CLASSIFICATION OF COMPACT TRANSFORMATION GROUPS ON COHOMOLOGY QUATERNION PROJECtive spaces WITH CODIMENSION ONE ORBITS

Koichi IWATA

(Received August 8, 1977)
(Revised February 16, 1978)

0. Introduction

Let M be an orientable closed $4 n$-dimensional smooth manifold, whose rational cohomology algebra is isomorphic to that of a quaternion projective n-space $P_{n}(\boldsymbol{H})$. We call such a manifold M a rational cohomology quaternion projective n-space.

Let (G, M) be a pair of a compact connected Lie group G and a simply connected rational cohomology quaternion projective n-space M, on which G acts smoothly with a codimension one orbit G / K. We say that (G, M) is isomorphic to (G^{\prime}, M^{\prime}), if there exist a Lie group isomorphism $h: G \rightarrow G^{\prime}$ and a diffeomorphism $f: M \rightarrow M^{\prime}$ satisfying

$$
f(g x)=h(g) f(x)
$$

for every $g \in G$ and for every $x \in M$.
When G acts on $M, H=\bigcap \bigcap_{x \in \mathscr{M}} G_{x}$ (the intersection of all isotropy groups) is a closed normal subgroup of G. Since H acts on M trivially, the G-action on M induces an effective G / H-action on M. We say that (G, M) is essentially isomorphic to $\left(G^{\prime}, M^{\prime}\right)$, if there exists an isomorphism between the pairs with effective actions $(G / H, M)$ and ($G^{\prime} \mid H^{\prime}, M^{\prime}$).

The purpose of the present paper is to give a complete classification of such pairs (G, M) up to essential isomorphism. We shall show

Main Theorem. Such a pair (G, M) is essentially isomorphic to one of the pairs listed in the next table.

n	(G, M)	action	
$n \geqq 1$	$\left(G, P_{n}(\boldsymbol{H})\right)$	natural	(1)
$n_{1}+n_{2}+1, n_{s}>0$	$\left(S p\left(n_{1}+1\right) \times S p\left(n_{2}+1\right), P_{n}(\boldsymbol{H})\right)$	natural	
$n \geqq 1$	$\left(U(n+1), P_{n}(\boldsymbol{H})\right)$	natural	
$n \geqq 2$	$\left(S U(n+1), P_{n}(\boldsymbol{H})\right)$	natural	
2	$\left(S U(3), \boldsymbol{G}_{2} / S O(4)\right)$	natural	
1	$\left(S O(3), S^{4}\right)$		(2)

(1) $G=S p(n), S p(n) \times U(1)$, or $S p(n) \times S p(1) \subset S p(n+1)$.
(2) $S O(3)$ acts on S^{4} by a 5-dimensional irreducible real representation.

When $n=1, M$ is a homotopy 4 -sphere. Our main theorem for $n=1$ complements a lack of Wang's theorem [8], in which he classified (G, M) when M is a homotopy k-sphere for even $k \neq 4$ and for odd $k>31$. F. Uchida [7] gave a classification of pairs (G, M) when M is a rational cohomology complex projective space. To show our theorem, we follow a similar procedure. First, we recall in Section 1 some necessary facts on compact Lie groups, homogeneous spaces and G-manifolds with codimension one orbits. Section 2 is devoted to cohomological consideration. Our aim is to prove Theorem 2.1.4, which gives necessary conditions for (G, M) to be a pair of our problem. In Section 3, for each (G, M) appeared in our main theorem, we investigate the orbit types of M. Finally in the last three sections, we prove that there exists no pair (G, M) which is not essentially isomorphic to one of the pairs listed in our main theorem.

The author wishes to extend his hearty thanks to Professor Fuichi Uchida, who introduced him to the problem discussed here, read critically the manuscript and gave him helpful suggestions in many parts.

1. Compact Lie groups and manifolds with group actions

1.1. We give here some definitions and propositions which are necessary for the subsequent discussion.

Let G_{1}, \cdots, G_{k} be compact Lie groups. If G is a factor group of $G_{1} \times \cdots$ $\times G_{k}$ by a finite normal subgroup, then we say that G is an essentially direct product of G_{1}, \cdots, G_{k}, and denote

$$
G=G_{1} \circ \cdots \circ G_{k} .
$$

As is well known,
(1.1.1) Every compact connected Lie group G has the form

$$
G=T_{0} \circ G_{1} \circ \cdots \circ G_{k},
$$

where T_{0} is a toral subgroup of G and $G_{s}, s=1, \cdots, k$, are closed connected simple normal subgroups of G.

The next two propositions will be used in the later sections without mention.
(1.1.2) Let G be a compact connected Lie group and G_{1} its closed connected normal subgroup. Then there exists a closed connected normal subgroup G_{2} of G, satisfying $G=G_{1} \circ G_{2}$.
(1.1.3) Let G be an essentially direct product of compact connected Lie groups G_{1}, \cdots, G_{k} and U a closed connected subgroup of G with $\operatorname{rank} U=\operatorname{rank} G$. Then, for every $s, s=1, \cdots, k$, there exists a closed connected subgroup U_{s} of G_{s} such that

$$
\begin{gathered}
\operatorname{rank} U_{s}=\operatorname{rank} G_{s}, \quad U=U_{1} \circ \cdots \circ U_{k}, \\
G / U=G_{1} / U_{1} \times \cdots \times G_{k} / U_{k}
\end{gathered}
$$

1.2. Let (G, U) be a pair of a compact connected simple Lie group G and its closed connected subgroup U, with rank $U=\operatorname{rank} G$ and let $p ; \tilde{G} \rightarrow G$ be the universal covering. We say that such two pairs $\left(G_{1}, U_{1}\right)$ and $\left(G_{2}, U_{2}\right)$ are pairwise locally isomorphic if there exists an isomorphism $h: \widetilde{G}_{1} \rightarrow \widetilde{G}_{2}$ such that $h p_{1}^{-1}\left(U_{1}\right)=p_{2}^{-1}\left(U_{2}\right)$. In the following propositions, we list the homogeneous spaces of simple Lie groups with certain Poincaré polynomials. They can be shown by a similar argument to Section 4 of [7].
(1.2.1) If $P(G / U ; t)=1+t^{4}+\cdots+t^{4 a}$, then (G, U) is pairwise locally isomorphic to

$$
(S p(a+1), S p(a) \times S p(1))
$$

or

$$
\left(\boldsymbol{G}_{2}, S O(4)\right) \quad \text { in case } a=2 .
$$

(1.2.2) If $P(G / U ; t)=1+t^{2}+\cdots+t^{2 b}$, then (G, U) is pairwise locally isomorphic to one of the following:
$(S U(b+1), S(U(b) \times U(1)))$,
$(S O(2 s+1), S O(2 s-1) \times S O(2)), \quad$ where $s=(b+1) / 2$,
$(S p(s), S p(s-1) \times U(1)), \quad$ where $s=(b+1) / 2$,
$\left(\boldsymbol{G}_{2}, H\right)$, where H is locally isomorphic to $U(2), \quad$ in case $b=5$.
(1.2.3) If $P(G / U ; t)=\left(1+t^{2 a}\right)\left(1+t^{4}+\cdots+t^{4 b}\right), a \geqq 2$, then (G, U) is pairwise locally isomorphic to one of the following:

$$
(S O(2 a+3), S O(3) \times S O(2 a)), \quad \text { in case } a=b \geqq 2,
$$

$$
\begin{array}{lr}
(S p(3), S p(1) \times S p(1) \times S p(1)), & \text { in case } a=2, b=2, \\
(S p(4), S p(2) \times S p(2)), & \text { in case } a=4, b=2, \\
(S p(5), S p(2) \times S p(3)), & \text { in case } a=4, b=4, \\
\left(F_{4}, H\right), \text { where } H \text { is locally isomorphic to } S U(2) \times S p(3), \\
& \text { in case } a=4, b=5 .
\end{array}
$$

1.3. We give a summary of some results on compact Lie group actions on spheres, proved by Montgomery-Samelson [5], Borel [1] and Nagano [6]. See, also W.C. Hsiang and W.Y. Hsiang [3].
(1.3.1) ([5]) Let G_{1} and G_{2} be compact connected Lie groups such that the product $G_{1} \times G_{2}$ acts on a homotopy sphere \sum transitively. Then, one of two groups G_{1}, G_{2} acts already on \sum transitively.

Or, more precisely,
(1.3.2) Let G be a compact connected Lie group which acts on a homotopy sphere Σ effectively and transitively with the isotropy subgroup H. Then there exists a closed simple normal subgroup G_{1} of G such that $G_{1} / G_{1} \cap H=\Sigma$.
(1.3.3) ([5], [1] and [6]) Let G_{1} be a compact connected simple Lie group which acts on a homotopy n-sphere \sum effectively and transitively with the isotropy subgroup H_{1}. Then,
(i) if n is even, $\left(G_{1}, H_{1}\right) \cong(S O(n+1), S O(n))$ or $\left(G_{2}, S U(3)\right)$ in case $n=6$.
(ii) if $n=2 s-1$ and s is odd, $\left(G_{1}, H_{1}\right) \cong(S O(n+1), S O(n))$ or $(S U(s)$, $S U(s-1))$.
(iii) if $n=2 s-1$ and s is even, $\left(G_{1}, H_{1}\right) \cong(S O(n+1), S O(n)),(S U(s)$, $S U(s-1)),(S p(s / 2), S p(s / 2-1))$, (Spin (9), $S p i n(7))$ in case $n=15$, or ($\operatorname{Spin}(7)$, \boldsymbol{G}_{2}) in case $\boldsymbol{n}=7$.

In each case, \sum is the standard n-sphere and the action of G_{1} on $\Sigma=S^{n}$ is linear.
1.4. We refer to some results due to Uchida, concerning manifolds with Lie group actions. For the proofs, see Sections 1 and 5 of [7].

Assume that G is a compact connected Lie group.
(1.4.1) Let M be a compact connected smooth manifold without boundary on which G acts smoothly with an orbit $G(x)$ of codimension one, satisfying

$$
H^{1}\left(M ; \boldsymbol{Z}_{2}\right)=0
$$

Then $G(x)=G / K$ is a principal orbit and there exist just two singular orbits $G\left(x_{1}\right)=G / K_{1}$ and $G\left(x_{2}\right)=G / K_{2}$, and we can assume $K \subset K_{1} \cap K_{2}$. Moreover, for each $G\left(x_{s}\right), s=1,2$, there is a closed invariant tubular neighborhood X_{s}
such that

$$
M=X_{1} \cup X_{2} \quad \text { and } \quad X_{1} \cap X_{2}=\partial X_{1}=\partial X_{2}=G / K
$$

as G-manifolds.
X_{s} is a compact connected smooth manifold on which G acts smoothly and has the form

$$
X_{s}=G \underset{K_{s}}{\times D^{k_{s}}}
$$

Here, k_{s} is the codimension of $G\left(x_{s}\right)$ in M and K_{s} acts on k_{s}-dimensional disk $D^{k_{s}}$ via the slice representation $\sigma_{s}: K_{s} \rightarrow O\left(k_{s}\right)$. This K_{s}-action is transitive on the ($k_{s}-1$)-sphere $\partial D^{k_{s}}$. Since $\partial X_{s}=G / K$, as G-manifolds,
(1.4.2) The fibre bundle $K_{s} \mid K \rightarrow G / K \rightarrow G / K_{s}$ is a ($k_{s}-1$)-sphere bundle.

In the above situation, assume that $M(f)=X_{1} \cup X_{2}$ is obtained from X_{1} and X_{2} by identifying their boundaries under a G-equivariant diffeomorphism $f: \partial X_{1} \rightarrow \partial X_{2}$. The following propositions will be used to classify the pairs (G, M) and to construct a representative example of each essential isomorphism class.
(1.4.3) Let $f, f^{\prime}: \partial X_{1} \rightarrow \partial X_{2}$ be G-equivariant diffeomorphisms. Then, $M(f)$ is equivariantly diffeomorphic to $M\left(f^{\prime}\right)$ as G-manifolds, if one of the following conditions is satisfied:
(i) f is G-diffeotopic to f^{\prime},
(ii) $f^{-1} f^{\prime}$ is extendable to a G-equivariant diffeomorphism on X_{1},
(iii) $f^{\prime} f^{-1}$ is extendable to a G-equivariant diffeomorphism on X_{2}.
(1.4.4) The set of all G-equivariant diffeomorphisms of ∂X_{1} onto ∂X_{2} is naturally identified with the factor group $N(K ; G) / K$. That is, we have a group isomorphism

$$
\operatorname{Diff}^{G}(G / K, G / K) \approx N(K ; G) / K
$$

Here, $N(K ; G)$ is the normalizer of K in G.
(1.4.5) Let K_{s} and K be closed subgroups of G and $K \subset K_{s}$. Then there exists a natural G-equivariant diffeomorphism

$$
f: G \underset{K_{s}}{\times} K_{s} / K \rightarrow G / K,
$$

defined by $f([g, h K])=g h K$ for $g \in G$ and $h \in K_{s}$. And we have, for each $x \in N\left(K ; K_{s}\right)$, the following commutative diagram

$$
\begin{array}{r}
G \times K_{s} / K \xrightarrow{f} G / K \\
\left.\begin{array}{c}
1 \times R_{x} \downarrow \\
G \times K_{s} \\
K_{s}
\end{array} \right\rvert\, K \xrightarrow{f} \underset{\longrightarrow}{\mid} G / K,
\end{array}
$$

where R_{x} is an equivariant diffeomorphism given by a right translation.
To classify (G, M) up to essential isomorphism, we can assume that G acts almost effectively on M, that is, $H=\bigcap_{x \in \mathscr{H}} G_{x}$ is a finite group. Then G acts almost effectively on the principal orbit G / K and hence
(1.4.6) K does not contain any positive dimensional closed normal subgroup of G.

2. Cohomology of orbits

2.1. From now on, we assume that G is a compact connected Lie group and M is a simply connected rational cohomology quaternion projective n-space on which G acts smoothly with a codimension one orbit G / K. Then, by (1.4.1) there exist just two singular orbits G / K_{1} and G / K_{2} and we can assume that $K \subset K_{1} \cap K_{2}$. Let us denote by u a generator of $H^{*}(M ; \boldsymbol{Q})$, that is,

$$
H^{*}(M ; \boldsymbol{Q})=\boldsymbol{Q}[u] / u^{n+1}, \quad \operatorname{deg} u=4
$$

and let

$$
f_{s}^{*}: H^{*}(M ; \boldsymbol{Q}) \rightarrow H^{*}\left(G / K_{s} ; \boldsymbol{Q}\right) \quad(s=1,2)
$$

be the homomorphism induced by the inclusion $f_{s}: G / K_{s} \subset M$. Then we can show the following proposition, in a similar way as in [7, Lemma 2.1.1].
(2.1.1) Let n_{s} be a non-negative integer such that

$$
f_{s}^{*}\left(u^{n_{s}}\right) \neq 0 \quad \text { and } \quad f_{s}^{*}\left(u^{n_{s}+1}\right)=0
$$

Then we have $n=n_{1}+n_{2}+1$.
We denote by k_{s} the codimension of G / K_{s} in M, that is,

$$
k_{s}=4 n-\operatorname{dim} G / K_{s},
$$

for $s=1$ and 2. Then we have
(2.1.2) $2 \leqq k_{s} \leqq 4\left(n-n_{s}\right)$.

We notice the following:
(2.1.3) ([7, Lemma 2.2.3]) If $k_{2}>2$, then G / K_{1} is simply connected and K_{1} is connected.

Now we shall prove

Theorem 2.1.4.

(A) Assume that G / K_{1} and G / K_{2} are orientable.
(i) If $k_{1}-k_{2}$ is even, then each G / K_{s} is a rational cohomology quaternion projective n_{s}-space and $k_{s}=4\left(n-n_{s}\right)$, for $s=1,2$.
(ii) If k_{1} is even and k_{2} is odd, then $k_{1}+k_{2}=2 n+3$ and there are two cases:
(a) $n_{1}=n_{2}$ and

$$
\begin{aligned}
& P\left(G / K_{1} ; t\right)=\left(1+t^{k_{2}-1}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) \\
& P\left(G / K_{2} ; t\right)=\left(1+t^{k_{1}-1}\right)\left(1+t^{4}+\cdots+t^{4 n_{2}}\right)
\end{aligned}
$$

(b) $k_{1}=4 n_{2}+4, k_{2}=2\left(n_{1}-n_{2}\right)+1$ and

$$
\begin{aligned}
& P\left(G / K_{1} ; t\right)=1+t^{4}+\cdots+t^{4 n_{1}}+t^{k_{2}-1}\left(1+t^{4}+\cdots+t^{4 n_{2}}\right) \\
& P\left(G / K_{2} ; t\right)=\left(1+t^{2 n+1}\right)\left(1+t^{4}+\cdots+t^{4 n_{2}}\right)
\end{aligned}
$$

(B) The case that G / K_{1} is orientable and G / K_{2} is non-orientabie does not happen.
(C) Assume that G / K_{1} and G / K_{2} are non-orientable. Then $n=1$ and

$$
\begin{aligned}
& P\left(G \mid K_{s} ; t\right)=1 \\
& P\left(G \mid K_{s}^{0} ; t\right)=1+t^{2}
\end{aligned}
$$

for $s=1,2$. Here K_{s}^{0} is the identity component of K_{s}.
This theorem can be proved by a completely analogous discussion to the proof of Theorem 2.2.2 in [7]. Therefore, we shall give only an outline of the proof in the remainder of this section.
2.2. As is seen in 1.4, there is a closed invariant tubular neighborhood X_{s} of G / K_{s} in M, such that

$$
M=X_{1} \cup X_{2} \quad \text { and } \quad X_{1} \cap X_{2}=\partial X_{1}=\partial X_{2}
$$

By the Poincare duality for X_{s}, we obtain

$$
P\left(X_{s}, \partial X_{s} ; t\right)=t^{4 n} P\left(X_{s} ; t^{-1}\right)
$$

Moreover, if G / K_{s} is orientable, we have

$$
P\left(X_{s}, \partial X_{s} ; t\right)=t^{k_{s}} P\left(G / K_{s} ; t\right)
$$

by Thom isomorphism.
First, we assume that both G / K_{1} and G / K_{2} are orientable. Then, in consideration of the rational cohomology exact sequence for (M, X_{s}), we obtain

$$
P\left(G / K_{1} ; t\right)=t^{k_{2}-1} P\left(G / K_{2} ; t\right)+1+t^{4}+\cdots+t^{4 n_{1}}-t^{-1}\left(t^{4 n_{1}+4}+\cdots+t^{4 n}\right)
$$

and

$$
\begin{equation*}
P\left(G / K_{2} ; t\right)=t^{k_{1}-1} P\left(G / K_{1} ; t\right)+1+t^{4}+\cdots+t^{4 n_{2}-}-t^{-1}\left(t^{4 n_{2}+4}+\cdots+t^{4 n}\right) . \tag{2.2.1}
\end{equation*}
$$

Using these equations, we can prove the part (A) of Theorem 2.1.4 in the same way as in $[7,2.3]$. Notice that to get (2.2.1) we require only the orientability of G / K_{1}.

Next, we assume that G / K_{2} is non-orientable. Then, by (2.1.2) and (2.1.3), we have $k_{1}=2$. We can show by the argument due to Uchida [7, 2.4~2.6] (see also Wang [8]),

$$
\begin{align*}
& P\left(G / K_{2}^{0} ; t\right)=\left(1+t^{k_{2}}\right) P\left(G / K_{2} ; t\right) \tag{2.2.2}\\
& P\left(G / K^{0} ; t\right)=\left(1+t^{2 k_{2}-1}\right) P\left(G / K_{2} ; t\right)-P\left(n_{1}, n_{2} ; t\right)
\end{align*}
$$

where

$$
P\left(n_{1}, n_{2} ; t\right)=\left\{\begin{array}{l}
\left(1+t^{-1}\right)\left(t^{4 n_{1}+4}+\cdots+t^{4 n_{2}}\right), \quad \text { if } n_{1}<n_{2}, \\
0, \\
\text { if } n_{1} \geqq n_{2} .
\end{array}\right.
$$

If G / K_{1} is orientable, then by the use of the Poincare duality for G / K_{1}, we obtain from (2.2.1),

$$
t^{4 n-1} P\left(G / K_{2} ; t^{-1}\right)=P\left(G / K_{1} ; t\right)+t^{4 n_{1}+3}\left(1+t^{4}+\cdots+t^{4 n_{2}}\right)-\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) .
$$

By the Poincaré duality for G / K_{2}^{0} and (2.2.2), we have

$$
t^{4 n} P\left(G / K_{2} ; t^{-1}\right)=t^{2 k_{2}} P\left(G / K_{2} ; t\right)
$$

From these two equations and (2.2.1), it follows

$$
\begin{aligned}
\left(1-t^{2 k_{2}}\right) P\left(G / K_{1} ; t\right)= & \left(1-t^{2 k_{2}+4 n_{2}+2}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) \\
& +\left(t^{2 k_{2}-1}-t^{4 n_{1}+3}\right)\left(1+t^{4}+\cdots+t^{4 n_{2}}\right)
\end{aligned}
$$

The both sides of this equation are divisible by $1-t^{2}$ and we have $\chi\left(G / K_{1}\right)=$ $P\left(G / K_{1} ;-1\right) \neq 0$. Hence $P\left(G / K_{1} ; t\right)$ is an even function. Therefore, $k_{2}=2 n_{1}+2$ and we have

$$
\left(1-t^{4 n_{1}+4}\right) P\left(G / K_{1} ; t\right)=\left(1-t^{4 n+2}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) .
$$

It follows

$$
\left(1+t^{2}\right) P\left(G / K_{1} ; t\right)=1+t^{2}+t^{4}+\cdots+t^{4 n}
$$

This is impossible. Hence, the case that G / K_{1} is orientable and G / K_{2} is nonorientable can not occur, and (B) of Theorem 2.1.4 is proved.

Finally, we assume that G / K_{1} and G / K_{2} are both non-orientable. Then $k_{1}=k_{2}=2$. As in [7, 2.7], we have $n_{1}=n_{2}$ and

$$
\begin{align*}
& P\left(G / K_{s}^{0} ; t\right)=\left(1+t^{2}\right) P\left(G / K_{s} ; t\right), \tag{2.2.3}\\
& P\left(G / K^{0} ; t\right)=\left(1+t^{3}\right) P\left(G / K_{s} ; t\right),
\end{align*}
$$

for $s=1,2$. Considering the Mayer-Vietoris cohomology sequence for (M; X_{1}, X_{2}), we have

$$
\begin{equation*}
\left(1-t^{3}\right) P\left(G / K_{1} ; t\right)=\left(1-t^{4 n_{1}+3}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) . \tag{2.2.4}
\end{equation*}
$$

Therefore, $\chi\left(G / K_{1}\right) \neq 0$ and $P\left(G / K_{1} ; t\right)$ is an even function. Hence by (2.2.4) we have $n_{1}=0$ and $P\left(G / K_{1} ; t\right)=1$. By (2.2.3), we obtain $P\left(G / K_{s} ; t\right)=1$ and $P\left(G / K_{s}^{0} ; t\right)=1+t^{2}$, for $s=1$ and 2. Thus (C) of Theorem 2.1.4 is proved.

3. The representative examples of the pairs (G, M)

3.1. Here we give some examples of pairs (G, M), each of which consists of a compact connected Lie group G and a simply connected rational cohomology quaternion projective space M on which G acts smoothly with a 1-codimensional orbit.

Let $n=n_{1}+n_{2}+1$. In case $n_{2}=0$, we choose $S p(n) \times 1, S p(n) \times U(1)$, or $S p(n) \times S p(1)$ for G. And in case $n_{1}>0, n_{2}>0$, we set simply $G=S p\left(n_{1}+1\right) \times$ $S p\left(n_{2}+1\right)$. Then, the natural action of G on $P_{n}(\boldsymbol{H})=P\left(\boldsymbol{H}^{n_{1}+1} \oplus \boldsymbol{H}^{n_{2}+1}\right)$ is transitive on a ($4 n-1$)-dimensional submanifold

$$
X=\left\{\left.(u, v)| | u\right|^{2}=|v|^{2}, \quad u \in \boldsymbol{H}^{n_{1}+1}, v \in \boldsymbol{H}^{n_{2}+1}\right\},
$$

and has two singular orbits $P_{n_{1}}(\boldsymbol{H})$ and $P_{n_{2}}(\boldsymbol{H})$. This gives an example of (G, M) of the type (A) (i) in Theorem 2.1.4.
3.2. We shall consider the natural action of $U(n+1)$ on $P_{n}(\boldsymbol{H})=S p(n+1) /$ $S p(n) \times S p(1)$. Let $\left(u_{0}, u_{1}, \cdots, u_{n}\right)$ be the homogeneous coordinate of a point of $P_{n}(\boldsymbol{H})$ with the identification $\left(u_{0} q, u_{1} q, \cdots, u_{n} q\right) \sim\left(u_{0}, u_{1}, \cdots, u_{n}\right)$, for $q \in \boldsymbol{H}$ and $q \neq 0$. Consider the orbit $G(u(t))$ of a point $u(t)=(0, \cdots, 0, t, j) \in P_{n}(\boldsymbol{H})$. Here, t is a real number with $0 \leqq t \leqq 1$ and j is the element in the standard basis $\{1, i, j, k\}$ of \boldsymbol{H}. Then, it is easy to see that

$$
\begin{aligned}
& G(u(0))=G / U(n) \times U(1), \\
& G(u(1))=G / U(n-1) \times S U(2)
\end{aligned}
$$

are singular orbits and for every $t, 0<t<1$,

$$
G(u(t))=G / U(n-1) \times S(U(1) \times U(1))
$$

is principal. This gives an example of (G, M) of the type (A) (ii) in Theorem 2.1.4. Note that when $n \geqq 2$ we can take $S U(n+1)$ as G instead of $U(n+1)$.
3.3. There is an another example of (G, M) of the above type in case $n=2$.

Let Cay be the division algebra of Cayley numbers. It is an 8-dimensional real vector space with a basis $\left\{e_{0}, e_{1}, \cdots, e_{7}\right\}$ and its non-associative algebra structure is given as follows:

$$
\begin{aligned}
& e_{0}=1, \quad e_{i}^{2}=-1 \quad(1 \leqq i \leqq 7) \\
& e_{i} e_{0}=-e_{j} e_{i} \quad(i \neq j ; 1 \leqq i, j \leqq 7) \\
& e_{1} e_{2}=e_{3}, \quad e_{1} e_{4}=e_{5}, \quad e_{1} e_{6}=e_{7}, \quad e_{3} e_{4}=e_{7} \\
& e_{3} e_{5}=e_{6}, \quad e_{2} e_{5}=e_{7}, \quad e_{2} e_{6}=e_{4},
\end{aligned}
$$

and

$$
a(a b)=a^{2} b, \quad(a b) b=a b^{2}, \quad \text { for } a, b \in \boldsymbol{C a y} .
$$

The group of automorphisms of $\boldsymbol{C a y}$ is the exceptional Lie group \boldsymbol{G}_{2}. Since every element of \boldsymbol{G}_{2} induces an orthogonal transformation on the linear subspace \boldsymbol{R}^{7} of $\boldsymbol{C a y}$ spanned by $\left\{e_{1}, \cdots, e_{7}\right\}$, there exists the canonical inclusion $\boldsymbol{G}_{2} \subset S O(7)$, via which \boldsymbol{G}_{2} acts on S^{6} transitively. The isotropy group $\left(\boldsymbol{G}_{2}\right)_{e_{1}}$ at e_{1} is isomorphic to $S U(3)$, and $\left(\boldsymbol{G}_{2}\right)_{e_{1}} \cap\left(\boldsymbol{G}_{2}\right)_{e_{2}}$ is isomorphic to $S U(2)$. The canonical inclusions

$$
\left(\boldsymbol{G}_{2}\right)_{e_{1}} \cap\left(\boldsymbol{G}_{2}\right)_{e_{2}} \subset\left(\boldsymbol{G}_{2}\right)_{e_{1}} \subset S O(7)
$$

correspond to the inclusions

$$
S U(2) \subset S U(3) \subset S O(7)
$$

which are defined by

Here, a, b, c and d are real numbers with $a^{2}+b^{2}+c^{2}+d^{2}=1$. Let

$$
S=\left\{x \in \boldsymbol{C a y} \mid x=a e_{0}+b e_{1}+c e_{2}+d e_{3}, a^{2}+b^{2}+c^{2}+d^{2}=1\right\}
$$

For $x=a e_{0}+b e_{1}+c e_{2}+d e_{3} \in S$, we define an \boldsymbol{R}-linear homomorphism

$$
h_{x}: \text { Cay } \rightarrow \text { Cay }
$$

by

$$
h_{x}\left(e_{i}\right)= \begin{cases}\left(x e_{i}\right) \bar{x} & (i=0,1,2,3) \\ \bar{x} e_{i} & (i=4,5,6,7)\end{cases}
$$

Then, h_{x} is represented by

$$
A_{x}=\left(\left.\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2(b c-a d) & 2(a c+b d) \\
2(a d+b c) & a^{2}-b^{2}+c^{2}-d^{2} & 2(c d-a b) \\
2(b d-a c) & 2(a b+c d) & a^{2}-b^{2}-c^{2}+d^{2}
\end{array} \right\rvert\, \begin{array}{rrrr}
& 0 & \\
\hline a & b & -c & d \\
-b & a & d & c \\
c & -d & a & b \\
-d & -c & -b & a
\end{array}\right) .
$$

Since $\operatorname{det} A_{x}=1$ and

$$
h_{x}\left(e_{i}\right) h_{x}\left(e_{j}\right)=h_{x}\left(e_{i} e_{j}\right),
$$

for every i and $j(0 \leqq i, j \leqq 7)$, we have $h_{x} \in \boldsymbol{G}_{2}$. Moreover, for $x, y \in S$, we define $h_{x} h_{y}$ by

$$
\left(h_{x} h_{y}\right)(u)=h_{x}\left(h_{y}(u)\right),
$$

for all $u \in \boldsymbol{C a y}$. Then we can show $h_{x} h_{y}=h_{x y}$. Since $h_{e_{0}}$ is the identity automorphism of $\boldsymbol{C a y}$, it follows that

$$
A=\left\{A_{x} \mid x \in S\right\}
$$

can be considered as a subgroup of \boldsymbol{G}_{2}. As above, we identify $S U(2)$ with a subgroup of \boldsymbol{G}_{2}. Then, $A \cap S U(2) \cong \boldsymbol{Z}_{2}$ and A is the identity component of the centralizer of $S U(2)$ in \boldsymbol{G}_{2}. Define

$$
H=A \circ S U(2)=A \times S U(2) / Z_{2} .
$$

By (1.2.1), the homogeneous space $M=\boldsymbol{G}_{2} / H$ is an 8 -dimensional rational cohomology quaternion projective 2 -space. Let us consider the $S U(3)$-action on M defined by the canonical inclusion $S U(3) \cong\left(\boldsymbol{G}_{2}\right)_{e_{1}} \subset \boldsymbol{G}_{2}$. Define

$$
x_{t}=(1-t) e_{1}+t e_{7} \in \boldsymbol{C a y}
$$

for $t, 0 \leqq t \leqq 1$. Since \boldsymbol{G}_{2}-action on S^{6} is transitive, there exist an element $g_{t} \in \boldsymbol{G}_{2}$ and a positive number r_{t} such that

$$
g_{t} x_{t}=r_{t} e_{1}
$$

Define

$$
H_{t}=\left\{h \in H \mid h x_{t}=x_{t}\right\} .
$$

Then we can see that the isotropy group at $g_{t} H \in M$ is $g_{t} H_{t} g_{t}^{-1}$. Since

$$
\begin{aligned}
& H_{0}=\left(G_{2}\right)_{e_{1}} \cap H \cong S(U(2) \times U(1)) \\
& H_{1}=\left\{h \in H \mid h e_{7}=e_{7}\right\} \cong S O(3)
\end{aligned}
$$

we have two singular orbits $S U(3) / S(U(2) \cap U(1))$ and $S U(3) / S O(3)$. Moreover, we have $\operatorname{dim} H_{t}=1$ for $0<t<1$, since an element h of H is in H_{t} if and only if $h e_{1}=e_{1}$ and $h e_{7}=e_{7}$. Hence the orbit through $g_{t} H(0<t<1)$ is of codimension 1 and principal.
3.4. Consider the space V of all symmetric 3×3 real matrices with trace 0 . This is a real vector space of dimension 5 . We introduce an inner product \langle,$\rangle in V$ by

$$
\langle X, Y\rangle=\operatorname{trace} X Y
$$

for $X, Y \in V$. Define an $S O(3)$-action ρ on V as follows: For each $A \in S O(3)$, set $\rho_{A}: V \rightarrow V$ by

$$
\rho_{A}(X)=A X A^{-1}, \quad X \in V
$$

It is easy to see that ρ_{A} is well-defined and that \langle,$\rangle is \rho_{A}$-invariant. Now we restrict ρ on the unit sphere $S(V)$ in V. Define

$$
X_{t}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 \cos \frac{\pi}{3} t & 0 & 0 \\
0 & -\cos \frac{\pi}{3} t+\sqrt{3} \sin \frac{\pi}{3} t & 0 \\
0 & 0 & -\cos \frac{\pi}{3} t-\sqrt{3} \sin \frac{\pi}{3} t
\end{array}\right)
$$

for $t, 0 \leqq t \leqq 1$. Then the isotropy group at X_{t} is the group

$$
\left\{\left.\left(\begin{array}{ccc}
\varepsilon_{1} & 0 & 0 \\
0 & \varepsilon_{2} & 0 \\
0 & 0 & \varepsilon_{1} \varepsilon_{2}
\end{array}\right) \right\rvert\, \varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1\right\}
$$

for $0<t<1$, and hence the orbit through X_{t} is of codimension 1 for $0<t<1$. The isotropy groups at X_{0} and X_{1} are

$$
S(O(1) \times O(2)) \quad \text { and } \quad S(O(2) \times O(1))
$$

respectively. The corresponding orbits are real projective planes. This gives an example of the type (C) of Theorem 2.1.4.

4. Classification of (G, M) with orientable singular orbits I

4.1. In this section, we classify (G, M) of the type (A) (i) in Theorem 2.1.4. We assume that the two singular orbits $G / K_{1}, G / K_{2}$ are orientable and evendimensional. Then, by Theorem 2.1.4 and (2.1.1), $G / K_{s}(s=1,2)$ is a rational cohomology quaternion projective n_{s}-space and $n=n_{1}+n_{2}+1$. We shall prove

Theorem 4.1.1. Under the above assumption, (G, M) is essentially isomorphic to

$$
\left(S p(n) \times H^{\prime}, P_{n}(\boldsymbol{H})\right), H^{\prime}=\{1\}, U(1) \text { or } S p(1), \quad \text { in case } n_{1} n_{2}=0
$$

or

$$
\left(S p\left(n_{1}+1\right) \times S p\left(n_{2}+1\right), P_{n}(\boldsymbol{H})\right), \quad \text { in case } n_{1} n_{2} \neq 0
$$

Here, in both cases, the group acts naturally on $P_{n}(\boldsymbol{H})=S p(n+1) / S p(n) \times S p(1)$ as a subgroup of $S p(n+1)$.

Without loss of generality, we can suppose that G-action on M is almost effective and that $G=G_{1} \times T^{h}$, where G_{1} is a simply connected compact Lie group and T^{h} is an h-dimensional toral group.
4.2. First, consider the case $n_{1} \geqq n_{2}=0$. Then, $k_{2}=4 n$. Therefore $K_{2}=G$ and $G / K=K_{2} / K$ is a ($4 n-1$)-sphere. It follows that G / K_{1} is simply connected and the groups K_{1} and K are connected. By (1.3.2), there exists a simple closed connected normal subgroup H of G, which acts transitively on the ($4 n-1$)-sphere G / K, and we can write

$$
G=H \times H^{\prime}
$$

where H^{\prime} is a connected closed normal subgroup of G. Note that H acts on G / K_{1} transitively. Since rank $K_{1}=\operatorname{rank} G$ and G / K_{1} is indecomposable (that is, G / K_{1} cannot be a product of positive-dimensional manifolds), we have

$$
K_{1}=H_{1} \times H^{\prime}, \quad G / K_{1}=H / H_{1},
$$

where $H_{1}=H \cap K_{1}$. Hence H / H_{1} is a rational cohomology quaternion projective ($n-1$)-space and by (1.2.1), $\left(H, H_{1}\right)$ is pairwise locally isomorphic to $(S p(n)$, $S p(n-1) \times S p(1))$, or ($\left.\boldsymbol{G}_{2}, S O(4)\right)$ in case $n=3$. But the latter case does not occur. For, non-transitively of \boldsymbol{G}_{2}-action on S^{11} (see, (1.3.3)) contradicts the fact that H acts on $G / K=S^{11}$ transitively. Therefore, $\left(H, H_{1}\right)$ is pairwise isomorphic to $(S p(n), S p(n-1) \times S p(1))$. Since the G-action on M is almost effective by our assumption, G acts on G / K almost effectively. Therefore, H^{\prime} acts on $G / K=S p(n) / S p(n-1)$ almost effectively and $S p(n)$-equivariantly, and there exists a locally injective homomorphism

$$
H^{\prime} \rightarrow N(S p(n-1) ; S p(n)) / S p(n-1)
$$

Since $N(S p(n-1) ; S p(n))^{0}=S p(n-1) \times S p(1)$, we have

$$
H^{\prime}=\{1\}, U(1) \text { or } S p(1)
$$

Now, we consider the slice representation

$$
\sigma_{1}: K_{1}=(S p(n-1) \times S p(1)) \times H^{\prime} \rightarrow O(4) .
$$

Note that $k_{1}=4\left(n-n_{1}\right)=4$ in this case. Then $S p(n-1) \subset \operatorname{ker} \sigma_{1}$, and $S p(1)$ acts on $K_{1} / K=H_{1} / H_{1} \cap K=S^{3}$ via σ_{1} transitively and freely. Since we can write

$$
S O(4)=S p(1)_{L} \circ S p(1)_{R}
$$

(where $S p(1)_{L}$ resp. $S p(1)_{R}$ denotes the multiplication by quaternions of norm 1 on the left resp. right), the $S p(1)$-action on $K_{1} / K=S^{3}$ via σ_{1} may be regarded as $S p(1)_{L}$-action on S^{3}. Then there exists a representation $\rho: H^{\prime} \rightarrow S p(1)$ satisfying

$$
\begin{equation*}
\sigma_{1}(q, x) q^{\prime}=q q^{\prime} \rho(x)^{-1} \tag{4.2.1}
\end{equation*}
$$

for $q \in S p(1), x \in H^{\prime}$ and $q^{\prime} \in \boldsymbol{H}$. Hence, for each H^{\prime}, σ_{1} is determined uniquely up to conjugation in $O(4)$. Let $G=S p(n) \times H^{\prime}$. Then, using (4.2.1), we can determine K as the isotropy group at $q^{\prime}=1$, and we have

$$
\begin{aligned}
& N(K ; G) / K \cong S p(1), \quad \text { in case } H^{\prime}=\{1\} \\
& N(K ; G) / K \cong U(1), \quad \text { in case } H^{\prime}=U(1), \\
& N(K ; G)^{0}=K \quad \text { and } \quad N(K ; G) / K \cong Z_{2}, \quad \text { in case } H^{\prime}=S p(1),
\end{aligned}
$$

where in the last formula, \boldsymbol{Z}_{2} is generated by the class of the antipodal involution of $G / K=K_{2} / K=S^{4 n-1}$. Therefore by (1.4.3) and (1.4.4), (G, M) is uniquely determined up to essential isomorphism in each of the above cases.
4.3. Next, we consider the case where $n_{1}>0$ and $n_{2}>0$. Since $k_{1}>2$ and $k_{2}>2$ in this case, G / K_{1} and G / K_{2} are simply connected. Hence K_{1}, K_{2} and K are connected. Since G / K_{1} and G / K_{2} are indecomposable and rank $K_{1}=$ $\operatorname{rank} K_{2}=\operatorname{rank} G$, only the following two cases are possible:

$$
\begin{align*}
& G=H_{1} \times H_{2} \times G^{\prime} \\
& K_{1}=H_{(1)} \times H_{2} \times G^{\prime} \tag{I}\\
& K_{2}=H_{1} \times H_{(2)} \times G^{\prime},
\end{align*}
$$

where, for $s=1,2, H_{s}$ is a compact simply connected simple Lie group, $H_{(s)}$ is a closed connected subgroup of H_{s} and G^{\prime} is a compact connected Lie group.

$$
\begin{align*}
& G=H \times G^{\prime} \\
& K_{s}=H_{s} \times G^{\prime} \quad(s=1,2), \tag{II}
\end{align*}
$$

where H is a compact simply connected simple Lie group, H_{s} is a closed connected subgroup of H, and G^{\prime} is a compact connected Lie group. Note that by (1.2.1), $\left(H_{s}, H_{(s)}\right)$ or $\left(H, H_{s}\right)$ is pairwise locally isomorphic to one of the following:

$$
\begin{align*}
& \left(S p\left(n_{s}+1\right), S p\left(n_{s}\right) \times S p(1)\right) \\
& \left(G_{2}, S O(4)\right), \quad \text { in case } n_{s}=2 \tag{4.3.1}
\end{align*}
$$

First, we consider the case (I). Since $K_{1} \cap K_{2}=H_{(1)} \times H_{(2)} \times G^{\prime}$, we have $\operatorname{dim} G /\left(K_{1} \cap K_{2}\right)=4 n-4$. Therefore, K is a subgroup of $K_{1} \cap K_{2}$ with codimension 3 , and we can see

$$
\begin{equation*}
H_{(s)} \nsubseteq K \quad(s=1,2) . \tag{4.3.2}
\end{equation*}
$$

For, if not so, then a sphere K_{3-s} / K becomes decomposable, which is impossible. Let N be a closed connected normal subgroup of $K_{1} \cap K_{2}$ such that $\left(K_{1} \cap K_{2}\right) / N$ acts on $\left(K_{1} \cap K_{2}\right) / K$ almost effectively. Since $H_{(s)}$ is semi-simple, we can write

$$
N=N_{1} \times N_{2} \times N^{\prime}
$$

where $N_{s}(s=1,2)$ is a closed normal subgroup of $H_{(s)}$ and N^{\prime} is a closed normal subgroup of G^{\prime}. Note that by (4.3.2) $N_{s} \subsetneq H_{(s)}$. Consider the group isomorphism

$$
\frac{K_{1} \cap K_{2}}{N}=\frac{H_{(1)}}{N_{1}} \times \frac{H_{(2)}}{N_{2}} \times \frac{G^{\prime}}{N^{\prime}} .
$$

From $\operatorname{dim}\left(K_{1} \cap K_{2}\right) / K=3$, it follows $\operatorname{dim}\left(K_{1} \cap K_{2}\right) / N \leqq 6$ (see, for example, [4, § 2].) On one hand, $\operatorname{dim} H_{(s)} / N_{s} \geqq 3$ by (4.3.1). Hence we have $\operatorname{dim} H_{(s)} / N_{s}$ $=3$, for $s=1,2$, and $N^{\prime}=G^{\prime}$. Since G acts on G / K almost effectively and $G^{\prime}=N^{\prime}$ is a closed normal subgroup of K, we have $G^{\prime}=\{1\}$ by (1.4.6). Thus $G=H_{1} \times H_{2}$, and
(4.3.3) $\quad H_{(s)}=U_{s} \circ N_{s}(s=1,2)$, where U_{s} is a closed connected simple subgroup of $H_{(s)}$ with $\operatorname{dim} U_{s}=3$ and $N_{1} \times N_{2}$ is a closed normal subgroup of K.

Now we shall show that H_{s} cannot be \boldsymbol{G}_{2}. Suppose, for example, that $H_{2}=\boldsymbol{G}_{2}$. Then $n_{2}=2$ and $K_{1} / K=S^{11}$. Hence $K_{1}=H_{(1)} \times \boldsymbol{G}_{2}$ acts transitively on S^{11}. By (1.3.3), \boldsymbol{G}_{2} does not act transitively on S^{11}. Therefore, by (1.3.1) $H_{(1)}$ acts on S^{11} transitively and we can write $K_{1}=H_{(1)} K$. Then, since $G=H_{1} K_{1}=$ $H_{1} H_{(1)} K=H_{1} K$, we see that H_{1} acts on G / K transitively. It follows that H_{1} acts on $G / K_{2}=H_{2} / H_{(2)}$ transitively, which contradicts the assumption that H_{1} is a normal subgroup of K_{2}. Thus, by (4.3.1) we have
(4.3.4) $\left(H_{s}, H_{(s)}\right)$ is pairwise locally isomorphic to $\left(S p\left(n_{s}+1\right), S p\left(n_{s}\right) \times\right.$ $S p(1))$, for $s=1,2$.

Now by (4.3.3) and (4.3.2), we can assume that

$$
K=\left\{\left.\left(\left.\frac{*}{0} \right\rvert\, \frac{0}{q}\right) \times\left(\left.\frac{*}{0} \right\rvert\, \frac{0}{q}\right) \in S p\left(n_{1}+1\right) \times S p\left(n_{2}+1\right) \right\rvert\, q \in S p(1)\right\}
$$

up to conjugation by an element of

$$
N\left(H_{(1)} ; H_{1}\right) \times N\left(H_{(2)} ; H_{2}\right)=N\left(K_{1} \cap K_{2} ; G\right)
$$

Therefore, the slice representations

$$
\begin{aligned}
& \sigma_{1}: K_{1}=S p\left(n_{1}\right) \times S p(1) \times S p\left(n_{2}+1\right) \rightarrow O\left(4 n_{2}+4\right) \\
& \sigma_{2}: K_{2}=S p\left(n_{1}+1\right) \times S p\left(n_{2}\right) \times S p(1) \rightarrow O\left(4 n_{1}+4\right)
\end{aligned}
$$

are determined uniquely up to conjugation. Moreover, $N(K ; G) / K \cong \boldsymbol{Z}_{2}$, which is generated by the class of the antipodal involution of $K_{s} / K(s=1,2)$. Therefore, in the case (I), (G, M) is uniquely determined up to essential isomorphism.
4.4. Next, we show that the case (II) does not occur. Suppose that

$$
G=H \times G^{\prime}, \quad K_{s}=H_{s} \times G^{\prime}, \quad s=1,2,
$$

where H is a simply connected simple Lie group. By a similar argument to [7, (8.5.2)], we obtain the fact that H_{s} acts transitively on $K_{s} / K, s=1,2$. From (1.2.1), it follows that $n_{1}=n_{2}$ and

$$
H_{s}=S p\left(n_{s}\right) \times S p(1)
$$

or

$$
H_{s}=S p(1) \circ S p(1), \quad \text { for } n_{s}=2
$$

and

$$
K_{s} / K=S^{4 n_{s}+3}
$$

On one hand, by (1.3.3), $S p\left(n_{s}\right)$ cannot act transitively on $S^{4 n_{s}+3}$ and $S p(1)$ cannot act transitively on S^{11}.

Thus in consideration of the examples given in 3.1, the proof of Theorem 4.1.1 is completed.

5. Classification of (G, M) with orientable singular orbits II

5.1. In this section, we classify (G, M) of the type (A) (ii) of Theorem 2.1.4. That is, we suppose that the singular orbits G / K_{1} and G / K_{2} are orientable and
(5.1.1) for $k_{s}=4 n-\operatorname{dim} G / K_{s}, s=1,2$,

$$
k_{1} \equiv 0(\bmod 2), \quad k_{2} \equiv 1(\bmod 2), \quad k_{1}+k_{7}=2 n+3
$$

Then we have two cases:
(5.1.2) when $k_{1}<4 n_{2}+4$, we have $n_{1}=n_{2}$ and

$$
\begin{aligned}
& P\left(G / K_{1} ; t\right)=\left(1+t^{k_{2}-1}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right) \\
& P\left(G / K_{2} ; t\right)=\left(1+t^{k_{1}-1}\right)\left(1+t^{4}+\cdots+t^{4 n_{2}}\right)
\end{aligned}
$$

(5.1.3) when $k_{1}=4 n_{2}+4$, we have $k_{2}=2\left(n_{1}-n_{2}\right)+1$ and

$$
\begin{aligned}
& P\left(G / K_{1} ; t\right)=1+t^{4}+\cdots+t^{2 n_{1}}+t^{k_{2}-1}\left(1+t^{4}+\cdots+t^{4 n_{2}}\right), \\
& P\left(G / K_{2} ; t\right)=\left(1+t^{2 n+1}\right)\left(1+t^{4}+\cdots+t^{4 n_{2}}\right) .
\end{aligned}
$$

We shall show
Theorem 5.1.4. Under the above assumption, such $a(G, M)$ is essentially isomorphic to one of the following :

$$
\begin{array}{ll}
\left(U(n+1), P_{n}(\boldsymbol{H})\right), & n \geqq 1, \\
\left(S U(n+1), P_{n}(\boldsymbol{H})\right), & n \geqq 2, \\
\left(S U(3), \boldsymbol{G}_{2} / S O(4)\right), & n=2,
\end{array}
$$

where $U(n+1)($ resp. $S U(n+1))$ acts naturally via the natural inclusion $U(n+1) \subset$ $S p(n+1)($ resp. $S U(n+1) \subset S p(n+1))$ on $P_{n}(H)=S p(n+1) / S p(n) \times S p(1)$ and $S U(3)$ acts on $\boldsymbol{G}_{2} / S O(4)$ naturally via the natural inclusion $S U(3) \subset \boldsymbol{G}_{2}$.

As in the previous section, we suppose that G acts on M almost effectively and $G=G_{1} \times T^{h}$, where G_{1} is a compact simply connected Lie group and T^{h} is an h-dimensional toral group.
5.2. First, consider the case $n=1$. Then $k_{1}=2, k_{2}=3$ and $G / K_{1}=S^{2}$, $G / K_{2}=S^{1}$. Hence we can write

$$
G=T \times S p(1) \times G^{\prime}, \quad K_{1}=T \times U(1) \times G^{\prime}, \quad K_{2}^{0}=1 \times S p(1) \times G^{\prime}
$$

where G^{\prime} is a compact connected Lie group and $T=U(1)$. Since $K^{0} \subset K_{1} \cap K_{2}^{0}$ $=1 \times U(1) \times G^{\prime}$ and $\operatorname{dim}\left(G / K_{1} \cap K_{2}\right)=\operatorname{dim} G \mid K=3$, we have $K^{0}=K_{1} \cap K_{2}^{0}=$ $1 \times U(1) \times G^{\prime}$. Then we have $G^{\prime}=\{1\}$ by (1.4.6). Hence we can write

$$
G=T \times S p(1), \quad K_{1}=T \times U(1), \quad K_{2}=F \times S p(1),
$$

where F is a finite subgroup of T. Then we have $K=F \times U(1)$ from $K_{2}=K_{2}^{0} K$. Here $F \times 1$ is a closed normal subgroup of G and acts trivially on M. Therefore we can consider the induced action of $G / F \times 1$ on M. Then we have

$$
G=T \times S p(1), \quad K_{1}=T \times U(1), \quad K_{2}=1 \times S p(1), \quad K=1 \times U(1)
$$

It follows that

$$
\begin{aligned}
N(K ; G) & =N(1 \times U(1) ; T \times S p(1)) \\
& =T \times N(U(1) ; S p(1))
\end{aligned}
$$

and

$$
\frac{N(K ; G)}{N(K ; G)^{0}} \cong \frac{N\left(K ; K_{2}\right)}{N\left(K ; K_{2}\right)^{0}} \cong Z_{2},
$$

which is generated by the class of the antipodal involution of $K_{2} / K=S^{2}$. The slice representations

$$
\begin{aligned}
& \sigma_{1}: K_{1}=T \times U(1) \rightarrow O(2), \\
& \sigma_{2}: K_{2}=1 \times S p(1) \rightarrow O(3)
\end{aligned}
$$

are uniquely determined up to conjugation. Therefore, (G, M) is uniquely determined up to essential isomorphism. On one hand, as is seen in 3.2, the pair $\left(U(2), P_{1}(\boldsymbol{H})\right.$), where $U(2)$ acts on $P_{1}(\boldsymbol{H})=S p(2) / S p(1) \times S p(1)$ naturally, is an example of this type. Therefore, Theorem 5.1.4 is proved in case $n=1$.
5.3. Next, we consider the case $n \geqq 2$. Since $k_{2} \geqq 3, G / K_{1}$ is simply connected by (2.1.3). Note that $\operatorname{rank} K_{1}=\operatorname{rank} G$ by our assumption (5.1.2) or (5.1.3). Decompose

$$
G=G^{\prime} \times G^{\prime \prime}
$$

where G^{\prime} is a compact simply connected semi-simple Lie group which acts on G / K_{1} almost effectively and $G^{\prime \prime}$ is a compact connected Lie group which acts on G / K_{1} trivially. Let

$$
p: G=G^{\prime} \times G^{\prime \prime} \rightarrow G^{\prime}
$$

be a natural projection, and let

$$
K_{s}^{\prime}=p\left(K_{s}\right), \quad s=1,2
$$

Then

$$
K_{1}=K_{1}^{\prime} \times G^{\prime \prime}, \quad \operatorname{rank} K_{1}^{\prime}=\operatorname{rank} G^{\prime}
$$

By the same way as in [7, Lemma 9.2.2], we can see that
(5.3.1) $\quad K_{1}^{\prime}$ acts on K_{1} / K transitively and hence
(5.3.2) $\quad G^{\prime}$ acts on G / K transitively.

From an observation on the structure of the cohomology ring of G / K_{1} (cf. (5.1.2), (5.1.3) and (2.1.1)), it follows that either
(I) G^{\prime} is simple
or
(II) G^{\prime} is a product of two simple groups.
5.4. Here we shall show
(5.4.1) The case (II) cannot occur.

To prove this, it suffices to consider the case $G^{\prime \prime}=\{1\}$. Hence, we suppose that

$$
\begin{aligned}
& G=H_{1} \times H_{2}, \\
& K_{1}=H_{(1)} \times H_{(2)},
\end{aligned}
$$

where H_{s} is a compact simply connected simple Lie group and $H_{(s)}$ is its closed connected subgroup for $s=1,2$, and that $H_{1} / H_{(1)}$ is a rational cohomology ($k_{2}-1$)-sphere and $H / H_{(2)}$ is a rational cohomology quaternion projective m space, where $m=n_{1}$, in the case (5.1.2) or $m=n_{1}-1, k_{2}=5$, in the case (5.1.3). Since $K_{1}=H_{(1)} \times H_{(2)}$ acts transitively on a sphere K_{1} / K, either $H_{(1)}$ or $H_{(2)}$ acts transitively on K_{1} / K.
(i) Suppose first that $H_{(1)}$ acts transitively on K_{1} / K. Let

$$
p_{s}: G=H_{1} \times H_{2} \rightarrow H_{s}, \quad s=1,2,
$$

be the natural projection, and let

$$
N=\left(\operatorname{ker} p_{2} \mid K_{2}\right)^{0}
$$

Then there exists a connected closed normal subgroup L of K_{2} such that

$$
K_{2}^{0}=N \circ L
$$

Note that p_{2} maps L isomorphically onto $p_{2}\left(K_{2}^{0}\right)$. Since $K_{2}^{0} / K^{0}=S^{k_{2}-1}$ is an even-dimensional sphere, rank $K^{0}=\operatorname{rank} K_{2}^{0}$. Therefore, if we denote $K^{0}=$ $N^{\prime} \circ L^{\prime}$, where N^{\prime}, L^{\prime} are connected closed subgroup of N, L, respectively, we have $K_{2}^{0} / K^{0}=N \mid N^{\prime} \times L / L^{\prime}$ and hence $N=N^{\prime}$ or $L=L^{\prime}$. If $K^{0}=N^{\prime} \circ L$, then $H_{(2)}=p_{2}\left(K^{0}\right)=p_{2}(L)=p_{2}\left(K_{2}^{0}\right)$ and hence $p_{2}\left(K_{2}\right)=p_{2}\left(K_{2}^{0}\right) p_{2}(K)=p_{2}\left(K^{0}\right) p_{2}(K)=p_{2}(K)$ from $K_{2}=K_{2}^{0} K$. Then the projection $H_{1} \backslash G / K \rightarrow H_{1} \backslash G / K_{2}$ is a homeomorphism and hence $H_{1} \backslash M$ is naturally homeomorphic to a mapping cylinder of the projection $H_{1} \backslash G / K \rightarrow H_{1} \backslash G / K_{1}$. Therefore, $H_{1} \backslash G / K_{1}=H_{2} / H_{(2)}$ is a deformation retract of $H_{1} \backslash M$. Consider the commutative diagram

where i_{1}, j_{1} are the natural inclusions and q, q_{1} are the natural projections. Since j_{1} is a homotopy equivalence, q induces an isomorphism of rational cohomology rings. But, this is impossible by our assumption. Therefore, $K^{0}=N \circ L^{\prime}$, and $H_{(2)}=p_{2}\left(K^{0}\right)=p_{2}\left(L^{\prime}\right) \subset p_{2}(L)=p_{2}\left(K_{2}^{0}\right)$. Since p_{2} gives a local isomorphism $\left(L, L^{\prime}\right) \rightarrow\left(p_{2}(L), H_{(2)}\right)$, we have $p_{2}\left(K_{2}^{0}\right) / H_{(2)}=L / L^{\prime}=K_{2} / K=S^{k_{2}-1}$. Consider the fibration

$$
p_{2}\left(K_{2}^{0}\right) / H_{(2)} \rightarrow H_{2} / H_{(2)} \rightarrow H_{2} / p_{2}\left(K_{2}^{0}\right)
$$

Since $\chi\left(H_{2} / H_{(2)}\right) \neq 0$, we have $\chi\left(H_{2} / p_{2}\left(K_{2}^{0}\right)\right) \neq 0$ and hence $\operatorname{rank} H_{2}=\operatorname{rank} p_{2}\left(K_{2}^{0}\right)$. It follows that $H^{\text {odd }}\left(H_{2} \mid p_{2}\left(K_{2}^{0}\right)\right)=0$ and the homomorphism

$$
H^{*}\left(H_{2} / H_{(2)}\right) \rightarrow H^{*}\left(p_{2}\left(K_{2}^{0}\right) / H_{(2)}\right)
$$

is surjective. Therefore, $k_{2}=5$, that is, $H_{1} / H_{(1)}$ is a rational cohomology 4sphere and by (1.2.1) $\left(H_{1}, H_{(1)}\right)$ is pairwise locally isomorphic to $(S p(2), S p(1) \times$ $S p(1))$. Since $H_{(1)}$ acts transitively on $K_{1} / K=S^{k_{1}-1}$, we have $k_{1}=4$. By (2.1.3), K_{1} and K_{2} are connected. Hence, $n=3$ and $m=1$ in both cases (5.1.2) and (5.1.3). Therefore, $\left(H_{2}, H_{(2)}\right)$ is pairwise locally isomorphic to $(S p(2), S p(1) \times$ $S p(1))$ and $p_{2}\left(K_{2}\right)=H_{2}$. We can write $K_{2}=A \circ B$, where A, B are closed connected normal subgroup of K_{2} such that $A \subset H_{1}=S p(2), \operatorname{dim} A=3$ and $p_{2}(B)=$ H_{2}. Then, considering the centralizer of A in $G=H_{1} \times H_{2}$, we can see $B=H_{2}$. Since K is connected and $\operatorname{rank} K=\operatorname{rank} K_{2}$ by $K_{2} / K=S^{4}$, we may wirte $K=$ $A \circ B^{\prime}$, where B^{\prime} is a connected closed subgroup of B with codimension 4. It is easy to see that $B^{\prime}=H_{(2)}$. Thus we have

$$
\begin{aligned}
& K, A \times S p(2), \\
& K=A \times H_{(2)}, \quad A \subset H_{(1)}
\end{aligned}
$$

By taking a conjugation in K_{1} if necessary, we may assume that $A(\subset S p(2))$ has the form

$$
S p(1) \times 1, \quad 1 \times S p(1), \quad \text { or } \quad \Delta S p(1)
$$

where

$$
\begin{aligned}
& S p(1) \times 1=\left\{\left(\begin{array}{ll}
q & 0 \\
0 & 1
\end{array}\right)\right\}, \quad 1 \times S p(1)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right)\right\}, \\
& \Delta S p(1)=\left\{\left(\begin{array}{ll}
q & 0 \\
0 & q
\end{array}\right)\right\} .
\end{aligned}
$$

We can see that $S_{p}(2) / A$ in 2-connected and

$$
\begin{aligned}
& \pi_{3}(S p(2) / S p(1) \times 1)=\pi_{3}(S p(2) / 1 \times S p(1))=0, \\
& \pi_{3}(S p(2) / \Delta S p(1))=Z_{2}
\end{aligned}
$$

Therefore, $S p(2) / A$ is a rational cohomology 7 -sphere. It follows that only in the case (5.1.3), $H_{(1)}$ may act transitively on K_{1} / K. This implies $n_{1}=2$. But we can see that it is impossible, by an observation on the Mayer-Vietoris cohomology sequence of ($X_{1} \cup X_{2}, X_{1}, X_{2}$), with $X_{s} \approx G / K_{s}, X_{1} \cup X_{2}=M, X_{1} \cap X_{2}=$ G / K (see, 1.4). Thus we see that $H_{(1)}$ cannot act transitively on K_{1} / K.
(ii) We assume that $H_{(2)}$ acts transitively on K_{1} / K. Then, $p_{1}\left(K_{2}\right)$ is equal to either H_{1} or $H_{(1)}$ by the same argument as the case (i). First, suppose that $p_{1}\left(K_{2}\right)=H_{(1)}$. Then, $H_{2} \backslash G / K_{1}=H_{1} / H_{(1)}$ is a deformation retract of $H_{2} \backslash M$.

Consider the commutative diagram

where, i, i_{1}, j are the natural inclusions and q, q_{1} are the natural projections. Since j is a homotopy equivalence, $q \circ i_{1} \circ i$ induces a cohomology isomorphism $\left(q \circ i_{1} \circ i\right)^{*}=\left(i_{1} \circ i\right)^{*} \circ q^{*}$. This implies that q^{*} is injective and $\left(i_{1} \circ i\right)^{*}$ is surjective. Since M is a rational cohomology quaternion projective n-space, we have $k_{2}=5$ and $n=1$. This contradicts our assumption $n=2$. Thus we may assume that $p_{1}\left(K_{2}\right)=H_{1}$. We shall show
(5.4.2) $\quad H_{(1)} \nsubseteq K$.

Suppose that $H_{(1)} \subset K$. Then,

$$
H_{(1)}=K \cap H_{1} \subset K_{2} \cap H_{1} \subset p_{1}\left(K_{2}\right)=H_{1} .
$$

Since H_{1} is simple and $K_{2} \cap H_{1}$ is a normal subgroup of $H_{1}=p_{1}\left(K_{2}\right)$, we have

$$
K_{2}=H_{1} \times N
$$

where N is a closed subgroup of H_{2}, and

$$
K=H_{(1)} \times N
$$

Therefore, $p_{2}(K)=p_{2}\left(K_{2}\right)$. It follows that $H_{2} / H_{(2)}=H_{1} \backslash \boldsymbol{G} / K_{1}$ is a deformation retract of $H_{1} \backslash M$. In the commutative diagram

j_{1} is a homotopy equivalence and $H_{2} / H_{(2)}$ (resp. M) is a rational cohomology quaternion projective m - (resp. n-) space. Hence it follows that $m=n$, which is a contradiction. Thus we obtain (5.4.2).

Since $H_{(1)} / K \cap H_{1}=p_{1}(K) / K \cap H_{1} \cong K /\left(K \cap H_{1}\right) \times\left(K \cap H_{2}\right)=p_{2}(K) / K \cap H_{2}$, and $p_{2}(K) / K \cap H_{2}$ acts freely from the right on the sphere $H_{(2)} / K \cap H_{2}=K_{1} / K$, it follows that
(5.4.3) $K \cap H_{1}$ is a normal subgroup of $H_{(1)}=p_{1}(K)$, with codimension $\leqq 3$.

Now, since k_{2} is odd, $\left(H_{1}, H_{(1)}\right)$ is pairwise locally isomorphic to $(S O(2 a+1)$, $S O(2 a)), a=\left(k_{2}-1\right) / 2$, or to $\left(\boldsymbol{G}_{2}, S U(3)\right)$ if $k_{2}=7$. Hence, by (5.4.2) and (5.4.3),
we see that $\left(H_{1}, H_{(1)}\right)$ is pairwise locally isomorphic to $(S O(2 a+1), S O(2 a))$, $a \leqq 2$. Let $a=2$. Then $\operatorname{dim}\left(K \cap H_{1}\right) \geqq 3$. Since $K \cap H_{1} \subset K_{2} \cap H_{1}$ and $K_{2} \cap H_{1}$ is a closed normal subgroup of $H_{1}=p_{1}\left(K_{2}\right), H_{1}$ is simple and $K \cap H_{1}$ is not finite, we have

$$
K_{2}=H_{1} \times N, \quad N \subset H_{2},
$$

and hence

$$
K=H_{(1)} \times N
$$

But this contradicts (5.4.2). Therefore, $a=1$. Thus only the case (5.1.2) is possible. Then, since $m=n_{1}=n_{2}$ and since $k_{1}+k_{2}=2 n+3, k_{2}=3$, we have that $k_{1}=4 m+2$. By (1.2.1), $\left(H_{2}, H_{(2)}\right)$ is pairwise locally isomorphic to $(S p(m+1), S p(m) \times S p(1))$ or to $\left(G_{2}, S O(4)\right)$ when $m=2$. But in every case, $H_{(2)}$ cannot act transitively on $K_{1} / K=S^{4 m+1}$ by (1.3.3). This contradicts our assumption. Thus the proof of (5.4.1) is completed.
5.5. Now we consider the case (I) in 5.3. Let

$$
G=H \times G^{\prime \prime}, \quad K_{1}=H_{1} \times G^{\prime \prime},
$$

where H is a compact connected simple Lie group and H_{1} is its closed connected subgroup. We recall (5.1.2) and (5.1.3). That is,

$$
\begin{array}{rlrl}
P\left(H / H_{1} ; t\right) & =P\left(G / K_{1} ; t\right) & & \\
& =\left(1+t^{k_{2}-1}\right)\left(1+t^{4}+\cdots+t^{4 n_{1}}\right), & & n_{1}=n_{2}, \\
\text { or } & & =1+t^{4}+\cdots+t^{4 n_{1}}+t^{k_{2}-1}\left(1+t^{4}+\cdots+t^{4 n_{2}}\right), & \\
k_{2}=2\left(n_{1}-n_{2}\right)+1 .
\end{array}
$$

Consider the case $k_{2} \neq 3$. By making use of the table of maximal subgroup in [2, p. 219], we can see that there is no homogeneous space with a Poincaré polynomial

$$
1+t^{4}+\cdots+t^{4 n_{1}}+t^{k_{2}-1}\left(1+t^{4}+\cdots+t^{4 n_{2}}\right), \quad k_{2}=2\left(n_{1}-n_{2}\right)+1
$$

Hence, by (1.2.3), $\left(H, H_{1}\right)$ is pairwise locally isomorphic to one of the following:

$$
\begin{array}{ll}
\left(S O\left(k_{2}+2\right), S O(3) \times S O\left(k_{2}-1\right)\right), & \text { when } k_{2}=n \geqq 5, \\
(S p(3), S p(1) \times S p(1) \times S p(1)), & \text { when } k_{2}=5, n=5, \\
(S p(4), S p(2) \times S p(2)), & \text { when } k_{2}=9, n=5, \\
(S p(5), S p(2) \times S p(3)), & \text { when } k_{2}=9, n=9, \\
\left(F_{4}, H_{1}\right), \text { where } H_{1} \text { is locally isomorphic to } S U(2) \times S p(3), \\
& \text { when } k_{2}=9, n=11 .
\end{array}
$$

Suppose that (H, H_{1}) is pairwise locally isomorphic to $(S p(5), S p(2) \times S p(3))$. Then we can write

$$
\begin{aligned}
& G=S p(5) \times G^{\prime \prime} \\
& K_{1}=S p(2) \times S p(3) \times G^{\prime \prime}
\end{aligned}
$$

From the transitivity of $S p(3)\left(\subset K_{1}\right)$-action on $K_{1} / K=S^{11}$, it follows that K is locally isomorphic to $S p(2) \times S p(2) \times G^{\prime \prime}$. Therefore, we see that $G=S p(5)$ and $K=S p(2) \times S p(2)$. But, on one hand, K must contain $S O(8)$ as a normal subgroup, since $K_{2} / K=S^{8}$. This is a contradiction. Thus (H, H_{1}) cannot be pairwise locally isomorphic to $(S p(5), S p(2) \times S p(3))$. The other cases are all impossible, since H_{1} acts non-transitively on $K_{1} / K=S^{k_{1}-1}$. Therefore, we suppose $k_{2}=3$. By (1.2.2), (H, H_{1}) is pairwise locally isomorphic to one of the following:

$$
\begin{aligned}
& (S U(n+1), S(U(n) \times U(1))), \\
& (S O(n+2), S O(n) \times S O(2)), \\
& (S p((n+1) / 2), S p((n-1) / 2) \times U(1)), \\
& \left(\boldsymbol{G}_{2}, U\right), \text { where } U \text { is locally isomorphic to } U(2), \text { when } n=5 \text {. }
\end{aligned}
$$

Except the first case, these cases are impossible, since by (1.3.3) H_{1} acts on the ($2 n-1$)-sphere K_{1} / K non-transitively. Hence, it suffices to observe the case that (H, H_{1}) is pairwise locally isomorphic to ($S U(n+1), S(U(n) \times U(1))$).
5.6. Suppose that

$$
\begin{aligned}
& G=S U(n+1) \times G^{\prime \prime}, \\
& K_{1}=S(U(n) \times U(1)) \times G^{\prime \prime},
\end{aligned}
$$

where $n \geqq 2$ and $G^{\prime \prime}$ is a connected closed normal subgroup of G, and that G acts on M almost effectively. In this case, $k_{1}=2 n \geqq 4$, and hence K_{2} is connected by (2.1.3). Let

$$
\sigma_{1}: K_{1} \rightarrow O(2 n)
$$

be the slice representation. Then there exists a representation

$$
\tau: K_{1} \rightarrow U(n),
$$

such that the diagram

is commutative up to conjugation. This is a consequence from the fact that σ_{1} is non-trivial on the center of $S(U(n) \times U(1))$ by (1.3.2) and (1.3.3). Moreover, we have $G^{\prime \prime}=\{1\}$ or $G^{\prime \prime}=T$ by (1.4.6). First, let us consider
(i) the case $G^{\prime \prime}=T$.

The representation

$$
\tau: K_{1}=S(U(n) \times U(1)) \times T \rightarrow U(n)
$$

in (5.6.1) is given by

$$
\begin{equation*}
\tau\left(\left(\left.\frac{X}{\mid}\right|_{z}\right) \times w\right)=z^{a} w^{b} X \tag{5.6.2}
\end{equation*}
$$

for some integers a and b, where $X \in U(n), z \in U(1), w \in U(1)=T$ and $(\operatorname{det} X) z$ $=1$. Since we can assume that $\left(I_{n+1} \times T\right) \cap K=I_{n+1} \times\{1\}$ in G, we have $b= \pm 1$. By changing the orientation of T if necessary, we can assume that $b=1$. Note that since $k_{2}=3$, we can write

$$
\begin{align*}
& K_{2}=A \circ N, \\
& K=A^{\prime} \circ N \tag{5.6.3}
\end{align*}
$$

where A, N are closed connected normal subgroups of K_{2}, A is locally isomorphic to $S O(3)$ and A^{\prime} is a closed connected subgroup of A. Note that

$$
K=\tau^{-1}(U(n-1))=\left\{\left(\frac{X^{\prime}}{} \left\lvert\, \begin{array}{ll}
& \tag{5.6.4}\\
\bar{z}^{a} \bar{w} \\
& \\
& \\
& \\
& \\
& \\
\end{array}\right.\right.\right.
$$

where $X^{\prime} \in U(n-1)$.
Now assume $n \geqq 3$. Then the semi-simple part of K is $S U(n-1)$, which has codimension 2 in K and is contained in N. Hence, $S U(n-1)$ is a closed normal subgroup of K_{2} and

$$
K_{2} \subset S(U(n-1) \times U(2)) \times T .
$$

Since $S U(n-1)$ is a normal subgroup of K_{2} with codimension $4, K_{2}$ has the form

$$
K_{2}=(S U(n-1) \times S U(2))^{\circ} T^{\prime}
$$

where

$$
T^{\prime}=\left\{\left(\begin{array}{c|c}
u^{p} I_{n-1} & 0 \\
0 & u^{q} I_{2}
\end{array}\right) \times u^{r}, \quad u \in U(1),(n-1) p+2 q=0\right\} .
$$

Hence

$$
A=S U(2) \times\{1\}
$$

and

$$
K=(S U(n-1) \times S(U(1) \times U(1))) \circ T^{\prime} .
$$

By comparison with (5.6.4), we can see that $a=1$ in (5.6.2). Thus the slice representations

$$
\begin{aligned}
& \sigma_{1}: K_{1} \rightarrow O(2 n), \\
& \sigma_{2}: K_{2} \rightarrow O(3)
\end{aligned}
$$

are uniquely determined up to conjugation. (Note that σ_{2} is tivial on $S U(n-1)$). Moreover,

$$
\frac{N(K ; G)}{N(K ; G)^{0}} \cong \frac{N\left(K ; K_{2}\right)}{N\left(K ; K_{2}\right)^{0}}=\frac{N\left(K ; K_{2}\right)}{K} \cong \boldsymbol{Z}_{2}
$$

whose generator is the class of the antipodal involution of $K_{2} / K=S^{2}$. Therefore, when $n \geqq 3,(G, M)$ is uniquely determined up to essential isomorphism.

Next, let $n=2$. As above, we can assume $b=1$ in (5.6.2). Hence

$$
K=\left\{\left(\begin{array}{lll}
w z^{a-1} & & \tag{5.6.4}\\
& z^{a} \bar{w} & \\
& & z
\end{array}\right) \times w\right\}
$$

Note that since $\operatorname{dim} K=2$ we have that $\operatorname{dim} N=1$. Therefore, A^{\prime} in (5.6.3) is of the form

$$
A^{\prime}=\left\{\left(\begin{array}{lll}
z^{a-1} & & \\
& z^{a} & \\
& & z
\end{array}\right) \times 1\right\}
$$

On one hand, since A^{\prime} is a maximal torus of A in (5.6.3) (which is conjugate to $S O(3)$ or $S U(2)$ in $S U(3)), A^{\prime}$ is conjugate to the group

$$
\left\{\left(\begin{array}{ccc}
u & & \\
& \bar{u} & \\
& & 1
\end{array}\right)\right\} \times\{1\}
$$

in $S U(3) \times T$. Hence, in (5.6.4)', $a=0$ or $a=1$. Denote by τ_{0} resp. τ_{1} the representation τ in (5.6.2) for $a=0, b=1$, resp. $a=1, b=1$. Define an isomorphism

$$
\phi: S U(3) \rightarrow S U(3)
$$

by

$$
\phi(Y)=P \bar{Y} P^{-1}
$$

where

$$
P=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then the diagram

is commutative. Therefore, we shall discuss only the case $a=1$, and assume that

$$
K=\left\{\left(\begin{array}{lll}
w & & \\
& z \bar{w} & \\
& & z
\end{array}\right) \times w\right\} \text { and } \quad A^{\prime}=\left\{\left(\begin{array}{ccc}
1 & & \\
& u & \\
& & \bar{u}
\end{array}\right) \times 1\right\} .
$$

Now let $Z(A)$ be the centralizer of A in G. Note that $N \subset Z(A)^{0}$ since $K_{2}=$ $A \circ N$. If $A=S O(3)$ up to conjugation in $S U(3)$, then $Z(A)^{0}=1 \times T$. From $\operatorname{dim} N=1$, it follows that $N=1 \times T \subset K$ which contradicts the almost effectivity of G-action on M. Hence, we assume that $A=S U(2)$ up to conjugation in $S U(3)$. Then

$$
Z(A)^{0}=\left\{\left(\begin{array}{lll}
\bar{u}^{2} & & \\
& u & \\
& & u
\end{array}\right)\right\} \times T
$$

up to conjugation in $S U(3)$. Therefore,

$$
N=\left\{\left(\begin{array}{ccc}
\bar{u}^{2} & & \\
& u & \\
& & u
\end{array}\right) \times \bar{u}^{2}\right\} \quad \text { and } \quad A=\left\{\left(\frac{1}{0} \left\lvert\, \frac{0}{\bar{X}}\right.\right) \times 1, \quad X \in S U(2)\right\} .
$$

Thus the slice representation

$$
\sigma_{2}: K_{2} \rightarrow O(3)
$$

can be determined uniquely up to conjugation. The other slice representation $\sigma_{1}: K_{1} \rightarrow O(4)$ has already determined and

$$
\frac{N(K ; G)}{N(K ; G)^{\circ}} \cong \boldsymbol{Z}_{2},
$$

whose generator is the class of the antipodal involution of $S^{2}=K_{2} / K$. Therefore, in the present case, (G, M) is determined uniquely up to essential isomorphism.
(ii) The case $G^{\prime \prime}=\{1\}$.

When $n \geqq 3$, by the similar argument as in the case (i), we can see that (G, M) is uniquely determined up to essential isomorphism.

Now assume that $n=2$. Then

$$
\begin{aligned}
& G=S U(3) \\
& K_{1}=S(U(2) \times U(1))
\end{aligned}
$$

and for the slice representation

$$
\sigma_{1}: K_{1} \rightarrow O(4)
$$

there exists a representation

$$
\tau_{a}: K_{1} \rightarrow U(2),
$$

so that the diagram

is commutative. Since τ_{a} is given by

$$
\tau_{a}\left(\begin{array}{cc}
X & 0 \\
0 & z
\end{array}\right)=z^{a} X
$$

where $X \in U(2), z \in U(1),(\operatorname{det} X) z=1$ and a is an integer, we have that

$$
K=\left\{\left(\begin{array}{lll}
z^{a-1} & & \tag{5.6.4}\\
& z^{-a} & \\
& & z
\end{array}\right), z \in U(1)\right\}
$$

Since $\operatorname{dim} K_{2}=3, K_{2}$ is isomorphic to $S O(3)$ or $S U(2)$ up to conjugation in $G=S U(3)$, and

$$
\begin{array}{ll}
K=S O(2), & \text { if } K_{2}=S O(3) \\
K=S(U(1) \times U(1)), & \text { if } K_{2}=S U(2)
\end{array}
$$

Hence, $a=0$ or $a=1$ in (5.6.4) ${ }^{\prime \prime}$. As in the case (i), it suffices to discuss only the case $a=1$, i.e., we can assume that

$$
K=\left\{\left(\begin{array}{lll}
1 & & \\
& z & \\
& & z
\end{array}\right), z \in U(1)\right\}
$$

Define

$$
H= \begin{cases}\left\{\left(\left.\frac{1}{0} \right\rvert\, \frac{0}{X}\right) \in S U(3)\right\}, & \text { if } K_{2}=S U(2) \\ B S O(3) B^{-1}, & \text { if } K_{2}=S O(3)\end{cases}
$$

where

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & i / \sqrt{2} \\
0 & i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

Then $\left(G, K_{2}, K\right)=(G, H, T)$ up to conjugation, where T is a maximal torus of H. Thus the slice representations

$$
\begin{aligned}
& \sigma_{1}: K_{1} \rightarrow O(4) \\
& \sigma_{2}: K_{2} \rightarrow O(3)
\end{aligned}
$$

are uniquely determined up to conjugation and

$$
\begin{aligned}
& \frac{N(T ; S U(3))}{N(T ; S U(3))^{0}} \cong \frac{N(T ; S U(2))}{N(T ; S U(2))^{0}} \cong Z_{2} \\
& \frac{N(S O(2) ; S U(3))}{N(S O(2) ; S U(3))^{0}} \cong \frac{N(S O(2) ; S O(3))}{N(S O(2) ; S O(3))^{0}} \cong Z_{2}
\end{aligned}
$$

which are generated by the classes of the antipodal involutions of 2-dimensional spheres $S U(2) / T$ and $S O(3) / S O(2)$ respectively. Therefore, in each of the case $K_{2}=S U(2)$, or $S O(3),(G, M)$ is uniquely determined up to essential isomorphism. On one hand, we have seen in 3.3, that $\left(U(n+1), P_{n}(\boldsymbol{H})\right)$ is an example of (G, M) of the case (i), $\left(S U(n+1), P_{n}(\boldsymbol{H})\right.$) is an example of (G, M) of the case (ii) and $\left(S U(3), G_{2} / S O(4)\right)$ is an example of (G, M) of the case (ii), $n=2$. Thus the proof of Theorem 5.1.4 is completed.

6. Pairs (G, M) with non-orientable singular orbits

6.1. The purpose of this section is to classify (G, M) up to essential isomorphism, when both singular orbits G / K_{1} and G / K_{2} are non-orientable. We shall prove

Theorem 6.1.1. Such $a(G, M)$ is essentially isomorphic to $\left(S O(3), S^{4}\right)$. Here, S^{4} is considered as the unit sphere of the 5-dimensional irreducible real representation space of $S O(3)$ given in 3.4.

As in the previous sections, we suppose that G acts on M almost effectively and $G=G_{1} \times T^{h}$, where G_{1} is a compact simply connected Lie group and T^{h} is an h-dimensional toral group.
6.2. Consider the pair (G, M) with non-orientable singular orbits G / K_{1}, G / K_{2} and a principal orbit G / K. By Theorem 2.1.4, M is 4-dimensional and

$$
P\left(G / K_{s} ; t\right)=1, \quad P\left(G / K_{s}^{0} ; t\right)=1+t^{2}
$$

for $s=1,2$. First, we shall show
(6.2.1) $G=S p(1)$, and K is a finite subgroup of G.

We can assume that

$$
\begin{aligned}
& G=S p(1) \times G^{\prime} \times T^{h} \\
& K=T \times G^{\prime} \times T^{h}
\end{aligned}
$$

where G^{\prime} is semi-simple, T^{h} is an h-dimensional toral subgroup and T is a maximal torus of $S p(1)$. Since K^{0} is a closed connected subgroup of a compact connected Lie group K_{1}^{0} with $\operatorname{dim} K_{1}^{0} / K^{0}=1$, we can see that K^{0} is a normal subgroup of K_{1}^{0}. Therefore, by (1.4.6), $G^{\prime}=\{1\}$ and $h \leqq 1$. Now we see that

$$
G=S p(1) \times T^{h}, \quad h \leqq 1
$$

and that K_{s}^{0} is a maximal torus of G. Since G / K_{s} is non-orientable and $N\left(K_{s}^{0} ; G\right) / K_{s}^{0} \cong \boldsymbol{Z}_{2}$, we have

$$
K_{s}=N\left(K_{s}^{0} ; G\right), \quad s=1,2
$$

Now we suppose that $h=1$. Then, since G acts almost effectively on G / K by our assumption, $1 \times T^{1}$ is not contained in K and is mapped onto $S O(2)$ by the slice representation

$$
\sigma_{s}: K_{s}=N\left(K_{s}^{0} ; G\right) \rightarrow O(2) .
$$

Since the centralizer of $S O(2)$ in $O(2)$ is $S O(2)$ and since $1 \times T^{1}$ is a central subgroup of $K_{s}, \sigma_{s}\left(K_{s}\right)=S O(2)$. This contradicts the non-orientability of G / K_{s}. Hence h must be 0 , that is, $G=S p(1)$. Since $\operatorname{dim} G / K=3, K$ is a finite subgroup of G.

Note that
(6.2.2) $\sigma_{s}: K_{s} \rightarrow O(2)$ is surjective.

For, since ker $\sigma_{s} \subset K$ and K is finite, we have $\sigma_{s}\left(K_{s}^{0}\right)=S O(2)$. Therefore, $\sigma_{s}\left(K_{s}\right)=O(2)$ follows from the non-orientability of G / K_{s}.
6.3. We shall observe the normalizer of a maximal torus of $S p(1)$. Let $q=a+b i+c j+d k$ (a, b, c and d are real numbers) be a quaternion number. It can be written in the form

$$
q=\alpha+\beta j
$$

where $\alpha=\alpha(q)$ and $\beta=\beta(q)$ are complex numbers. We assume that $q \in S p(1)$, i.e., the norm of $q,|q|=\sqrt{\left|\alpha^{2}\right|+|\beta|^{2}}$, is equal to 1 , throughout this section. Define

$$
T_{q}=\left\{q e^{i \theta} q^{-1} \mid \theta \in \boldsymbol{R}\right\}
$$

This is a maximal torus of $S p(1)$. It is clear that $T_{q}=q T_{1} q^{-1}$. Let $N T_{q}$ be the normalizer of T_{q} in $S p(1)$. Note that

$$
N T_{1}=T_{1} \cup j T_{1}
$$

and

$$
q=\alpha+\beta j \in N T_{1}, \quad \text { if and only if } \alpha \beta=0
$$

The following propositions are easily verified:
For $q=\alpha+\beta j$,
(6.3.1) if $\alpha \beta \neq 0$, then $T_{1} \cap T_{q}=\{ \pm 1\}$, if $\alpha \beta=0$, then $T_{1}=T_{q}$;
(6.3.2) if $|\alpha|=|\beta|$, then $\left(N T_{1}-T_{1}\right) \cap T_{q}=\{ \pm 2 \alpha \beta k\}$,

$$
\left(N T_{q}-T_{q}\right) \cap T_{1}=\{ \pm i\}
$$

(6.3.3) $\quad|\alpha|=|\beta| \Leftrightarrow\left(N T_{1}-T_{1}\right) \cap T_{q} \neq \phi$

$$
\Leftrightarrow\left(N T_{q}-T_{q}\right) \cap T_{1} \neq \phi ;
$$

(6.3.4) if $\alpha \beta \neq 0$, then

$$
\left(N T_{1}-T_{1}\right) \cap\left(N T_{q}-T_{q}\right)=\{ \pm \alpha \beta j| | \alpha \beta \mid\} .
$$

From these propositions, it follows
(6.3.5) for $q=\alpha+\beta j, \alpha \beta \neq 0$,

$$
N T_{1} \cap N T_{q} \cong\left\{\begin{array}{l}
D_{8}^{*}=\{ \pm 1, \pm i, \pm j, \pm k\}, \quad \text { if }|\alpha|=|\beta| \\
Z_{4}, \quad \text { if }|\alpha| \neq|\beta|
\end{array}\right.
$$

Let $N=N\left(D_{8}^{*} ; S p(1)\right)$ be the normalizer of D_{8}^{*} in $S p(1)$. A quaternion $q \in S p(1)$ is in N if and only if both $q i q^{-1}$ and $q j q^{-1}$ are in D_{8}^{*}. We can see that N consists of 48 elements and is isomorphic to the binary octahedral group

$$
O^{*}=\left\{a, b \mid a^{2}=(a b)^{3}=b^{4}, a^{4}=1\right\}
$$

under the correspondence

$$
\begin{aligned}
& a \leftrightarrow(i+k) / \sqrt{2}, \\
& b \leftrightarrow(1-k) / \sqrt{2} .
\end{aligned}
$$

Moreover, we can see

$$
N\left(D_{8}^{*} ; N T_{1}\right)=D_{8}^{*} \cup\{(\pm 1 \pm i) / \sqrt{2},(\pm j \pm k) / \sqrt{2}\}
$$

6.4. For a surjective representation

$$
N T_{1} \rightarrow O(2)
$$

we can find an equivalent representation σ, satisfying

$$
\begin{aligned}
& \sigma\left(e^{i \theta}\right)=\left(\begin{array}{rr}
\cos 2 t \theta & -\sin 2 t \theta \\
\sin 2 t \theta & \cos 2 t \theta
\end{array}\right) \\
& \sigma(j)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

where t is a positive integer. Let the inclusion $O(1) \subset O(2)$ be given by

$$
\pm 1 \mapsto\left(\begin{array}{rr}
\pm 1 & 0 \\
0 & 1
\end{array}\right)
$$

Then there is an isomorphism
(6.4.1) $\quad \sigma^{-1}(O(1))=D_{4 t}^{*}=\left\{x, y \mid x^{t}=y^{2}=(x y)^{2}, y^{4}=1\right\}$
defined by

$$
\begin{aligned}
\exp (i \pi) / t & \leftrightarrow x . \\
j & \leftrightarrow y .
\end{aligned}
$$

Next, consider the homomorphism

$$
\begin{equation*}
\pi_{1}\left(S p(1) / D_{4 t}^{*}\right) \rightarrow \pi_{1}\left(S p(1) / N T_{1}\right) \tag{6.4.2}
\end{equation*}
$$

induced by the natural projection. Note that

$$
\begin{aligned}
& \pi_{1}\left(S p(1) / D_{4 t}^{*}\right) \cong D_{4 t}^{*} \\
& \pi_{1}\left(S p(1) / N T_{1}\right) \cong Z_{2}
\end{aligned}
$$

Since the diagram, which consists of the natural projections,

is commutative and the right vertical map is a double covering, we can see

$$
\begin{equation*}
p_{*}(x)=1, \quad p_{*}(y) \neq 1 \tag{6.4.3}
\end{equation*}
$$

where 1 means the unit element of $\pi_{1}\left(S p(1) / N T_{1}\right) \cong Z_{2}$.
6.5. Now we go back to the consideration on (G, M) and claim
(6.5.1) $\left(G, K_{1}, K_{2}\right)$ is uniquely determined up to conjugation by elements of G, and $K=K_{1} \cap K_{2}$.

Recall that $G=S p(1), K_{s}^{0}$ is a maximal torus of G and $K_{s}=N\left(K_{s}^{0} ; G\right)$, $s=1,2$. First, we assume $K_{1}=K_{2}$. Then, since we can put $K_{s}^{0}=T_{1}$ and $K_{s}=N T_{1}$ (see, 6.3.),

$$
p_{s_{*}}: \pi_{1}(G / K) \rightarrow \pi_{1}\left(G / K_{s}\right), \quad s=1,2
$$

is identified with the homomorphism (6.4.2). Hence $\operatorname{ker} p_{1_{*}}=\operatorname{ker} p_{2_{*}}$ is a proper normal subgroup of K. On the other hand, by [7, (2.4.2)], $\pi_{1}(G / K)=\left(\operatorname{ker} p_{1 *}\right)$ $\times\left(\operatorname{ker} p_{2 *}\right)$, which shows that our assumption fails. Therefore, $K_{1} \neq K_{2}$. Since $K_{s}=N\left(K_{s}^{0} ; G\right), K_{1}^{0} \neq K_{2}^{0}$. Thus we can suppose

$$
\left(G, K_{1}, K_{2}\right)=\left(S p(1), N T_{1}, N T_{q}\right)
$$

for some $q \in S p(1)$. Since $T_{1} \neq T_{q}$, we have $\alpha(q) \beta(q) \neq 0$ by (6.3.1).
Suppose $|\alpha| \neq|\beta|$. Then by (6.3.5) we have

$$
K_{1} \cap K_{2} \cong Z_{4} .
$$

In the commutative diagram

$p_{s_{*}}$ is surjective by (6.4.3). Hence, the generator of $K_{1} \cap K_{2}$ goes into the non-trivial element of $\pi_{1}\left(G / K_{s}\right) \cong \boldsymbol{Z}_{2}$. It follows that $K=K_{1} \cap K_{2}$ and ker $p_{1 *}=$ ker $p_{2 *}$ is a proper normal subgroup of K. This contradicts [7, (2.4.2)]. Thus we have $|\alpha|=|\beta|$. Then $2 \alpha \beta i=u^{-2}$ for some $u \in U(1)$, and hence

$$
\left(S p(1), u N T_{1} u^{-1}, u N T_{q} u^{-1}\right)=\left(S p(1), N T_{1}, N T_{r}\right)
$$

where $r=(1+k) / \sqrt{2}$. Therefore, we can assume $q=(1+k) / \sqrt{2}$. Then we have

$$
K_{1} \cap K_{2} \cong D_{8}^{*}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

Consider the commutative diagram

Here, each homomorphism is induced by the corresponding natural projection. By (6.4.1), $D_{4 t}^{*} \cong K \subset K_{1} \cap K_{2} \cong D_{8}^{*}$, and hence $t \leqq 2$. Suppose $t=1$. Then $K=\boldsymbol{Z}_{4}$ is generated by y, and $p_{1 *}(y) \neq 1, p_{2 *}(y) \neq 1$ by (6.4.3). It follows that
$\operatorname{ker} p_{1 *}=\operatorname{ker} p_{2_{*}} \simeq \boldsymbol{Z}_{2}$ is a proper normal subgroup of $K=\boldsymbol{Z}_{4}$. This contradicts [7, (2.4.2)]. Therefore, $t=2$ and $K=K_{1} \cap K_{2}$. Hence the slice representations of K_{1}, K_{2} are uniquely determined up to conjugation by (6.4.1).

Now, let us define

$$
X=S p(1) \underset{N r_{1}}{\times} \underset{\sigma}{D^{2}},
$$

where

$$
\sigma: N T_{1} \rightarrow O(2)
$$

is given by

$$
\begin{aligned}
& \sigma\left(e^{i \theta}\right)=\left(\begin{array}{rr}
\cos 4 \theta & -\sin 4 \theta \\
\sin 4 \theta & \cos 4 \theta
\end{array}\right), \\
& \sigma(j)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

and $N T_{1}$ acts on D^{2} via σ. By the above consideration, we can assume

$$
M(f)=X \bigcup_{f} X
$$

as $S p(1)$-manifold, where f is an $S p(1)$-diffeomorphism on $\partial X=S p(1) / D_{8}^{*}$. There exists $q=\alpha+\beta j \in N\left(D_{8}^{*} ; S p(1)\right)$ such that $f=R_{q}$ (right translation by q). (See, (1.4.5).) Since the isotropy group at $q N T_{1}$ is $q N T_{1} q^{-1}=N T_{q}$, we have $|\alpha|=|\beta|$.

Then there exist $u, v \in N\left(D_{8}^{*} ; N T_{1}\right)$ such that $q=u \frac{1+k}{\sqrt{2}} v$. Therefore

$$
M\left(R_{q}\right)=M\left(R_{(1+k) / \sqrt{2}}\right)
$$

as $S p(1)$-manifold, because they are identified by $S p(1)$-diffeomorphism

$$
\text { (extension of } \left.R_{u^{-1}}\right) \cup\left(\text { extension of } R_{v}\right) .
$$

Thus the pair (G, M) of the type (C) of Theorem 2.1.4 is unique up to essential isomorphism. On one hand, there is an example of this type as is seen in 3.4. Therefore, the proof of Theorem 6.1.1 is completed.

References

[1] A. Borel: Le plan projectif des octaves et les sphères comme espaces homogenes, C. R. Acad. Sci. Paris 230 (1950), 1378-1380.
[2] A. Borel and J. de Siebenthal: Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221.
[3] W.C. Hsiang and W.Y. Hsiang: Classification of differentiable actions on S^{n}, R^{n}, and D^{n} with S^{k} as the principal orbit type, Ann. of Math. 82 (1965), 421-433.
[4] K. Jänich: Differenzierbare G-Mannigfaltigkeiten, Lecture Notes in Math. 59 (1968), Springer-Verlag.
[5] D. Montgomery and H. Samelson: Transformation groups on spheres, Ann. of Math. 44 (1943), 454-470.
[6] T. Nagano: Homogeneous sphere bundles and the isotropic Riemann manifolds, Nagoya Math. J. 15 (1959), 29-55.
[7] F. Uchida: Classification of compact transformation groups on cohomology complex projective space with codimension one orbits, Japan. J. Math. 3 (1977), 141-189.
[8] H.C. Wang: Compact transformation groups of S^{n} with an ($n-1$)-dimensional orbit, Amer. J. Math. 82 (1960), 698-748.

