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0. Introduction

Let M be an orientable closed 4n-dimensional smooth manifold, whose
rational cohomology algebra is isomorphic to that of a quaternion projective
n-space P,(H). We call such a manifold M a rational cohomology quaternion
projective n-space.

Let (G, M) be a pair of a compact connected Lie group G and a simply
connected rational cohomology quaternion projective n-space M, on which G
acts smoothly with a codimension one orbit G/K. We say that (G, M) is isomor-
phic to (G’, M), if there exist a Lie group isomorphism %: G—G” and a diffeo-
morphism f: M—>M’ satisfying

flgx) = h()f(x) ,

for every g G and for every x& M.
When G acts on M, H= NG, (the intersection of all isotropy groups) is a
reM

closed normal subgroup of G. Since H acts on M trivially, the G-action on M
induces an effective G/H-action on M. We say that (G, M) is essentially iso-
morphic to (G’, M’), if there exists an isomorphism between the pairs with
effective actions (G/H, M) and (G’/|H’, M’).

The purpose of the present paper is to give a complete classification of
such pairs (G, M) up to essential isomorphism. We shall show

Main Theorem. Such a pair (G, M) is essentially isomorphic to one of the
pairs listed in the next table.



476 K. IwaTa

n (G, M) action
n=1 (G, P,(H)) natural (1)
m+n,+1, n,>0 (Sp(m~+1)x Sp(n,+1), P,(H)) natural
n=1 (U(n+1), P,(H)) natural
n=2 (SU(n+1), P,(H)) natural
2 (SUQB), G,/SO(4)) natural
1 (S0@), S 2)

(1) G=S8p(n), Sp(n)x U(1), or Sp(n)x Sp(1)C Sp(n-+1).
(2) SO(3) acts on S* by a 5-dimensional irreducible real representation.

When n=1, M is a homotopy 4-sphere. Our main theorem for n=1
complements a lack of Wang’s theorem [8], in which he classified (G, M) when
M is a homotopy k-sphere for even k44 and for odd 2>31. F. Uchida [7] gave
a classification of pairs (G, M) when M is a rational cohomology complex pro-
jective space. To show our theorem, we follow a similar procedure. First, we
recall in Section 1 some necessary facts on compact Lie groups, homogeneous
spaces and G-manifolds with codimension one orbits. Section 2 is devoted to
cohomological consideration. Qur aim is to prove Theorem 2.1.4, which
gives necessary conditions for (G, M) to be a pair of our problem. In Section
3, for each (G, M) appeared in our main theorem, we investigate the orbit types
of M. Finally in the last three sections, we prove that there exists no pair
(G, M) which is not essentially isomorphic to one of the pairs listed in our main
theorem.

The author wishes to extend his hearty thanks to Professor Fuichi Uchida,
who introduced him to the problem discussed here, read critically the manuscript
and gave him helpful suggestions in many parts.

1. Compact Lie groups and manifolds with group actions

1.1. We give here some definitions and propositions which are necessary
for the subsequent discussion.

Let Gy, -+, G, be compact Lie groups. If G is a factor group of G, X -
X G, by a finite normal subgroup, then we say that G is an essentially direct
product of G, -+, G}, and denote

G = Gyo-+0G,.
As is well known,
(1.1.1) Every compact connected Lie group G has the form

G = TOOGIO.‘.OG.& )
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where T is a toral subgroup of G and G, s=1, -+, k, are closed connected simple
normal subgroups of G.
The next two propositions will be used in the later sections without mention.

(1.1.2) Let G be a compact connected Lie group and G, its closed con-
nected normal subgroup. Then there exists a closed connected normal sub-

group G, of G, satisfying G=G,0G,.

(1.1.3) Let G be an essentially direct product of compact connected Lie
groups Gy, -+, G, and U a closed connected subgroup of G with rank U=rank G.
Then, for every s, s=1, ---, k, there exists a closed connected subgroup U, of

G, such that

rank U, =rank G,, U= Uo-+-0U,,
G/U= GI/UIX"'XGk/Uk.

1.2. Let (G, U) be a pair of a compact connected simple Lie group G and
its closed connected subgroup U, with rank U=rank G and let p: G—G be the
universal covering. We say that such two pairs (G,, U,) and (G,, U,) are
pairwise locally isomorphic if there exists an isomorphism k: G,—G, such
that hp7'(U,)=pz (U,). Inthe following propositions, we list the homogeneous
spaces of simple Lie groups with certain Poincaré polynomials. They can be
shown by a similar argument to Section 4 of [7].

(1.2.1) If P(G]U; t)=1+t*+---4t', then (G, U) is pairwise locally iso-
morphic to

(Sp(a+1), Sp(a) x Sp(1)) ,

or

(G5, SO4)) incasea=2.

(1.2.2) If P(G|U; t)=1-+8+---+1#%, then (G, U) is pairwise locally iso-
morphic to one of the following:
(SUG+1), S(UB)x U(1))) ,
(SO(2s+1), SO(2s—1)x SO(2)), where s=(b+1)/2,
(Sp(s), Sp(s—1)x U(1)), where s=(b+1)/2,
(G,, H), where H is locally isomorphic to U(2), in case b=5.

(1.2.3) If P(G|U; )=+ (14t*4---+1*), a=2, then (G, U) is pair-
wise locally isomorphic to one of the following:

(SO(2a+3), SO(3)x SO(2a)) , incase a =56=2,
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(Sp(3), Sp(1)x Sp(1)x Sp(1)),  incasea=2,b=2,
(Sp(4), Sp(2)x Sp(2)) , incasea=4,b=2,
(Sp(5), Sp(2)x Sp(3)) , incasea =4, b=4,

(F,, H), where H is locally isomorphic to SU(2)x Sp(3) ,
incasea=4,b=2>5.

1.3. We give a summary of some results on compact Lie group actions on
spheres, proved by Montgomery-Samelson [5], Borel [1] and Nagano [6]. See,
also W.C. Hsiang and W.Y. Hsiang [3].

(1.3.1) ([5]) Let G, and G, be compact connected Lie groups such that
the product G, X G, acts on a homotopy sphere > transitively. Then, one of
two groups G,, G, acts already on > transitively.

Or, more precisely,

(1.3.2) Let G be a compact connected Lie group which acts on a homo-
topy sphere > effectively and transitively with the isotropy subgroup H. Then
there exists a closed simple normal subgroup G, of G such that G,/G,NH=>".

(1.3.3) ([5], [1] and [6]) Let G, be a compact connected simple Lie group
which acts on a homotopy n-sphere > effectively and transitively with the iso-
tropy subgroup H,. Then,

(i) if mis even, (G,, H,)=(SO(n-+1), SO(n)) or (G,, SU(3)) in case n=6.

(ii) if »=2s—1 and s is odd, (G,, H,)==(SO(n+1), SO(n)) or (SU(s),
SU(s—1)).

(iii) if »=2s—1 and s is even, (G,, H,)==(SO(n+ 1), SO(n)), (SU(s),
SU(s—1)), (Sp(s/2), Sp(s/2—1)), (Spin(9), Spin (7)) in case n=15, or (Spin (7),
G)) in case n=7.

In each case, ) is the standard n-sphere and the action of G, on >3=S8" is
linear.

1.4. We refer to some results due to Uchida, concerning manifolds with
Lie group actions. For the proofs, see Sections 1 and 5 of [7].
Assume that G is a compact connected Lie group.

(1.4.1) Let M be a compact connected smooth manifold without boundary
on which G acts smoothly with an orbit G(x) of codimension one, satisfying

HYM; Z,)=0.

Then G(x)=G/|K is a principal orbit and there exist just two singular orbits
G(x,)=G|K, and G(x;)=G|K,, and we can assume KCK,NK, Moreover,
for each G(x,), s=1, 2, there is a closed invariant tubular neighborhood X,
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such that
M= XIU‘XZ and XlnX2=8Xl=6X2=G/K
as G-manifolds.

X, is a compact connected smooth manifold on which G acts smoothly and
has the form

X, = GXD*,
Ks
Here, k, is the codimension of G(x,) in M and K acts on k,~dimensional disk

D#s via the slice representation o,: K,— O(k,). This K -action is transitive on
the (k,—1)-sphere 8D*. Since 0X,=G/K, as G-manifolds,

(1.4.2) 'The fibre bundle K,/K—-G/K—G|K, is a (k,—1)-sphere bundle.

In the above situation, assume that M(f)=X, U X, is obtained from X, and
f

X, by identifying their boundaries under a G-equivariant diffeomorphism
f: 0X,—0X, The following propositions will be used to classify the pairs
(G, M) and to construct a representative example of each essential isomorphism
class.

(1.4.3) Let f, f’: 0X,—0X, be G-equivariant diffeomorphisms. Then,
M(f) is equivariantly diffeomorphic to M(f’) as G-manifolds, if one of the fol-
lowing conditions is satisfied:

(i) fis G-diffeotopic to f,
(i) f7Y’ is extendable to a G-equivariant diffeomorphism on X,
(iii) f’f~! is extendable to a G-equivariant diffeomorphism on X,.

(1.4.4) The set of all G-equivariant diffeomorphisms of 0X, onto 0.X,
is naturally identified with the factor group N(K; G)/K. That is, we have a
group isomorphism

Diff’(G/K, G|K)=N(K; G)/K .
Here, N(K; G) is the normalizer of K in G.

(1.4.5) Let K, and K be closed subgroups of G and KCK,. Then there
exists a natural G-equivariant diffeomorphism
f: GXK K — GIK,
K

defined by f([g, hK])=ghK for g&G and heK,. And we have, for each
xEN(K; K,), the following commutative diagram
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exkK-Ls 6K
K

1% R,,l lR,

GxK/K-1s K,
Ks

where R, is an equivariant diffeomorphism given by a right translation.
To classify (G, M) up to essential isomorphism, we can assume that G acts
almost effectively on M, that is, H= N G, is a finite group. Then G acts almost
reM

effectively on the principal orbit G/K and hence

(1.4.6) K does not contain any positive dimensional closed normal sub-
group of G.

2. Cohomology of orbits

2.1. From now on, we assume that G is a compact connected Lie group
and M is a simply connected rational cohomology quaternion projective n-space
on which G acts smoothly with a codimension one orbit G/K. Then, by (1.4.1)
there exist just two singular orbits G/K, and G/K, and we can assume that
KcK,NK, Letusdenote by u a generator of H*(M; Q), that is,

H*(M; Q) = Q[u][u*?, degu =4,
and let
f¥: H¥(M; Q) — H*(G/K,; Q) (s=1,2)

be the homomorphism induced by the inclusion f,: G/K,C M. Then we can
show the following proposition, in a similar way as in [7, Lemma 2.1.1].

(2.1.1) Let n, be a non-negative integer such that
f¥w™)£0 and f¥u"*)=0.

Then we have n=n,+n,}1.

We denote by &, the codimension of G/K, in M, that is,

k, = 4n—dim G/K;,

for s=1 and 2. 'Then we have

(2.1.2) 2=k, =4(n—n,).

We notice the following:

(2.1.3) ([7, Lemma 2.2.3]) If k,>2, then G/K, is simply connected and
K, is connected.
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Now we shall prove

Theorem 2.1.4.
(A) Assume that G/K, and G|K, are orientable.
(1) If ky—k, is even, then each G|K, is a rational cohomology quaternion
projective n-space and k,—=4(n—n,), for s=1, 2.
(if) If k, is even and k, is odd, then k,~+k,—=2n+3 and there are two cases :
(a) m=n, and
P(G|K,; t) = (1 -+ (14244 oo +20m)
P(GIK,; t) = (1 4+t Y1 4-#4+4- oo f-2472) |

(b) ky=4n,+4, ky=2(n,—n,)-+1 and

P(GIK,; t) = 1+ttt (1 g 17),
P(GIKy; £) = (185114 oo - t192)

(B) The case that G|K, is orientable and G|K, is non-orientable does not
happen.
(C) Assume that G|K, and G|K, are non-orientable. Then n=1 and

PGIK; 1) =1,
P(GIK%; 1) = 1+2,

for s=1,2. Here K? is the identity component of K ,.

This theorem can be proved by a completely analogous discussion to the
proof of Theorem 2.2.2 in [7]. Therefore, we shall give only an outline of the
proof in the remainder of this section.

2.2. Asis seen in 1.4, there is a closed invariant tubular neighborhood
X, of G/K, in M, such that

M=XUX, and X,NX,=0X,=0X,.
By the Poincaré duality for X, we obtain
P(X,, 0X,;t) =t"P(X,; t™").
Moreover, if G/K, is orientable, we have
P(X,, 0X,; t) = tP(G/K,; t),

by Thom isomorphism.
First, we assume that both G/K, and G/K, are orientable. Then, in consi-
deration of the rational cohomology exact sequence for (M, X,), we obtain
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P(G/K;; t) = th:"'P(G|K,; t)+ 1484+ - - ttm— g7} (gtm oo - gi7)
and
(2.2.1) P(G|K,; t) = t7'P(G|K,; t)+ 142+ oo - pime— g7 (g2t oo - gt7),

Using these equations, we can prove the part (A) of Theorem 2.1.4 in the same
way as in [7, 2.3]. Notice that to get (2.2.1) we require only the orientability
of G/K,.

Next, we assume that G/K, is non-orientable. Then, by (2.1.2) and (2.1.3),
we have k,=2. We can show by the argument due to Uchida [7, 2.4~2.6]

(see also Wang [8]),
22 POIKSED=(+E9PGIK 0,
T P(GIKY 1) = (14+84T)P(GIKy; )= Plm, mi 1),

where
(1+t—1)(t4n1+4+...+t4”2)’ lf n1<n2 ’

P(nl:”z;t):{ 0. ifn>n
’ 1=1°2

If G/K, is orientable, then by the use of the Poincaré duality for G/K,, we
obtain from (2.2.1),

1" IP(G|K,; t7") = P(G|K,; t)+- "3t oo ttm2) — (124 - - 20m) |
By the Poincaré duality for G/K3 and (2.2.2), we have
t"P(G|K,; t™") = t#:P(G|K,; t) .
From these two equations and (2.2.1), it follows
(1—*)P(G[K,; t) = (1—#kztimt2)(14- 4+ 4-1im)
- (BT =) (14244 oo - 1072)

The both sides of this equation are divisible by 1—# and we have X(G/K,)=
P(G/K,; —1)%=0. Hence P(G/K,; t) is an even function. Therefore, k,=2n,+2
and we have

(1—t"*P(G/K,; t) = (1—"*3) (1244 -1m) .
It follows
(14+B)P(GIK,; t) = 144t 4-t* .
This is impossible. Hence, the case that G|/K, is orientable and G/K, is non-
orientable can not occur, and (B) of Theorem 2.1.4 is proved.

Finally, we assume that G/K, and G/K, are both non-orientable. Then
k,=k,=2. As in [7, 2.7], we have n,—n, and
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P(G|K!; t) = (1+8)P(G/K; t),
P(GIK®; ) = (1+8)P(G/K ; 1),

for s=1,2. Considering the Mayer-Vietoris cohomology sequence for
(M; X,, X,), we have

(2.24)  (1—B)P(GIKy; 1) = (1— ") (1 -4 oo m) |

(2.2.3)

Therefore, X(G/K,)#0 and P(G/K,; t) is an even function. Hence by (2.2.4)
we have #,=0 and P(G/K,; t)=1. By (2.2.3), we obtain P(G/K; t)=1 and
P(G|K?; t)=1+2, for s=1 and 2. Thus (C) of Theorem 2.1.4 is proved.

3. The representative examples of the pairs (G, M)

3.1. Here we give some examples of pairs (G, M), each of which consists
of a compact connected Lie group G and a simply connected rational cohomology
quaternion projective space M on which G acts smoothly with a 1-codimensional
orbit.

Let n=n+n,+1. In case n,=0, we choose Sp(n)x1, Sp(n)x U(1), or
Sp(n)x Sp(1) for G. And in case n,>0, #,>0, we set simply G=Sp(n,+1) X
Sp(n,+-1). Then, the natural action of G on P,(H)=P(H""'@ H"*") is transi-
tive on a (4n—1)-dimensional submanifold

X={(w, v)| [ul’=|0]?, weH"",veH""},

and has two singular orbits P, (H) and P, (H). This gives an example of
(G, M) of the type (A) (i) in Theorem 2.1.4.

3.2. We shall consider the natural action of U(n+1) on P,(H)=Sp(n-+1)/
Sp(n)x Sp(1). Let (uq, uy, +++, u,) be the homogeneous coordinate of a point of
P,(H) with the identification (uyg, %,q, -+, u,q)~(Ug,%;, ***, u,), for g€ H and
g¢=+0. Consider the orbit G(u(t)) of a point u(t)=(0, --+, 0, ¢, j)€P,(H). Here,
¢t is a real number with 0<¢<1 and j is the element in the standard basis
{1, 4,7, k} of H. Then, it is easy to see that

Gu(0)) = G/Um)x U(1),
G(u(1)) = G|Un—1)x SU(2)

are singular orbits and for every ¢, 0<t<1,
G(u(t)) = G|U(n—1)x S(U(1)x U(1))

is principal. 'This gives an example of (G, M) of the type (A) (ii) in Theorem
2.14. Note that when =2 we can take SU(n+1) as G instead of U(n-+1).

3.3. There is an another example of (G, M) of the above type in case n=2.
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Let Cay be the division algebra of Cayley numbers. It is an 8-dimensional
real vector space with a basis {e, ¢, ‘-, ¢;} and its non-associative algebra
structure is given as follows:

=1 =—-1 (1=i£7),
ee,= —ee; (1+j;1=4,j<7),
€16, = €3, €16, = 65 €6 = €7, €36, = €7,
€365 = €5, €305 = €7, €365 = €y,
and
a(ab)=a’b, (ab)b=ab?, for a, beCay .

The group of automorphisms of Cay is the exceptional Lie group G,. Since every
element of G, induces an orthogonal transformation on the linear subspace R’
of Cay spanned by {e,, -+, ¢;}, there exists the canonical inclusion G,cSO(7),
via which G, acts on S° transitively. The isotropy group (G,),, at e, is isomor-
phic to SU(3), and (G,), N(G,)., is isomorphic to SU(2). The canonical
inclusions

(G2),, N (G2)., S (G),, = SO(7)

correspond to the inclusions

SU(2)cSUB)cSO0(7),
which are defined by
1
1 0
1 0 0 .
at+bi —ct+di
=10 atbi —ctdi|— a —b —c —d
c+di a—b b a d —c
0 di —bi
craamo O e —a a4 b
d ¢ —b a).

Here, a, b, ¢ and d are real numbers with a®?4-b?+c?*+d*=1. Let
S = {x&Cay|x = ae,--be,+-ce,-de;, a>+b*~+-c*+d? =1} .
For x=ae,+be,+-ce,+de,= S, we define an R-linear homomorphism
h,: Cay — Cay
by
(xe;)x (=0, 1, 2, 3).

h.(e)) =
() =1 4, (i=4, 5, 6,7).
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Then, A, is represented by

bt —c2—d? 2(bc—ad) 2(ac+bd)
2(ad-+bc) aA—b-2—d? 2(cd—ab) 0
2(bd— ac) 2(ab+cd) a?—b*—c2-d?
A, = a b —c d
—b a d ¢
0
c —d b
—d —¢c —b a).

Since det A,=1 and

h(e)hi(e;) = hiee;),
for every 7 and j (0<1, j <7), we have h,=G,. Moreover, for x, y= S, we define
h.h, by

(hehy)(u) = hy(hy(u)),

forallucCay. Then we can show h,h,=h,,. Since h, is the identity automor-
phism of Cay, it follows that

A=1{4,|x=S}
can be considered as a subgroup of G,. As above, we identify SU(2) with a

subgroup of G,. Then, ANSU(2)=Z, and A4 is the identity component of
the centralizer of SU(2) in G,. Define

H = A4.SUQ2) = Ax SU(?2)|Z, .

By (1.2.1), the homogeneous space M=G,/H is an 8-dimensional rational
cohomology quaternion projective 2-space. Let us consider the SU(3)-action
on M defined by the canonical inclusion SU(3)=<(G,), CG,. Define
x, = (1—1t)e,+te,= Cay
for t, 0=<t<1. Since G,-action on S°® is transitive, there exist an element
2,€G, and a positive number 7, such that
g%y =148, .
Define
H,= {heH |hx,=x} .
Then we can see that the isotropy group at g,H M is g,H,g7. Since
H, = (G,).,NH=S(U(2)x U(1)),
H,= {heH |he, = e} =SO0(3),
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we have two singular orbits SU(3)/S(U(2) N U(1)) and SU(3)/SO(3). Moreover,
we have dim H,=1 for 0<¢<1, since an element % of H is in H, if and only
if he,=e, and he,—e,. Hence the orbit through g,H (0<t<1) is of codimension
1 and principal.

3.4. Consider the space V of all symmetric 33 real matrices with trace
0. This is a real vector space of dimension 5. We introduce an inner product
¢, >in ¥ by

(X, Y> = trace XY,

for X, YeV. Define an SO(3)-action p on V as follows: For each A€.S0(3),
set py: V=V by
pAX)=AXA™, Xel.

It is easy to see that p, is well-defined and that {, > is p,-invariant. Now we
restrict p on the unit sphere S(¥) in V. Define

2cos%t 0 0
X, = \7% 0 ——cos%t—{—\/ug sin %t 0
0 0 —cos T t—+/3 sin 7t
cos 3 v/ 3 sin 3

for t, 0=t<1. Then the isotropy group at X, is the group

& 0 0
0 & o )I61=:L_.1) &= 41
0 0 &¢§ |

for 0<t<<1, and hence the orbit through X, is of codimension 1 for 0<<z<1.
The isotropy groups at X, and X, are

S(O(1)x0(2)) and S(O(2)x O(1))

respectively. The corresponding orbits are real projective planes. This gives
an example of the type (C) of Theorem 2.1.4.

4. Classification of (G, M) with orientable singular orbits I

4.1. In this section, we classify (G, M) of the type (A) (i) in Theorem 2.1.4.
We assume that the two singular orbits G/K,, G/K, are orientable and even-
dimensional. Then, by Theorem 2.1.4 and (2.1.1), G/K, (s=1, 2) is a rational
cohomology quaternion projective #n,-space and n=n,+n,+1. We shall prove
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Theorem 4.1.1. Under the above assumption, (G, M) is essentially isomorphic
to

(Sp(n)x H', P,(H)), H' = {1}, UQ1) or Sp(1),  in case m=0,

(Sp(m,~+1) X Sp(n,+1), P,(H)), in case mn, + 0 .

Here, in both cases, the group acts naturally on P,(H)=Sp(n+1)/Sp(n)x Sp(1)
as a subgroup of Sp(n+1).

Without loss of generality, we can suppose that G-action on M is almost
effective and that G=G,x T*, where G, is a simply connected compact Lie
group and T* is an A-dimensional toral group.

4.2. First, consider the case m=n,—=0. Then, k,=4n. Therefore
K,=G and G/K=K,/K is a (4n—1)-sphere. It follows that G/K, is simply
connected and the groups K, and K are connected. By (1.3.2), there exists a
simple closed connected normal subgroup H of G, which acts transitively on
the (4n—1)-sphere G/K, and we can write

G=HxH',

where H’ is a connected closed normal subgroup of G. Note that H acts on
G/K, transitively. Since rank K;=rank G and G/K, is indecomposable (that is,
G|K, cannot be a product of positive-dimensional manifolds), we have

K1=H1><Hl, G/Kl:H/Hl,

where Hi=H N K,. Hence H|H, is a rational cohomology quaternion projective
(n—1)-space and by (1.2.1), (H, H,) is pairwise locally isomorphic to (Sp(n),
Sp(n—1)x Sp(1)), or (G,, SO(4)) in case n=3. But the latter case does not
occur. For, non-transitively of G,-action on S (see, (1.3.3)) contradicts the
fact that H acts on G/K=.S" transitively. Therefore, (H, H,) is pairwise isomor-
phic to (Sp(n), Sp(n—1)x Sp(1)). Since the G-action on M is almost effective
by our assumption, G acts on G/K almost effectively. Therefore, H’ acts on
G|K=Sp(n)[|Sp(n—1) almost effectively and Sp(n)-equivariantly, and there
exists a locally injective homomorphism

H’ — N(Sp(n—1); Sp(n))/Sp(n—1) .
Since N(Sp(n—1); Sp(n))°’=Sp(n—1)x Sp(1), we have
H’ = {1}, UQ1) or Sp(1).
Now, we consider the slice representation

o: Ky = (Sp(n—1)x Sp(1))x H’ — O(4) .
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Note that k,=4(n—mn,)=4 in this case. Then Sp(n—1)Cker o,, and Sp(1) acts
on K,/K=H,[H, N K=S8?®via o, transitively and freely. Since we can write

SO(4) = Sp(1)2oSp(1)z

(where Sp(1), resp. Sp(1); denotes the multiplication by quaternions of norm
1 on the left resp. right), the Sp(1)-action on K,/K=.S3via o, may be regarded
as Sp(1),-action on S% Then there exists a representation p: H’—Sp(1)
satisfying
(#2.1) oi(g %)¢’ = 9¢'p(x)™",

for g Sp(1), x€H’ and ¢’ H. Hence, for each H’, o, is determined uniquely
up to conjugation in O(4). Let G=Sp(n)x H’. Then, using (4.2.1), we can
determine K as the isotropy group at ¢’=1, and we have

N(K; G)[K =Sp(1), in case H'= {1},
N(K; G)|[K=U(1), in case H’ = U(1),
NK; G=K and NK;G)K=2Z,, in case H'=Sp(1),
where in the last formula, Z, is generated by the class of the antipodal involution

of GI[K=K,/K=S8*"'. Therefore by (1.4.3) and (1.4.4), (G, M) is uniquely

determined up to essential isomorphism in each of the above cases.

4.3. Next, we consider the case where #,>0 and 7,>0. Since k,>2 and
k,>2 in this case, G/K, and G/K, are simply connected. Hence K;, K, and
K are connected. Since G/K, and G/K, are indecomposable and rank K,=
rank K,=rank G, only the following two cases are possible:

G=H,xH,xG’,
0 K, =HyXxXH,xG’,
K,=H,xHu»xG’,
where, for s=1, 2, H, is a compact simply connected simple Lie group, Hy,
is a closed connected subgroup of H, and G’ is a compact connected Lie group.
G =HXxG’
(D)
K=H xG’ (s=1,2),
where H is a compact simply connected simple Lie group, H, is a closed con-
nected subgroup of H, and G’ is a compact connected Lie group. Note that
by (1.2.1), (H,, Hy) or (H, H,) is pairwise locally isomorphic to one of the
following:
(Sp(n.4-1), Sp(n.) < Sp(1)) ,

4.3.1
( ) (G, SO(4)), in case n, = 2.
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First, we consider the case (I). Since K;NK,=H ;X Hy» X G’, we have
dim G/(K;NK;)=4n—4. Therefore, K is a subgroup of K, N K, with codimen-
sion 3, and we can see

(4.3.2) HydK (s=1,2).

For, if not so, then a sphere K,_,/K becomes decomposable, which is impossible.
Let N be a closed connected normal subgroup of K; N K, such that (K, NK,)/N
acts on (K;NK,)/K almost effectively. Since H, is semi-simple, we can
write

NZleNsz,,

where N, (s=1, 2) is a closed normal subgroup of H, and N’ is a closed normal
subgroup of G’. Note that by (4.3.2) N,SH. Consider the group iso-
morphism

K.nK, Hy, Hp, G

N N, N, N’

From dim (K; N K,)/K=3, it follows dim (K, NK,)/N <6 (see, for example,
[4, §2].) On one hand, dim H¢,)/N,=3 by (4.3.1). Hence we have dim H,/N,
=3, for s=1, 2, and N'=G’. Since G acts on G/K almost effectively and
G’=N’is a closed normal subgroup of K, we have G’={1} by (1.4.6). Thus
G=H,x H,, and

(4.3.3) Hy=U,N, (s=1, 2), where U, is a closed connected simple
subgroup of H, with dim U ;=3 and N, XN, is a closed normal subgroup of K.

Now we shall show that H, cannot be G,. Suppose, for example, that
H,=@G,. Thenn,=2and K,/[K=S8". Hence K,=H ¢, X G, acts transitively on
S, By (1.3.3), G, does not act transitively on S™. 'Therefore, by (1.3.1) H,
acts on S™ transitively and we can write K,=H ;K. Then, since G=H,K,=
H\H,K=H K, we see that H, acts on G/K transitively. It follows that H,
acts on G/K,=H,[/H, transitively, which contradicts the assumption that H,
is a normal subgroup of K,. Thus, by (4.3.1) we have

(4.3.4) (H, H(,) is pairwise locally isomorphic to (Sp(n,+1), Sp(n,)Xx
Sp(1)), for s=1, 2.

Now by (4.3.3) and (4.3.2), we can assume that

e (GG

up to conjugation by an element of

%)eSp(nl—l—l)X Sp(ny+ l)lquP(l)}
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N(Hy; H)XN(Hp; Hy) = N(K,NK,; G).
Therefore, the slice representations
oy: Ky = Sp(n,) X Sp(1) X Sp(n,+1) — O(4n,+4),
o3t K, = Sp(m+-1) X Sp(n,) X Sp(1) — O(4n,+-4)

are determined uniquely up to conjugation. Moreover, N(K; G)/K = Z,, which
is generated by the class of the antipodal involution of K /K (s=1, 2). There-
fore, in the case (I), (G, M) is uniquely determined up to essential isomorphism.

4.4. Next, we show that the case (II) does not occur. Suppose that
G=HxG', K,=HxXG’, s=1,2,

where H is a simply connected simple Lie group. By a similar argument to
[7, (8.5.2)], we obtain the fact that H, acts transitively on K,/K, s=1,2. From
(1.2.1), it follows that #,=n, and

H, = Sp(n)xSp(1),
or

H, = Sp(1)oSp(1), form, =2
and

K K = S*t3,

On one hand, by (1.3.3), Sp(n,) cannot act transitively on S*:*3 and Sp(1)

cannot act transitively on S™.
Thus in consideration of the examples given in 3.1, the proof of Theorem

4.1.1 is completed.
5. Classification of (G, M) with orientable singular orbits II

5.1. In this section, we classify (G, M) of the type (A) (ii) of Theorem 2.1.4.
That is, we suppose that the singular orbits G/K, and G/K, are orientable and

(5.1.1) for k,=4n—dim G/K,, s=1, 2,
k=0 (mod 2), k,=1 (mod 2), k+k, =2n+3.
Then we have two cases:
(5.1.2) when k<<4n,+4, we have n,=n, and

P(GIKy; t) = (142071424 -291)
P(G[K ; t) = (1t Y)(1 84 oo f-2472);

(5.1.3) when k,=4n,+4, we have k,=2(n,—n,)+1 and
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P(G[Ky; £) = 14t oot (1t oo 24%9),
P(G/K,; t) = (1424 (124 - 24m2)
We shall show

Theorem 5.1.4. Under the above assumption, such a (G, M) is essentially
isomorphic to one of the following :

(Um+1), P(H),  nzl,

(SU(n+1), P,(H)), n=2,

(SUQE), G:/SO(4)),  n=2,
where U(n—+-1) (resp. SU(n-+1)) acts naturally via the natural inclusion U(n-+1)C
Sp(n+1) (resp. SU(n+1)Sp(n+1)) on P,(H)= Sp(n+1)[Sp(n)x Sp(1) and
SU(Q3) acts on G,/SO(4) naturally via the natural inclusion SU(3)C G,.

As in the previous section, we suppose that G acts on M almost effectively
and G=G, X T*, where G, is a compact simply connected Lie group and T* is
an k-dimensional toral group.

5.2. First, consider the case n=1. Then k=2, k,=3 and G/K,=S%,
G/K,=S". Hence we can write

G=TxSp(1)xG’, K,=TxU1)xG", K3=1xSp(l)xG",

where G’ is a compact connected Lie group and T=U(1). Since K°CK,NK?
=1Xx U(1)XG’ and dim (G/K,NK,)=dim G/[K=3, we have K=K, NK?%=
1xU(1)xG’. Then we have G’= {1} by (1.4.6). Hence we can write

G=TxSpl), K,=TxU{l), K,=FxSpl),

where F is a finite subgroup of 7. Then we have K=F x U(1) from K,=K3K.
Here Fx 1 is a closed normal subgroup of G and acts trivially on M. Therefore
we can consider the induced action of G/Fx1 on M. Then we have

G=TxSpl), K,=TxUQl), K,=1xSp(1), K=1xU().

It follows that

N(K; G) = N1x U(Q1); TxSp(1))

= TXN(U(1); Sp(1))

and

NEK; G) NEK; Ky

N(K; G N(K; K\
which is generated by the class of the antipodal involution of K,/K=S% The
slice representations
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o: Ky = Tx U(1) = 0(2),

are uniquely determined up to conjugation. Therefore, (G, M) is uniquely
determined up to essential isomorphism. On one hand, as is seen in 3.2, the
pair (U(2), P,(H)), where U(2) acts on P,(H)=Sp(2)/Sp(1)x Sp(1) naturally,
is an example of this type. Therefore, Theorem 5.1.4 is proved in case n=1.

5.3. Next, we consider the case n=2. Since k,=3, G/K, is simply con-
nected by (2.1.3). Note that rank K,=rank G by our assumption (5.1.2) or
(5.1.3). Decompose

G=G'xXG",

where G’ is a compact simply connected semi-simple Lie group which acts on
G|K, almost effectively and G”’ is a compact connected Lie group which acts
on G/K, trivially. Let

p:G=G"XG"— G’
be a natural projection, and let
Ki=pK,), s=1,2.
Then
K, =K{xG", rank K/ = rank G’ .
By the same way as in [7, Lemma 9.2.2], we can see that
(5.3.1) K{ acts on K,/K transitively

and hence

(5.3.2) G’ acts on G/K transitively.

From an observation on the structure of the cohomology ring of G/K, (cf.
(5.1.2), (5.1.3) and (2.1.1)), it follows that either

(I) G’ is simple
or
(IT) G’ is a product of two simple groups.

5.4. Here we shall show
(5.4.1) The case (II) cannot occur.

To prove this, it suffices to consider the case G”={1}. Hence, we
suppose that
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G=H,xH,,
Ki,=HyxHey,

where H, is a compact simply connected simple Lie group and H, is its closed
connected subgroup for s=1, 2, and that H,/H, is a rational cohomology
(k,—1)-sphere and H/H, is a rational cohomology quaternion projective m-
space, where m=n;, in the case (5.1.2) or m=n,—1, k,=5, in the case (5.1.3).
Since K,=H )X H, acts transitively on a sphere K,/K, either H) or H,
acts transitively on K,/K.

(i) Suppose first that H, acts transitively on K,/K. Let
p:G=H,xH,— H,, s=1,2,
be the natural projection, and let
N = (ker p,| K,)°.
Then there exists a connected closed normal subgroup L of K, such that
K3=NoL.

Note that p, maps L isomorphically onto p,(K3). Since K3/K°=S*"! is an
even-dimensional sphere, rank K°=rank Kj. Therefore, if we denote K°=
N’oL’, where N’, L’ are connected closed subgroup of N, L, respectively, we
have K3/K°=N|N’XL|L’ and hence N=N’ or L=L'. If K°=N’oL, then
Hp—pA(K)=p,(L)=pK$) and hence p,(Kp)=ps(KE)p(K)=p/K)pK)=pAK)
from K,=K3K. Then the projection H\G/K—H,\G/K, is a homeomorphism
and hence H,\M is naturally homeomorphic to a mapping cylinder of the projec-
tion H,\\G/K—H\G|K,. Therefore, H\G/K,=H,/H, is a deformation
retract of H,\M. Consider the commutative diagram

1

GIK,— M

911 lq

H,[Hy = H\G|K,; _]—’ H\M,
1
where 7, j, are the natural inclusions and g, ¢, are the natural projections. Since
71 is a homotopy equivalence, ¢ induces an isomorphism of rational cohomology
rings. But, this is impossible by our assumption. Therefore, K’=NoL/,
and H »=p,(K%)=p,(L")C p(L)=p,(K?). Since p, gives a local isomorphism
(L, L") (pAL), Hp), we have py(K3)/Hpn=L|L'=K,/[K=S*"'. Consider the
fibration

PAK ) H ) — H,y[H ) — H,[p(K3) .
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Since X(H,/H »)#0, we have X(H,/p,(K$%))+0 and hence rank H,=rank p,(K?3).
It follows that H°%(H,/p,(K 3))=0 and the homomorphism

H*(H,[H ) = H*(p(K3)/H )

is surjective. Therefore, k,=5, that is, H,/H, is a rational cohomology 4-
sphere and by (1.2.1) (H,, H ) is pairwise locally isomorphic to (Sp(2), Sp(1) X
Sp(1)). Since H, acts transitively on K;/K=S*"!, we have k,=4. By (2.1.3),
K, and K, are connected. Hence, n=3 and m=1 in both cases (5.1.2) and
(5.1.3). Therefore, (H,, H,) is pairwise locally isomorphic to (Sp(2), Sp(1) X
Sp(1)) and p,(K,)=H,. We can write K,=AoB, where 4, B are closed con-
nected normal subgroup of K, such that ACH,=Sp(2), dim A=3 and p,(B)=
H,. Then, considering the centralizer of 4 in G=H, X H,, we can see B=H,.
Since K is connected and rank K=rank K, by K,/K=S* we may wirte K=
AoB’, where B’ is a connected closed subgroup of B with codimension 4. It is
easy to see that B’=H,. Thus we have

K, = AxSp2),
K= AxHy, ACH(l’).
By taking a conjugation in K, if necessary, we may assume that 4 (C.Sp(2)) has

the form

Sp(1)x1, 1xSp(l), or ASp(1),

R I
sw= {3 )

We can see that Sp(2)/4 in 2-connected and

m3(Sp(2)[Sp(1) x 1) = m(Sp(2)/1x Sp(1)) = 0,
m(Sp(2)[ASp(1)) = Z, .

Therefore, Sp(2)/A4 is a rational cohomology 7-sphere. It follows that only in
the case (5.1.3), Hq) may act transitively on K,;/K. This implies 7,=2. But
we can see that it is impossible, by an observation on the Mayer-Vietoris coho-
mology sequence of (X, U X,, X, X)), with X, ~G/K,, X,UX,=M, X,N X,=
G/K (see, 1.4). Thus we see that H(;) cannot act transitively on K,/K.

where

(i) We assume that H, acts transitively on K,/K. Then, p,(K,) is equal to
either H, or Hg, by the same argument as the case (i). First, suppose that
p(Ky)=Hy. Then, H\G/K,=H,|Hq is a deformation retract of H,\M.
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Consider the commutative diagram

GK, — M

7 la

St = H,|Hq = H\G[K, —]T”Hz\M’

where, i, i), j are the natural inclusions and ¢, ¢, are the natural projections.
Since j is a homotopy equivalence, gof;of induces a cohomology isomorphism
(gotyot)*=(7,oi)*og*. This implies that ¢* is injective and (#,07)* is surjective.
Since M is a rational cohomology quaternion projective n-space, we have k,=5
and n=1. This contradicts our assumption #=2. Thus we may assume that

p(K,)=H,. We shall show
(54.2) Hy<K.
Suppose that H;,C K. Then,
Hy=KNH,cK,NH,Cp(K,)=H,.
Since H, is simple and K,N H, is a normal subgroup of H,=p,(K,), we have

Kz e Hl XN »
where N is a closed subgroup of H,, and
K=H;yxN.

Therefore, p,(K)=p,(K,). It follows that H,/H,=H,\G|K, is a deformation
retract of H,\M. In the commutative diagram

i

G/K, —>

- ls

H,[|Hy = H\G/K, T H\M,
1

71 is a homotopy equivalence and H,/H, (resp. M) is a rational cohomology
quaternion projective m- (resp. n-) space. Hence it follows that m=n, which
is a contradiction. Thus we obtain (5.4.2).

Since Hey/K N Hy=p,(K)/K N H,=K|(K \H,)x (K N Hy) =p,(K)/K \ Hy,
and p,(K)/K N H, acts freely from the right on the sphere H,/K N H,=K, /K,
it follows that

(5.4.3) KN H, is anormal subgroup of H)=p,(K), with codimension < 3.

Now, since k, is odd, (H,, Hy)) is pairwise locally isomorphic to (SO(2a+1),
SO(24)), a=(k,—1)/2, or to (G,, SU(3)) if k,=7. Hence, by (5.4.2) and (5.4.3),



496 K. IwaTta

we see that (H,, H,) is pairwise locally isomorphic to (SO(2a+1), SO(2a)),
a<2. Leta=2. Then dim (K NH,)=3. Since KNH,CK,NH, and K,N H,
is a closed normal subgroup of H,=p,(K,), H, is simple and K N H, is not
finite, we have

K,=H XN, NCcH,,
and hence

K=HyXN.

But this contradicts (5.4.2). Therefore, a=1. Thus only the case (5.1.2) is
possible. Then, since m=mn,=n, and since k,-+k,=2n+3, k,=3, we have
that &, =4m+2. By (1.2.1), (H,, Hy) is pairwise locally isomorphic to
(Sp(m—+1), Sp(m)x Sp(1)) or to (G5, SO(4)) when m=2. But in every case,
H, cannot act transitively on K,/K=S**! by (1.3.3). This contradicts our
assumption. Thus the proof of (5.4.1) is completed.

5.5. Now we consider the case (I) in 5.3. Let
G=HxG"”, K, =HXxG",

where H is a compact connected simple Lie group and H, is its closed connected
subgroup. We recall (5.1.2) and (5.1.3). That is,

P(H|H,; t) = P(G/Kl; t)
= (L) (1t 1m), m=n,
or = 1t eetm e Y (L oo i) | ky, = 2(n,—m)+1.

Consider the case k,#+3. By making use of the table of maximal subgroup
in [2, p. 219], we can see that there is no homogeneous space with a Poincaré
polynomial

Tttt e (1 e fo242) . Ry = 2(m—my) -1
Hence, by (1.2.3), (H, H,) is pairwise locally isomorphic to one of the following:
(SO(k,+2), SO(3) x SO(k,—1)), when k, = n=5,

(Sp(3), Sp(1)x Sp(1)x Sp(1)) , when k, =5,n=5,
(Sp(4), Sp(2)x Sp(2)), when kb, =9, n=35,
(Sp(5), Sp(2)x 5p(3)) » when k, =9,n =9,

(Fy, H,), where H, is locally isomorphic to SU(2)x Sp(3),
when k, = 9, n=11.

Suppose that (H, H,) is pairwise locally isomorphic to (Sp(5), Sp(2)x Sp(3)).
Then we can write
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G = Sp(5)xG”,

K, = Sp(2)x Sp(3)xG” .
From the transitivity of Sp(3) (CK,)-action on K,/K=S", it follows that K
is locally isomorphic to Sp(2) X Sp(2) X G”. Therefore, we see that G=Sp(5)
and K=Sp(2) X Sp(2). But, on one hand, K must contain SO(8) as a normal
subgroup, since K,/K=S® This is a contradiction. Thus (H, H,) cannot be
pairwise locally isomorphic to (Sp(5), Sp(2)xSp(3)). The other cases are
all impossible, since H, acts non-transitively on K;/K=S*"% Therefore, we
suppose k,=3. By (1.2.2), (H, H,) is pairwise locally isomorphic to one of the
following:

(SU(n+1), S(Un)x U(1))),

(SO(n+2), SO(n)x SO(2)),

(Sp((n+1)[2), Sp((n—1)/2)x U(1))

(G,, U), where U is locally isomorphic to U(2), when n=5.

Except the first case, these cases are impossible, since by (1.3.3) H, acts on the
(2n—1)-sphere K,/K non-transitively. Hence, it suffices to observe the case
that (H, H,) is pairwise locally isomorphic to (SU(n+1), S(U(z) x U(1))).

5.6. Suppose that
G = SU(n+1)xG”,
K, = S(Un)xUQ1)xG",
where =2 and G” is a connected closed normal subgroup of G, and that G

acts on M almost effectively. In this case, k{,=2n=4, and hence K, is connected
by (2.1.3). Let

a,: K, = O(2n)
be the slice representation. Then there exists a representation

T Kl g U(n) ’
such that the diagram

K, -2 0(2n)
.

U(n)

is commutative up to conjugation. This is a consequence from the fact that o,
is non-trivial on the center of S(U(n)x U(1)) by (1.3.2) and (1.3.3). Moreover,
we have G”= {1} or G”=T by (1.4.6). First, let us consider
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(i) the case G”"=T.
The representation

7: K, = S(Um)yx U1))X T — U(n)
in (5.6.1) is given by
(5.6.2) T<("£[?) xw) — wiX,

for some integers a and b, where X € U(n), 2z U(1), we U(1)=T and (det X)z
=1. Since we can assume that (7, X T)NK=1I,,,x {1} in G, we have b=4-1.
By changing the orientation of T if necessary, we can assume that b=1. Note
that since k,=3, we can write

K2=A°N,
K= 40N,

where A4, N are closed connected normal subgroups of K,, 4 is locally isomor-
phic to SO(3) and A4’ is a closed connected subgroup of A. Note that

XI
2w )x w
2
where X’ U(n—1).
Now assume #=3. Then the semi-simple part of K is SU(n—1), which
has codimension 2 in K and is contained in N. Hence, SU(rn—1) is a closed
normal subgroup of K, and

K,cS(Un—1)x U)X T .

(5.6.3)

(5.6.4) K =1 (Un—-1)) = {(

Since SU(rn—1) is a normal subgroup of K, with codimension 4, K, has the
form

K, = (SU(n—1)x SU(2))T"

where
y__ [(wl,.,] O . _ _ }
T — {(ho TIz)xu, ue U(1), (n—1)p+2¢ = 0} .
Hence
A= SU22)x {1}
and

K = (SUn—1)x S(U(1)x U(1)))o T" .

By comparison with (5.6.4), we can see that ¢=1 in (5.6.2). Thus the slice
representations
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ot K, — O(2n),
0'2: K2 i d 0(3)

are uniquely determined up to conjugation. (Note that o, is tivial on
SU(n—1)). Moreover, .-

NK;G)  NK; K) _NK; Kp)_
N(K; G N(K; K,) K 2’

whose generator is the class of the antipodal involution of K, K=S%
Therefore, whenn >3, (G, M)is uniquely determined up to essential isomorphism.
Next, let n=2. As above, we can assume b=1 in (5.6.2). Hence

(5.6.4) K= (( 2w )x w
1 :

\

Note that since dim K=2 we have that dim N=1. Therefore, 4’ in (5.6.3)
is of the form

za—l
A4 = g X 1
2

On one hand, since A’ is a maximal torus of 4 in (5.6.3) (which is conjugate to
SO(3) or SU(2) in SU(3)), A’ is conjugate to the group

( u )x{l}
\ 1

in SUB)xT. Hence, in (5.6.4)', a=0 or a=1. Denote by 7, resp. T, the
representation 7 in (5.6.2) for a=0, b=1, resp. a=1, b=1. Define an iso-
morphism

¢: SUQ3) — SUQ3)
by

$(V)=PYP",
where
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Then the diagram

SUB)XT o S(UQ2)xUQ1)xT ~n
o1 $x1 uE)
SUQB)XT D S(UR)xUQ)XT 7o
is commutative. Therefore, we shall discuss only the case a=1, and assume
that

\ !

w 1
K= W xw} and A = ( u x1
N _

u

Now let Z(A) be the centralizer of 4 in G. Note that N CZ(4)® since K,=
AoN. If A=SO0(3) up to conjugation in SU(3), then Z(4)’=1XT. From
dim N=1, it follows that N=1Xx T'C K which contradicts the almost effectivity
of G-action on M. Hence, we assume that 4=SU(2) up to conjugation in
SU(3). Then

az
Z(Ay = ” Ix T
u

up to conjugation in SU(3). Therefore,

uZ
N— v |xm! and A:{(%‘%)xl, XeSU(Z)}.

u
Thus the slice representation
a: K, — 0(3)

can be determined uniquely up to conjugation. The other slice representation
a,: K, —O(4) has already determined and

NK;G) .,
NKK; Gy %

whose generator is the class of the antipodal involution of S?=K,/K. Therefore,
in the present case, (G, M) is determined uniquely up to essential isomorphism.

(ii) The case G”"={1}.
When n=3, by the similar argument as in the case (i), we can see that
G, M) is uniquely determined up to essential isomorphism.
quely P P
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Now assume that n=2. Then
G = S8UQ3),
K, = S(U@2)x U(1)),
and for the slice representation
o K, — 04),
there exists a representation
7. K, = U(2),
so that the diagram
K -2 04)
A%

UQ)

is commutative. Since 7, is given by

(0 )
Ta =2'X ’
0 =z

where X € U(2), € U(1), (det X)z=1 and a is an integer, we have that
za—l
(5.6.4)" K= ( 2 , 2€U(1)
2

Since dim K,=3, K, is isomorphic to SO(3) or SU(2) up to conjugation in
G=SU(3), and

K = S0(2), if K, = SO(3),
K=8UMxUQ1), ifK,=SUQ).

Hence, =0 or a=1 in (5.6.4)”. As in the case (i), it suffices to discuss only
the case a=1, i.e., we can assume that

1
K= 2 |, z€U(1)

Define
H— {(%‘%)E SU(3)}’ if K, = SU(2),

BSO(3)B, if K, = SO(3).
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where
10 0
B=|0 1IN2 iV2
0 V2 1V2/.
Then (G, K,, K)=(G, H, T) up to conjugation, where 7 is a maximal torus of
H. Thus the slice representations
ot K, — O4)
oy K, = O(3)
are uniquely determined up to conjugation and
N(T; SU(3)) __N(T; SU(2)) ~Z
N(T; SUQB)® N(T; SUQ2)" '

N(S0(2); SU(3)) _N(SO(2); SOQ)) . ,
N(SO(2); SUB)’ N(SO(2); SO(3)® ~*’

which are generated by the classes of the antipodal involutions of 2-dimensional
spheres SU(2)/T and SO(3)/SO(2) respectively. Therefore, in each of the
case K,=SU(2), or SO(3), (G, M) is uniquely determined up to essential iso-
morphism. On one hand, we have seen in 3.3, that (U(n-+1), P,(H)) is an
example of (G, M) of the case (i), (SU(n+1), P,(H)) is an example of (G, M) of
the case (ii) and (SU(3), G,/SO(4)) is an example of (G, M) of the case (ii), n=2.
Thus the proof of Theorem 5.1.4 is completed.

6. Pairs (G, M) with non-orientable singular orbits

6.1. The purpose of this section is to classify (G, M) up to essential isomor-
phism, when both singular orbits G/K, and G/K, are non-orientable. We shall
prove

Theorem 6.1.1. Such a (G, M) is essentially isomorphic to (SO(3), S*).
Here, S*is considered as the unit sphere of the 5-dimensional irreducible real represen-
tation space of SO(3) given in 3.4.

As in the previous sections, we suppose that G acts on M almost effectively
and G=G, X T*, where G, is a compact simply connected Lie group and 7" is
an A-dimensional toral group.

6.2. Consider the pair (G, M) with non-orientable singular orbits G/K,,
G|/K, and a principal orbit G/K. By Theorem 2.1.4, M is 4-dimensional and

P(GIK,;t)=1, P(GIK%1t)=1+2,
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for s=1, 2. First, we shall show
(6.2.1) G=Sp(1), and K is a finite subgroup of G.
We can assume that

G = Sp(1)XG'x T*,
K=TxG'xT*",

where G’ is semi-simple, 7" is an A-dimensional toral subgroup and 7T is a
maximal torus of Sp(1). Since K°is a closed connected subgroup of a compact
connected Lie group K{ with dim K §/K°=1, we can see that K° is a normal
subgroup of K{. Therefore, by (1.4.6), G'={1} and A<1. Now we see that

G=Sp()x T+, k=l

and that K? is a maximal torus of G. Since G/K, is non-orientable and
N(K?; G)|K = Z,, we have

K,=NK%G), s=1,2.

Now we suppose that z=1. Then, since G acts almost effectively on G/K by
our assumption, 1X 7" is not contained in K and is mapped onto SO(2) by the
slice representation

ot Ky = N(K; G)— 0(2) .

Since the centralizer of SO(2) in O(2) is SO(2) and since 1 X T is a central sub-
group of K, o (K,)=S0(2). This contradicts the non-orientability of G/K,.
Hence 2 must be 0, that is, G=Sp(1). Since dim G/K=3, K is a finite
subgroup of G.

Note that

(6.2.2) o,: K, — O(2) is surjective.

For, since ker o,CK and K is finite, we have o (K{)=SO(2). Therefore,
a(K,)=0(2) follows from the non-orientability of G/K,.

6.3. We shall observe the normalizer of a maximal torus of Sp(1). Let

g=a—+bi+-cj+dk (a, b, ¢ and d are real numbers) be a quaternion number. It
can be written in the form

q=a+pBj,

where a=a(g) and B==8(q) are complex numbers. We assume that g=.Sp(1),
i.e., the norm of ¢, |g|=+/|a?| + | B]|% is equal to 1, throughout this section.
Define
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T,= {¢¢®q ' |0 =R} .

This is a maximal torus of Sp(1). Itis clear that 7',=qT,q™'. Let NT, be the
normalizer of T, in Sp(1). Note that
NTl == Tl U jTl
and
q=a+BjENT,, if and only if @8 = 0.
The following propositions are easily verified:
For g=a-Bj,
(6.3.1) if B0, then T\ NT,= {41},
if 8=0, then T',=T;
(6.3.2) if |a|=|8], then
(NT,—T)NT,={+2apBk},
(NT,—T)NT\={+ti};
(6.3.3) lal=IBl=(NNT\—T)NT,*¢
S(NT,—T)NTi*;
(6.3.4) if B0, then
(NT,—T)N(NT,—T,)={+aBj/laB]}.
From these propositions, it follows

(6.3.5) for g=a+ By, aB=*0,

NT . NNT =
i {z if lal+18].

Let N=N(D¥; Sp(1)) be the normalizer of D in Sp(1). A quaternion g&.Sp(1)
isin N if and only if both ¢i¢™! and ¢jg™'are in D¥. We can see that N consists
of 48 elements and is isomorphic to the binary octahedral group

O* = {a, bla® = (ab)* = b, a* = 1},
under the correspondence
ae (k)2 ,
b (1R 2 .
Moreover, we can see
N(Df; NT)) = DU {(£1+9)/V 2, (£jER)V 2}

6.4. For a surjective representation
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NT, - 0(2),
we can find an equivalent representation o, satisfying

(&) (cos 2t0 —sin 2t0)
o(e') =
sin 20 cos 2t0)°

w03

where ¢ is a positive integer. Let the inclusion O(1)CO(2) be given by

+1 0)

1
iH(Ol

Then there is an isomorphism
(64.1)  o7(O(1)) = Dfi = {x, y|a' = y* = (wy)’, y* = 1}
defined by
exp (im)[t o x.
jeou.
Next, consider the homomorphism
(6.4.2) 7(Sp(1)[ D) = m(Sp(1)/NT)
induced by the natural projection. Note that

=(Sp(1)/D¥;) = D¥:,
w(Sp(1)/NT)) = 2, .

Since the diagram, which consists of the natural projections,

Sp(1)  —— Sp(1)/T,

Sp(1)/D¥; Y Sp(1)/NT,

is commutative and the right vertical map is a double covering, we can see
(6.4.3) px(*) =1, p«(¥)*1,

where 1 means the unit element of z,(Sp(1)/NT,)==Z,.
6.5. Now we go back to the consideration on (G, M) and claim

(6.5.1) (G, K,, K,) is uniquely determined up to conjugation by elements
of G, and K=K, NK,.
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Recall that G=Sp(1), K{ is a maximal torus of G and K,=N(K?; G),
s=1, 2. First, we assume K,=K,. Then, since we can put K{= T, and
K. =NT, (see, 6.3.),

Pst m(G/K) — =(G|K}), s=1,2,

is identified with the homomorphism (6.4.2). Hence ker p,,=ker p,, is a proper
normal subgroup of K. On the other hand, by [7, (2.4.2)], =:(G/K)=(ker p,,)
X (ker p,,), which shows that our assumption fails. Therefore, K;=+K,. Since
K.=N(K?; G), K{#+K$. Thus we can suppose

(G, Ky, K;) = (8p(1), NT3, NT),

for some g=Sp(1). Since T,+ T, we have a(q)B(q)=+0 by (6.3.1).
Suppose |a|=|B|. Then by (6.3.5) we have

K NK,=7Z,.
In the commutative diagram
7 (G/K) — m(G/K,NK;)=K,NK,
>N
7(GIK,) ’

Ps. 1s surjective by (6.4.3). Hence, the generator of K,NK, goes into the
non-trivial element of 7,(G/K,)=Z,. It follows that K=K, N K, and ker p,,=
ker p,, is a proper normal subgroup of K. This contradicts [7, (2.4.2)]. Thus
we have |a|=1|8|. Then 2aBi=u"? for some u< U(1), and hence

(Sp(1), uNTyu, uNT @) = (Sp(1), NT,, NT,),

where r=(1+k)/x/ 2. Therefore, we can assume ¢=(1+4k)/n/ 2. Then we
have

K\NK,=D§ = {+1, +i, +j, -k} .

Consider the commutative diagram

) /1(G/K)
1¢ D
=(G/K,) " J m(G|K,) .
AN :,
=(GIK, N K,)

Here, each homomorphism is induced by the corresponding natural projection.
By (6.4.1), Df=KcK,NK,=D¥, and hence ¢t=<2. Suppose t=1. Then
K=2Z, is generated by y, and p,,(y)=*1, p,(y)*1 by (6.4.3). It follows that
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ker p,,=ker p,,=Z, is a proper normal subgroup of K=Z,. This contradicts
[7, (2.4.2)]. Therefore, t=2 and K=K, N K,. Hence the slice representations
of K,, K, are uniquely determined up to conjugation by (6.4.1).

Now, let us define

X=5p(1) x D?,
NTl.jg’
where
a: NT, — O(2)
is given by

(e) (cos 40 —sin 40)
e'?) =
7 sin 40 cos 46/’

="y 1)

and NT), acts on D? via ¢. By the above consideration, we can assume
y
MfH=XUX
7

as Sp(1)-manifold, where f is an Sp(1)-diffeomorphism on 9X=Sp(1)/D¥.
There exists g=a+Bj €N(D¥; Sp(1)) such that /=R, (right translation by g).
(See, (1.4.5).) Since the isotropy group at gNT, is gNT,g7'=NT, we have
lal=18I.

=K,
X X
INT, 1D* gDy gNT,
\
Sp(1)/NT, Sp(1)/Dg* X GIK,
| 1
G|K, X

Then there exist u, veN(D¥; NT,) such that ¢g=u 17—%'0. Therefore
M(Rq) = M(R(1+k)/¢z—)
as Sp(1)-manifold, because they are identified by Sp(1)-diffeomorphism

(extension of R,-1)U (extension of R,) .

Thus the pair (G, M) of the type (C) of Theorem 2.1.4 is unique up to essential
isomorphism. On one hand, there is an example of this type as is seen in 3.4.
Therefore, the proof of Theorem 6.1.1 is completed.
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