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ON SMALL RING HOMOMORPHISMS
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The author studied the total quotient ring of a commutative ring R from
the point of view of small Λ-submodules [2]. In this note, we shall extend
those methods to a ring extension of R. Let R and R' be commutative rings
and /: R-+R' a ring homomorphism. If f(R) is a small Λ-submodule of R',
we say/ being small or R being small in R'. In the first section, we shall give
a criterion for R to be small in R' in terms of maximal ideals in R and R/ and
obtain fundamental properties of small homomorphisms. In the second section,
we shall give a characterization of maximal ideals M by the multiplicative sys-
tems R — M and small homomorphisms.

Throughout this note, we assume every ring R is a commutative ring with
identity unless otherwise stated and very ring homomorphism is also unitary,
i.e. /(I) is the identity.

The author would like to express his thanks to his colleague Mr. T. Sumioka
for his useful advice on Theorem 1.

1. Small homomorphisms

Let R be a (commutative) ring and let M^N be Λ-modules. N is called
a small submodule in M if it satisfies the following condition: the fact M—N+T
for some ί?-submodule T implies T=M. Let Rf be commutative and /: jR—>
R' a ring homomorphism. Then every Λ'-module may be regarded as
an Λ-module via /. If f(R) is a small jR-submodule in R', we say that / is
small or R is small in Rf. Let A and A' be ideals in R and .R', respectively.
We put f(A)R'=AR' and f-1(f(R)nA/)=A/ Γ\R. We shall denote the set of
prime ideals by spec(ί?) and the set of maximal ideals by Sρec(J?). Then we
have the induced map/*: sρec(JR')-^spec(.R).

The following lemma is well known and the proofs are trivial.

Lemma 0. 1) Let X^Y^Z be R-modules. If Z is a small R-submodule
in Y, so is in X and if Y is small in X, so is Z. 2) Let W be an R-module and
f: X-* W an R-homomorphίsm. If Z is small in X} f(Z) is small in W. 3) Further-
more, if U is a small submodule in W, Z® U is small in X® W.
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Theorem 1. Let R and R' be commutative rings and f: R-+R' a ring homo-
morphism. Then the following conditions are equivalent.

1) f is a small homomorphίsm.
2) Every R-finitely generated submodule of Rf is small in R'.
3)

Proof. We may assume R^=f(R) c R.
I

l)-^2). Let N=^n{R be a finitely generated jR-submodule in R'. We con-
1=1 ' h i

sider a standard exact sequence: -F=Σ ®uiR
/-^ ^niR'^Q. Since R is small

'
in J?7, 2 φw /2 is small in F from Lemma 0. Hence, N==h(^ φn//?) is small

/ ί=1

in Σ #,7?' and so in R' from Lemma 0.
ί = l

2)-»l). It is trivial.
l)->3). Let M7 be a maximal ideal in R and put M=f*(M')=R Π M'. If M
is maximal, R/M is a subfield of R'/M' '. Hence, there exists an Λ-submodule
L in R' such that L^M', LΦΛ7 and R'=R+L, which is a contradiction.
3)-»l). Let M be a maximal ideal in R. If MR'3=R', we can take a maximal
ideal M7 in Λ7 containing MR. Then M— M7fϊ#. Hence, MR'=R' for
every Me Sρec(.R). Now, we assume R'=R-\-T for an J?-submodule T in R'.
Then R'M=R'MRM=RMM+TM. Since ^/TM is a finitely generated #M-
module, R'M=TM from Nakayama's Lemma. Hence, R'=T.

REMARKS. 1. The condition 3) is equivalent to 37) MR'=R' for M

2. In case R is a non-commutative ring but an J?-algebra, Theorem 1
remains valid. We assume that R is a non-commutative ring with Jacobson
radical / such that R/J is artinian. Then we obtain form the above proof that
/: R-+R' is small as a right R-module if and only if R'J=R'. Hence, if R is right
perfect [1], then any ring extension /is never small. We note that the concept
of small homomorphism as a right jR-module is defferent from one as a left
jR-modules in case of non-commutative rings.

3. The following is also valid for non-commutative rings from Lemma
0,2).

Let R, R' and R" be rings and f:R-^»Rf, g:R'-*R" ring homomorphisms.
If f is small, then gf is small.

We shall give several fundamental properties of a small homomorphism
as applications of Theorem 1.

Proposition 2. Let K be afield and R a subring of K. Then R is small in
K if and only if R is not afield.
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Let P be in spec(Λ). By μp we shall denote the natural homomorphism of

RtoRP.

Proposition 3. Let f:R-*R' be a ring homomorphism.

1) f is small if and only if fM

 : RM~~^^M is small for every M in SpecfT?). 2)
For Pesρec(7?),y> is small if and only if P&Imf*. In this case fpμp is also
small. 3) For P' <Ξ spec(JR') and P=f*(P'),ff' : RP-*R'P> is never small, butfp'μp

is small if and only if μp is small, namely P$Spec(/2).

Proof. 1) MR'=R' for Me Spec(Λ) if and only if (MR')N=R'N for every

2) It is clear from a commutative diagram

spec(Λ'n)

I ϊ
(c=spec(#')).

3) It is clear that fP'*(P'RP)=RPP. Hence, fp* is not small. Furthermore,
from Theorem 1 fP'μP is small if and only if P is not maximal.

Proposition 4. Let f: R~*R' be a ring homomorphism. Then the following
are equivalent.

1) For any ring homomorphism g: R'-^>R", g is small if and only if gf is small.

2) /

Proof. l)->2). Let Mf be maximal in R '. Since μ'M\ Rr-*R!M' is not small

from Theorem 1, μ'Mf is not small Hence, /^(M7)— (pM'f)*(M'.R'M') is maximal.

Let P' be in spec(jR7)- Spec(Λ7). Then μ,P> : R'-»R'P' is small from Theorem 1.

Hence, μp'f is small. Therefore, f*(P')=(fμP')*(P'R'p') is not maximal by
Theorem 1.

2)->l). We assume g is small. Then g*(M") is in spec^7)— Spec^) for any
maximal ideal M" in R" '. Hence, (gf)*(M") is not maximal from 2). There-

fore, gf is small from Theorem 1. Conversely, we assume gf is small. Then

(gf)*(M") is not maximal and so g*(M") is not maximal from 2). Therefore,
g is small.

If R'=RM for a maximal ideal M, R'=R(x) or R' is integral over R, then they

satisfy the above conditions [3].
Let A be an ideal in R. By pA we denote the natural epimorphism of R

to R/A.

Proposition 5. Let R and R' be rings and f: R->R' a ring homomorphism.

Then the following statements are equivalent.
1) f is small.

2) PM' f ύ small for every M' in Spec(R').



368 M. HARADA

3) PW / is small for every M in Spec(R).
4) pj' f is small for the Jacobson radical J' of R'.

5) PJR' f is small for the Jacosbon radical J of R.

Proof. l)<->2) and 1)̂ -̂ 3) are clear from Remark 3, Proposition 2 and
Theorem 1.

4)->l). Let M' be a maximal ideal in Rf. Then PM'f=PM'/j'Pf'f is small
from Proposition 1. Hence, / is small by 2).
5)-»l). We can prove it similarly to the above by using 3).

REMARK 4. If R' (resp. R) is local, we can replace 2) (resp. 3)) by pA' f
(resp. ρAR' f) for some ideal A' (resp. A such that AR'^R').

f g
Proposition 6. Let R-*R'-*R" be rings and ring homomorphίsms.

We assume that R' is local and gf is small, then either f or g is small, (see Example

2 below).

Proof. Let Mr be the unique maximal ideal in R'. If R Π Mr is maximal,
R"=R"(RΓ(M')=R"M' from Theorem 1.

2. Quotient rings

Let S be a multiplicative system in R. If μs: R-*RS is small, S is called
large. If S satisfies the following two conditions, we call S critical.

1) IfS^S',S'islarge.
2) If SΏ. S', S' is not large,

where S' is a multiplicative system in R.

We obtain immediately from Theorem 1

Proposition 7 ([2]). Let S be a multiplicative system. Then the following
are equivalent.

1) S is large.

2) MΓlSφφfor every M in Spec(Λ).

Theorem 8. Let R be a commutative ring. Then there exists a one-to-one
mapping between Spec(Λ) and the set of critical multiplicative systems S in R as
follows: M=R—S and S=R—M, where MeSpec(Λ).

Proof. Let M be a maximal ideal and S—R—M. Then it is clear from

Proposition 7 that S is critical. Conversely, let S be critical. Since S is not

large, there exists a maximal ideal Mr such that M'ΠS— φ from Proposition
7. Then we obtain again from Proposition 7 and the definition that S=R—M'.

Proposition 9. R is never small for any non-zero ring homomorphism f: R->
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R' if and only if MRM is a nil ideal for every maximal ideal M in R.

Proof. 'Only if" part. We may assume R is local from Proposition 3.
If there exists m in M which is not nil, then {m{} , is large from Proposition 7.

Which is a contradiction. "If " part. If R'M=R', 1=2 r^ r\ e R'9 mi e M.
ί=1 f

There exists^ inR — Msuch that smni=Q for all ί and some #. Then s=s(2 ffi^i)tn

ί = l

=0.

Proposition 10. Lei J? fo an integral domain and K the field of quotients.
Then R is local if and only if R is small in any subring T is K such that TlDR and
there exists an element a~1^T—R, a^R.

Proof. Let R be a local and T as above. Then {ai}i is large from
Proposition 7. Hence, R is small in T by Remark 3. Conversely, let M be
maximal. Then R is not small in RM. Hence, R=RM from the assumption.

Proposition 11. Let R be a domain with K quotient field. Then the follow-
ing are equivalent.

1) Let R' be an over ring of R. If R is small in R', R'=K.
2) Krull dim R=ί i.e. every non-zero prime is maximal in R.

Proof. l)-*2). Let P be a non-zero prime ideal. Then RP=R or R is

not small in RP. Hence, P is maximal from Proposition 7.

2)-»l). Let K^R' be an over ring and R be small in R'. Then for every

maximal ideal M', Tkf'Π-RφO is not maximal, which is a contradiction.

Proposition 12. Let R be a Dedekίnd domain and L an R-submodule in K

containing R. Then

1) R is small in L if and only if Ll^Σ P'1
P

where P runs through the set P of non-zero primes in R.
If L is a subring y then

2) R is small in L if and only if K—L, and L is small in K as an R-module
if and only if L=R.

Proof. Since K/R=^ 0(2 P'ΛIR) and every Λ-submodule in 2 P-n/R
p n n

is of P~mIR, L=Σ P~*w τz(P)> 0. First, we shall show R is small in Σ P'1
p P

=A. If A=R+T9Ap=P'1RP=:RP+TP. Let RPP=(p) and RPΓίTP=(pe).
Then p-1=r+ts-1',r^RPίt^T and s<=R—P. Hence, s(l—rp)^tp^TPΓ\RP

and so (1— rp)^(pe). Therefore, e=l and AP=TP for every P. Accordingly,
A= T. Next, we consider a submodule A(L)=^ P~n(p). Then we can show as

above A(L)=R+LA(L) and A(L)^LA(L). Hence, R is not small in A(L).
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We have proved 1). 2) is clear from 1) and the structure of KjR.

EXAMPLES 1) Let K be a field and x an indeterminant. Then K is not

small in K(x), however K[x] (^K) is small in K(x) (cf. Lemma 0).

2) Let Z be the ring of integers with Q quotient field and p a prime.

Then Zp[x] is not small in Q[x], since (px— 1) is a maximal ideal in Zp[x] such

that Q[x](px— l)=NβM Hence, Proposition 6 is not true without the assump-

tion "local."

3) Let R=K[x,y\(X9y). Then R is not small in R[yx~*] as an jR-module

and Rlyx"1] does not contain any element a"1 as in Proposition 10.

4) Zp=ZPl((xp—l)Γ\Zp) is small in Q=Zp[x]/(xp—l)9 but Zp is not small

in Zp[x] (cf. Proposition 5).
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