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0. Introduction

Let M be an orientable closed 4/z-dimensional smooth manifold, whose
rational cohomology algebra is isomorphic to that of a quaternion projective
w-space Pn(H). We call such a manifold M a rational cohomology quaternion
projective n-space.

Let (G, M) be a pair of a compact connected Lie group G and a simply
connected rational cohomology quaternion projective w-space M, on which G
acts smoothly with a codimension one orbit G/K. We say that (G, M) is isomor-
phic to (G', M')y if there exist a Lie group isomorphism h: G-+G' and a diffeo-
morphism/: M-+M' satisfying

for every g€=G and for every
When G acts on M, H= Π Gx (the intersection of all isotropy groups) is a

closed normal subgroup of G. Since H acts on M trivially, the G-action on M
induces an effective G/i/-action on M. We say that (G, M) is essentially iso-
morphic to (G7, M7), if there exists an isomorphism between the pairs with
effective actions (G/#, M) and (G'/fl7, M').

The purpose of the present paper is to give a complete classification of
such pairs (G, M) up to essential isomorphism. We shall show

Main Theorem. Such a pair (G, M) is essentially isomorphic to one of the
pairs listed in the next table.
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(G,M)

(G, Pn{H))

(Sp(ni+l)xSp(n2+ί), Pn{H))

(U(n+l),Pn(H))

(SU(n+ί), Pn(H))

(SU(3), 6?2/5O(4))

(50(3), S*)

action

natural

natural

natural

natural

natural

(1)

(2)

(1) G=Sp(n), Sp(n)x C/(l), or Sp(n)χSp(l)aSp(n+l).

(2) SO(3) acts on S4 by a 5-dimensional irreducible real representation.

When 7z=l, M is a homotopy 4-sρhere. Our main theorem for 72=1

complements a lack of Wang's theorem [8], in which he classified (G, M) when

M is a homotopy A-sphere for even &Φ4 and for odd £>31. F. Uchida [7] gave

a classification of pairs (G, M) when M is a rational cohomology complex pro-

jective space. To show our theorem, we follow a similar procedure. First, we

recall in Section 1 some necessary facts on compact Lie groups, homogeneous

spaces and G-manifolds with codimension one orbits. Section 2 is devoted to

cohomological consideration. Our aim is to prove Theorem 2.1.4, which

gives necessary conditions for (G, M) to be a pair of our problem. In Section

3, for each (G, M) appeared in our main theorem, we investigate the orbit types

of M. Finally in the last three sections, we prove that there exists no pair

(G, M) which is not essentially isomorphic to one of the pairs listed in our main

theorem.

The author wishes to extend his hearty thanks to Professor Fuichi Uchida,

who introduced him to the problem discussed here, read critically the manuscript

and gave him helpful suggestions in many parts.

1. Compact Lie groups and manifolds with group actions

1.1. We give here some definitions and propositions which are necessary

for the subsequent discussion.

Let Gl9 •••, Gk be compact Lie groups. If G is a factor group of GλX •••

X Gk by a finite normal subgroup, then we say that G is an essentially direct

product of Gx, •••, Gk, and denote

G = Gλ o o Gk.

As is well known,

(1.1.1) Every compact connected Lie group G has the form

G = TQOGIO"'oGk y
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where TO is a toral subgroup of G and Gs, s = l , •• ,A, are closed connected simple

normal subgroups of G.

The next two propositions will be used in the later sections without mention.

(1.1.2) Let G be a compact connected Lie group and Gλ its closed con-

nected normal subgroup. Then there exists a closed connected normal sub-

group G2 of G, satisfying G=GλoG2.

(1.1.3) Let G be an essentially direct product of compact connected Lie

groups Gly ~-,Gk and U a closed connected subgroup of G with rank t/=rank G.

Then, for every s, s=ί, •••,£, there exists a closed connected subgroup Us of

Gs such that

rank Us = rank Gs, U = C/jo o Uk,

GIU=G1IUιx-xGkIUh.

1.2. Let (G, U) be a pair of a compact connected simple Lie group G and

its closed connected subgroup U, with rank Ϊ7=rank G and lttp;G-^G be the

universal covering. We say that such two pairs (Gly C/j) and (G2, U2) are

pairwise locally isomorphic if there exists an isomorphism h: G1-^G2 such

that hpT1(U1)=pj\U2). In the following propositions, we list the homogeneous

spaces of simple Lie groups with certain Poincarέ polynomials. They can be

shown by a similar argument to Section 4 of [7].

(1.2.1) If P(GIU; t)=l+t*-\ M4α, then (G, U) is pairwise locally iso-

morphic to

(Sp(α+l),Sp{α)xSp(l)),

or

(G2y 50(4)) in case α = 2.

(1.2.2) If P(G/U; t)=l+t2+-+t2b, then (G, U) is pairwise locally iso-

morphic to one of the following:

(SU(b+l),S(U(b)xU(l))),

(SO(2s+ί), SO(2s-l)xSO(2)) , where s=(b+l)j2 ,

(Sp(s),Sp(s-ί)xU(l)), where ί = ( i + l ) / 2 ,

(Ga. ^)> where H is locally isomorphic to U(2) , in case b=5 .

(1.2.3) UP{GjU; ί ) = ( l + ί 2 a ) ( 1 + ί H hi4*), «^2, then (G, U) is pair-
wise locally isomorphic to one of the following:

(SO(2α+3), SO(3)xSO(2α)), in case α =
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(Sp(3)y Sp(l)χSp(l)xSp(l)), in case a = 2, b = 2 ,

(Sp(4), Sp(2) x Sp(2)), in case a = 4, b = 2 ,

(Sp(5), 5£(2) x 5^(3)), in case a = 4, έ = 4,

(F4, # ) , where # is locally isomorphic to SU(2) X S/>(3),

in case a = 4, i = 5 .

1.3. We give a summary of some results on compact Lie group actions on
spheres, proved by Montgomery-Samelson [5], Borel [1] and Nagano [6]. See,
also W.C. Hsiang and W.Y. Hsiang [3].

(1.3.1) ([5]) Let Gλ and G2 be compact connected Lie groups such that
the product Gι X G2 acts on a homotopy sphere 2 transitively. Then, one of
two groups Gu G2 acts already on }•] transitively.

Or, more precisely,

(1.3.2) Let G be a compact connected Lie group which acts on a homo-
topy sphere 2 effectively and transitively with the isotropy subgroup H. Then
there exists a closed simple normal subgroup Gλ of G such that G1/G1 Π i ϊ = Σ

(1.3.3) ([5], [1] and [6]) Let Gx be a compact connected simple Lie group
which acts on a homotopy w-sphere 2 effectively and transitively with the iso-
tropy subgroup Hλ. Then,

(i) if n is even, (Gly H^iSOin+l), SO(ή)) or (6?2, SU(3)) in case n=6.
(ii) if n=2s-l and s is odd, (Gu Hx)^(SO{n+l)9 SO(n)) or (SU(s),

SU(s-ί)).
(iii) if n = 2s-ί and j is even, (Gl9 H,)^ (SO(n+ 1), SO(τz)), (-St/(j),

5C/(ί-l)), (5/>(ί/2), Sp(sl2-1))9 (Spin{% Spin (7)) in case n=15, or (Spin (7),
G2) in case n=7.

In each case, 2 is the standard ^-sphere and the action of Gx on *Σ=Sn is
linear.

1.4. We refer to some results due to Uchida, concerning manifolds with
Lie group actions. For the proofs, see Sections 1 and 5 of [7].

Assume that G is a compact connected Lie group.

(1.4.1) Let M be a compact connected smooth manifold without boundary
on which G acts smoothly with an orbit G(x) of codimension one, satisfying

H\M; Z2) = 0.

Then G(x)=G/K is a principal orbit and there exist just two singular orbits
G(xι)=GjKι and G(x2)=GIK2> and we can assume KdK^K^ Moreover,
for each G(xs)y s=ί9 2, there is a closed invariant tubular neighborhood Xs
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such that

M=X1\JX2 and XιΠX2 = dXι = dX9 = GIK

as G-manifolds.

Xs is a compact connected smooth manifold on which G acts smoothly and
has the form

Xa=GxDk'9

Here, ks is the codimension of G(xs) in M and Ks acts on &s-dimensional disk
Dks via the slice representation σs: K$-+O(ks). This ^-action is transitive on
the (ks— l)-sphere dDk\ Since dXs=G/K, as G-manifolds,

(1.4.2) The fibre bundle KJK-^G/K^GIK, is a (β s-l)-sphere bundle.

In the above situation, assume that M(f)=X1\jX2 is obtained from X1 and

X2 by identifying their boundaries under a G-equivariant diffeomorphism
/: dX1-> dX2. The following propositions will be used to classify the pairs
(G, M) and to construct a representative example of each essential isomorphism
class.

(1.4.3) L e t / , / 7 : dX1->dX2 be G-equivariant diffeomorphisms. Then,
M(f) is equivariantly diffeomorphic to M(f') as G-manifolds, if one of the fol-
lowing conditions is satisfied:

(i) / is G-diffeotopic to /',
(ii) f~ψ is extendable to a G-equivariant diffeomorphism on Xu

(iii) / ' / - 1 is extendable to a G-equivariant diίfeomorphism on X2.

(1.4.4) The set of all G-equivariant diffeomorphisms of dXλ onto dX2

is naturally identified with the factor group N(K; G)jK. That is, we have a
group isomorphism

ΌifίG(GIKy G\K)^N{K\ G)/K.

Here, N(K G) is the normalizer of K in G.

(1.4.5) Let Ks and K be closed subgroups of G and KdKs. Then there
exists a natural G-equivariant diffeomorphism

defined by f([g, hK])=ghK for g^G and h^Ks. And we have, for each
xEzN(K Ks)f the following commutative diagram
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GjK

GxKJK-^G/K,
Ks

where Rx is an equivariant diffeomorphism given by a right translation.

To classify (G, M) up to essential isomorphism, we can assume that G acts

almost effectively on M, that is, H = f] Gx is a finite group. Then G acts almost

effectively on the principal orbit GjK and hence

(1.4.6) K does not contain any positive dimensional closed normal sub-

group of G.

2. Cohomology of orbits

2.1. From now on, we assume that G is a compact connected Lie group

and M is a simply connected rational cohomology quaternion projective ra-space

on which G acts smoothly with a codimension one orbit GjK. Then, by (1.4.1)

there exist just two singular orbits GjKλ and GjK2 and we can assume that

K CZKi Π K2. Let us denote by u a generator of //*(M; Q), that is,

H*(M; Q) = Q[u]jun+ι, deg u = 4 ,

and let

/ * : H*(M; Q) - H*(GjKs; Q) (s = 1, 2)

be the homomorphism induced by the inclusion fs: GjKscM. Then we can

show the following proposition, in a similar way as in [7, Lemma 2.1.1].

(2.1.1) Let ns be a non-negative integer such that

/*(*Λ)φO and /*(*Λ+1) = 0.

Then we have n=nx-\-n2-\-\.

We denote by ks the codimension of GjKs in M, that is,

ks = 4rc-dim GjKs,

for s=l and 2. Then we have

(2.1.2) 2^ks^4(n-ns).

We notice the following:

(2.1.3) ([7, Lemma 2.2.3]) If k2>2, then GjKx is simply connected and

Kλ is connected.
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Now we shall prove

Theorem 2.1.4.
(A) Assume that GjKx and G\K2 are orientable.
(i) If kx—k2 is even, then each GjKs is a rational cohomology quaternion

protective ns-space and ks=4 (n—ns),for s=l, 2.
(ii) If kλ is even and k2 is odd, then k1-{-k2=2n-\-3 and there are two cases:
(a) nγ=n2 and

i ; t) =

P(GIK2; t) =

(b) ^ = 4 ^ + 4 , ^=2(^—^2)+! and

P(G/Ki; t)=

P(GIK2; t) =

(B) The case that G/K1 is orientable and G\K2 is non-orientabίe does not
happen.

(C) Assume that GfKx and G\K2 are non-orientable. Then n=\ and

P(G/KS; 0 = 1,

P(GIK°S; t) = ί + f ,

for ί = l , 2. Here K°s is the identity component of Ks.

This theorem can be proved by a completely analogous discussion to the
proof of Theorem 2.2.2 in [7]. Therefore, we shall give only an outline of the
proof in the remainder of this section.

2.2. As is seen in 1.4, there is a closed invariant tubular neighborhood
Xs of GfKs in M, such that

M=X1UX2 and

By the Poincarό duality for Xsy we obtain

Moreover, if G/Ks is orientable, we have

by Thorn isomorphism.
First, we assume that both G\Kλ and G\K2 are orientable. Then, in consi-

deration of the rational cohomology exact sequence for (M, Xs)> we obtain
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P(GIKi; t) = tk2-ψ(GIK2; t)+l+t4+-+t4nι-r1(t4»ι+4+-+t4»)

and

(2.2.1) P(G/K2; t) = t^'Ψ{G\Kι\ t)+l+ti+"'+t4n2-r\t4n2+4-\ \-t4n).

Using these equations, we can prove the part (A) of Theorem 2.1.4 in the same
way as in [7, 2.3]. Notice that to get (2.2.1) we require only the orientability
of G/K,.

Next, we assume that G/K2 is non-orientable. Then, by (2.1.2) and (2.1.3),
we have kλ=2. We can show by the argument due to Uchida [7, 2.4~2.6]
(see also Wang [8]),

2 2)

 P(GIK°* > 0 = V+tkήP(GIK2; t),
{ ' " ] P(GIK°; t) = ( l + ^ C / ί , ; t)-P{nλ, n,; t),

where

If G/K1 is orientable, then by the use of the Poincarό duality for G]KU we
obtain from (2.2.1),

tin-ψ(GIK2; Γ1) - P{GIKX\ t)+t4ni+3(i+t4-\

By the Poincarό duality for G\K\ and (2.2.2), we have

t4nP(G/K2; r 1 ) - t™*P(G\K2\ t).

From these two equations and (2.2.1), it follows

^ t) = (l-*2*2+ 4*

+(t2k2-1-t4ni+3)(l+t4-\

The both sides of this equation are divisible by 1—t2 and we have X(G/K1)=
P(GIKX; — 1)ΦO. Hence P(GIKX\ t) is an even function. Therefore, k2=2nλ+2
and we have

x\ t) = (l-t4»

It follows

(l+t2)P(GIKi; t) = l+t2+t4+-+t4».

This is impossible. Hence, the case that GjKλ is orientable and G/K2 is non-
orientable can not occur, and (B) of Theorem 2.1.4 is proved.

Finally, we assume that GjKλ and GjK2 are both non-orientable. Then
kx=k2=2. As in [7, 2.7], we have nx=n2 and
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2 3)

for ί = l , 2 . Considering the Mayer-Vietoris cohomology sequence for
(M; X1? X2), we have

(2.2.4) (l-t*)P(GIKi;t) = ( l _ ^

Therefore, ^(G/iQΦO and P{GIKX\ t) is an even function. Hence by (2.2.4)
we have ^=0 and P{GIKX\ t)=l. By (2.2.3), we obtain P(G/KS; t)=ί and
P(G/KO

S; t)=l+t\ for *=1 and 2. Thus (C) of Theorem 2.1.4 is proved.

3. The representative examples of the pairs (G, M)

3.1. Here we give some examples of pairs (G, M), each of which consists
of a compact connected Lie group G and a simply connected rational cohomology
quaternion protective space M on which G acts smoothly with a 1-codimensional
orbit.

Let n=n1+n2+l. In case n2=0> we choose Sp(n)xl, Sp(ή)xU(l), or
Sp(n)xSp(ί) for G. And in case Wχ>0, fl2>0> we set simply G=Sp(n1+l)χ
Sp(n2+1). Then, the natural action of G on Pn(H)=P{Hn^ι®Hn*+ι) is transi-
tive on a (4ra—l)-dimensional submanifold

X={(u, v)\ \u\2= \v\\ ueH*+1

f v(ΞHn2+1} ,

and has two singular orbits Pni(H) and Pn2(H). This gives an example of
(G, M) of the type (A) (i) in Theorem 2.1.4.

3.2. We shall consider the natural action of U(n+ί) on Pn(H)=Sp(n+l)l
Sp(ή)xSp(l). Let (uOi uu •••, un) be the homogeneous coordinate of a point of
Pn{H) with the identification (uoq> uxqy •••, unq)~(uQ,uly •••, MM), for g ^ J J and
ίΦO. Consider the orbit G(w(ί)) of a point «(/)=(0, •••, 0, tJ)<=Pn(H). Here,
ί is a real number with O ^ ί ^ l and y is the element in the standard basis
{1, i,j, k} of H. Then, it is easy to see that

= GIU(n)xU(l),

G(u{\)) = GIU{n-ί)xSU(2)

are singular orbits and for every t> 0 < £ < l ,

G(u(ή) = GIU(n-l)xS(U(l)x U(l))

is principal. This gives an example of (G, M) of the type (A) (ii) in Theorem
2.1.4. Note that when » ^ 2 w e can take SU(n+ί) as G instead of U(n+l).

3.3. There is an another example of (G, M) of the above type in case n=2.
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Let Cay be the division algebra of Cayley numbers. It is an 8-dimensional

real vector space with a basis {eOf ely •••, e7} and its non-associative algebra

structure is given as follows:

eieJ = —

and

a(ab)=a2by (ab)b=ab2, for α,

The group of automorphisms of Cay is the exceptional Lie group G2. Since every

element of G2 induces an orthogonal transformation on the linear subspace R7

of Cay spanned by {el9 •• ,^7}, there exists the canonical inclusion 6r2c5O(7),

via which G2 acts on S6 transitively. The isotropy group (G2)βl at e1 is isomor-

phic to SU(S)> and (G2)H Π (G2)e2 is isomorphic to SU(2). The canonical

inclusions

(G2)ei0(G2)e2cz(G2)ecSO(7)

correspond to the inclusions

SU{2)aSU(3)c:SO(7)y

which are defined by

no o
O a+bi -c+di

0 c-j-di a—bi

—c-\-di

c-\-dί a—hi

Ί
1

0

1
a

b

c

d

-b

a

-d

c

0

—c

d

a

-b

-d

—c

b

a

Here, a, b, c and d are real numbers with a2-{-b2-{-c2+d2=ί. Let

S = { # e C α # | # = ae<f\rbeι

Jrce2-\-dez, a
2+b2-\-c2-\-d2 = 1} .

For x=aeo+be1+ce2+de3^SJ we define an /2-linear homomorphism

Ax: Cay ^ Cay

by

(a*,.)* ( i = 0 , 1, 2, 3 ) .

xe4 (i=4, 5, 6, 7).
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Then, hx is represented by

(a2+b2-c2-d2 2(bc-ad) 2(ac+bd)

2{ad+bc) a2-b2+c2~d2 2(cd-ab)

2(bd-ac) 2(ab+cd) a2-b2-c2+d2

a

-b

c

-d

b

a

-d

—c

d

a

-b

d

c

b

a

Since det Ax= 1 and

for every / and 7 (0^i,j^7)y we have hx^G2. Moreover, for Λ ; J E 5 , we define

hji, by

for all u£ΞCay. Then we can show hxhy=hxy. Since heo is the identity automor-
phism of Cay, it follows that

A = {Ax\χς=S]

can be considered as a subgroup of G2. As above, we identify SU(2) with a
subgroup of G2. Then, Af]SU(2)^Z2 and A is the identity component of
the centralizer of SU(2) in G2. Define

H = AoSU(2) = AxSU{2)\Z2.

By (1.2.1), the homogeneous space M=G2jH is an 8-dimensional rational
cohomology quaternion projective 2-space. Let us consider the ASZy
on M defined by the canonical inclusion SU(3)^(G2)eic:G2. Define

xt = (l—t

for t, OfgJίgl. Since G2-action on S6 is transitive, there exist an element
gt^G2 and a positive number rt such that

gtxt = rtex .

Define

Ht= {h€=H\hxt=xt} .

Then we can see that the isotropy group at^ffGM is gtHtgJι. Since

x = {h<=H\he7 = e7}
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we have two singular orbits SU(3)IS(U(2) Γ\U(l)) and S£/(3)/SO(3). Moreover,
we have diτaHt=l for 0 < £ < l , since an element h of H is in Ht if and only
if he1=e1 and he7=e7. Hence the orbit through gtH ( 0 < ί < l ) is of codimension
1 and principal.

3.4. Consider the space V of all symmetric 3 x 3 real matrices with trace
0. This is a real vector space of dimension 5. We introduce an inner product
< , > in V by

<X, y> = trace XY,

for X, Y e V. Define an 5O(3)-action p on V as follows: For each A e SO(3),
set pA: F - » F b y

It is easy to see that ρA is well-defined and that < , > is p^-invariant. Now we
restrict p on the unit sphere S(V) in F. Define

2 cos — t

0

0

0

—cos — H-v/3 sin

0

0

0

7t . /~γ
—cos— t— \/3 s in~*

for ί, O^t^ϊ. Then the isotropy group at Xt is the group

i. 0 0 \

o e2 o p i = ±i, f 2 =±i
l\o o S& I

for 0 < ί < l , and hence the orbit through Xt is of codimension 1 for
The isotropy groups at Xo and Xx are

5(O(l)xO(2)) and 5(0(2) x 0(1))

respectively. The corresponding orbits are real projective planes. This gives
an example of the type (C) of Theorem 2.1.4.

4. Classification of (G; M) with orientable singular orbits I

4.1. In this section, we classify (G, M) of the type (A) (i) in Theorem 2.1.4.
We assume that the two singular orbits G/Kly G/K2 are orientable and even-
dimensional. Then, by Theorem 2.1.4 and (2.1.1), G/Ks (s=l, 2) is a rational
cohomology quaternion projective #s-space and n=nι-\-n2-\-\. We shall prove
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Theorem 4.1.1. Under the above assumption, (G, M)is essentially isomorphic
to

(Sp(n)xH\ Pn{H% H1 = {1}, £7(1) or Sp(l)y in case n,n2 = 0 ,

or

{Sp(nx+1) X Sp(n2+1), Pn{H% in case nxn2 Φ 0.

Here, in both cases, the group acts naturally on Pn(H)=Sp(n+l)ISp(n)xSp(l)
as a subgroup of Sp(n-\-\).

Without loss of generality, we can suppose that G-action on M is almost
effective and that G=G1xTh

9 where Gx is a simply connected compact Lie
group and Th is an A-dimensional toral group.

4.2. First, consider the case n1'^n2=0. Then, A2=4ft. Therefore
K2=G and G\K=K2\K is a (4ft-l)-sphere. It follows that G\Kλ is simply
connected and the groups Kx and K are connected. By (1.3.2), there exists a
simple closed connected normal subgroup H of G, which acts transitively on
the (4n— l)-sphere G/K, and we can write

where H' is a connected closed normal subgroup of G. Note that H acts on
GjKx transitively. Since rank iC^rank G and GjKγ is indecomposable (that is,
G\Kλ cannot be a product of positive-dimensional manifolds), we have

where Hι=^HΓ[Kι. Hence HIHι is a rational cohomology quaternion projective
(ft—l)-space and by (1.2.1), (H, H^ is pairwise locally isomorphic to (Sp(n)y

Sp(n—l)xSp(ί))y or (G2f SO(4)) in case n=3. But the latter case does not
occur. For, non-transitively of G2-action on Su (see, (1.3.3)) contradicts the
fact that H acts on G/K—S11 transitively. Therefore, (H, H^) is pairwise isomor-
phic to (Sp(ή), Sp(n—l)χSp(l)). Since the G-action on M is almost effective
by our assumption, G acts on G/K almost effectively. Therefore, H' acts on
GIK=Sp(ή)ISp(n—\) almost effectively and 5/>(ft)-equivariantly, and there
exists a locally injective homomorphism

H> - N(Sp(n-l); Sp(n))ISp(n-\).

Since N(Sp(n-\); Sp{n))0=Sp(n-l)xSp(l), we have

H'= {\},V{\)oτSp{\).

Now, we consider the slice representation

σ i : Kx == (Sp(n-l)xSp(l))xHf -* O(4).
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Note that k1=4(n—n1)=4 in this case. Then Sp(n— l )cker σly and Sp(l) acts
on K1IK=HιIH1f)K—S3 via σx transitively and freely. Since we can write

SO{A) = StfVjioSUl),

(where Sp(ί)L resp. Sp(l)R denotes the multiplication by quaternions of norm
1 on the left resp. right), the Sp(l)-acύon on KλjK=Sz via σλ may be regarded
as *Sp(l)L-action on S3. Then there exists a representation p: H'->Sp(l)
satisfying

(4.2.1) σi(q,x)q' = qq'p(x)-1,

for q^Sp(l), X^LH' and q'^H. Hence, for each H\ σλ is determined uniquely
up to conjugation in 0(4). Let G=Sp(ή)xH'. Then, using (4.2.1), we can
determine K as the isotropy group at q'=l, and we have

N(K; G)IKs
N(K; G)/Ks

N(K; G)° = .

*Sp(l),

*W),
K and

in case H'

in case H'

N(K; G)jK

= U(1),

~Z2, in case Hr Sp(ί),

where in the last formula, Z2 is generated by the class of the antipodal involution
of G/K=K2IK=Sin-\ Therefore by (1.4.3) and (1.4.4), (G, M) is uniquely
determined up to essential isomorphism in each of the above cases.

4.3. Next, we consider the case where nx>§ and n2>0. Since kλ>2 and
k2>2 in this case, GfKx and G\K2 are simply connected. Hence Kly K2 and
K are connected. Since G/K1 and GjK2 are indecomposable and rank Kx=
rankK2=rank G, only the following two cases are possible:

G = H1χH2xG',

(I) K1 = HωxH2xG',

K2 = HιxHωxG',

where, for s = l , 2, Hs is a compact simply connected simple Lie group, H(s)
is a closed connected subgroup of Hs and G/ is a compact connected Lie group.

(ID G

where i/ is a compact simply connected simple Lie group, Hs is a closed con-
nected subgroup of Hy and G' is a compact connected Lie group. Note that
by (1.2.1), (iί^, H(s)) or (H, Hs) is pairwise locally isomorphic to one of the
following:

(Sp(ns+l),Sp(ns)xSp(])),
( ' ' ' (G2, SO(4)), in case ns = 2 .
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First, we consider the case (I). Since ^f) K2=H ωX H ωX G', we have
dim GI(K1 Π K2)=4n—4. Therefore, K is a subgroup of Kx Π K2 with codimen-
sion 3, and we can see

(4.3.2) Hω<tK ( ί = l , 2 ) .

For, if not so, then a sphere K3_JK becomes decomposable, which is impossible.
Let N be a closed connected normal subgroup of Kλ Π K2 such that (Kλ Π K2)jN
acts on (K1ΓiK2)/K almost effectively. Since i/ ( s ) is semi-simple, we can
write

N = N1xN2xN/,

where iVs ( ί = l , 2) is a closed normal subgroup of i/(s> and N' is a closed normal
subgroup of G\ Note that by (4.3.2) iVs£i/(s). Consider the group iso-
morphism

K1Γ\K2 _ Hω H(2) Gr

N N, N2 N' '

From dim(ϋΓ1Γli£"2)/.K"=3, it follows dim (Kλ (Ί K2)jN ^ 6 (see, for example,
[4, § 2].) On one hand, d i m H ^ j N ^ Z by (4.3.1). Hence we have dim#(s)/iVs

= 3 , for s=l, 2, and N'=G'. Since G acts on GjK almost effectively and
G'=N' is a closed normal subgroup of K, we have G'={1} by (1.4.6). Thus
G=H1 xH2, and

(4.3.3) H(s)=UsoNs (ί = l,2), where £/s is a closed connected simple
subgroup of H(s) with dim Us=3 and iV̂  X N2 is a closed normal subgroup of <K\

Now we shall show that Hs cannot be G2. Suppose, for example, that
H2=G2. Then n2=2 and K1IK=Sn. Hence K1=Hω x G2 acts transitively on
Sn. By (1.3.3), G2 does not act transitively on S11. Therefore, by (1.3.1) Hω

acts on Su transitively and we can write K1=H(1)K. Then, since G=HιK1=
Hfl^K—H^y we see that H1 acts on GjK transitively. It follows that H1

acts on G/K2=H2IH(2) transitively, which contradicts the assumption that Hλ

is a normal subgroup of K2. Thus, by (4.3.1) we have

(4.3.4) (Hsy H(s)) is pairwise locally isomorphic to (Sp(ns+l)> Sp(ns)χ
o r s = l , 2.

Now by (4.3.3) and (4.3.2), we can assume that

up to conjugation by an element of
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N(Hω; HJxNiHω; H2) = N{KλΓ\K2; G).

Therefore, the slice representations

σλ: Kx = SpinJxSpMxSpfa+l) -> O(4w2+4),
σ2: K2 = Spfa+^xSpinJxSpil) -> 0(4^+4)

are determined uniquely up to conjugation. Moreover, N(K; G)/K^Z2y which
is generated by the class of the antipodal involution of KJK ( f=l , 2). There-
fore, in the case (I), (G, M) is uniquely determined up to essential isomorphism.

4.4. Next, we show that the case (II) does not occur. Suppose that

G = HxG', Ks = HsxG'y s=l,2,

where H is a simply connected simple Lie group. By a similar argument to
[7, (8.5.2)], we obtain the fact that Hs acts transitively on KJK, s=l> 2. From
(1.2.1), it follows that n1=n2 and

H. = Sp(n,)xSp(l),

or

Hs = Sp(ί)oSp(ί), for n$ = 2

and

KJK = SAn*+s.

On one hand, by (1.3.3), Sp(ns) cannot act transitively on S4tts+3 and Sp(ί)
cannot act transitively on S11.

Thus in consideration of the examples given in 3.1, the proof of Theorem
4.1.1 is completed.

5. Classification of (G> M) with orientable singular orbits II

5.1. In this section, wτe classify (G, M) of the type (A) (ii) of Theorem 2.1.4.
That is, we suppose that the singular orbits GjKλ and GjK2 are orientable and

(5.1.1) for k=An-άim GjKs> s=\, 2,

kλ = 0 (mod 2), k2= 1 (mod 2), k,+k? - 2τz+3 .

Then we have two cases:

(5.1.2) when k1<4n2-}-4y we have n1=n2 and

P(G/Ki; t) =

P(G/K2; t) =

(5.1.3) when ^ = 4 ^ 2 + 4 , we have k2=2(n1—n2)+l and
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i ; t) =

P(G/K2; t) =

We shall show

Theorem 5.1.4. Under the above assumption, such a (G> M) is essentially
isomorphίc to one of the following:

(U(n+1), PU(H)),

(SU(n+l)y Pn(H)),

n=2,

where U(n-{-\) (resp. SU(n-\~l)) acts naturally via the natural inclusion U(n-\-l)d
Sp(n+l) (resp. SU(n+l)aSp(n+l)) on PU(H)= Sp(n+l)ISp(n)xSp(ΐ) and
SU(3) acts on G2/SO(4 ) naturally via the natural inclusion SU{Z)CiG2,

As in the previous section, we suppose that G acts on M almost effectively
and G=GλX Th, where Gλ is a compact simply connected Lie group and Th is
an λ-dimensional toral group.

5.2. First, consider the case n=l. Then kx=2> /f2=3 and G/K1=S2

9

GjK2=Sι. Hence we can write

G=TxSp(l)xG', Kι = TxU(l)xGf

9 K°2 = lχSp(l)xG',

where Gf is a compact connected Lie group and T= U(ί). Since K0dK1Γ\K2

= lχU(l)xG' and dim (G/K, ni^2)=dim G/i^=3, we have K*=Kx{\Kl=
\χU(\)xG'. Then we have G'={\} by (1.4.6). Hence we can write

G=TxSp(l), K1=TxU(l)y K2 = FxSp(ί)y

where F is a finite subgroup of T. Then we have K=Fχ U{\) from K2=K\K.
Here Fχ\ is a closed normal subgroup of G and acts trivially on M. Therefore
we can consider the induced action of GjFx 1 on M. Then we have

G=TxSp(l), K1=TxU(l)> K2=ίxSp(l)y K=lxU(l).

It follows that

N(K; G) = N(lxU(l); TxSp(ί))

= TxN(U(l);Sp(l))

and

N(K; G) ̂ N(K; K2) „
N(K; G)° N(K; K2)° 2 '

which is generated by the class of the antipodal involution of K2jK=S2. The
slice representations
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σ2:K2= ίxSp(l)->0(3)

are uniquely determined up to conjugation. Therefore, (G, M) is uniquely
determined up to essential isomorphism. On one hand, as is seen in 3.2, the
pair (t/(2), ^(ff)), where 17(2) acts on P1(H)=Sp(2)ISp(l)xSp(l) naturally,
is an example of this type. Therefore, Theorem 5.1.4 is proved in case n=l.

5.3. Next, we consider the case n^2. Since Λ2^3, GjKλ is simply con-
nected by (2.1.3). Note that rank if !=rank G by our assumption (5.1.2) or
(5.1.3). Decompose

G=G'xG"y

where G' is a compact simply connected semi-simple Lie group which acts on
G/K1 almost effectively and G" is a compact connected Lie group which acts
on G/K1 trivially. Let

p: G = G'xG"->G'

be a natural projection, and let

K's=p(Ks), J = 1 , 2 .

Then

K, = KίxG" , rankK{ = rank G'.

By the same way as in [7, Lemma 9.2.2], we can see that

(5.3.1) Kί acts on KλjK transitively

and hence

(5.3.2) G' acts on G\K transitively.

From an observation on the structure of the cohomology ring of GjKλ (cf.
(5.1.2), (5.1.3) and (2.1.1)), it follows that either

(I) Gf is simple

or

(II) G' is a product of two simple groups.

5.4. Here we shall show

(5.4.1) The case (II) cannot occur.

To prove this, it suffices to consider the case G / /={1}. Hence, we
suppose that
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where Hs is a compact simply connected simple Lie group and H(s) is its closed
connected subgroup for s=ί9 2, and that HλjH^) is a rational cohomology
(k2— l)-sphere and HjH{2) is a rational cohomology quaternion protective m-
space, where m=nly in the case (5.1.2) or m=n1—l> k2=5, in the case (5.1.3).
Since i^1=i/(1)Xi/(2) acts transitively on a sphere KxfK9 either H^ or H(2)
acts transitively on KJK.

(i) Suppose first that Hω acts transitively on KJK. Let

A: G = H1xH2->Hs> * = 1 , 2,

be the natural projection, and let

Then there exists a connected closed normal subgroup L of K2 such that

Note that >̂2 maps L isomorphically onto p2(K2). Since K2IK°=Sk^1 is an
even-dimensional sphere, rank i£°=rank if °. Therefore, if we denote K°=
NΌL\ where N\ U are connected closed subgroup of N> L, respectively, we
have K°2IK°=NIN'xLIL' and hence N=N' or L=L'. If K»=NΌL, then
H(2)=p2(K°)=p2(L)=p2(K°2) and hencep2(K2)=p2(Kl)p2(K)=p2(KG)p2(K)=p2(K)
from K?=K2K. Then the projection H^\GIK-^Hλ\GlK2 is a homeomorphism
and hence HX\M is naturally homeomorphic to a mapping cylinder of the projec-
tion H^GjK-^H^GfK^ Therefore, Hι\GjKι = H2jHi2) is a deformation
retract of HX\M. Consider the commutative diagram

^ M

H2/Hω = H.XG/K, -^ Hλ\M9

h

where ilyj\ are the natural inclusions and q, qx are the natural projections. Since
j \ is a homotopy equivalence, q induces an isomorphism of rational cohomology
rings. But, this is impossible by our assumption. Therefore, K°=NoL'y
and H(2)=p2(K°)=p2(L')(Zp2(L)=p2(K2). Since p2 gives a local isomorphism
(L, L')->(p2(L), Hω), we have p2{K\)lH{2)=HU=K2lK=Sk^\ Consider the
fibration

p2(K°2)IHω -> H2/Hω -> H2lp2(K°2).
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Since %(//2/i/(2))Φθ, we have X(H2lp2(K°2))φ0 and hence rank i/2== ran
It follows that Hodd(H2lp2(K2))=0 and the homomorphism

H*(H2IHω)^H*(p2(K°2)IH(2))

is surjective. Therefore, k2=5, that is, H^H^) is a rational cohomology 4-
sphere and by (1.2.1) (Hl9 H^) is pairwise locally isomorphic to (Sp(2), Sp(l)X
Sp(ί)). Since Hω acts transitively on K1IK=Ski'\ we have k1=^. By (2.1.3),
Kλ and K2 are connected. Hence, n=3 and m = l in both cases (5.1.2) and
(5.1.3). Therefore, (H2> H(2)) is pairwise locally isomorphic to (Sp(2), Sp(l)x
Sp(ί)) and p2(K2)=H2. We can write K2=AoB, where A, B are closed con-
nected normal subgroup of K2 such that AdH1=Sp(2)f dim A=3 and p2(B)=
H2. Then, considering the centralizer of A ΊτiG—H\χH2y we can see B=H2.
Since K is connected and rank K= rank K2 by K2/K=S4

y we may wirte K =
AoB\ where Br is a connected closed subgroup of B with codimension 4. It is
easy to see that B'=H(2). Thus we have

K9 = AχSp(2),

K=AxH(2), AczH(1).

By taking a conjugation in Kx if necessary, we may assume that A (c*Sp(2)) has
the form

S p ( l ) x l , l x S ρ ( l ) , or ASp(l),

where

ASp(l) -ίUI-
We can see that Sp(2)/A in 2-connected and

x 1) = 7Γ3(^(2)/1 x Sp(l)) = 0 ,

Therefore, Sp(2)/A is a rational cohomology 7-sphere. It follows that only in
the case (5.1.3), Hω may act transitively on KJK. This implies n 1 =2. But
we can see that it is impossible, by an observation on the Mayer-Vietoris coho-
mology sequence of (Xλ U X2, X19 X2)9 with XS^G/KS, X1U X2=M9 X1 Π X2=
GjK (see, 1.4). Thus we see that i/(1) cannot act transitively on K1/K.

(ii) We assume that H(2) acts transitively on KJK. Then, pι(K2) is equal to
either H1 or i/(1) by the same argument as the case (i). First, suppose that

i/(1). Then, HzVGIK^HijHb) is a deformation retract of H2\M.
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Consider the commutative diagram

GIKl - X M

I*

where, ί, iu j are the natural inclusions and q, qx are the natural projections.
Since j is a homotopy equivalence, jo^oi induces a cohomology isomorphism
(joί1oί)*=(ί1oί)*og*. This implies that q* is injective and (*W)* is surjective.
Since M is a rational cohomology quaternion projεctive /z-space, we have k2=5
and n=ί. This contradicts our assumption n=2. Thus we may assume that
p1(K2)=H1. We shall show

(5.4.2) Hω(tK.

Suppose that HωczK. Then,

Hω = KnH^KiΠH^pύKt) = Hx.

Since Hx is simple and K2Γ\H1 is a normal subgroup of Hί=p1(K2)i we have

K2 = H1xN,

where JV is a closed subgroup of H2f and

K = HωxN.

Therefore, p2(K)=p2(K2). It follows that flr

2/fir(2)=flr

1\Gr/^i is a deformation
retract of H^M. In the commutative diagram

G/ΛΓ, - X Af

I 1*
H2IH(2) ^HAG/K, - r * flAM,

j \ is a homotopy equivalence and H2jH^2) (resp. M) is a rational cohomology
quaternion projective m- (resp. w-) space. Hence it follows that m=n, which
is a contradiction. Thus we obtain (5.4.2).

since Hω/κ n H^p^K^K n H^K^K n ffo x (Λ: n //2) =p2(K)iκ n //2,
and p2{K)jKΓ\H2 acts freely from the right on the sphere H{2)I
it follows that

(5.4.3) JK (Ί # i is a normal subgroup of H(1)=p1(K)y with codimension fS 3.

Now, since k2 is odd, (Hly H^)) is pairwise locally isomorphic to (*SΌ(2α+l),
), a=(k2-l)l2y or to (G2, SC/(3)) if k2=7. Hence, by (5.4.2) and (5.4.3),
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we see that (H1} Hω) is pairwise locally isomorphic to (SO(2a+l), SO(2ά)),
a^2. Letα=2. Then dim (KnH,)^. Since K Π#iC=iζ,n#i and K2Π#i
is a closed normal subgroup of H1 =p1(K2)y Hί is simple and Kf\Hι is not
finite, we have

K2 = H1xN, NdH2y

and hence

K = HωxN.

But this contradicts (5.4.2). Therefore, a=ί. Thus only the case (5.1.2) is
possible. Then, since m—nλ=n2 and since k1-{-k2=2n-i-3y k2=3, we have
that &1 = 4/w + 2. By (1.2.1), (H2, H(2)) is pairwise locally isomorphic to
(Sp(m+l), Sp(m)xSp(ί)) or to (G2i 50(4)) when m-=2. But in every case,
H(2) cannot act transitively on K1IK=Sim+1 by (1.3.3). This contradicts our
assumption. Thus the proof of (5.4.1) is completed.

5.5. Now we consider the case (I) in 5.3. Let

G = HxG", K1 = H1xG//

9

where H is a compact connected simple Lie group and H1 is its closed connected
subgroup. We recall (5.1.2) and (5.1.3). That is,

or

Consider the case k2φ3. By making use of the table of maximal subgroup
in [2, p. 219], we can see that there is no homogeneous space with a Poincarέ
polynomial

, k2 = 2(n1-

Hence, by (1.2.3), (H, Hx) is pairwise locally isomorphic to one of the following:

(SO(&2+2), 50(3)XSΌ(fc2-1)), when k2 = n^5,

(Sp(3), Sp(l)xSp(\)xSp(\)), when k2 = 5, n = 5 ,

(Sp(4), Sp(2)xSp(2)), w h e n * 2 = 9, κ = 5 ,

(Sp(5), Sp(2) X Sp(3)), when k2 = 9, n = 9 ,

(F4, Hj), where Hλ is locally isomorphic to SU(2)xSp(3),

when k2 = 9, n= 11 .

Suppose that (H, H^ is pairwise locally isomorphic to (Sp(5), Sρ(2)xSp(3)).
Then we can write
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G = Sp{5)xG",

K1 = Sp(2)xSp(3)xG//.

From the transitivity of Sp(3) (cJ^^-action on KJK^S11, it follows that K
is locally isomorphic to Sρ(2)xSρ(2)xG". Therefore, we see that G=Sp(5)
and K=Sp(2)xSp(2). But, on one hand, K must contain 50(8) as a normal
subgroup, since K2IK—S8. This is a contradiction. Thus (//, H^) cannot be
pairwise locally isomorphic to (Sp(5)> Sp(2)xSp(3)). The other cases are
all impossible, since H1 acts non-transitively on Kι\K=Sk^~ι. Therefore, we
suppose k2=3. By (1.2.2), (Hy H^) is pairwise locally isomorphic to one of the
following:

(SU(n+l),S(U(n)xU(l))),

(SO(n+2), S0(n)xS0(2))y

(Sp((n+l)l2), Sp{(n-\)β)χ 17(1)),

(6r2, U), where U is locally isomorphic to U(2), when n—5 .

Except the first case, these cases are impossible, since by (1.3.3) H1 acts on the
(2n— l)-sρhere KJK non-transitively. Hence, it suffices to observe the case
that (H, Hλ) is pairwise locally isomorphic to (SU(n+l), S(U(n)χ U(l))).

5.6. Suppose that

G = SU(n+l)xG",

K1 = S{U(ή)xU(ί))xG//,

where n^2 and G" is a connected closed normal subgroup of G, and that G
acts on M almost effectively. In this case, ^ = 2 w ^ 4 , and hence K2 is connected
by (2.1.3). Let

be the slice representation. Then there exists a representation

T : KX - U(n),

such that the diagram

fU O{2n)

Λ
is commutative up to conjugation. This is a consequence from the fact that σ1

is non-trivial on the center of S(U(ή)x U(l)) by (1.3.2) and (1.3.3). Moreover,
we have G"= {1} or G"=T by (1.4.6). First, let us consider
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(i) the case G"=T.
The representation

-+ U(n): KX = S(U(ή)x

in (5.6.1) is given by

(5.6.2)

for some integers a and b9 where X^U(n), z^U(l), w^U(ί)=Tand (det-X")#
= 1. Since we can assume that (/M+1X T) Π K=In+1 X {1} in G, we have b= ± 1.
By changing the orientation of T if necessary, we can assume that 6 = 1 . Note
that since k2=3, we can write

(5.6.3) K> = A°N

where A> N are closed connected normal subgroups of K2, A is locally isomor-
phic to *SΌ(3) and A' is a closed connected subgroup of A. Note that

(5.6.4) K=τ-\U(n-l)) =

where X'<=ΞU(n-\).
Now assume n ^ 3 . Then the semi-simple part of K is SU{n— 1), which

has codimension 2 in K and is contained in iV. Hence, SU(n— 1) is a closed
normal subgroup of K2 and

Since SU(n— 1) is a normal subgroup of ^ 2 with codimension 4, JSΓ2 has the
form

K2 =

where

Hence

and

K= (SU(n-l)xS(U(l)xU(l)))oT'.

By comparison with (5.6.4), we can see that a=l in (5.6.2). Thus the slice
representations
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are uniquely determined up to conjugation. (Note that σ2 is tivial on

SU(n-l)). Moreover,

N(K; G) _N(K; K2) = N(K; K2)_

N(K;G)° N(K;K2)° K 2 >

whose generator is the class of the antipodal involution of K2jK=S2.

Therefore, when n ̂  3, (G, M) is uniquely determined up to essential isomorphism.

Next, let w=2. As above, we can assume ό = l in (5.6.2). Hence

(5.6.4/ K= \XW

Note that since dim K=2 we have that dim iV=l. Therefore, Af in (5.6.3)

is of the form

A'*=* X l

On one hand, since A' is a maximal torus of A in (5.6.3) (which is conjugate to

SO(3) or SU(2) in SU(3))9 A' is conjugate to the group

1

in SU(3)xT. Hence, in (5.6.4)', a=0 o r α = l . Denote by τ0 resp. rx the

representation T in (5.6.2) for ^=0, 6=1, resp. a=l, 6 = 1 . Define an iso-

morphism

φ: SU(3) — 5?7(3)

by

where

/0 - 1 ^

P = 1 0 0

\0 0 1
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Then the diagram

51/(3)XT3 5(f/(2)X U(l))χT^.

φxlj φxlj ^
5ί/(3)XΓDS(tf(2)Xί/(1))XΓ τo

is commutative. Therefore, we shall discuss only the case a=ίy and assume
that

K = and A' = 1

/ I

Now let Z(̂ 4) be the centralizer of 4̂ in G. Note that NdZ(A)° since i£ 2 =
iίoJV. If ^4=50(3) up to conjugation in SU(3), then Z(A)°=lχT. From
dim iV=l, it follows that N=lxTaK which contradicts the almost efϊectivity
of G-action on M. Hence, we assume that A=SU(2) up to conjugation in
SU(3). Then

ί/s2

Z{Af =

N= • and Λ =

up to conjugation in SU(3). Therefore,

(In2 \

u \χu2

Thus the slice representation

can be determined uniquely up to conjugation. The other slice representation
σ,: i£,->0(4) has already determined and

° 2
N(K;

whose generator is the class of the antipodal involution of S2=K2fK. Therefore,
in the present case, (G, M) is determined uniquely up to essential isomorphism.

(ii) The case G"={1}.
When n^39 by the similar argument as in the case (i), we can see that

(G, M) is uniquely determined up to essential isomorphism.
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Now assume that n=2. Then

G=SU(3),

K1=:S(U(2)xU(\)),

and for the slice representation

* ! : * , - 0 ( 4 ) ,

there exists a representation

so that the diagram

\ O
U(2)

is commutative. Since τa is given by

where XeU(2),

(5.6.4)"
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, (det X)z= 1 and a is an integer, we have that

, * e l 7 ( l )

Since dim ^ 2 = 3 , K2 is isomorphic to SO(3) or SU(2) up to conjugation in

G=SU(3), and

^ = SO(2) , ΊίK2 = 50(3),

K=S{U{\)x 17(1)), if ίΓ2 = Sί/(2).

Hence, α=0 or α = l in (5.6.4)". As in the case (i), it suffices to discuss only

the case a—\, i.e., we can assume that

1

K=

Define

if ^ =

if iΓ2 = 5O(3).
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where

Then (G, j ^ * K)=(Gf Hf T) up to conjugation, where T is a maximal torus of
H. Thus the slice representations

are uniquely determined up to conjugation and

N(T; SU(3)) ^N(T; SU(2))
N(T; SU(3))° N(T; SU(2))° 2'
N(SO(2); SU(3)) ^N(S0(2); SO(3)) -
N(SO(2); SU(3))° N(S0(2); SO(3))° 2'

which are generated by the classes of the antipodal involutions of 2-dimensional
spheres SU(2)/T and SO(3)/SO(2) respectively. Therefore, in each of the
case K2—SU(2), or 5O(3), (G, M) is uniquely determined up to essential iso-
morphism. On one hand, we have seen in 3.3, that (£7(^+1), Pn{H)) is an
example of (G, M) of the case (i), (SU(n+l), Pn(H)) is an example of (G, M) of
the case (ii) and (SU(3), G2jSO{\)) is an example of (G, M) of the case (ii), w=2.
Thus the proof of Theorem 5.1.4 is completed.

6. Pairs (Gy M) with non-orientable singular orbits

6.1. The purpose of this section is to classify (G, M) up to essential isomor-
phism, when both singular orbits GjKx and GjK2 are non-orientable. We shall
prove

Theorem 6.1.1. Such a {G, M) is essentially isomorphic to (5O(3), S4).
Here, S4 is considered as the unit sphere of the 5-dimensional irreducible real represen-
tation space of SO{3) given in 3.4.

As in the previous sections, we suppose that G acts on M almost effectively
and G=GXX Th, where G1 is a compact simply connected Lie group and Th is
an A-dimensional toral group.

6.2. Consider the pair (G, M) with non-orientable singular orbits GjKu

G\K2 and a principal orbit G/K. By Theorem 2.1.4, Mis 4-dimensional and

t) = U P(GIK°S; t) =
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for s—1,2. First, we shall show

(6.2.1) G=Sp(l)> and K is a finite subgroup of G.

We can assume that

K= TxG'xTh,

where G' is semi-simple, Th is an A-dimensional toral subgroup and T is a
maximal torus of Sp(l). Since K° is a closed connected subgroup of a compact
connected Lie group if? with dim K?/ifo=l, we can see that if0 is a normal
subgroup of if?. Therefore, by (1.4.6), G'={1} and Λ^l . Now we see that

G=Sp(l)xTh, A^l

and that if ? is a maximal torus of G. Since GjKs is non-orientable and
7V(if S; G)/K°s^Z2y we have

Now we suppose that A=l. Then, since G acts almost effectively on G/K by
our assumption, 1X T1 is not contained in if and is mapped onto SO(2) by the
slice representation

Since the centralizer of SO(2) in O(2) is £O(2) and since 1X T1 is a central sub-
group of ifs, σs(Ks)=SO(2). This contradicts the non-orientability of GjKs.
Hence h must be 0, that is, G=Sp(l). Since dim G/if=3, if is a finite
subgroup of G.

Note that

(6.2.2) σ s: ifs -> 0(2) is surjective.

For, since ker σscK and K is finite, we have σs(K°S) = SO(2). Therefore,
<rs(Ks)=0(2) follows from the non-orientability of GjKs.

6.3. We shall observe the normalizer of a maximal torus of Sp(l). Let
q=a-\-bi-}-cj-\-dk (a, b, c and d are real numbers) be a quaternion number. It
can be written in the form

q=ct+βj,

where a=a(q) and β—β{q) are complex numbers. We assume that q^Sp(l),
i.e., the norm of q, \q\ = \ / | α 2 | + |yβ|2, is equal to 1, throughout this section.
Define



504 K. IWATA

This is a maximal torus of Sp(ί). It is clear that T^qTtf'1. Let AT, be the
normalizer of Tq in Sρ{\). Note that

and

q = a+βje.NTι, if and only if «/? = 0 .

The following propositions are easily verified:
For q=a+βj,

(6.3.1) if α/3φθ, then Tίa.T1={±l},

if aβ=0, then Γ ^ Γ , ;

(6.3.2) if IαI = |/3|, then

(6.3.3) | α | = |/8|

(6.3.4) ifα/SΦO, then

9-Tq)={±aβjl\aβ\}.

From these propositions, it follows

(6.3.5) {orq=a+βj,aβΦ0,

Dt ={±1, ± ί , ±j,±k), iί\a\ = \β\,

ZA, if | α | Φ | / 3 | .

Let N=N(Df; Sp(l)) be the normalizer of Df in Sp(l). A quaternion <
is in iV if and only if both qiq'1 and qjq"1 are in D*. We can see that N consists

of 48 elements and is isomorphic to the binary octahedral group

O*.= {a, b\a2 = (aft)3 = b\ a4 = 1} ,

under the correspondence

Moreover, we can see

iV(ί>8*; NT,) = D*U {(±ί±t)IV~2,

6.4. For a surjective representation
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we can find an equivalent representation σ, satisfying

/cos 2*0 —sin2*0\
σ(etθ) =

Vsin2*0 cos 2*0/'

where * is a positive integer. Let the inclusion O(l)cO(2) be given by

\ o
Then there is an isomorphism

(6.4.1) σ-\O{\)) = D* = {χ>y\χt=f = (χy)\ y* = 1}

defined by
exp (iπ)jt <r+ x .

Next, consider the homomorphism

(6.4.2) πι(Sp(\)ID*t)-*π1(Sp(l)INT1)

induced by the natural projection. Note that

Since the diagram, which consists of the natural projections,

Sp(ί) —>Sp{l)ITι

Sp{l)IDtt >Sp(l)INT1

P
is commutative and the right vertical map is a double covering, we can see

(6.4.3) />•(*)= 1,: ί * ( j θ Φ l ,

where 1 means the unit element of π1(Sp(l)INT1)^*Z2.

6.5. Now we go back to the consideration on (G, M) and claim

(6.5.1) (G, Kl9 K2) is uniquely determined up to conjugation by elements
of G, and K=KX{\K2.
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Recall that G=Sp(l), K°s is a maximal torus of G and KS=N(K°S; G),
s=lf 2. First, we assume K1—K2. Then, since we can put K°s=Tι and
Ks=NTλ (see, 6.3.),

is identified with the homomorphίsm (6.4.2). Hence ker/>u=ker/>2t is a proper
normal subgroup of K. On the other hand, by [7, (2.4.2)], πi(GIK)=(ker ρu)
χ(kerpu), which shows that our assumption fails. Therefore, K^K2. Since
K^N^K0,; G), KΪΦK°2. Thus we can suppose

(G, Klt K2) = (Sp(l), NTu NTq),

for some q(ΞSp(l). Since T^TV we have a(q)β(q)φθ by (6.3.1).
Suppose I a | Φ | β \. Then by (6.3.5) we have

In the commutative diagram

π^G/K) > ^ ( G / ί T . n X ^ ^ Π K2

I
*i(GIK.)

pSitι is surjective by (6.4.3). Hence, the generator of KiΓϊKz goes into the
non-trivial element of π1(GIKs)^Z2. It follows that K=KιΓ\K2 and kerp u ~
ker p2* is a proper normal subgroup of K. This contradicts [7, (2.4.2)]. Thus
we have | α | = |/8|. Then 2aβi=u~z for some u^U(l), and hence

(Sp(l)y uNTxu-\ uNTqu-*) = (Sp(l), NTly NTr),

where r=( l+Λ)/\/T. Therefore, we can assume q=(ί+k)l\/^Σ. Then we
have

= {±1, ±h ±h

Consider the commutative diagram

Here, each homomorphism is induced by the corresponding natural projection.
By (6.4.1), Dft^KcK^K^Df, and hence ί^2. Suppose t=ί. Then
K=Z4 is generated by y, and pu(y)φl, PiXy)^^ by (6.4.3). It follows that
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ker/>u=ker p2^Z2 is a proper normal subgroup of K=Z4. This contradicts
[7, (2.4.2)]. Therefore, t=2 and K=Kλ Π K2. Hence the slice representations
of Kly K2 are uniquely determined up to conjugation by (6.4.1).

Now, let us define

χ= Sp(l) x

where

is given by

cos 40 —sin 40

sin 40 cos 40: ) •

and NT1 acts on D2 via σ. By the above consideration, we can assume

as *Sp(l)-manifold, where / is an *Sp(l)-diίfeomorphism on dX=Sp(l)IDf.
There exists q=a+βj^N(Df; Sp(l)) such that/=jRα (right translation by q).
(See, (1.4.5).) Since the isotropy group at qNTx is qNT1q~1=NTq, we have
\ct\ = \β\.

X

INT, ID* qD*

Sp(l)/Z)β

II

ex

exSpiD/NT,
II

G/Kx

Then there exist u, v^N(Df; NTJ such that q-^ι

G\K2

ίv. Therefore

M(Rq) = M(Ril+k)/V2)

as *S/)(l)-manifold, because they are identified by 5/>(l)-diffeomorρhism

(extension of Ru-i)\J (extension of Rϋ).

Thus the pair (G, M) of the type (C) of Theorem 2.1.4 is unique up to essential
isomorphism. On one hand, there is an example of this type as is seen in 3.4.
Therefore, the proof of Theorem 6.1.1 is completed.

TOHOKU UNIVERSITY
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