0<t<1} and
7,(,) = sup {| DYz, 7)/n—E[@¢(x, 7); P]| 5 7€O, |7—6,| <26} .

By a Taylor expansion of ®,(z,, #) around 0=0, we have

(B1) D, 0) = DBz, §,) 0—6,)"/m!+5,0,, 0)+Ry(z,, 0)

m=0

where s,(8,,0)=n(0—06,)*'. E[®*(x, 0); P,]/(k+1)!, R,(z,,0)=0(if [6:9,]¢ ®©),

Rz, 6) = w6 —0, 1| (1—A)H®E (s, 6,4 7(0—0,)jn—
0
E[®*)(x, §); P} d\]/k! (if [6: 6,]c®©),
(2, 0,) = Doz, 0,)
We define g,(2,, 0)=c,(0)y1(2,)Iw2(2,) exp [®,(2,, 0A,,)—}— W, (2%, 0)] where I,i de-
signate the indicator functions of W}, w,(t¥, 0)=i DM (2, é,,) (0—@,,)"‘/m!
+sn(ém 0) and Cn(a)—lzgx(n)lw}, IWﬁ €Xp [q)n(zm é,,)-f—‘l’n(t:}‘, 0)]dll‘n' Let QO,n(A)
— S q.(2,, 0)dp,, and Q;‘f,,(A):S g% (2, 0)dp, for every A€ A™ where g¥(z,, 0)
A A
=¢,(0)7'+q,(2,, 0). According to the factorization theorem for each nEN t¥ is

sufficient for {Q, ,; 0E€6}.
By (3.1) we have

201Ps,,— 08l = {24l 0)—H(20, O)ldity

(3:2) =, . 1—exp[—Ru(z,, O)]1 (52, O)d
+-P9,n(( W'l')c)_l—PO,n( W'll n (W’Z‘)C)
— TXO)+ TH0)+THO)
Where Pn(zﬂ’ 0) = dPO,n/d/l‘n ’

Ti0)=|,,  11—exp[—R(3,, Ol pu(a, O)dts

T3(6) = Po,.(W.)) and T5(6) = Py (W0 (W7)).
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The second step. Let K be a compact subset of ®. From Condition R
it implies that there exist positive numbers ¥, p* and 7* which depending only
on K, such that

M, =sup sup E[ sup {®*D(x, a)}?; P,]< o
K [T—o|§t* ]0‘—-0]5!*

(3.3) M, =sup sup E[|D*V(x, T)-uus(x, 7); Py < o0

0EK |T-6l<e*

0<inf Var(®%**)(x, 7); P,)<sup Var(D*(x, 7); P,) <+ oo
TEK TEK

and that for every 6 €K and every (¢, &, o)E(—p*, p*) X (0, 7*] X (§ —7*, 0 4-7*)
the m.g.f.’s of Z(x; &, o) and Z*(x; &, o) exist and converge uniformly with
respect to o in (8 —7*, 047%).
For any € such that €< &* we have
E[®¢+D . . (k+1) .
gglfg |‘rs—lz¥)§e| [@“D(x, 7); P,]—E[@*(x, 0); P.]

< sup sup E[ sup |®H(x, o)|; P,]-

9K |T-0is® |o-0ls8

< sup sup [E[ sup (@**(w, o))F; P.]]2-

0SK IT-0l<tF  |o-g]<er
= M¥%.
Also we have
sup sup |E[®%)(x, 0); P,]—E[®*V(x, 6); P,]|

fEK |T-0l<8

< sup sup E[|®*D(x, )| cux(x, 0); Py)-E

EK |IT-0|<8
= Mz’g .
Therefore we have
sup sup |E[®*V(x, T); P,]—E[D%V(x, 0); Py]|

feK IT-0ls®

(34) < sup sup |E[®*(x, T); P,]—E[D*V(«, §); P,]|

fEK IT-0l58

+sup_sup | E[0%(x, 0); P]—E[D¢+(x, 0); Py |

0cK IT-0i<t

< (MY*+DM)E .

Since for sufficiently large number nEN &, =(M1/?+ M,)E,, there exists a number
n, such that for every n=n,, every 6 €K and every 2, W, N W3,
sup | DF(2,, T)[n—E[D*(x, 0); Py |
IT-8lsty,

< sup |®¥*V(z,, T)/n—E[®*V(x, 7); P,]|

IT-01<s

—I—l s%p | E[®%*D(x, T); P,]—E[®%)(x, 0); P,]|
T-9l<e,
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= sup [@F (2, 7)n—E[(@*V(x, 7); P]| +(M1*+DM,)e,

A
IT=0nl <28y

= Vu(a)+En
< 2&.

Thus we have for every n=n,, every 2,€ W, N W2 and every 0K

| R,(2,,0)| < n|0—0, |26}/ (k+1)!
< 2nektel/(k+-1)!
— 2n(k+1)(s—(1/2))+7+(1/2)/(k_|_1)! .

Hence there exists a number 7, such that
sup T(6) < supS |Ry(2 0| exp(IR,])dP,,
ok ok Jx™ ’
< 4,n—(k—1)/2n(k+1)s+1—1/2/(k_|_1)!
for all n=#n,. Thus we have
(3.5) sup T5(0) = o(n~¢*-1r2)
6EK
The third step. Since 6.} eCy(8)) it follows that
2 j .
sup Tn(ﬁ) = sup Py ,(10—0,1 >€,)4-sup Py (| 6—0,1<¢,[0:0,]x6)
(3.6) = sup P, (n'?| 0—8,| >nd) (for suff. large n)
€K
< sup P, ,(n'?|0—0,| >n*)
0EK
= o(n~*~V/%)
The fourth step.
sup TH(0) = sup Py,.(10—0,| <&, 7,(2,)> &)
(3.7) = sup P, ( sup |®H(z,, T)ln—E[®%D(x, 7); P,]| >E)

IT-01<38,

< sup P, ,,(2 sup {®*V(x,, T)—E[D*V(x, T); P,]} >nE})

=1|T-0l<38,

+ sup P, ,,(2 12f {@*D(x,, T)—E[®*V(x, T); P,]} < —nE})
=1 |T-0]<38y,
Let a(§)=&/(4M}/*4-2M,) and let Z,(€, 0)=Z(xy; a(€), 0) (v=1, 2, --+,n). For
any & such that 4(€)=<&* we have
sup | BIZ(&, 6); Pol| S sup | B[ sup_{®(x, 7)—E[®*(x, 7); P} Py
IT-81<4(8)

< sup [E[ sup |®®*2(x, T)|; Py]]-a(€)

IT-61=59(8)
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+sup sup | E[®%(x, 7); P]—E[B¢(x, 0); Py]|

0EK |T-01<4(®)
< (2M}*+ M,)-a(€) (This follows from (3.4))
—g/2.

Define Z,(0, 0)=®%*V(x, §)—E[D**V(x, 0); Ps]. We note that Var(®*(x, 9);
Py)=E[(Z,(0, 0))*; Py]. For every sufficiently small £>0, we have

sup |(E[Z.(, 0); Pal)*—(E[Z,(0, 0); Po)¥*|*
é gug E[IZ1(E, 6)'—21(0) 0)[2, PO]
= 2(sup E[ sup [P V(x, 7)—D*D(x, 6)|?; Py
EK )]

78] Sace
+sup sup | E[@*(x, 7); P.]—E[O¢(w, 0); Py]?)
< 2-a(EY[M,+(Mi*+M,)] .

From this it follows that
lim sup | E[(Z,(&, 0)); Po]—ELZ:(0, 0)); Pl = 0.

Thus taking account of (3.3) we have

0<32£E[(Zl(8’ 0))%; Pol= ggg E[(Z\(&, 0)); Ps]<+o0

for every sufficiently small €.
According to the lemma, there exist a constant 8>0 and &**>0 such that

sup Py, (3} Z.(8, 0) Zn6)= (1—6-&"

for all #eN and all € satisfying 0<E<€&**. Hence for all sufficiently large
number z we have

sup Po,(31 Z:(¢l, ) Znen) < (1—B- (&))"
EK v=1
Furthermore it holds that

(1 B(EN)" = (1—Bny
=< 2-exp(—Bn¥)

for all sufficiently large number . Thus we have
(3.8) sup Py (3} Z(, 0)=nel) = o(n=¢-Dr2) |
EK v=1

Since a(&;) =3¢, for all sufficiently large number # it follows from the definition
of Z,(€,, 0) that
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3.9) sup p, ,,(Z‘ sup {®*V(x,, T)— E[®*V(x, 7); P,]} >n&})

V=1 [T-0(<38,
é sup Po,n(E Z\‘(E;’ 0);1’8{') *
0EK v=1
Similarly, taking Z*(x; a(€), 0) instead of Z(x; a(€), 0), we have

(3.10) sup P, ,,(2 inf {®*D(x,, 7)—E[@*(x,7); P,]} < —n&l)= o(n~*"D72),

V=1 |T-0|=53%,

From (3.7), (3.8), (3.9) and (3.10) we have
(3.11) gup T:(a) — o(n—(k—l)/Z) .
EK
The fifth step. From (3.2), (3.5), (3.6) and (3.11) it follows that
SUp [|Po,,— Ol = o(n™ 7).

Furthermore it holds that
_ -1 J— _ -1 (n)
sup |1—6,(6) | = sup |1—6,(6) Qs (X)|
= %gg |P0.n(X(”))_Q;‘fn(X(”))|
= o(n~*"V/2)
Therefore we have
sup ”Po,u—Qa,n”§ sup “PO,n—-Ql;Ijn”—l_sup ”Q;lfn_QO,n”
0EK 0K 0EK
= sup ||Py ,— OF,l|+sup |c,(0)'—1]/2
K EK
= o(n~*"V/2) |

Thus the proof is completed.

4. Tetsts based on asymptotically sufficient statistics. Let o(3¢)
be a subset of ®. Suppose that it is desired to test the null hypothesis that /€ ®
against the alternative that  E@—w. For a statistical test ¢, based on z,& X™
we denote by B,(6; ¢,) the power function of ¢,, i.e., B,(0; ¢,)=E[p,; Py, ,]-
Let ®(a) be the class of all test sequences {¢,} such that for every compact
subset K of w, igglﬁ’”(e; ¢b.)—a| =0(n"*V/%), (In LeCam [1] such a test

sequence, in the case of k=1, is called asymptotically similar of size o uniformly

on compacts.)

Theorem 3. Suppose that Condition R is satisfied and that 0},cn is a
sequence of estimators belonging to C,. Then, for any sequence {¢,;n=1, 2, -} of
statistical tests contained in ®(r) there exists a sequence {¥,;n=1, 2, -} of stati-
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stical tests contained in ®(ct) with the following properties: (1) For each nEN, ¥,
is a function of t¥=(0,, ®\(2,,0,), -+, ®\(z,,0,)) only. (2) For every compact
subset K of ©—ow

sup |8,(0; b.)—Bu(0; ¥,)| = o(n= =012y |

Proof. Suppose that Condition R is satisfied, and that {¢,} €®(a). Let
{6,} =€, and let tZ‘:(é,,, DN (2, é,,), e, P2, (3,,)). According to Theorem 2
there exists a family {Q, ,; # 08} of probability measures such that #¥ is sufficient
for {Q, ,; 06}, and that for every compact subset K of ©

4.1) Sup [Py, —Qo,0ll = o(n=¢-r7) .
EK

Define ¥,=E[,|t¥; O, ,], which is the conditional expectation of ¢, given ¥
with respect to O, ,. For every compact subset K of ©® we have

sup |8,(60; 6.)—Bu(0; )| = sup | E[d,; Po ] —E[E[¢| 135 Qo,u]5 Po,u]|
= sup | E[$,; Po,u]—E[ds; Qo]
+sup | E[E[, |15 Qo,u]5 Poa] —E[E[a| 255 Do,u]5 Dol
= 25 [|P,n—0s.all -

From this and (4.1) it follows that the test sequence {¥,} is a required one.
This completes the proof.

5. Estimators based on asymptotically sufficient statistics. Let D
be the class of all sequences {,} of estimators of @ satisfying the following pro-
perties (1) and (2).

(1) {0,} is locally uniformly consistent in the sense that for every compact
subset K of ® and every £€>0,

lim sup P, (|0,—0|>€&) =0

.y gEK

(2) For each 00O there exists a probability measure Ay on R! which is
weakly continuous relative to @ such that for any compact subset K of ® the dis-
tribution of n¥%#,—0) converges weakly to A, uniformly relative to § in K and
that A,({0})==1 for every 6 =®.

RemARK 3. If {f,} satisfies the property (2) then it follows that for any
compact subset K of ©

lim inf jnf nE[(8,—0); P, ,]>0.
#yoo EK

We denote by D’ the class of all sequences {f,} with the property (2) such
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that for every p>0 and every compact subset K of ©
3) sup Py (10,—0]|>p)=o(nY).

ReMARK 4. From Theorem 1 and Remark 2 following it, every sequence
{6,} in C; has property (3).

Theorem 4. Suppose that ®=R* and that Condition R is satisfied with k=3.
Let {8}, be an element of C; and t,’!‘:(é,,, DN (2, é,,), DP(z,, é,,), D2, é,,))

Then for any sequence {4,} in D there exists a sequence {f¥} of estimators
of @ such that

(1) {8%} is locally uniformly consistent.

(2) For each nEN ¥ is a function of ¢ only,

3) lin’}»smup sup {E[(0%—0)*; P, ,)/E[(0,—0); P, ,]} =1 for every compact

subset K of 8.

Proof. Suppose that Condition R is satisfied, and that {§,} €C,. Let t¥*=
@,, ®P(z,, b,), ®P(2,, ), ®P(2,,6,)). According to Theorem 2 there exists a
sequence {Q, ,; 0 €6}, of families of probability measures such that for every
compact subset K of ©

SUP ”PO,n—Qo,n” = o(n_l) ¢
fEK

Let {0,},c~ be a sequence of locally uniformly consistent estimators of 6. Let
K =[—j,j]. For each nEN and jEN, define

(5.1) f,,=0 if §,&K;, and §,,— 0, if §,€K,.
We define
(5.2) 0%; = E[0,,,;1tE; Qo] -

For every €>0 and every j=1, we have
(5.3)  sup Q,(10%,1,—0| >E)< sup E[|0¥,,—01; Q,,]/€
0EK ; 0EK
=< sup E[|0, ;1.—01; Qo..l/E
OEK]'
= 2(j+1)-sup Qo,(10,,;11—01 > ) e+-€
J
On the other hand
(54) sup Po,n( lgn,j+l_0l >62)§ sup Po,n( ‘9;,——6' >62)
0EK ; 0EK ;
+SUP Po,n( |§n_0 | > 1) .
6eK;

Since {f,} is locally uniformly consistent, each term of the right hand side of
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(5.4) tends to zero as n—>co. Hence we have

lim sup Pg,”(lgn,j+l_9| >82) =0.

By gEK ;

Thus we have

lim sup Qo .( |gn,,+1_6| >&)=0.

Ry QEK j

From this and (5.3) we have

lim sup sup Qo 4(10F:—0] >E)=€E.

fyoo

Thus it follows that there exists a subsequence {N(j); j=1,2, -} of N such that
for every j =1 and every n=N(j)

(5.5) sup Py (103 ,:—01>1))<1j.
€K j

Suppose that {8,},cy is an element of D. For each j=1, let {f, ;} bea
sequence defined by (5.1). For each j let {f} be a sequence of estimators
constructed by (5.2) from {§, ;}. For eachj=1and /(1=</< j) we have uniformly
with respect to 6K,

lim sup {E((@%;a—68); Po,J/E[B,—0F; P}

= lim sup {uE[(BF,1—6); Po o)/ [nE[(F,—6; Po ]I}

< lim sup {[4n(j+1)* sup [P, ,— Q. .l +nE[(0,,;1—6)*; Qo.a1ll
nE[(gn—o)za Po,n]}
< lim sup {[8(j+1)* sup [|P, ,— Q- il I4+-nE[(0, ;11—6)" Po ]l
nE[(gn_e)zr Po,n]}
(5.6) = lim sup [nE[(f, ;+1—0); Py ,)/[nE[(0,—06); Py ]
< lim sup {[nga (0~ 07dP, A1 PPy (B, &EK )]
nE[(#,—0)%; P, 1}
< 1+lim sup {[nPE(@,—0); P, ,]/(j—1+1)1
nE[(gn—e)z, Po,n]}
— 1[G~ 1+ 1]
Hence there exists a subsequence {N’(j)} of N such that for every j=1, every

n=N'(j) and every 6 €K ;) (where /(j) means the maximum integer not greater
than j/2)

(5.7) E[(03 11— 0); Po ] |E[(0,—0Y; Po J<1+[5/1] -
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Let N*(j)=max{N(j), N'(j)} for each j=1, and for each n=N m(n) be the
number such that N*(m(n))<n<N*(m(n)+1). If we define GF=0, 4+ for
each nEN then it can be seen from (5.5) and (5.7) that the sequence {f3},cy is
a required one.

Thus the proof is completed.

REMARK 5. If © is any open set in R! and if we take t¥=(4,, ®$(z,,0,),
®P(2,, 0,), ®P(2,, 6,)), then under Condition R with k=3 for any {4,} in D’
there exists a sequence {97} of estimators of 6 having the properties (1), (2) and
(3) in Theorem 4. This can be shown by a similar method developed in the
above proof.
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