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Introduction. Throughout this paper, we shall let A=Ek[x,,---,x,] denote
a finitely generated integral domain over a perfect field k. Let p be a maximal
ideal of A4 and set R=A4,, the local ring at p. By a k-derivation & of rank m
on R, we shall mean a set 6={8,,8,,+,8,} of mappings §;& Hom,(R, R) such
that §, is the identity map on R and for all ¢,b= R, ¢=1,-:-,m, we have

(1) 8y(ab) = 2] 5,(a)5,(0) -

By a k-derivation D of infinite rank on R, we shall mean an infinite sequence
D={D,,D,,D,,--+} of k-endomorphisms D; of R such that for each m, {D,,D,,
.--,D,} is a k-derivation of rank m on R. We shall say that a k-derivation §=
{8081, +++,8,} of rank m on R (or A) is integrable on R(4) if there exists a
k-derivation D= {D,,D,,---} of infinite rank on R(A) such that §;=D,, i=0,1,
e m.

The problem of finding conditions on R such that every k-derivation of
rank m is integrable was to the author’s knowlege first suggested by Y. Nakai in
[7]. Some work on this problem has been done by several authors. In par-
ticular, it follows from [8; (g)p.33] that if the characteristic of the field % is
zero, then every k-derivation of rank m on R is integrable. For this reason, we
can assume throughout the rest of this paper that char k=p=0.

The main results of this paper are the following two theorems: A global
results:

Theorem 1. Let A=R[x),:-,x,] be a finitely generated integral domain
over a perfect field k.  Suppose that for each maximal ideal p C A, the local ring A,
is regular. Then any k-derivation 8 of finite rank on A is integrable on A.

A complete characterization of regularity on the local level:

: Theorem 2. Let A=k[x,, -+,x,] be a finitely generated integral domain over

a perfect field k. Let p be a maximal ideal of A and set R=A, (A localized at p).
Assume A has dimensionr. Then R is a regular local ring if and only if the following
two conditions are satisfied:
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(a) Ewvery k-derivation of finite rink on R is integrable on R.

(b) There exist r derivations 8,,++,8,& Deri(R) and elements zi,--+,2, in
the maximal ideal of R such that the matrix (8,(2,)) is invertible. Here Deri(R)
denotes the R-module of rank one k-derivations on R.

We shall complete this paper with a few examples which show that these
theorems are about as good as can be expected.

Main results. We begin by studying field extensions.

Proposition 1. Let K be a field containing a perfect field k. Then any
k-derivation 8= {8, --+,3,} of rank m on K is integrable.

Proof. Let S be a p-basis of K. Define a sequence of set mappings
VJr;: S—K as follows: y;=38; if 1=0,-:+,m, +Jr; is arbitrary if z>m. Then by
[3:thm.9] there exists a unique derivation D of infinite rank on K such that
D;|s=+;. Since k is a perfect subfield of K, [3; prop 7] implies D is a k-
derivation on K. Since D;|s=3§; for 7=0,-:-,m one easily checks that D,=3§;
for 1=0, -, m.

Proposition 2. Let R be a local ring containing the field k. Let p denote the
maximal ideal of R, and let R denote the completion of R in its p-adic topology.
Then if 8= {8¢,+**,0,} is a k-derivation of rank m on R, 8 has a unique exten-
sion 8= {8,,-++,8,} to a k-derivation of rank m on R.

Proof. On can easily check that each §; is a continuous mapping in the
p-adic topology on R. Thus, the result follows from [2; prop 2].

Proposition 3. Let K be a field containing a perfect field k. Let R=
K[[X,, -+, X,]], the formal power series ring over K in the indeterminates X, -,
X,.Then if 8={8,,-**,8,} is a k-derivation of rank m on R, § is integrable.

Proof. 'This result follows from Proposition 1 and known results in [2]. &
may be viewed as k-derivation of rank m on K to R. Following the procedure of
Proposition 1, we may extend § to D’: K—R, a k-derivation of infinite rank.
Since X,,-:+,X, are algebraically independent over K, we may extend D’ to
a k-derivation D”: K[ X}, +++, X,]—R (of infinite rank) such that D{’(X;)=20,(X))
for i=0,---,m. We may now use [2; prop. 2] to extend D"’ to D: R—R a k-deriva-
tion of infinite rank such that D;=3; for i=0, ---,m.

Now let Xj,-:+, X, be indeterminates over the field 2. Let > denote the
quotient field of A[X),---,X,]. Let {u;|j=1,:,n;i=1,--,00} and T be
indeterminates over »). For each i=1,-.-,00, we define a k-linear mapping
g;: R[Xy, o, X, 1>k X, o+, X,] [u;] as follows: Given any monomial XX
€k[X,, ++,X,], we define ¢,( X1+ X,”) to be the coefficient of T¥ in the following
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power series in (R[X,, .-+, X, ] [;]) [[T]]:
(2) Xt D un T (Xt 2w T

We then extend the definition of each g; by linearity to all of £[X, -+, X,].
Now suppose >V=Fk(x,,:-,%,) is a finitely generated field extension of k.
Let {#;|j=1,-:,n,i=1,---,00} be a collection of elements in >Y. Then we
have a natural k-algebra homomorphism II: A[X),--,X,] [w; ] —>k[xy, -+, %,]
(@] given by II(X;)=x;, and II(v;))=%;,. If f(X,, -, X,)€R[X,, -+, X,],
we shall say that the {ﬂij} solve ¢;,(f)=0, i=1, -+, oo if [I(g:(f))=0 for =1, -+, 0.

We need the following lemma:

Lemma 1. Let XV=Fk(xy,-++,x,) be a finitely generated field extension of k
with relations f,,--,f,€k[X,,--+,X,]. If D={D;} is a k-derivation of infinite
rank on >, then {iZij=Di(xj)|j=1,---,n,i:l,---,00} is a system of elements
of 3 which solve the equations

(3) g(f)=0 (=1-+7i=1,,0)

Conversely, if {@;;| j=1,--,n,i=1,---,00} is a collection of elements of >
which solve (3), then there exists a k-derivation D={D;} of infinite rank on 3V
such that Dy(x;)=1%;; (=1, 0 =1+, 00).

Proof. See [1; lemma 3].

We note that the equations which appear in (3) have the following form:
For fixed i=1,-:+,00,¢,(f,)=0 (I=1,-++,7) can be written as

(4) jz:lAinuij+B1 =0 (I= 1’....’,’)

where A, Biek[X,, -, X,] [,|t=1,---,i—1;j=1,---,n]. Hence, for each i
the equations in (3) are linear in #;(j=1,--,n). We can now prove the follow-
ing important result:

Proposition 4. Let A=k[x,,---,x,] be a finitely generated integral domain
over a perfect field k. Let p be a maximal ideal of A such that that the local ring
R=A, is regular. Then if §={8y,-+*,8,} is a k-derivation of rank m on R, § is
integrable.

Proof. Let >Y=Fk(x,-+,,) be the quotient field of 4. Let f,,---,f,
R[X,,-++,X,] be the relations on 4. That is R[X;, -+, X,]/(f1,**,f,)=4. To
construct a k-derivation of infinite rank on R which extends &, it suffices by
Lemma 1 to find elements {ﬂijeAplj=1,o-~, n;i=1,.--,00} which solve the
equations ¢,(f;)=0 (/=1,-:+,7;i=1,-.-,00), and such that #;=3§,(x;) for i=
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1, mj=1,-,n.

Set 17,-j=8,~(xj) for i=1,---,m j=1,.-+;n. Then since J is a k-derivation of
rank m, the {ﬂ,»jlizl,---,mj=1, ---,m} solve the equations g¢,(f,)=0 when
t=1,.--,m. Consider the system

(5) q!(fl)z() l=1)""r)i=17""m+1

If we substitute #;; = 8,(x;) for %;; in (5), we obtain a system of linear equations:

( 6 ) "Z Am+l,1,jum+1,j+B1 =0 (l = 1’ "',1‘)
j=1
Where Am+1,1,p B]EAP .

Now by Proposition 2, & extends uniquely to a k-derivation § of rank m
on the completion Rof R. Since R is a regular local ring of equal characteristic,
R has the form K[[X,,---,X,]]. That is R is the formal power series ring in §
indeterminates over the field K==A4/PY. Thus by Proposition 3, & can be im-
bedded in a k-derivation D of infinite rank on K. But this implies that the
equations (6) have a solution %, =D, (x,) in R. It now follows from [10;
lemma p.39] that (6) has a solution {#,,; ;}&R. Thus, there exists a §,.;:
R—R such that {8,+,8,,0,+} is a k-derivation of rank m+1 on R. We may
now repeat this same argument as often as we please. Thus, we have proven
the following: For all integers a>m, the equations ¢;,(f,)=0 (I=1,---,r, i=1,
«+,a) have a solution {#;|j=1,+,n, i=1,--,a} CR such that 7;,=38,(x;) if
i=1,-+,m,j=1,---,n. Furthermore, if {%; | j=1,---,n,i=1,---,a} CR is a solu-
tion to ¢;(f,)=0 (I=1,--+,r,i=1,--+, &), we can find elements {nﬁl’j} CR such
that {#;|j=1,-,n,i=1,---,a} U {#l,4,,;} is a solution to the equations ¢,(f,)
=0 (I=1,-,r,i=1,--,a+1).

A simple application of Zorn’s lemma now shows that there exists a solution
;| j=1,-,m, i=1,.:,00} CR to ¢(f)=0 (I=1,-+,r,i=1,--+,0) such that
;. =3,(x;) for z=1,---,m. Thus, there exists a k-derivation D of infinite rank
on R such that D;=3$; if i=0,---,m.

Before proving the main result of this paper, we need the following lemma:

Lemma 2. Let A=k[x,,---,x,] be a finitely generated integral domain.

L)

Let f}a-.z.—l—bizo (f=1,---,7) be a system of linear equations with coefficients
j=1

a; b, A.  For each maximal ideal pC A, assume this system has a solution in A,.
Then the system has a solution in A.

Proof. Suppose r=1. Then we have one equation @,2,+::-+a,z2,=> in
A. Let I=(ay,-*-,a,), the ideal in 4 generated by a,,*+,a,. If I=(0) or 4,
clearly the equation has a solution in 4. Hence, we may assume I is a proper

1) We can assu KD by using [10:lemma p. 29] and the fact that k is perfect.
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ideal of 4. Set J=(I:(b))={xsAd|xbcsI}. We wish to show J=A. Since
(b) is finitely generated, we have J4,= J® ,4,~(IQ 44, (b) @ ,4,)=(I4,: bA,)
for all maximal ideals pC 4. By hypothesis, (I4,: b4,)=A4,. Thus, J4,=A4,
for all maximal ideals p. This implies J=A4.

Suppose r>1. For each equation present, adjoin an indeterminate #; to

A. Set R=A[u,,:++,u,]. Then

(7) ; (;} a,-jui)zj—}—?;‘_l, bu, =0
is an equation in the unknowns z,,-:-, 2, with coefficients in R.

Since A is a homomorphic image of k[X},--:,X,], 4 is a Hilbert domain.
Hence, Afu,-,u,] (1<q<r)is also a Hilbert domain. Now if M is any maximal
ideal of R, then by [5; thm.27], M N A[u;, -+, u,_,] is a G-ideal in Afu;,-+-,u,_,].
But all G-ideals are maximal in a Hilbert ring. Therefore, M N A[uy,-++,u,_:]
is a maximal ideal in A[w,,---,u,_;]. Repeating this argument, we get M N A4 is
a maximal ideal of 4. We note that Ry, D Ayn,.

m
Now by hypothesis, there exist elements 2, -, 2, & Ay 4 such that 3] a; 2,
=1

+b,=0 for i=1, --+,7. Thus, the equation (7) has a solution 2, -:-,2,,in R;,. From
the proof of the case r=1, we get (7) has a solution 2,,--+, %, in R. Write each
2;=a;+terms of degree bigger than or equal to one in the »;. Here a;&A4.

Then one easily sees that a;, -+, a,, is a solution to 37 a;;z,+b,=0 in 4.

We can now state the main result.

Theorem 1. Let A=k[x,,-+,x,] bea finitely generated integral domain over
a perfect field k. Suppose for each maximal ideal pC A, the local ring R=A4, is
regular. Then any k-derivation 6= {8, -++,8,} of rank m on A is integrable on A.

Proof. For every maximal ideal pc A4, & induces a k-derivation of rank m
on A, Thus, by Proposition 4, & can be imbedded in a k-derivation D, of
infinite rank on 4,. Let f),-,f, denote the relations on 4. Set #;;=35,(x;)
(i=1,--+,m;j=1,-++,n) in the equations ¢,(f,)=0 (I=1, ---,r; =1, ---,m+1). We
then get a system of linear equations like (6) with 4,.,,;, B,=4. Since §
imbeds in a k-derivation of infinite rank on 4,, (6) has a solution {z,., }CA4,
for every maximal ideal pC A. Thus, it follows from Lemma 2, that (6) has a
solution in 4. Hence, there exists a k-linear map §,,.,: A—4 such that {5, --,
S,s 01} is @ k-derivation on A of rank m+1. We now proceed as in the proof
of Proposition 4 to construct a k-derivation D of infinite rank on 4 such that
D;=3; if i=0, -+, m.

We note that the regularity condition in Theorem 1 on A cannot be omitted
(see [1; Example 1]). The regularity hypothesis on 4 implies that A4 is integrally
closed. One might ask if Theorem 1 is true for finitely generated integral
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domains which are integrally closed. The following example shows that Theorem
1 is not true if we only assume 4 is integrally closed.

ExampLE 1. Let Z, denote the integers modulo two. Set Z,[X, Y, Z]/(X3+
Y?+Z3%)=2Z,[x,y,2]=A4. One can easily check that 4 is an integral domain of
transcendence degree two over Z,. Set A,=2Z,[y,2]. Then A, is isomorphic to
a polynomial ring in two indeterminates over Z,. Thus, 4, is an integrally
closed domain contained in 4.

Let K, and K denote the quotient fields of 4, and A respectively. Then
K is a three dimensional separable algebraic extension of K;. Let A, denote the
integral closure of 4, in K. Since 4 is integral over 4, ACA,. We shall
show A=A, An integral basis of K/K, is given by {l,x,4’} C 4, The dis-
criminant of this basis is (y*+2%)° Hence, it follows from the proof of Theorem
7 in [11; p.264] that (y*+2%24,C Ay+Apx+Ax?.  Thus, if we 4, there exist
elements a,,a;,a,E A, such that

(8) (y*+2%Yw = ayt+ax+ax? .

A routine calculation shows that (8) implies (y*4-2%)?|a;. Thus, w=aj+ajx
+ajx? for ale A,. Hence A;=A, and we have proven 4 is an integrally closed
domain.

Now define a Z,-derivation &, of rank one on A4 by setting §,(x)=35,(2)=0
and §,(y)=1. Then §,(x*+y*42%)=x%8,(x)+2%8,(2)=0. So &, is well defined.
Now if §, was imbeddable in a Z,-derivation D= {D;} of infinite rank on 4,
then we would have 0=D,(x*+y*+2°)=a?Dy(x)+2’D,(2)+1. Thus, 1€ (x,%)
which is impossible.

Since the Jacobian of x3+3%+2% is (%, 0, 2%), we see that p=(x,y,2) is a
maximal ideal in 4 for which A4, is not a regular local ring.

We now proceed with the proof of Theorem 2. We need the following
result of Y. Ishibashi:

Proposition 5. Let A be a ring and let M be an ideal of A such that A is a
complete Hausdorff space in its M-adic topology. Assume there exist integrable
derivations 8., +++,8, of rank one on A and elements z,,-+,z,& M such that the matrix
(8.(2;)) is invertible. Then there exists a subring B of A such that 2y, -+, 2, are analy-
tically independent over B, and B[[z,,+,2,]]=4.

Proof. See [4]

Theorem 2. Let A=k[x,, -, x,] be a finitely generated integral domain over
a perfect field k. Let p be a maximal ideal of A and set R=A, (A4 localized at p).
Assume A has dimensionr. Then R is a regular local ring if and only if the following
two conditions are satisfied:
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(a) Ewvery k-derivation of finite rank on R is integrable on R.
(b) There exist r derivations 8,,--+,8,& Deri(R) and elements z,,-+,z, in the
maximal ideal of R such that the matrix (5,(2,)) is invertible.

Proof. Assume R is a regular local ring. Then condition (a) is Proposition
4 of this paper. Condition (b) is well known. A proof easily follows from
[6; Theorem 3].

Now suppose conditions (a) and (b) are satisfied. We consider Rthe comple-
tion of R. By condition (a), §,,-+,9, are integrable on R. Thus, from Proposi-
tion 2, we conclude that §,,--+,8, are integrable k-derivations of rank one on R.
It now follows from Proposition 5, that R has the form ﬁ:B[[zl, -+, %,]] where
{21,"**,%,} are analytically independent over B. Since the dimension of R is 7,
we conclude that B is a field. Therefore, R and, consequently, R itself are re-
gular local rings. Thus, Theorem 2 is proven.

We complete this paper with a few remarks concerning the hypotheses in
Theorem 2. First, the assumption that & be a perfect field is essential for
condition (a) even when R is a field. Consider the following example:

ExampLE 2. Let P denote a perfect field of characteristic p==0. Let X
be an indeterminate over P and set k=P(X"). Then k is a field which is not
perfect. Let A=kK[X]=k(X), a finitely generated integral domain over .
Set R=A (a localization of A4 at the maximal ideal (0)). Certainly R is a regular
local ring. We can define a k-derivation & Deri(R) by 8(X)=1. If 8 were
integrable, then there would exist a k-derivation D={D,,D,,-:-} of infinite
rank on R such that §=D,. But then we would have

(9) 0= DX") = {DyX)}* = {8(X)}"=1"=1.

Thus, & is not integrable and conclusion (a) of Theorem 2 fails when % is not
perfect.

We next note that in proving Theorem 2, we only used the fact that every
k-derivation of rank one (i.e., the ordinary derivations on R) was integrable on
R. Thus, a corollary to Theorem 2 is the following:

Corollary. Let R be as in Theorem 2. Then R is a regular local ring if and
only if the following two conditions are satisfied:
(a) Ewvery k-derivation of rank one on R is integrable.
(b) There exist r derivations 8,,:++,8,& Deri(R) and elements z,,--,2, in
the maximal ideal of R such that the matrix (8,(z;)) is invertible.

We give examples which show that conditions (a) and (b) in this corollary
are independent of each other, and that neither condition by itself is in general
strong enough to imply regularity. Both examples come from looking at the
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curve C: X?=7Y? defined over a perfect field &.

ExampLE 3. Consider the curve C when k has characteristic two. Let
A=kK[X,Y]/(X*—Y?*)=k[x,y] be the coordinate ring of C. One easily checks
that 4 is a (finitely generated) domain no matter what characteristic & has.
Also one easily checks that the integral closure of 4 is given by A=A[t] where
t=x(y. Let R denote the local ring at the origin on C. 'Thus, R=k[x,y], where
p=(»,y). Since C has a singularity at the origin, R is not a regular local ring.

If % has characteristic two, then &(x)=1, §(y)=0 is a well defined k-deriva-
tion on R. Thus, R satisfies condition (b) in the corollary. Suppose & was
integrable. Then by [9; p.173], §(4)c 4. But, §(f)=1/y&A. Consequently,
S is not integrable. Thus, if £ has characteristic two, R is a nonregular local
ring satisfying condition (b) but not condition (a).

ExampLE 4. Again consider the curve C when & has characteristic not equal
to two or three. Thus, 2 and 3 are units in 2. In this case, condition (b) can
never be satisfied. This follows from the observation that p=(x, ) is a differential
prime in 4. That is, 8(p)Cp for all & Deri(4). To show this, we need
only argue that 8(x) and 8(y) are in p. If 8(x)&p, then we would have
Xe (X4, XY,Y?Y) in k[X,Y]. Thus, §(x)p. Similarly, if 8(y)&p, then
Y2 (X,Y?). Thus, p is differential under Deri(4). Since Deri(R)=R® ,Der}
(4), we conclude that condition (b) is impossible in R when the characteristic of
of k is not two or three.

To complete this example, we need the following lemma:

Lemma 3. Let C denote the curve X?=1Y? defined over any perfect field k of
characteristic p2 or 3. Let R denote the local ring at the origin of C. Then
every k-derivation of rank one on R is integrable.

Proof. We use the same notation as in Examples 3 and 4. In particular,
the integral closure 4 of A4 is given by K[f] where t=x/y. Since #=y, and
B=x, A=k[x,y]=Fk[t},t°]. Thus, tACA.

Let 56; denote the canonical k-derivation of 4 given by gi (t)=1. Then one

easily checks that x=t§ is a k-derivation of 4.

We now claim that Deri(4)=A\. If ac 4, then ar(x)=3ax and ar(y)=
2ay. Since tAC A, we conclude that ax € Deri(4). Thus, AN CDeri(4). Let
k(t) denote the quotient field of A. Then A generates Deri(k(t)) as a k(¢)-module.
In particular, if §& Deri(4), then §=a) for some ack(t). From the computa-
tion in Example 4, we know p is differential under 8. Thus, §(x)=cx+dy,
and 8(y)=ex+fy for some elements ¢,d,e,f € A=Fk[#,#°]. So in k[t], we have

(10) 2at* = et’+ft*
3at® = ct?+-de .
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Now equation (10) immediately implies that ack[t]=A. Thus, &4, and
Deri(A)=An.
We can now argue that every derivation on A is integrable. Let d&

Deri(A4). From the last paragraph, we conclude that §=g(t) % where g(t)e

k[t] and has no constant term. Since ¢ is transcendental over k, we can define
a k-derivation D={D,,D,,---} of infinite rank on 4 by the formulas:

(11) D,(t) = g(2)
D)=t if n>2.

We note that Dp:g(t)(;%:& Using equation (1) together with that fact

that 14 C A, we easily see that D,(4)C A4 for allm. Thus, D is a k-derivation of
infinite rank on 4. Consequently, § is integrable.

Now since Deri(R)==R® ,Deri(A), we conclude that every derivation on R
is integrable. This completes the proof of Lemma 3. Thus, if k has charac-
teristic not equal to 2 or 3, then R in Example 4 satisfies condition (a) but not
condition (b).
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