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1. Statement of the main result

Let s,(n) denote the sum of digits in the r-adic representation of a non-
negative integer n. Let &(n)=e(cs,(n)), where e(x)=€"* and ¢ is a real number
such that (r—1)c&e Z. Then it is known [3] that the covariance

73(m) = lim S E(n-+ m) ()

exists for any m& Z and the spectral measure A¢ is continuous but singular with
respect to the Lebesgue measure, where A¢ is the measure on T= R/ Z such that

7a(m) = | elma)dr(x)
for any me Z.

Theorem Let p and q be two relatively prime integers not less than 2. Let
a(n)=e(as,(n)) and B(n)=e(bs,(n)), where a and b are real numbers such that

(p—1)acE Z and (q—1)be= Z. Then the spectral measures A, and Ag are singular
to each other.

2. Lemmas

To prove the theorem, we may and do assume that g is an odd number. Let
ei(n) be the k-th digit of the r-adic representation of #; that is, ex(n)e {0, 1, -+,
r—1} and

n= > ein)r*.
k=0

Lemma 1. As m and t tend to the infinity satisfying that m>t, 7 (p*"—p*)
tends to the infinity, where 7 (n) is the largest integer j such that there exist 2j
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integers 0=k, <k,<---<k, satisfying that e}, (n)>0 and e}, (n)<q—1 for
=1, 2, ., j.

Proof. Let

T,(n) = i[o cos 2znr~* .

Then by H. G. Senge and E. G. Straus [5], it holds that
}'im Ty(n)Ty(n) =0

for any integers @ and @ not less than 2 such that log #/log @ is irrational. Since
inf| T 2(p™"—p*)| >0,
mst

it follows, using the above fact, that

lim T (p*—") = 0.

mst

For any fixed s, there exists a constant (g, s)>0 such that
IT (ughr+--+2g") | 2 8(g; 9)

holds for any Ay, -, A, E{—q¢+1, —q+2,+-,¢9—1} and k,, -+, k,EN. If
7,(n)=s, then n can be written as

Mg N
for some Ay, +++, Ny € {—q+1, —q+2,--+,9g—1} and &, -+, k,,EN. Hence, this
implies that

IT ()| 25(g, 25) -
Suppose that

i ) = 1<
tpoo
m>t

Then we have a contradiction that

0 = lim | T (p*"—p*)| Z8(g, 25)>0.

tpo0

Let g(n)=e(cs,(n)), where ¢ is a real number such that (r—1)ceEZ. Fix n
for a moment and denote e;=ej(n) (j=0, 1, --+). Let 7=7,(n) and
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by= —1

a;= min {k>b,_,; ¢,>0}
b, = min {k>a;; e,<r—1}
(j=1,2, 7).
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Let X,, X, --- be a sequence of independent random variables on {0, 1,-:-,r—1}

such that P(X,=j)=1/r for any j= {0, 1, ---,r—1} and k=0, 1, -+ . Let
. ) N .
Y, = lim (5,3 X, - m)—s,(3 X 1) ,
Nao 550 =0

where the limit exists with probability 1.

Lemma 2.

Ve(n) = E(e(cY,)) .
Proof. Clear.

Lemma 3. ¢(n) tends to 0 as n tends to the infinity satisfymg that

'r,(n)—><>o,
Proof. Define random variables ¢,, &,, -+ by

{bz,-; sz,- =0} = {&: <5<} .
For

{CI<CZ< ot <ck} c {ij; ] == 1) 2) "'} )
define a stochastic event

I(cly R ck) = {El = €1y ***y Elz = ck} .
Let

e=1—P( U I, -+, ¢p)
tl...ck
W w1\ r—1\7277
=R

r

Then £€—0 as T7—oo satisfying that k~—" . On each event I(c, -
2r+1

define
Zy=s/(_ 23 Xir4d,)—s( 23 Xr)
i€) I3 i€]

Ch-15° Ch-1:SH)

for h=1, 2, ---, k, where ¢;(=—1 and

dh= Z e,'ri>0.

-‘E)‘-‘h_l,chl

°y C,,),
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Define also
S H { " Xoridg —s.(. X)),
an = 3, Ko =343, i)
where ,
Ay = E er.
>,

Then on each event I(cy, **, ¢;), the random variables Z,, Z,, - , Z;4, are inde-

pendent and it holds that ¥,=33Z,. Lethe{l, 2, -, k}. Let
h=1

j=min {{€]c,_y, ¢,]; &:>0 and ¢;,, <r—1}
and g=e ;» Then we have, putting I=1(c,, -+, ¢s),
E(e(cZy) 1)

~ol1)

<" L X, =0, X,y =0)+E(e(cZ))| I, X;=1—g, X;1,=0)}

r2 2
——,r+~<e«r—1>c)+1)E<e(cz,,)|I X, = r—g X =0)
ér’—2+e((1;—1)c)+156<1 .

r

Therefore,

E(e(cY,))

= 20 | EeeY ) (e, =, ) [P (e, ++, 69) -6

k+1

=23 HIE(cZy) L(er, = e | Py, -+, ex)4-€

< &4-¢.
Thus E(e(cY,))—0 as 7—>co satisfying that k~_.:|_71.
Lemma 4. It holds that
1 N
lim |— > T? =0,
N-»00 =

where T is the shift of arithhetic functions and for an arithmetic function 7,
l'_ 1 NE—I 2 1/2
—— im — n
lnll = (Tm L H 1)

Proof. It holds that
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3 & )
v & N2 #iEP ‘

Thus, lemma 4 follows from lemma 1 and 3.

Lemma 5. It holds that

lim
Ny

1 N 2n
T a—KaN=0,

where

K— (p=De(pa)
pe((p—1)a)— i

Proof. Letr=p. Note that
1 & 2n 2 1 & 2
”ﬁz T a—Ka” - E((ﬁge(aszu)—Kl )

It holds that
N
Se(a¥ m)— K ]

—lim L. mﬁ E((e(a¥ )~ K)e(a¥ p)—K))

since
lim | E((e(aY o) —K)(e(@ Y por) —K))|

tyoo
m—fyo0

= lim | E((e(@Y jur)—K)(e(a Y1) —K)) |

< lim | 3 B((a¥ )~ K)(e@¥)—K) | J)P()|

= lim | 3 B(e(a¥ o) —K| JOE@aY)—K | JOP(,)
= lim | 2n—2)E(e(a¥:)—K)E((a¥)—K | J)P(J)|
=0,

where for k=2, 3, -+, 2n—1,
]le = {X2=I=0, °t Xk-ﬁ':O; Xk = 0} .

3. Proof of the theorem

For an arithmetic function 7, let ||7|| be the norm in lemma 4. Let
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S={n; [ml| <o}, T1={n; ||n]|=0} and B=S/Jl. Then it is known [2] that B
is a Banach space. Since T91CJl and T-'J1CJl, T can be considered as an
invertible transformation on 4. In this sense, it is clear that T is an isometry.
For n€ B, let H(n) be the closed subspace of B generated by {T"7; ncZ}.
For » and ¢ in B, define an inner product

(1, ©) = lim - S¥o(m)t(n)

if this limit exists. It is clear that if 7,(m) exists for any mE Z, then the inner
product always exists in H(%n) and H(n) becomes a Hilbert space. By A.N.
Kolmogorov [4], to prove the theorem, it is sufficient to prove that H(a)_| H(B)
and a €H(a+B). It was proved by J. Besineau [1] that («, 8)=0. His proof
works as well to prove that (T"a, T"a)=0 for any n, m€Z. Thus we have
H(a) | H(B). On the other hand, since

lim
N>

1711’5% T"Z"(a+ﬂ)—a]! —0

by lemma 4 and 5, a € H(a+ 3) holds. Thuslwe complete the proof.
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