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Introduction

Let M be a compact Riemannian manifold. We consider the Laplace
operator A acting on the space of differential forms on M. It is a strongly
elliptic self-adjoint differential operator, so it has discrete eigenvalues with
finite multiplicities. For a given Riemannian manifold, it may be an interesting
problem to determine explicitly the spectra and eigenforms of A on M. As
for the spectra and eigenfunctions of A acting on the space of functions, they
are known for the cases where M are the following manifolds; flat tori, Klein
bottles [3], symmetric spaces [12] and the Hopf manifolds [1]. On the other
hand, as for the spectra and eigenforms of A acting on the differential forms,
we have known no results except for flat tori. But, E. Calabi (unpublished)
and recently S. Gallot et D. Meyer [7] have computed the eigenvalues of differ-
ential forms on the standard sphere by using the harmonic polynomial forms
on R,

In this paper, applying the representation theory we compute the eigen-
values of A and determine the spaces of eigenforms as representation spaces, on
the standard sphere S” and the complex projective space P"(C) with Fubini-Study
metric. Our method is as follows: Let M=G/K be a Riemannian homogeneous
space with G acting as transitive isometry group on M. Then A is a G-invariant
differential operator, so its eigenspaces are G-modules. First, we decompose the
space of differential forms on M into G-irreducible modules. In the case where
M is 8", P*(C), or more generally a symmetric space, roughly speaking A=
— Casimir operator on G. So from Freudenthal’s Formula, we can compute the
eigenvalues. But the first step of decomposing the space of differential forms
on M into G-irreducible modules is generally not easy. In virtue of Frobenius
reciprocity law, the problem can be reduced to the following problem: For a
given irreducible G-module, how does it decompose into irreducible K-modules?
For this problem, a few results are known (cf. H. Boerner [3] and D. P. Zelobenko
[15]), and in case M=.S", we apply the known results.

As for the Laplacian A acting on the space of functions on S” and P"(C), its
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eigenfunctions have been obtained by the restriction to S” and P"(C) of the har-
monic homogeneous polynomials on R**' and C**! (cf. [12]). In 6 (Theorem
6.8) and 7 (Theorem 7.13), we give the analogy for differential forms on S” and
P"(C) using harmonic polynomial forms.

The authors express their hearty gratitude to Prof. H. Ozeki for valuable
suggestions and discussions.

1. Preliminaries

Let G be a compact connected Lie group, K a closed subgroup and M
the quotient space G/K. We denote by g and ¥ the Lie algebras of G and K
respectively. A K-invariant inner product on g/t determines a G-invariant Rie-
mannian metric on M. We fix a G-invariant Riemannian metric on M and
extend it canonically to a hermitian metric, denoted by < , D>, on A?M, the p-th
exterior power of the complexified cotangent bundle of M. For a smooth vector
bundle E over M, we denote by C=(E) the vector space of smooth sections of E.
When E is a homogeneous vector bundle, C=(E) is considered as a G-module by
(g+5) (x)=g-s(g"'x) for g G, s&€C=(E), and x&M, in particular, C~(A?M) has
a natural G-module structure over C. Now, we define the inner product ( , )u
on C=(A?M) by

(1.1) (6 Vo= | B v dm  (§, peC(M)),

where dm is the smooth measure on M defined by the Riemannian metric.
From the construction, the G-action preserves ( , )y, i.€.,

(g &V = (¢, ¥)u  for all ¢, y=C~(A?M) and g=G.

By means of this inner product, we define the codifferentiation & as the operator
formally adjoint to the exterior differentiation d. We set A=d&--8d, and call it
the Laplace operator or Laplacian. A is a self-adjoint, strongly elliptic differential
operator on C*(A?M) for each p, and commutes with the G-action on C~(A?M).
The set of eigenvalues of A on C*(A?M) is a discrete set of non-negative real
numbers; 0=\ <A< :-+—oc0. Moreover, each eigenspace E,{"p is a finite dimen-

sional G-submodule and the algebraic sum ﬁ E%» is a dense subspace of C=(A?M),
the topology being defined by the inner product ( , ).

First, we recall some effects of 4,8 and * on the spectra and the eigenspaces
of Laplacian. Hodge decomposition theorem asserts that

C=(A*M) = E{®dC=(A*"*M)DSC=(A**'M),

where Ef is the space of harmonic p-forms. This is a direct sum as G-modules.
For each eigenvalue )\ of Laplacian, we set
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'E} = {pcEL;dp = 0}, "EL = {p=E}; 8¢ = O},
which are both G-submodules of Ef. We see

E! ='E!D"E? forn=+0,

(1.2)
E! ='E? ="E? fora=0,
and
(1.3) d:”"E! 3 'E!*, §: 'E2 ~ "E?! fora+=0.

~)

Here and in the following, “~X” means a G-isomorphism, unless specially men-
tioned.

Suppose that M is orientable and is oriented. Then, the so-called star
operator

*: APM S A**M (n = dim M)
is defined, and the codifferentiation is expressed as
(1.4 = (—=1»***xdx  on C=(A?M).
This together with *A=As# implies

A2 = nI? (i=1,2,-) and

L5
( ) x: 'E} ~ "Er-? (P=0»1""’”)'

Now, for a finite dimensional vector space U, we denote by C=(G; U) the
vector space of all smooth functions of G with values in U, and consider it as a
G-module by (g-f) (x)=f(g"'») for g=G, f€C~(G; U), and xG. Further,
when U is a K-module, we denote by C~(G, K; U) the G-submodule consisting
of $=C=(G; U) such that ¢(gk)=k '¢(g) for any kK and g&G. On the
other hand, the K-module U defines a homogeneous vector bundle G X U over
G/K. 'Then, the G-module C~(G, K; U) can be identified with C~(G X ¢U), in
particular, C~(A?M) is identified with C~(G, K; A?(g/t)*C), g/t being a K-module
by the adjoint action of K in g, since A?M is canonically isomorphic to G X xA?
(a/t)*e.

Let 4; be a complete set of inequivalent irreducible representations of G
over C. For an element pe 4, we define a G-homomorphism

to: Homg(V,, C=(A?M)@V, — C=(A*M)

by ¢ Qui—¢(u), where V,, is the representation space of p. ¢, is clearly injective.
We set p,=dimcHomy(V,, C~(A?M)) and T"s=the image of ¢, Then, it is easy
to see that u, and T} depend only on the equivalence class of p, and that T is
isomorphic to the direct sum of p.-copies of V,. To compute u,, we apply the
following Frobenius’ reciprocity law.
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Proposition 1.1. Let F be R or C. For a finite dimensional K-module U
over F and a finite dimensional G-module V over F, we have a canonical isomorphism
as vector spaces

Hom(V, C=(G, K; U))=Homg(V, U).
For a proof, see R. Bott [4].
By this proposition, we get
(1.6) wp = dim Homg(V,, A?(g/t)*¢)  for any pe Y,
hence, in particular, p, is finite.

Proposition 1.2. Under the above notations, we have

(1.7) DEb= 3T}
i ' pEYSs

Proof. The left hand side of (1.7) is clearly included in the right. The
converse is proved as follows. Since the inner product (, ), on C~(A?M) is
invariant under G, I'}’s are orthogonal to each other. On the other hand, the
left hand side of (1.7) is dense in C~(A?M) with respect to the topology defined
by (, )u,» and included in the right. From these, we get easily the proposition.
q.e.d.

In the case that (G, K) is a compact symmetric pair with a semisimple Lie
group G, we shall see later that each T' is contained in a certain eigenspace EY.

2. The Laplace operator and the Casimir operator

In this section, we shall give some relations between E{’s and T'J’s, using
the Casimir operator. Let G be a compact semisimple Lie group and B the
Killing form of the Lie algebra g of G. Let {X), +--, Xy} be a basis of g, and
put

(2.1) C=3C9X;-X,, where (C¥)=(B(X, X)),

which is an element in the universal enveloping algebra Uj of g. C is in the cen-
ter of Ug and is called the Casimir element. Since each X; may be regarded as
a left invariant differential operator on G, C can be considered as a differential
operator on G, and it is a two-sided invariant differential operator. Then, C is
called the Casimir operator.

The following fact is easily proved.

Proposition 2.1. Let G and C be as above, and U a finite dimensional vector
space over C. Then, for any finite dimensional G-submodule (V, p) of C=(G; U),
we have
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(2.2) Cf=pO)f forallfinV,
p being extended to the representation of U,
For a proof, see M. Takeuchi [12].

Corollary. Each finite dimensional G-submodule of C=(G; U) is stable under
the Casimir operaior.

In Proposition 2.1, if p is irreducible, then p(C) is a scalar operator by
Schur’s Lemma, and the value of p(C) is given by the following

Proposition 2.2. Let G and C be as before. We fix a lexicographic order on
the dual space of a Cartan subalgebra of §. Then, for any irreducible representation
(V, p) of G over C with the highest weight \,, we have

(2.3) p(C) = — 475N +284, NoDidy

where 8¢ denotes the half sum of all positive roots of g, and < , D denotes the inner
product on the dual space of the Cartan subalgebra of g, induced from the Killing
form sign changed.

For a proof, see N. Jacobson [9].

Now, we assume that (G, K) is a compact symmetric pair with a compact
connected semisimple Lie group G. Let m be the orthogonal complement to f
in g with respect to the Killing form. Then, we have the Cartan decomposition,

g=1I+m.

Restricting the Killing form sign changed to m, we can define a G-invariant
Riemannian metric on M=G|K. Then, we have the following formula.

Proposition 2.3. Let G, K and M be as above. Let A be the Laplace
operator on M defined by the metric given above. Then, under the identification
C=(A*M)=C"(G, K; A*(g/t)*C), we have

(2.4) A=—C.

Analogous formula is given by Y. Matsushima—S. Murakami [10], when G is of
non-compact type. We shall prove the formula along the same way as in [10].

Proof. Let =: G— M be the projection. The identification
C(A*M) 3 C=(G, K; A (g[t)*),
denoted by a4, is given by
(@(8)) (Y1, -+, ¥)) = (z*a) (Y, -+, ¥}) (8)
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forgeGand Y, ---, Y, =g, where (g/f)* is considered as the set of linear forms
on g vanishing on £. Now, we choose an orthonormal basis {X, --+, X, X, 11,
., Xy} of g, with respect to the inner product induced from the Killing form,
in such a way that {X,, --, X,} forms a basis of m and {X,,,, -, Xy} a basis
of £. An element 7 in C~(G, K; A?(g/t)*C) is determined by the system of C*-
functions 7(X;, -+, X;,) (1=4, <+ <i,=n).
Then, we define a linear map D: C=(G, K; A?(g[t)*¢)—C=(G, K; A?**(g/t)*°)

by
b4l A\

(1) (Dn) (X3, -+, X5,,,) = Z( DX (X, ey Xy oy Xy, )
(1§i1<“’<1p+1§n)-

We have

da=Da (asC=(A?M)).

This follows from the fact that [ X, , X; ]t for X, , X; em.
Next, we define an inner product ( , )* on C=(G, K; A?(g/t)*C), using a K-
invariant inner product on A?(g/f)*¢ by

(2) (&, n)* = | <(e), m(e)>de

for £, neC=(G,K; A*(g/t)*C), where dg denotes a G-invariant smooth measure
on G. Then, it is easy to see that

(3) (@ B =c(a, B  (a, BEC(A?M))

for some constant c.
The adjoint operator D* of D is given by

(4) (D*E) (Xip +++s X5, ) = EXI:E(XIH ip s Xy )
(1_§11< <lp-1§.n) ’

where £ C=(G, K; A*(g/t)*C).
In fact, for ne C=(G, K; A?"Y(g/t)*C), we have

& D= [ 7 3B, X

Ly,

2 2N
o“Eﬂ(——l)“—lXi.ﬂ(X'.l’ ooy Xi.’ o, X,'P)dg

= -—1%'1 E SGZ:}( 11X, E(X, -, XG,)
(X o )? X )dg  (cf. [10])
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——1_ % (3 X,
- (p_l)! J’p"'%— I“lSGkZ—l XkE(Xk’ Xll’ ’ le_l)
'”(Xil’ ., Xj,_l)dg .
We set A°=DD*+D*D. Then, we see
(Aa, B)y = c-(A°&, B)*  for a, Be C=(A*M),

consequently, Aa=A°a.
To prove the proposition, it suffices to show that

Ao= — ,ﬁ: X for acC=(AM).

From (1) and (4), for X, -+, X, with 1< <--- <#,<n, we have

» n /\
(DD*d) (Xi,: R Xi,) = —.Eq (_1)“_1 E X;.X,‘d(X,,, Xil’ R Xu’,a % Xiq)
and
(D*Da) (X;, =+, X;,) = _:.2=1X”(Da) (X X5 o, X))

= S XX, -, Xo)

n_ b u /\
- E(—l) XkXi..a(Xb Xip "')Xi,,a "'aXip)

k=14=1
n_ P

/\
- (—1)“Xka([Xk’ Xi,,]) Xil’ °tty Xi,,’ °*% Xip)

k=1u4=

=

n /\ /\
__EKv (""l)u-H’Xk&([Xi,,’ X,-, , Xk’ Xil, “eey X',u, ey X‘." ey Xi,) .
Hence, we have

(A°a) (X’.l’ AAAY Xip) = —,,ZlXia(X’l’ "% X.'l'p)
n_ b -1 N
—FE,E(—I)“ [Xi.’ X;,]d’(X» X,.v ---,X,-,, ---,X,-’) .

The second term in the right hand side of the above equation will be denoted by
N
II. Set [X;, X ,,]=gl b/1X;. Since G is compact, the structure constants b7,

are skew symmetric with respect to 7, j, k. Thus, we have
n_ b N . /\
II= _2 E (_1)“_1 2 biikaa(Xk’ Xil’ "ty Xi,‘, ) Xi,)
F=1d=1 jEnt1

by virtue of [X;,, X;]Jt. On the other hand, for j=n+1, ---, N,
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d
XAa(X;, - X)) (g) = o A(g-exp tX)) (X;, -, X3)
t=0

a(g) (exp tX ;- X;, -, exp tX ;- X; )

t=0

T at
— "zi; (_l)u—ld(g) ([Xp X',u], X‘_l, “eey )f:" ey Xi,,)

I

2 ” N\
“Zﬂ(“‘l)"_ll;bjkiﬂ(xm Xil’ ) Xi » Y Xip)

I

» n . N\
"Z_l (__l)u—l ,,Z:; bi:ka(Xk’ Xil’ °tty Xi,,’ °tty Xip) .
Consequently, we have

H=— 3 XX, X,),

j=rE1

which proves the desired formula. q.e.d.

3. Some remarks in Kihlerian cases

In this section, we assume that M=G/K is a homogeneous Kihlerian ma-
nifold acted on by a compact Lie group G. Denoting m=g/t, we identify m
with the tangent space of M at the origin e-K by the projection G— G/K. We
denote by J the complex structure on m and by <, > the J-invariant inner pro-
duct on m defined by the Kihler metric on M. Then, the K-action on m, which
is identical to the isotropy representation at the origin, preserves J and <{, >.
Let U(m) be the group of linear automorphisms of m leaving J and <{, > in-
variant. Complexifying m and J, we set m¢=mQ@gC and m*={Xem¢’; JX=
4V —1X}. We have the direct sum as U(m)-modules and also as K-modules
over C

mé=m+om-.

m* and m~ are conjugate-linearly K-isomorphic to each other by the conjugation
X— X of m¢ with respect to m, and the complex bilinear extension < , >¢ of
<, > to m€ gives rise to canonical K-isomorphisms over C
3.1) (m*)* = m*.
Now, we define a 2-form  of type (1.1) and a hermitian inner product {, >* on
m¢ by

o(X, Y)=<X, JY>¢ (X, Yem),

X, D' =<KX, Y)° (X, Yeme).

The U(m)-action and the hermitian inner product <, >* will be canonically ex-
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tended to A’m~ @Am*, and the later will be denoted simply by <, > in the
sequel. A’m~@Am* will be written by A»m. o is regarded as an element of
Al'm by (3.1).

We set Ap*={ucs A™*m; <u, o Av)>=0 for all v A""*"'m}.

Then, the following fact is known (See A. Weil [13]).

Proposition 3.1.

(i) For p and q with p+q=mn, the U(m)-irreducible decomposition of A*‘m
is given by
AP IDoNNT I - D' AM (p29),
AP DoNNT I D Do AAST? (p=q) .

(i) The mapping ur—> o* Au of A% into o* AAY? is a K-isomorphism, when
max. {p+k, ¢k} <n.

The irreducibility of Ay* follows from Weyl’s dimension formula.

(3.2) APem —

Now, we denote by A?2M the bundle of (p+¢)-covectors on M of type (p, q)-
Since the G-action preserves the complex structure on M, A??M is a homogeneous
vector bundle;

(3.3) AP = GX gA?'m

by virtue of (3.1). Under this isomorphism, the Kihler form of M corresponds
to the section of the bundle G X xA"! given by

Q, =gXgw (x =gK, x&M),

where g X xo denotes the equivalence class of (g, ). Then, we get immediately
the corresponding decomposition of A??M for p and g with p+q=mn,

(3.4) AP = DN AG X gAyie

where A is defined in an obvious manner.
Further, we define a bundle homomorphism L of A?M into A?*:4+1} by

L =Q, N for p=A*M,

on each fiber of A?M. The G-invariance of Q implies that L commutes with
the G-action and that the linear map induced from L of C~(A?*M) into C~
(A?¥Le+1]) is a G-homomorphism, which we denote by the same letter L. By
Proposition 3.1, the linear map L* of C=(A?M) into C=(A***%*k}]) is a G-
isomorphism, when max. {p+k, g+k} <n. Now, we denote by L* the bundle
map adjoint to L with respect to the fiber metric on A?M

L*: A?M — AP~V
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The operator L* commutes with the G-action and the subbundle Ker L* of
A?M coincides with G X xA%?%. A section of G X xA$? is said to be a primitive
Jorm of type (p, g). Itis known that the linear maps L and L* commute with
the Laplace opérator. Laplacian preserves types of complex differential forms
on M. (See A. Weil [13].)

From the above arguments, in order to decompose C=(A?M) or C=(A*M)
into the eigenspaces of the Laplace operator, or into the irreducible G-submo-
dules, we may work on the space of primitive forms of type (r, s), C=(G X gAy*).

Next, we recall effects of several operators acting on M on the spectra of A.
More precisely, the exterior differentiation d decomposes

d=0+0,
where
0: C=(A?»"M) — C=(A**"M)
3: C=(A?*M) — C=(A**'M).

We denote by 8* and 8* the operators formally adjoint to @ and 0 respectively.
Then, the following formulas are known (A. Weil [13]);
0* = —%0%, 0% = —*0% ,
65) [L, 8% = /=15, [L,3*] = —/—10,
) [L*, 8] = vV —153*, [L*, 3] = —V —10*,

where [ , ] denotes the commutator of two operators, for example,
[L, 0%] = Lo*—0*L .
We have
A = 2(80*--0%9) = 2(90*+3*7) .
With respect to the splitting A" M =’§'A""M and the above operators, we have

the following decompositions of each eigenspace.
For each eigenvalue A of A on C=(A?*?M), we set

EPt = B 0 C=(A»M),
Bpt = (Bt 06 =0}, "ERt = {3 ELT; 0% =0},
EYT = {$EL; 8 = 0}, ,Ept = {pSELt; T =0} .

These are all finite dimensional G-submodules of C=(A*‘M).
In our case, Hodge’s decomposition theorem is expressed as

C=(A*M) = E31DOC=(A?~"M)Do*C=(A?**"1M)
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= E}1@PoC=(A»*"'M)PI*C=(A***' M) .
Hence, for A0, we have
(3.:6) Et = 'E{'@"E}"
= E{ D, E{° .
Further, we have the following G-isomorphisms,
(3.7) 8: "E{t 3 'Ef+he, 9%: ‘B X VELM,
9: ,Ep?x Ebetl g% Eb1 = Ebet

where A =0, and

(3.8) N e T Sy S

4. The spectra of Laplacian on the spheres

We retain the notations used in the preceding sections. In this section, we
employ the following notations;

G = SO(n+1), K = {((1) ) EM,(R); A€ SO(n)} ,

8= (XeM,u®); X+X =01 t={({ §)eMu®); v+ = o},
©)
0 —
f= 2z M 0.. R, STLILN 7“mEIe )

where n=2m—1 for an odd # and n=2m for an even #. f isa Cartan subalgebra
of g. And f is also a Cartan subalgebra of £ when 7 is even. If z is odd, then,
the subspace f, consisting of the elements of f with A,=0 forms a Cartan sub-
algebra of . We consider \,, ***, \,, as linear forms on f and take a linear order
on f* such that ;> .-->2,>0. The Killing form B of g is given by

BX,Y)=@m—-1)r.XY (X, Yeg)
and m is naturally identified with

0 Xy Ty T Xy
X1

: 3 X X ERE .
x, 0

We adopt the usual metric on S” imbedded in R**' with radius one. We
may identify S"=G|K and T'S"=Gx ym. Note that the metric induced from
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the Killing form B is 2(n—1)-times the usual one and that the formulas recalled
in 1 and 2 hold with certain constant multiples.

Any dominant integral form A of G with respect to { is uniquely expressed
as

A= k17\'1+'"+kmx'm ’
where &, -++, k,, are integers satisfying

{klzkzg---ka_lz |kl (n=2m—1),

(4.1) _
klng—Z— "'gkm_lgkmgo (n = zm) .

When 7 is odd, we set
2;=N;ulfi =1+, m-1),

where right hand side denotes the restriction of the linear form 2 ;,; on f to the
subspace f;, and 2, -+, 3,,_; are ordered as z;>+++>z2,,_;>0.

Proposition 4.1. Let (V, p) be an irreducible G-module over C with the highest
weight No=Fk\y+ -+ +R,\,,, where Ry, -+, k,, satisfy (4.1). Then, as a K-module,
V decomposes into K-irreducible submodules as follows;

(1) In case n=2m,

V= 2 Vp,’ Al+---+k,,,,2\,,, ’
where the summation runs over all integers ki, --+, ki, such that

kizkizk, k2 2k 12k, = kol ,

and Vi!x +...sx’,, denotes the irreducible K-submodule of V with the highest weight
Nt R,
(ii) In case n=2m—1,
V= 2 Vh,’z,+-u+k;_1z,,,_1 ’

where the summation runs over all integers ki, -+, ki, such that

kizkizk,zki = Zky = |kal ,

and the meaning of V!, 1.4, is similar to the above.

m=1Zm—-1

For a proof, see H. Boerner [3].

Applying this proposition to our problem, we shall give explicitly the ir-
reducible representations of SO(n+-1) intervening in C=(A?S").

The multiplicity u, of an irreducible representation (¥, p) of G in C=(A?S™)
is equal to dimcHomg(V, A?m*) by Proposition 1.1, and the latter can be com-
puted, applying Schur’s Lemma, from the K-irreducible decomposition of A?m*
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and Proposition 4.1.

Now, identifying K=SO(n), the K-module m is isomorphic to R" with the
standard representation of SO(n), and we know the following facts;

A. Suppose 7z is odd, n=2m—1. Then, CQgA?R" is an irreducible SO(n)-
module with the highest weight A\;4-:--+X, for each p=<m—1. For 0=p=n,
CRrA’R"=CQprA"*R" as SO(n)-modules.

B. Suppose 7 is even, n=2m. Then, CQrA’R" is an irreducible SO(n)-
module with the highest weight A,+ -+, for each p <m, and CQ rA"R" splits
into two irreducible submodules with the highest weight A+ - +X,,_;—2,, and
At N\, respectively.  For p>m, CQrA?R"=CQ A" ?R" as SO(n)-
modules.

Now, we put

AO = 0 ’

A,’: x'l'“l""'_"?\'j (]= 1, 2,“',"1-2),
Mt A (n = 2m),

1

L b A (= 2m1),

Am = %(xl—i_'"_*‘xm) .

Ay, -+, A,, are the so-called fundamental weights of g and every dominant integral
form of G is uniquely expressed as a linear combination with non-negative integer
coefficients of Ay, -+, A,,_1, 2A,,, when n=2m, and of A, -, A5, 2A,,_1, Ay
+A,, 2A,,, when n=2m—1. In our case, we remark m*=m (as K-modules).
With these terminologies, by the above procedure we get easily the spectra of
Laplacian on S" as given in the following theorem. Since S” is orientable, it

would be sufficient to write down them for pé% .

Theorem 4.2.
(a) Suppose p= % The highest weights \, of the irreducible representations
p intervening in C=(A2S™), that is, p in I, with u,=1, are as follows;
(1) In case n=2m,
kAl+Ap’ kAl+Ap+l 0= ps=m—-2),
Ap = kAl—I—Am-l’ kA +-2A,, (P = m_l) ’
kA, +2A,, (p=m),

where k runs over all non-negative integers.
(i1) In case n=2m—1,
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kDA, kRAA-A, 4 (0= p=<m—3),
Ap = kA1+Am—2’ RA A, 1+ A, (P= m—2) s
EAA20, 1, EA Ay A, BA2A,, (p = m—1),

where k runs over all non-negative integers.

Further, the multiplicity p, of the above p in C=(A?S") is exactly one except for
the case n=2m and p=m, and p, is two in this exceptional case.

(b) The Laplace operator has eigenvalue 4m*n,~+-28¢, Aoy on an SO(n+1)-
wrreducible submodule of differential forms on S" with the highest weight \,, where
2(n—1)
The values 47 np+285, Nop are given in the following table.

-times the Killing form.

<, > denotes the inner product on 1* induced from

Ao 47zz<7\'p+28(;’ Aoy
kA, k(k+n—1)
case n=2m RA+A, (1=p=m—1) (k+p) (k+n+1—Dp)
kA +2A,, (k+m)(k+m+1)
kA, k(k+n—1
RA+A, (1=p=m—2) (k+p) (k+n+1—p)
case n=2m—1 kA +2A,, (k+m)
RN+ A, +A, (k+m—1)(k+m+1)
kA +2A,, (k+m)?

ReEMARK. For the space of real differential forms on S" its irreducible
decomposition can be obtained from Theorem 4.2 together with the results of
N. Bourbaki [5] and N. Iwahori [8].

Except for the case n=2m—1 and m is even, every irreducible submodule of
C=(A?S") is closed under the complex conjugation, and the space of real forms
contained in this submodule is an irreducible SO(r+1)-module over R. When
n=2m—1 and m is even, two irreducible submodules of differential forms with
the highest weight kA, +2A,,_; and kA;+42A,, are transformed to each other
under the complex conjugation, and the space of real forms in the sum of the
two submodules is irreducible over R. Conversely, any irreducible submodule
of real forms on S” is obtained in this way.

5. The spectra of Laplacian on the complex projective spaces

In this section, we employ the following notations;

G = SU(n+1),
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K = S(U()x Un)) = {(‘S O)ESU(n—{—l); ecU(l), Ae U(n)} ,

04
g = {(XEM,(C); 'X+X =0, tr.X =0},
t = {(‘/6‘1“ I(DEM,,H(C); 'PLY—=0,acR, vV _lattrY = 0} ,
B(X,Y)=2(n+1)tr XY (X, Yeg),
0 —fly Tty _fn
m= gl O E]‘4n+l(c’); cl) "ty CnEC ’
£
— (%, O
f - {27[\/—1( ); X1y ***y xn+IER’ xl"l_""'l_xn-i-l = 0} .
0 Xn+1
The natural complex structure J on m is given by '
0 —&y =2, 0 —V—lg, -, —V—1g,
It —|v=i ,
T 0 _ 1 0
gn \/_ICn

and hence m may be identified with C”.
Then, we may identify P"(C)=G|K, and as complex vector bundle, we have
TP"(C)=G X gm.

We adopt the usual Fubini-Study metric on P*(C). Note that the metric
induced from the Killing form B is (n+1)-times the Fubini-Study metric and
the results of 1 and 2 hold with certain constant multiples.

Now, we consider the above x;, -+, x,1, as linear forms on { and introduce a
linear order on {* such that

X >0,> >, >0>x,,, .

We note that the image of K in GL(m) under the adjoint representation in
m is exactly U(m), the unitary group of m=C". Hence, the K-modules A}? are
all irreducible. The weights of m with respect to f are {x;—x,;7=2,3,--,n41}
and the highest weight of A§? is (x,— )+ ++ 4 (%1 — %)+ (X1 — K1)+ o+ (21—

xﬂ+2—p)-

Next, we shall give a general formula to decompose any irreducible G-
module into irreducible K-modules. In our case, K is of maximal rank, and
every dominant integral form A of G and K with respect to { is uniquely ex-
pressed as

A = Ry +-Roxy o Ry,

where k, k,, -+, k, are integers satisfying k=:--=k,=0 or k=--=k,=0,
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according as the group is G or K. We denote the Weyl groups of G and K by
W, and Wy respectively. Wy is the permutation group of x;, -, &,4; and Wy is
the permutation group of x,, -, %,41.

Proposition 5.1. Let (V,p) be an irreducible G-module with the highest weight
No=mX%y 4+ +m,x, (my =+ =m,=0). Then, (V, p) decomposes, as a K-module,
into irreducible K-modules as follows;

V= 2 Vklx1+kgxg+~-~+k,,z,,

where the summation runs over all the integers k,, ---, R, for which there exists an
integer k satisfying

%

m =k +k=m, =k +hk=my = =m, =k, +kh=m,=k=0,

= 3m— 3k —(n+1)k.

Proof. For an element x& {*, we denote by £¢ and £¥ the principal alter-
nating sum under the Weyl groups W, and Wy respectively.

2 ( 1)0’ Tx
UEW@

= E (—I)Ten ’
reWg

where e¢*=exp 27\ —1x, and (— 1) denotes the signature of permutation o. For
irreducible representations (V, p) and (V”, p’) of G and K respectively, we denote
their characters by X, and X,>. Then, by the character formula of Weyl, we have

(1) Eggxp = E}?p+ag on f,
E;‘pr’ = E)I‘(P""sx on f .

Now, we have

3 () = 5 (n+ 1,

N|_- l~>|~

IO AT LN
and put
p,:m,—l—n—l‘l—"i (i: 1, 2’ ...,n)

Pn-H =0 )
NoF0c = prxy+poxot-+ +Pux,

Then, we have

(2) EXyrog = det (eP79); _1o . w1
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g5, = Il (e~ 2—e*i~"0%) |
i<j

B = T (e —ey 750
2<i<j

Hence, putting 2,=x,—x, (i=2, -+, n+1), we have
EK n+1

@) Boe — T (—D)ecor(eri—1)
ESG i=z

We compute the right hand side of (2) as follows;

eﬁwl’ ey epl"'wl 1, el’l("z"’l)’ ey el’x(‘nn"‘))
ei’ﬂxl’ ceey ePnEny| = ePrttinn 1’ eﬂn(‘z_”l)’ N él’n(‘ru.l“l)
1 ’...’1 1’ 1’ ........-,1
el’lzZ—l, .........’el’lln+1_1
. n_p . . _
= (=1ye™) : (P =pit---+p2)
el’ﬁzz_l’-........,eﬂn1n+1_l
-1 -1
Setizz, oov) SV hitnsn
n+1 q‘=0 2,=0
= (—1)'er I (¢—1)| : :
ji=2 Pp-1 bp—1
e‘lnlz eos eqnz’l+l
“anjo ! ’ q,.2=0
-1 -1
2 eqlzz, ceey 2 eNini
71=72 4=1;
n+1 Pyt py-1
= (—1)"e" [1 (e5i—1)| D %2, -+, 3 e%2n+1
ji=2 9,=p3 9=y
Pn“l Pn.—l
ein?2 ..o enni1
" n+1 ,
= (—1)%e™ II (¢—1) 27 det (€%%)i=15,....n
iz 22500
! §=2,3,-,nt1

where the summation >}’ runs over all integers ¢, -+, g, satisfying
p—1z2a2ps p—12¢,2p5 -+, po—12¢,20.
Further, we have
det (e‘liz,')'.,j = e~ (@t tanx . det (eqizi)i.i .
Hence, from (1) and (3), we get
g;{xxp — 2/ elP~ (@t +am) 5 v /22t “+2n ) o det (eq,.xj)l

Here we note that 2,4 2,,=—(n+1)x,.
We put
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{ kl = P—(91+"°+‘In)“”—qn ’
kj+l = q,—qn—‘”-f"] (] = 1, 21 ) n—l) .

Then, we get easily
fé;xp =2 Exklxl+---+k,,x,,+8K_ ’
where the summation runs over all integers &, -+, k, satisfying
m =k g, =my=ky+-q, = 2k, +q,2m, =q,=0.

Therefore, by the character formula of Weyl, we get immediately the proposition.
‘ q.e.d.

The highest weight of A$'? with p+4¢=<mn, which we have seen before, is
described according to the type of (p, ¢) as follows;
(i) p=0,¢=0 0,
(i) p=0,n>¢>0, —qu,+x-+-+x,4,
(i) 2>p>0,¢=0 (p+1)wita,+ -+ +xpi1-p
(iV) b q>0: ”>P+q (P_q+ 1)x1+2xz+ "'+2xq+1+xq+z+ +xn+l—p’
(V) b q>0) n=P+q (P_Q+1)xl+2x2+"'+2xq+b
(vi) p=0, g=n —(n+1)x,,
(vii) p=n, ¢=0 (n+1)x,.

By Proposition 5.1 and Frobenius’ reciprocity, an irreducible G-module with the
highest weight A\,=mx,+++-+m,x, appears in the irreducible decomposition of
C=(G X xA§?), if and only if m,’s satisfy the condition given by Proposition 5.1.
For instance, in case (iii), there exists an integer % such that

%
v

m=1+k2m=14+k= o 214k2m, 2 k=m, 2k 2m, 2k 20

The conditions are similar to the case above in the other cases.

We set Ay=0, A=x,+x,+---+x; (j=1, -, n) and A,;,=0. Then, A,, -,
A, are the so-called fundamental weights of G so that every dominant integral
form of G is uniquely written as a non-negative integral linear combination of
them. We set

A(k) 7, S) = k(Al+An)+(r—s)Al+As+An—r+l ’
where k satisfies the condition
(%) k+r—s=0 and k=0.

Then, the highest weights of irreducible G-modules appearing in C=(G X xA$'?)
are of the following forms
(#, 7, q) incase (i), A(k0,0),

in case (ii), A(k,0,q), A(k, 0, g+1),
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in case (iii), A(k,p,0), Ak, p+1,0),
in case (iv), Ak, 5, ), Ak, py g+1), Ak, p+1, 0), Ak, p+1, g+1),
in case (v), A(k, p,q), ARk, p, g+1), Ak, p+1, ),
in case (vi), A(k,O0,n),
in case (vii), A(k,n,0),
where k’s are integers satisfying ().
Moreover, the multiplicity of the representation with the highest weight
mentioned above in C=(G X ¢A}°) is exactly one.
Now, we denote by <, > the inner product on {* induced from ;_;1—13. For
A=k(A+A)+(r—$)A\+ A+ A, _, 41, we have by simple computations,

(k+7) (k+n+2—5) 1=r,s=n),

(k+7) (k+n+1) (1=r=n, s=0),
k(k+n+1—s) (r=0, 1=5=n),
47 A+-286, A =
A 280 A =1 ket (r=0, s=0),
(k+n) (k+n+1) (r=n+1, s=0),
k(k+1) (r=0, s=n+1).

Thus, we get

Theorem 5.2. Let P*(C)=SU(n+1)/S(U(1)x U(n)).

(a) Let p and q be non-negative integers with p-+q=n. The highest weight \,
of the irreducible representation p of SU(n+-1) intervening in C=(G X xA}?), that
is, p in Yo with p,=1, are those of (4, r, s) with r—s=p—q, r<p and s=q.

For P"(C) with the Fubini-Study metric, the multiplicity of the above represen-
tation p in the space of primitive forms of type (r, s) is one.

(b) On the irreducible SU(n—+1)-submodule of differential forms with the
highest weight A(k, 7, s), the Laplace operator defined by the Fubini-Study metric

has the eigenvalue (k+-r) (k+n+2—s) for 1=<r, s<n, (k+r) (k+n+1) for 1=r=n
and s=0, k(k+n-+1—s) for r=0 and 1<s=<n, k(k+n) for r=s=0, (k-+n) (k+n
+1) for r=n-+1 and s=0, and k(k+1) for r=0 and s=n-1.

ReMARK. For the space of real differential forms on P"(C), its irreducible
decomposition can be obtained from Theorem 5.2 together with the results of
N. Bourbaki [5] and N. Iwahori [8]. Two irreducible representations of SU(n
+1) over C with the highest weight A; and A,_ ., are anti-isomorphic to each
other (j=1, ---,n). We denote by »?V% ; the SU(n-1)-irreducible submodule of
primitive forms of type (p, g¢) with the highest weight R(A;+A,)+(r—s)A+A,
+A, 1. PWE, is complex conjugate of V%% % and the space »?U?},; of real
forms in »V% V%"= is an irreducible SU(n-+1)-module over R. Con-
versely, any irreducible SU(n+1)-submodule over R in the space of real forms
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on P’(C) is of the form Q*A?¢U?}  for some k, k, p, ¢, and s.

6. Eigenforms on S” and the harmonic polynomial forms on R"*!

In the following 6 and 7, we designate simply by A?M for C~(A?M), the
space of all differential p-forms on M.
Let R**! be an (n+1)-dimensional real Euclidean space and (x" Xt . ,x") be

the standard coordinate system on R*"!. We put = E(x‘)2 *_Z;x'
rdr=i}x"dx‘ Let d, be the differential on A*(R"*")= ZA"(R"“) 5, the COdl-

fferential and %, the Poincaré duality on A*(R"*"). We define a linear operator
e(rdr) of A¥(R**) into itself by e(rdr)a=rdr A\ a, for ac A*(R"*"), and denote

byi (r:id-> the interior product by rdi on A*(R™Y). Then the following lemma
r r
is easily verified.

Lemma 6.1. Let a be a differential p-form on R"*'. Then we have the
following formulas;

1) i(r‘—ial) o = (—1)Poe(rdra

i (r- L ) = (— 1) elrdryree
dr
(2) e(rdr)dya+dee(rdr)a =0,
(. d (. d
D (rd—r)Boa—l—Soz (r‘;)a =0.
./ d (. d _
3) dy \r(l—r)a—f-l(r(;)doa = L,qupc -
(4) Soe(rdr)a+e(rdr)dyar = (— 1) %L, (4p4*0C
where Ly denotes the Lie derivation by a vector field X on R"*'.

We denote by A=d8,+3,d, the Laplace operator on the space of differential
forms on R"*'. Then the operators d,, &, A, e(rdr) and i(r‘%) acting on A*
r

(R"™") commute with the natural action of O(n+1), the orthogonal group of
R™!, on A¥(R").
Now, let P} be the set of a= A?(R"*") of the form
a=_ 21 .\ Nda'r,

0si < <ipsn L

where «; ...;, are homogeneous polynomials of degree k.
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Proposition 6.2. Let acP}. Then we have
1) doz(r—)a—l—z( ) = (+p)a,
©2) See(rdr)a-te(rdr)Soa = —(n+1—p+E)

Proof. Let ac P}. Then we can see easily L, sna=(k+p)a. Combining
this with (3), (4) in Lemma 6.1, we have Proposition 6.2.
q.e.d.

Corollary 6.3. We have the following direct sum decompositions;
Pf = (Ker dy\ PP Ker i(rdi) nP{:) (k+-p=0),
r

P} = (Ker 8,N P3)D(Ker e(rdr) N P}) (n+1—p+k=0)

ReMARk. We have
P} = {constant functions on R**} ,
o= {a dx® N\ - Adx": a=C} .

DEFINITION. A harmonic polynomial form is an element a< P} such that
Aa=0 and §,0=0. Let H? be the set of these forms;

H} = KerANKer §,NP;.
Lemma 6.4. We have the direct sum decomposition;
= HiP(r*Pi_,+e(rdr)PiZ1) .

Proof. Let S*(R"*") and A?(R**") be the real vector spaces of a symmetric
tensors of degree k and antisymmetric tensors of degree p over R**'. Then we
have the natural isomorphism between P} and S¥( R"*)@Q A?(R*"™)QC as O(n-1)-
modules, where O(r+-1) acts identically on C. We consider S¥( R"*")Q A?(R"**")
as a subspace of T*"?(R"*!), the real vector space of tensors of degree k+p. We
define linear operators s;; of T***(R**') to T****(R"*") by

s (0@ Bey,) = iy €90, RED D, Qeyry »

where {, > denotes the standard inner product on R**!. Put pH**?=
1Si<ish+p

Kers;; and pHi=pH""* N SHR")QA’(R"*'). We denote by x@} the subspace
orthogonal complement to gH% in S*(R*™)QA?(R"*"). Put Qi=rQi®rC and
=rH{QC. Then the subspaces in P} corresponding to Q@2 and H? by the
natural isomorphism in P} are Qb=e(rdr)P}=1+7r*P}_, and Hj}.
q.e.d.
Proposition 6.5. Let S" be the unit sphere in R"*' and i be the inclusion
of 8" into R"*'. Then we have
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(1) &*: Ker §,N P; — A?(S™) is injective,
(2) *(Ph) = i*(Hb-2)  (direct sum).
)

Proof. (2) follows easily by induction on % using Lemma 6.4, since 7*(7%)
=1 and #*(rdr)=0. We shall show (1). Let a=Ker §,NP}. Suppose i*a=0.
Then « is in Ker e(rdr) N P;. On the other hand §,&=0, and so from Corollary

6.3, we have a¢=0.
q.e.d.

Corollary 6.6. :*: >YH%— A?(S")is injective and its image is dense in A?(S™).
k=0

Proof. By the polynomial approximation, *(31P}) is dense in A*(S™).
k=0
Proposition 6.5 implies that 7*(3) P%)=:*(31H}%). Thus the density is proved.
#=0 k=0
Now, let alezle‘g’k and o, > H%;—1. Assume 1*(a;+a,)=0. Then we
*=0 k=0

shall show that ay=a,=0. By Proposition 6.5, we may take &, &, in P}, and
P3,-1 respectively for some k, satisfying #¥(&,)=:*(a,) and *(&;)=7i*(a;). We
have (&,+a,) Ardr=0 on S”. To prove the corollary, it is now sufficient to show
that if f}, f, are homogeneous polynomials of degree 2k, 2k,—1 respectively, and
if fi+f, is zero on S”, then fi=f,=0 on R"*'. By the assumption, we see that

fi+rf; is zero on S” and homogeneous on R"*'. Thus fi+7,=0 on R".
Substituting —«; for x,(0=<i=n), we have f—7f,=0 on R""'. Thus we have

fi=f=0.
q.e.d.

Lemma 6.7. Let acHY}. Then we have dyx=H?2*! and i(r%)aeHﬁ:}.
r

Proof. The first statement follows easily from the facts that A=d5,+3,d,
and dA=B8d,. We see i(ri) ac HY7, since 30i<ri) a=~z’(r—d—)80a=0 by
dr dr dr
Lemma 6.1 (2) and we have

&(%)a — (80d0+d080)i(r§r—)a
— SuLtan a—34(r-L )dyc
- (k+p)80a+i(r 5;)80(1061

=0.
q.e.d.

Put 'H}=Ker d,N H} and ""H}=XKer i(r%) NH;. By Proposition 6.2 (1)
r

and Lemma 6.7, we get
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(6.1) H} ='H{®"H}
We see H{='H}="H]j,

H3+1 — /H3+1 — ”H8+1 .

(p+k=+0, n+-1—p-+k+0).

Theorem 6.8. (1) The modules 'H} (k>0) and "Hf (0< p<n-+1) are

reduced to zero.

(2) The module "H% (p>0) is decomposed into the irreducible SO(n-+1)-
modules with the following highest weights and each of these appears with multiplicity

one.

(1) case n=2m,
kA H-A,
kA +2A,,
kAl+An+l—p

(11) case n = 2m—1
kA A,
kA A, +-A,,
kA H2A,, 1, RAH2A,,
kA1+An+l—p

0<p<m)
(b =m, m+1)
(m+1<p=2m).

0< p<m—1)

(p =m—1, m+1)
(p=m)
(m+1<p=<2m—1).

(3) Themodule’ H (k=1, p<n) is decomposed into the irreducible SO(n+1)-
modules with the following highest weights and each of these appears with multiplicity

one.

(i) case n=2m,
(k—DAHA,
(k_l)Al+2Am
(k=DAr+A,-,

(1) case n=2m—1,
(k—1)A+Ay
(k—=D)A+A,1+ A,

(k—1)A+2A,,_y, (kB—1)A+2A,,

(k—1)A,+A,_,

0=p<m—1)
(p=m—1,m)
(m+1=p<2m—1).

0= p<m—2)

(P =m—2, m)
(p=m—1)
(m<p=2m—2).

(4) The module i*("H?Y) is consist of d-closed forms and the module i*(" H%)

of 8-closed forms.

Proof. We shall give the proof for the case n=2m, the case n=2m—1,
being treated quite analogously. The statement (1) can be easily seen by Pro-
position 6.2. We shall show (2) and (3). The module P} is isomorphic to
SHR"MQA(R*)QC as SO(n-+1)-modules. Therefore, the module P}
contains the SO(n-1)-irreducible submodule with the highest weight kA;4-A,.
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We denote this submodule by E4. By Lemma 6.4, we have E{C H. The module
d,E% is isomorphic to E% or reduced to zero. But the highest weight of the
module P} is (k—1)A,+ A4, which is strictly lower than kA+A,. Thus the
module d,E% is reduced to zero and this implies E4C’H}. On the other hand

the module i(rir)Eféi} is contained in “H}. By Proposition 6.2, the module

d@(r%)Ei’ii is equal to E*]. Therefore, by (6.1) the module i(r%)Eﬁi} is
also isomorphic to the module E%*}. Thus we have shown that the module “H}
contains the irreducible submodules with the highest weights in (3). Then by
(6.1) and Theorem 4.2, no other submodules appear in H;. Thus we have proved
(2) and (3). Next we shall show (4). By the well known formula di*=i*d,, we
see that the module :*(’H%) is d-closed. When we note that d, § and * are
SO(n+-1)-homomorphisms, we see that the module *(”H3}) is S-closed by
comparing the irreducible submodules appearing in “H% and E,H s

q.e.d.

7. Eigenforms on P"(C) and the harmonic polynomial forms on C"*!

Let (2% 2%, -+, 2") be a standard holomorphic coordinate on C**! and

g:i}dz‘-dﬁ‘ be the flat Kihler metric on C**!. We denote by A?¢(C**?) the
i=0

space of differential forms of type (p, g). We designate by d, the differential and
8, the codifferential on A*(C**'). The operators d, and J, are decomposed as
follows;

dy = 8,43,
with By: API(C*Y) — APHL9(CHY)
50: AP:Q(Cn+1) > Ap,q+1(cm+1) ,
and
8o = 0§ +05
with B¥: AP 9(CmY) — AP~Lo(CmHY
05 : AP9(C™HY) — APY(CHY)

Furthermore, we denote by #, the Poincaré duality and put
W, = z”] z‘i, W, = i zii., W= é gidz', and Wk = Z”_‘, 2z,
=0 03f i0 0% i=0 =0
For ac A*¥(C™*"), we define e(W§) a and e(W¥) a by
e(W§Ha=WiAa

and
(WHa = WiNa.
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We designate by i(W¥) (resp. i W¢)) the interior product by W, (resp. W¥).
Then these operators d,, 8y, 8y, 0%, 0, 0F, e(W¥), e(W¥), i(W,) and i(W¥) on
A¥(C™*") commute with the action of U(n+1) on A*(C**™*). Now the following
lemma is easily verified.
Lemma 7.1. For any ac A”(C"**"), we have
(1) #(Woxoer = (1) 5o Wi)a
i(Wo)oa = (— 1P % e(WH)a .
(2) (Wt (Wo)a = Ly,
i W) +35i( Wo)at = L,
{Wo)dga+05i( Wo)ar = 0
i(Wo)0,a+04(Wo)a=0.
(3) OFe(WE)a+e(WE)oFa = (—1)PT 4 oLy *o0
(W a+e(WHota = (—1)P %Ly *
(W) a+e(W¥)oFa =0
Fxe(WF)a+e(W¥)dga =0.
Now, we put Qu=— ——_lf_‘,_odz‘/\dz‘ and define linear maps L, A, of
A*(C**Y) into itself by
Lo = QAN
and
Aot = #3 Lyxo for as A¥(C*Y).
Then the operators L, and A, also commute with the action of U(n-+1) on
A¥(C**"). We have the following
Lemma 7.2. For ae A¥(C""), we have
(1) Be(W¥)a+e(W§)de =0
Be(W¥)a-+e(Wi)dx = 0
0o W)a+e(Wi)be = vV — 1Lyt
Bie(W¥)a+- (Wi, = —V —1Lg
(2) OXi(W Ya-+i(W )0k = 0
E(W )a+i(Wo)ota = 0
0F(W)a+i(W)dka = —V —1A
TE(W Ya+i(W o )aka = V —1Aa .
Put P}{ be the set of a = A?YC**?) of the form

A= 2 Wiy i BN NAFENAZIN - NdRT
0<6 < <fp=n
0=/1<-+<jesn
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where ;.. j,.-j, are polynomials of degree k with respect to 2%, 2%, --+, 2" and of
degree ! with respect to 2% &, ---, 2". 'Then, using Lemma 7.1, we have in the
same way as for Proposition 6.2

Proposition 7.3. Let a=P}y§. Then we have

(1) #Wo)0u+0ei(W o) = (k+pla

(2) #(Wo)aux+3i(Woa = (I+9)

3) eW§ota+ofe(W)a = —(n+1—p+la

4) e(W§Hotatote(WHa = —(n+1—g+k) .

By this proposition, we have the following direct sum decompositions;

Pii = (Ker 0,N P4:))B(Ker i(W,) N Pi:} (k+p=+0)

= (Ker 3N PLYO(Ker {Wo)NPLT)  (I4g+0)
= (Ker 0f N PL1)D(Ker e WENPLS)  (n+1—p+10)
= (Ker 0§ N PLD(Ker o W) NPLY)  (n+1—g+k=+0).

By Lemma 7.1, we have also the following direct sum decompositions;

(7.1) P4 = (Ker 8,N Ker 8,N P}:f)D(Ker 8,N Ker i W) N Ph:§
@D (Ker i(W,) N Ker 8,N P45 D (Ker i(W,) N Ker i W) N PL:4
(k+p=*0, I+-g=0)
= (Ker 0¥ N Ker 8F N PL:8)D(Ker % N Ker e( W) N P43
D (Ker e(W¥) N Ker ¢ N PLHB(Ker e( W) N Ker o W) N PLS
(p—Il#En+1, g—k*+n+1).

ReMARks. We have
(1) P%:f = Kerd,NPg:§ = Keri(W)N PS5,
P43 = Ker 8,N P43 = Ker i( W) N P48,
Pyt = Ker 0F N Ppl? = Ker e( W) N P34,
P+t = Ker 0¥ NP1+ = Ker e( W) N PL*! .
(2) Pg:5 = {constant functions on C**'} ,
Pyt = {a d° ANdR--- NdZ"NdE": a=C} .

Furthermore, in the same way as for Lemma 6.4, we have

(7.2) P9 = Ker 8F N Ker 8% N Ker [J,N Ker A NP
D(e(W¥)Phik i+ e( WP i+ QoPh ™ P )

—|—55.

where [],=0§

Now, put
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H§ = Ker 0F NKer 0 NKer [(J,NKer A,N P .

DEFINITION. A harmonic polynomial form on C"*! is an element of the
space H}'{.

The space H%:§ is an SU(n+1)-invariant subspace in the space P}:{. Assume
p=*+0,¢%0 and p+g=n-+1. Then by (7.2), the module H%:{ contains the highest
weight vector in the module P§:f. The irreducible subspace in H%:{ which con-
tains the highest weight vector of the module P$:{ shall be denoted by E%:{. Then
the irreducible module E%;§ has the following highest weight;

(7.3) IAAAARAA A, .

The following Lemma 7.5 can be verified easily from the formulas in (3.5)
and Lemma 7.1.

Lemma 7.4. Let acH.Y. Then we have d,0c H2* 1Y, dx s HE {21, i(W)
acHIFY and iW)as HyA .

Combining this lemma with (7.1), we have

(7.2) H}:§ = (Ker 8,N Ker 8, HL:9)D(Ker 8, N Ker i Wy) N HE:J
D (Ker i(W,) N Ker 8, N HE: ) D (Ker i(W,) N Ker i( Wo) N H:§
(k+p=+0, 14+-q=+0).

Proposition 7.5. Suppose p+q=n. Then the module H}§ contains the
irreducible SU(n+-1)-modules with the following highest weights;

(1) IAFEA, (p=g=0)
@) IAFEA+Ay (—D)A+EA Ay (p =0, n>g>0)
(3) IMNFRAADpirep IN+(R—DA+A,_, (>p>0, g=0)
@) INAFRAAA A Ay (DA (R—1D)AAA 1Ay
1A1+(k_1)An+Aq+An—-p’ (l"‘1)A1‘|‘(k—1)An+Aq+1+An—p
(p>0, ¢>0, 1<p+q<n)
(5) IAARAAAA Ay (—DAAERA,+ A +Apiry

IANA+(R—1)A,+A+A,, (p=*0, g0, p+q=n)
(6) 1A +(R+1)A, (p=0,9=n)
(7) (IH+1)AFERA, (p=mn49=0)

Proof. Assume p=0, ¢=0 and p+¢=<n-+1. Then in the same way as for
the proof of Theorem 6.8, we get 9,E%:=0 and 0,E}:§=0. We shall show that
the module i(W,)i( W,)E%: is not reduced to zero. Let acEfq. Assume {(W))
i(Wy)a=0. Then we have i(W,)acKeri(W,). On the other hand, we get
Boi(Wo)a=—i(W,)9,a=0. Therefore we have (W )asKerd,. Thus we have
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(Wo)a=0, i.e., acKer i(W,). Since acKer 9,, we have a=0. Thus we see
that the module #(W,)i( W,)E%: is isomorphic to the module E£:§. Moreover the
modules i(W)E%:S and (W )E%:§ are also isomorphic to £%:§. Combining these
facts with Lemma 7.4, we get Proposition 7.5.
q.e.d.
Let 7 be the natural projection of C**'— {0} onto P"(C) and = its restriction
to S cC*'—{0}. For p=S¥*1, we denote by T,(S**!) the tangent space at
p. Put F,=Ker ((7,)%),- Let F3 be the orthogonal complementary subspace to
F,in T,(S™);

T(S*+') = F,dF} .

We introduce the Riemannian metric on P*(C) so that the restriction of (7,)4 to
F# is an isometry onto T, (P"(C)). Let J, and J be the standard complex
structures on C"*'and P"(C) respectively. Then for ve F#, we have

J@ v = (m)sJow -
We denote by A%4(C"*") the set of all ae A?Y(C"*") such that g*a=a for any

e 0
gesS'= {( )E U(n—i—l)} and we define a linear map
0 82111'6
#: AGI(C) — APPC))
by
d)(a) (Xl) "ty Xp+q) = a(Xli °ty Xp+q) ’

where X, are tangent vectors at z(p) to P*(C) and X; are the lift to S***! by
the isomorphism F#=~T ., (P"(C)). Then the map ¢ is well defined and we have

Proposition 7.6. (1) ¢( D) Pi9) is dense in A*Y(P"(C)).
k+p=1+1

(2) Let Q be the fundamental form on P"(C). Then we have $(Qy)=0Q.

() d(WE)=¢(W)=0.

(4)  o(r)=1.

(5) ¢: Ker 0 NKer 0F N P2:§ — P*(C) is injective.

(6) For ac HYY, ¢() is a primitive form on P*(C) if and only if i(W,)i( W)
a=0.

Proof. We shall show here (5) and (6), the other statements being easily
proved. Let acKer0f NKerdf NPs{. Assume ¢(a)=0. Then we have
WEANWEAa=O, i.e., W¥ANacKere(W¥). On the other hand we have 9%
(WS"/\a)=—W§‘A63“a=O. Therefore we have W¥ AacsKer 0¥. Thus we
have W¥Aa=0. In the same way as above, we see ¢=0. Thus we have
proved (5). Let W, ---, W, be a unitary base complementary to ¥, at pe S**!
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in C*™. For ac H}:{, we have
0 = STi(W)( W = STi(W )W+ Wi Wohat

It is clear that ¢(a) is primitive form if and only if the first term vanishes.
Thus we have proved (6).

q.e.d.
According to (6) in Proposition 7.6, for an element :of the last three direct
summands in (7.2), its ¢-image is a primitive form. On the other hand for ae
Ker 8,N Ker 8,N H}:{, we put
ay = (n+2—p—q)a+V —1Q4(W )i We ,
a, = (Wi W)t .

Then we have
Lemma 7.7. ¢(a,) and ¢(a;) are primitive forms.

Proof. ¢(a;) is a primitive form follows from (6) in Proposition 7.6. On
the other hand we, have

Ad(a) = Pp(Agati+ \/———1i(Wo)i( Woay)
= p{(n+2—p—q)Agx—V —TAQF Wy W)
+V = 1(n4-2—p— )i W)l Wo)a—i Wo)il Wo)ui(Woyi Wo)er}
= ¢{—V —1(n+3—p—qyi(Wo)i( Wo)a
+V = 1(n+2—p—qJi(Wo)i Wo)a+V —Ti(Wo)i Wo)et}
. q.e.d.
Lemma 7.8. a= 0if and only if a,=0.

Proof. Assume a,=0. Then i(Wy)i(Wy)a=0. Thus we have {(W)ae
Ker i(W,). Since d4(Wo)a=—i(W,)9,a=0, we have i(W;)a=0. In the same
way, we see a=0.

q.e.d.
Lemma 7.9. If a=+0 and k+p=+0, then ;0.

Proof. Assume a=0. We shall show 9, =0.
V —10g0t; = 0,Qi(Wo)i( W)
= QBF(Wo)i( Wyt
= —Qui(Wo)34i( Woa+(k+p)Qui( Wo)et
= (k+)Qi(Wo)er .
By our assumption, we have i(Wy)a=0. Since i Wo)a is a (p, g—1)-form and
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p+(g—1)=<n, we have Qui(Wo)a+0. Thus we have shown 9, =0.
q.e.d.

Corollary 7.10. We have a direct sum decomposition,

$(PLT) = D Q'GHIZZ)  (k+p=1+9).
j20
Corollary 7.11. ¢: XY QiHL7"F — APY(P"(C))

i=0
k+p=1+17

is injective and its image is dense.
Combining this with Theorem 5.2, we have

Proposition 7.12. Assume k--p=I1+q. Then we see that H%: contains only
trreducible SU(n+-1)-modules appearing in Proposition 7.5 with multiplicity one and
no other submodules occur in H%:!

Now, put
JH = {asHL: 8 = 0, 30 = 0},
ZHE = {aeHE: 0 = 0, i Wo)a = 0},
"HL = {acsHL: iW)a = 0, 9 = 0},
and wHE = {a€HE: iW)a = 0, i Wo)a = 0} .
Then by (7.2), we have
(7.5) HY = (HYID HEIDTHEIDHES  (k+p=+0, g¢+1%0).

Theorem 7.13. Assume k+p I4+q and 0=<p+g=<n. Then we have (1)
SHY =IHE Y= HyS="Hy =1 Hy?={0}. (2) The SU(n+1)-modules }HES,
LHES, THES, HES, except for the modules listed in (1), are irreducible modules
with the following highest weights;

THES RA+A)+(— M+ A+ Npiay
240, g0 //Hgi‘z’. (k=1) (M+A)+(p—g+ DM+ A +A,,
TH%S RA+A)+(p—q— DA+ A+ Apiay
wHET (R=1)(M+A)+(P— DM+ Apa+A,,
»=0, THRS k(A +A)+(—9) A+ A,

40, » GHES | MAHA)+F(—g— DA+ A
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240, n JHES | KA+ A+ A Ay,

¢=0 PHEY | (R—1) (M A+ P+ DA A,
»=0, ¢g=n YHYY (R+1) (A +A)+(—n—1)A,
p=n,q=0 SLHY k(A 4+ A+ (r+ 1A,

p=4=0 WHRS k(A +A,)

3) (HEDHCKer 3N APY(PY(C))
¢(//Hf'?)CKer oNKerd*N Ap,q(Pn(C)) (p:l:O)
HHENCKer 3N Ker G*NAS(PIC)  (+0).

Proof. Itis clear that ‘EL{C/HES, i( W)ELST I C L HES, i(W)ELNiC/HES

and {(Wo)i( Wo)ES71:971C/HE:S.  Combining this fact with (7.5) and Proposition

7.12,

we get (1) and (2). Moreover, we get (3) by comparing the irreducible SU

(n+1)-modules appearing in H%:{.
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