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ON CYCLIC SPLITTING COMMUTATIVE RINGS
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Throughout this paper all rings considered are commutative rings with
identity and all modules are unital.

A ring R is called cyclic splitting (finitely generated splitting; splitting) if
the singular submodule of A is a direct summand of A for all cyclic ί?-modules
(finitely generated jf?-modules JR-modules) A.

A ring R is splitting if and only if it is a (von Neumann) regular ring such
that, for each essential ideal / of R, Rjl is a direct sum of fields. This result
was shown by Catefories and Sandomierski [3 ;4]. The study of finitely generated
splitting rings was reduced to that of rings with essential socle by Goodearl
[7] (cf. [18]). Cyclic splitting rings were studied in Teply [16;17].

This paper is concerned with the study of cyclic splitting rings. By making
use of Teply [16, Theorem 3.3], in Theorem 2.2, we give several characterizations
of cyclic splitting rings R. One of these is that R is a PP-ring and the Boolean
ring of all idempotents in R is cyclic splitting. Our main theorem is Theorem
3.1 in which it is shown that, for certain regular rings R including Boolean
rings, the following conditions are equivalent:

(a) R is cyclic splitting.
(b) R is finitely generated splitting.
(c) The singular submodule of every finitely generated JR-module is also

finitely generated.
Let R be a ring. For a given 72-module A, we use Z(A) to denote the set of

those elements of A whose annihilator ideals of R are essential ideals. An
Λ-module A is said to be singular (non-singular) provided Z(A)=A (Z(A)=0)*
As is well known, R is non-singular as an P-module if and only if it is a semiprime
ring. For the basic properties of singular modules and nonsingular modules,,
the reader is refered to [8].

For a given ring R, we denote its maximal ring of quotients, its classical
ring of quotients and its socle by Q(R), T(R) and soc(R), respectively.

The author is indebted to Prof. Y. Kurata and Prof. M.L. Teply for their
useful advices.
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1. Preliminaries

Let R be a ring. We denote the Boolean ring consisting of all idempotents
in R by B(R) and the set of all prime (=maximal) ideals of B(R) by X(R). As
is well known, X(R) forms a Boolean space, that is, a totally disconnected com-
pact Hausdorff space with the family {U(e)\e^B(R)} as an open-closed basis,

where U(e)={x<=X(R)\e<=x} (see [15]).

Lemma 1.1. Let X be a non-empty closed subset of X(R).
(a) Π Ax=A( Π x) for any R-module A.

(b) // Y is a subset of X(R) such that X c Y and Π Rx= Π Ry, then X= Y.

Proof, (a) Let A be an Λ-module. Clearly A(Γ\x)^Γ\Ax. Let αe

Π Ax. Then, for each x in Xy there exists an element e(x) in x such that

a = ae(x). Since JY" is closed and X= U {C/(^(^))n^}, we see that J¥"=
n

\J {U(e(x{)) Γ\X} for some finite subset {xιy ,xn} of X. Setting e=e(xι)

e(xn)9 clearly, e^ Γ\x and a=ar. Thus a^A( Π A?)'as desired.

(b) Suppose that X^pY and take yf in F— X. Since ^Γ is closed, we can
choose e in B(R) such that JSΓ Π U(e)=0 and ye t/(e). Then 1—ee Π !&=

*ex

Π Ry and so ley', a contradiction. Thus we must have X=Y.

Lemma 1.2. ίor α non-empty subset X of X(R),
(a) n #— Π 5, where X" denotes the closure of Xy

(b) Re+ Π Rx= Π ΛΛ? /or any e in B(R).

Proof, (a) This follows from the examination of ee Γ\x<&U(l— e)Γ\X =

ψ<=>U(l—e)ΓίX-=0^e<= Π x.

(b) Clearly Re+ Π ̂ ^ Π ΛΛ:. If^^ Π P ,̂ then it is easy to

see ̂ (1—β)e Π Rx Hence g^Re-\- Π ΛΛ; and we obtain the reverse inclusion.

A ring R is called a PP-ring if every principal ideal of R is projective or,
equivalently, the annihilator ideal of any element of R is generated by an idem-
potent.

Lemma 1.3. The following conditions are characterizations for a given ring
R to be a PP-ring.

(a) T(R) is regular and B(T(R))=B(R).
(b) R/Rx is an integral domain for any x in X(R) and supp(r) is an open set

in X(R) for any r in R, where supp(r)={x^X(R)\r&Rx}.
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(c) The space of minimal prime ideals of R is compact and coincides with
{Rx\x<=ΞX(R)}.

(d) R/Rx is an integral domain for any x in X(R) and Q(R) is flat as an
R-module.

Proof. The characterization (a) was obtained by Endo [5], (b) appeared in
Bergman [2] and (c) was obtained by Kist [9].

(a), (b)=>(d). Since T(R) is regular, Q(R) is flat as a T(#)-module. On
the other hand T(R) is always flat as an Λ-module and therefore Q(R) is flat as-

an .R-module.
(d)=^(c). Since Q(R) is flat, the first half follows from Mewborn [10,

Theorem 3.1] and the latter half follows from the fact that, for any x in X(R)>.
Rx is a prime ideal.

From Lemma 1.3(b) and [15, p.45] we have the following.

Corollary 1.4. For a Boolean space and an integral domain D, the ring of
all continuous functions from X to D is a PP-ring, where D has the discrete topology.

A ring R is called a Baer ring if every annihilator ideal of R is generated by
an idempotent. Clearly Baer rings are semiprime rings. Conversely if R is
a semiprime ring, then it has the unique minimal Baer ring of quotients, de-
noted by C(R). Note that C(R) coincides with the ring generated by B(Q(R)}
over R in Q(R) ([11, Proposition 2.5]).

Lemma 1.5. If R is a Baer ring, then every cyclic nonsingular R-module is
projectίve. So it is trivially cyclic splitting.

Proof. Since R is semiprime, as is well known (e.g. [8]), every cyclic non-
singular jR-module can be embedded into Q(R). Hence the lemma follows-
from the fact that Q(R) is regular and B(Q(R))=B(R).

Lemma 1.6 ([15, Theorem 24.5]). A regular ring R is self-injective if and
only if every finitely generated nonsingular R-module is projecΐive. Hence in this
case R is trivially finitely generated splitting.

2. Cyclic splitting rings

Note that cyclic splitting rings are semiprime rings.
We shall quote Teply's result [16, Theorem 3.3] as follows:

For a given ring R, the following conditions are equivalent:
(a) R is cyclic splitting.
(b) R is a semiprime ring with the property that if / is a closed ideal,,

then I=ReQ)S for some e in B(R) and an ideal S contained in soc(R).
However, as is well known ([6, p. 112]), an ideal / of a semiprime ring R

is a closed ideal if and only if I=Q(R)fΓlR ( = RfΓ(R) for some/ in B(Q(R)).
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Therefore the condition (b) above can be replaced by the condition below:
(Teply's criterion) For any / in B(Q(R))y there exists e in B(R) and an

ideal S contained in soc(R) for which RfΓiR=ReξBS.

Lemma 2.1. If R is a PP-ring, then the following statements hold;
(a) B(Q(R))=Q(B(R)).
(b) RfΓ}R=R(B(R)fnB(R))foranyfinB(Q(R)).
(c) R is cyclic splitting if and only if B(R) is cyclic splitting.

Proof, (a) Since T(R) is regular, it is easy to see that B(Q(R)) =
<Q(B(T(R))). Hence B(Q(R))=Q(B(R)) by Lemma 1.3 (a).

(b) Let f<=B(Q(R)). Since Q(R) is regular, it follows that Q(R)f=
n{Q(R)y\yζΞX(Q(R)),fζΞy}. Hence

where Y={y&X(Q(R))\fGy} and λ is the continuous (closed) mapping from
X(Q(R)) to X(R) given by y-*yΠR. Since λ(F) is closed, by Lemma 1.1
<(a), we have further

= R(B(R)fnB(R))

and hence Rf Π R=R(B(R)f n B(Λ)).
(c) This follows from (a), (b) and Teply's criterion.
Now we shall give several characterizations of cyclic splitting rings.

Theorem 2.2. The following conditions are equivalent for a given ring R :
(a) R is cyclic splitting.
(b) R is a ring direct sum of two rings H and K such that

(1) H is a Baer ring,
(2) K is a cyclic splitting ring with essential socle.

(c) R is a PP-rίng and B(R) is cyclic splitting.
(d) R is a PP-ring and T(R) is cyclic splitting.
(e) Every R/Rxfor x in X(R) is an integral domain and T(R) is cyclic splitting.

Proof. Clearly all conditions above yield that R is semiprime.
(a)=^(b). We can take / in B(Q(R)) such that Q(R)(l—f) is the injective

Lull of soc(R) as an J2-module. We claim that B(Q(R)f)^R. Letg^B(Q(R)f).
Since gRΓίsoc(R)=Q, gRΓ\R=Re for some e in B(R) by Teply's criterion. If
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, there exists r in R such that OΦr^l —e) in R. But rg(l—e) is in Re,
a contradiction. Thus^(l—e)=Q and g=e^R as desired. In particular f^R

and R=Rf®R(l-f). Since Q(Rf)=Q(R)f and B(Q(R)f)=B(Rf), we see that
jR/ is a Baer ring. On the other hand, R(l—f) has essential socle.

(b)=^(a) follows from Lemma 1.5.

(a)=^ (c). Let r^R. For p in £)(Λ) such that rpr=r, Teply's criterion says
that RepΓiR=Re®S for some e in B(R) and an ideal S^soc(R). Noting

that Rep (Ί R is an essential extension of J?r, we have S=Re1~\ \-Ren f°
r some

orthogonal idempotents eί9 ~yen in R. Put /=β+^H (-£«• Then g(jR)r=

ρ(Λ)/ since β(lZ)r=g(Λ>ί=^^
®Q(R)en=Q(R)fy where £(*) denotes the injective hull of #. Hence it
follows that jR(l—/) is the annihilator ideal of r in Λ, and thus 72 is a PP-ring.
The remainder follows from Lemma 2.1.

(c)=φ(a) and (c)<=>(d) follow from Lemma 2.1.

(d)=Φ>(e) follows from Lemma 1.3(b).

(e)=^>(d). Since T(R) is cyclic splitting, by the implication (a)==>(c), T(R)
is a PP-ring. Using Lemma 1.3(d), we can see that R is a PP-ring. This
completes the proof.

Combining (c) of Theorem 2.2 with [1, Corollary 1, Theorem A], we have

Corollary 2.3. A ring R is cyclic splitting if and only if the polynomial ring
R[x] is cyclic splitting.

From (c) of Theorem 2.2 and Corollary 1.4, we have

Corollary 2.4. Let X be a Boolean space such that its corresponding Boolean
ring is cyclic splitting and D an integral domain. Then the ring of all continuous
functions from X to D is cyclic splitting.

From (b) and (c) of Theorem 2.2, the study of cyclic splitting rings can

be reduced to that of atomic Boolean rings.

Theorem 2.5. If R is an atomic Boolean ring, then the following conditions

are equivalent:

(a) R is cyclic splitting.

(b) X(R) satisfies the condition that, for any closed subset X of X(R), there
exists an open-closed subset U<^X(R) for which (X'f}X)~=U Γ\X, where Xf

denotes the set of all isolated points in X(R).

Proof. (a)=t>(b). Let X be a closed subset of X(R). By [14, Corollary

2.2], it holds that Z(R/Γ[x)=( (Ί x)l Π x. Hence Π x=Re+ Π x for
*,e.z *GX'I\X *<=x χt=x'ς\x *ex

some e in R, and thus we have (X/Γ[X)~=^U)(e)nX by Lemma 1.1 (b) and
Lemma 1.2.
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(b) =Ξ> (a). Let / be an ideal of R. Putting X= {x^X(R) | / c#} , we have
1= n x because R is regular. Let U be an open-closed subset of X(R) such that

(X/Γ\X)~=U Γ\X. Since U is open-closed, as is well known, U=U(e) for
some e in R. Now Lemma 1.2(b) says that Γl #= Π x=Re+ Π x.

-

Hence, again using [14, Corollary 2.2], we conclude that Z(R/I) is a direct
summand of R/I.

The topological space obtained by one point compactification of an infinite
discrete space is an example of such a space X(R) which satisfies the condition in
(b) of Theorem 2.5.

3. Cyclic splitting regular rings

The purpose of this section is to show the following.

Theorem 3.1. Let R be a regular ring such that C(R)=Q(R). Then the
following conditions are equivalent :

(a) R is cyclic splitting.
(b) R is finitely generated splitting.
(c) The singular submodule of every finitely generated R-module is also finitely

generated.

In order to prove this we need several lemmas.

Lemma 3.2. Let R be a ring and £ι, •••, ew in B(R). Then there are ortho-
n m

gonal elements fl9 •••,/„ in B(R) such that ^Rei='ΣRfi

 an^ eifj w either 0 or
fjforanyi,j.

This can be easily shown by induction on n. We omit the proof.

Lemma 3.3. Let R be a regular ring, pι,m ,pnin Q(R) and T an R-module.
If A is a finitely generated R-submodule of the direct product TxRp^X ••• xRpny

then A can be decomposed into the direct sum of R-modules Aί9 " yAu y Bly •••,#„
such that

(1) each A; has a generating set {uly •••, um} of the following form in Tx
RpίX xRpn

!/! = (*, *, 0, 0, 0, ...... ,0, *, — ,*)

«2 = (*, 0, *, 0, 0, ...... ,0, *, — ,*)

«3 = (*, 0, 0, *, 0, ...... ,0, *, — ,*)

ut = (*, 0, 0, 0, 0, •••, 0, *, *, •••, *)

= (*, 0, ........................... ,0)

,0)
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(2) Vi3j: B^TxRpίX xQx xRpn.

Proof. Let A=Ral-\ [-Ram and express each a{ in TxRpi xRpn

as ai=(xi9 rnply •••, r, M/>n) with rίy in #. Let r^elί such that rίlr?1rίl=ra and
put ei=rilr

f

ij, ί=l, •• ,τw. By Lemma 3.2, there are orthogonal idempotents

- ί°
/!, ••• ,/s in Λ for which Σ ̂  —Σ Rfί anc^ β»/>=jor f°r anY *>j Setting /=

/H HΛ> we get -4=^/1φ — 04r,024(l—/) and A(l-f)^TxOxRp2x —
xRpn. Thus it sufficies to show the assertion for each ^4/Λ instead of A.

Let &<Ξ {1, -••, s} and put B=Afk. If/Jkrίljp1=0 for ί=l, •--, m, then there
is nothing to show since B^TxOχRp2X * χRpn. Thus assume that at least
one of these is not zero. Without loss of generality we may assume /^n/>ιΦθ.

Put &!=*!, b2=fka2—r2lfkrί1al9 -,bm=fkam-rmlfkrίla1. Then {bly ~ ,bm} is a

generating set of B. Express each b{ as (yit Supι, ,sinpn) in TxRpiX ••• XlZp,,

with ίίy in 72. Then siίp1=0 for all ί>2, since fkeι=fk. Therefore {bly •••, im}

is of the following form:

0 , S22p2, —,

Now we shall discuss the same argument as above for {sl2p2, " 9sm2p2}.

Let s'2^R such that ίί 2ίί2

ίί2=ίί2 and Put gi=si2s'i2> i=l, 9m. Again by Lemma

3.2, there are orthogonal idempotents hίy •• 9htίn R such that

for any /,;'. Setting A=AH ----- \-ht, we have B^

t

B(ί-h) and B^-h^TxRp.xOxRp^-xRp^ Thus we may show the
assertion for each Bhf instead of B. If hlsijpj=0 for all />2 and j > 2, then the

proof is completed. If there exist i>2 and j >2 such that λ/st y/>; Φθ, we may

assume Λ/^^ΦO. Here put C1=hlb1—s12hls22b2y C2=b2, C3=hlb3—s32hls22b2ί •-•, ̂
=hlbm—sm2h1s22b2 and express each c, as £,•=(#,-, ίa^, •-•, ^wpw). fc, •• ,^J is
then a generating set of Bht such that

Ci = («ι, ίnίi, 0, ί13_p3, •••, ίlΛ/>Λ)

^2 = (%2> 0, ί22A> ^23^ •"* ^2«Λ)

Repeating this argument, the proof can be established.
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Lemma 3.4. Let R be a cyclic splitting regular ring and T a singular R-
module. If A is a finitely generated R-submodule of TxRpιX xRpn, where

Pι> *">Pn ™ Q(R)> with a generating set {al9 •••, am} of the following form

0ι = (*> ripi, 0, , 0, *, •••, *)

02 = (*> 0, r2pz, 0, —, 0, *, ••«, *)

«*=(*, 0, ,0,1^, *, ...,*)

*+ι=(*,0, ,0)

*.= (*, 0, ,0),

then Z(Λ) is a direct summand of A.

Proof. We shall show the lemma by induction on the number n of {pi, ••-,
pn}. Assume that the assertion is true for every finitely generated l?-submodule

of the type T=RqιX xRqn-ι with qi in Q(R).

Now let fi^B(Q(R)) such that Q(R)fi=Q(R)ripi, ί=l, —, k. Since R is
cyclic splitting, by Teply's criterion, there are eλ, " ,ek in B(R) and ideals

Si, •••,£* contained in soc(R) such that R(l—fί)Γ\R=Rei(&Si, i= !,-••,£.
Using Lemma 3.2 there are non-zero orthogonal elements gι, •••,£/ in 5(12) such

0
that Σ ̂ =12 Rgi and βrfy= or for any /, j. Putting ̂ ^^iH \-gι>

For each gh there is clearly eis in {β1? •• ,^J such that gieίs—gi. Since each

gjrifpis=Q, we conclude that Z(Ag{) is a direct summand of Ag{ by the induction
hypothesis. Next we shall show that Z(A(l—g)) is a direct summand of A(l—g).

Cleary 12(1— <g
r)αΛ+1+ +J?(l— g)am is a singular Λ-module. We claim that

k k k
2 R(l—g)ai is non-singular. To see this let α=2 .̂-(1— ̂ K eZ(531?(1— ̂ X-)>
i=l i-1 t=l

where Λ?, e/ϊ, /= 1, •••,&. Then each Xi(l—g)ripi must be zero because of

ZίΓxφiX xφJcΓxOx — XO. This implies that

i9 whence Λ?f.(l—^)e5f , i = l, —,ft. Noting ίoc(-R)Γ=0, it
follows that a^OxRpιX χRpn and hence α=0 as claimed. Thus we get

A(l-g) = %R(l-g)ai®(R(l-g)at+1+» +R(l-g)am) and
ί = l

jR(l— g)ak+l-\ \-R(l—g)am. This completes the proof.
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Now we shall return to the proof of Theorem 3.1:

(b)!=^(c) is trivial and (c)==^(a) holds for any regular rings ([15, Proposition

22.5]).

(a)=φ(b). Since C(R)=Q(R), by [12, Lemma 3.6], every finitely generated

Λ-submodule of Q(R) is contained in a submodule of Q(R) which is a direct sum
of cyclic modules. On the other hand, every finitely generated J?-module A

is clearly embedded in an Λ-module of the type Z(Q(R)®RA)X Q(R) X ••• X Q(R)

(Lemma 1.6). Hence every finitely generated .R-module is embedded into an

J?-module of the type TxRp^ xRp^ where T is a singulr jR-module and

each pi is in Q(R). Now our assertion is easily verfied from Lemma 3.3 and

3.4 by making use of induction on n.

REMARKS. (1) The condition C(R)=Q(R) holds for Boolean rings R and

more generally for the rings R of all continuous functions from Boolean spaces

to finite fields ([13]).

(2) The condition C(R)=Q(R) can not be dropped from (a)<=>(b) in

Theorem 3.1. For example, if R is a regular Baer ring with zero socle but not

self-injective, then R is cyclic splitting, but by [7, Proposition 4.11] we can see

that it is not finitely generated splitting. The regular ring given in [7, Example

4.5] is cyclic splitting with essential socle but not finitely generated splitting.

(3) It would be of interest to learn whether (c) is equivalent to (a) or (b) in

Theorem 3.1 without assuming the condition C(R)=Q(R) (cf. [15, Problem

10]). The answer is not known to the author.

From Corollary 2.4, Theorem 3.1 and Remark (1) we have

Corollary 3.5. Let X be a Boolean space whose corresponding Boolean ring

is cyclic splitting. Then, for any finite field F, the ring of all continuous functions

from X to F is finitely generated splitting.

Finally we shall give an example of a cyclic splitting atomic Boolean ring

which is not decomposed into a direct sum of a splitting ring and a self-injective

ring.

EXAMPLE. Let S19 •••,*?„ be countably infinite sets, say *Sr

l={αll, ai29 •••},

and let S be the disjoint union of Sί9 •••, Sn. We denote by Q the atomic Boolean

ring consisting of all subsets of S. Let ψl;.: 5t—>5;. be the mapping given by

ais -» ajs (s= 1, 2, ), and consider the set R of all x in Q such that ψv/(*$,- Π x) U

Fix)) = (Sj Π x) U FjtX with some finite subset Fi%x of Si (ί, j = 1, 2, — , n). R

is then a subring of Q and moreover Q=Q(R)=RSl® ®RSn (see [13, Ex-

ample]). Now, as is easily checked, for any q in Q, RqΓ\R=ReQ)T for some e

in R and some ideal T contained in soc(R). So, Teply's criterion says that R is

cyclic splitting. But inasmuch as R has infinitely many essential ideals, we see
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from [3, Theorem 5] that R is not splitting. Furthermore, when n>2, R is not
decomposed into a direct sum of a self-injective ring and a splitting ring.
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