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The author studied the total quotient ring of a commutative ring R from
the point of view of small R-submodules [2]. In this note, we shall extend
those methods to a ring extension of R. Let R and R’ be commutative rings
and f: R—R’ a ring homomorphism. If f(R) is a small R-submodule of R/,
we say f being small or R being small in R’. In the first section, we shall give
a criterion for R to be small in R’ in terms of maximal ideals in R and R’ and
obtain fundamental properties of small homomorphisms. In the second section,
we shall give a characterization of maximal ideals M by the multiplicative sys-
tems R— M and small homomorphisms.

Throughout this note, we assume every ring R is a commutative ring with
identity unless otherwise stated and very ring homomorphism is also unitary,
i.e. f(1) is the identity.

The author would like to express his thanks to his colleague Mr. T. Sumioka
for his useful advice on Theorem 1.

1. Small homomorphisms

Let R be a (commutative) ring and let M 2N be R-modules. N is called
a small submodule in M if it satisfies the following condition: the fact M=N-+T
for some R-submodule T implies T=M. Let R’ be commutative and f: R—
R’ a ring homomorphism. Then every R’-module may be regarded as
an R-module via f. If f(R) is a small R-submodule in R/, we say that f is
small or R is small in R’. Let A and A’ be ideals in R and R/, respectively.
We put f(A)R'=AR’ and f~Y(f(RyNA")=A’NR. We shall denote the set of
prime ideals by spec(R) and the set of maximal ideals by Spec(R). Then we
have the induced map f: spec(R’)—spec(R).

The following lemma is well known and the proofs are trivial.

Lemma 0. 1) Let XD YDZ be R-modules. If Z is a small R-submodule
in 'Y, s0isin X and if Y is small in X, so is Z. 2) Let W be an R-module and
f: X—W an R-homomorphism. If Z is small in X, f(Z) is small in W. 3) Further-
more, if U is a small submodule in W, ZP U is small in XPW.
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Theorem 1. Let R and R’ be commutative rings and f: R—R’ a ring homo-
morphism. Then the following conditions are equivalent.

1) fis a small homomorphism.

2) Every R-finitely generated submodule of R’ is small in R'.

3) f«(Spec(R")) N Spec(R)=4.

Proof. We may assume R=f(R)CR’.
1)—2). Let N= -—2 7R be a finitely generated R-submodule in R’. We con-
sider a standard exact sequence: F= _Z] Pu; R’ — Z n,R’—0. Since R is small
in R/, Z @u;R is small in F from Lemma 0. Hence, N= —h(Z @u;R) is small

in él n,R’ and so in R’ from Lemma 0.

2)—1). TItis trivial.

1)—3). Let M’ be a maximal ideal in R’ and put M=f(M)=RNM’'. If M
is maximal, R/M is a subfield of R’/M’. Hence, there exists an R-submodule
L in R’ such that LD M’, LR’ and R’=R-L, which is a contradiction.
3)—1). Let M be a maximal ideal in R. If MR’=R’, we can take a maximal
ideal M’ in R’ containing MR’. Then M=M'NR. Hence, MR'=R’ for
every M & Spec(R). Now, we assume R’=R-T for an R-submodule 7" in R’'.
Then Ry=R'MR,=R,M+T,. Since Ry/T, is a finitely generated R,-
module, Rj=T,, from Nakayama’s Lemma. Hence, R'=T.

ReEMaRrks. 1. The condition 3) is equivalent to 3') MR'=R’ for M
& Spec(R).

2. In case R’ is a non-commutative ring but an R-algebra, Theorem 1
remains valid. We assume that R is a non-commutative ring with Jacobson
radical J such that R/J is artinian. Then we obtain form the above proof that
f:R—R’ is small as a right R-module if and only if R’ J=R’. Hence, if R is right
perfect [1], then any ring extension f is never small. We note that the concept
of small homomorphism as a right R-module is defferent from one as a left
R-modules in case of non-commutative rings.

3. The following is also valid for non-commutative rings from Lemma
0, 2).

Let R, R’ and R" be rings and f:R—R’, g:R'—R" ring homomorphisms.
If f is small, then gf is small.

We shall give several fundamental properties of a small homomorphism
as applications of Theorem 1.

Proposition 2. Let K be a field and R a subring of K. Then R is small in
K if and only if R is not a field.
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Let P be in spec(R). By up we shall denote the natural homomorphism of
R to R;.

Proposition 3. Let f: R—R’ be a ring homomorphism.

1) f is small if and only if f: Ry—> R}y is small for every M in Spec(R). 2)
For Pespec(R), fp is small if and only if P&Im fy. In this case fppp is also
small. 3) For P'&spec(R’) and P=f+«(P’),f " : Rp—R5’ is never small, but f p’p.p
is small if and only if pp is small, namely P e Spec(R).

Proof. 1) MR’'=R’ for M & Spec(R) if and only if (MR’)y=R} for every
Ne&Spec(R). 2) Itis clear from a commutative diagram

spec(Ry) I spec(R%)
2 ;o b
A= {0 spec(R)| QS P} <~ f3(4) (Sspec(R)).
3) It is clear that fp«(P’Rp)=RpP. Hence, fp is not small. Furthermore,
from Theorem 1 fp/up is small if and only if P is not maximal.

Proposition 4. Let f: R—R’ be a ring homomorphism. Then the following
are equivalent.

1) For any ring homomorphism g: R'—R", g is small if and only if gf is small.

2) f¥'(Spec(R))=Spec(R).

Proof. 1)—2). Let M’ be maximal in R’. Since pj: R'—Rj, is not small

from Theorem 1, pj,f is not small Hence, f(M")=(pu’f)x(M’R}) is maximal.
Let P’ be in spec(R’)—Spec(R’). Then pp: R’—R% is small from Theorem 1.
Hence, ppf is small. Therefore, f«(P')=(fppr)«(P’Rp’) is not maximal by
Theorem 1.
2)—1). We assume g is small. Then g4(M") is in spec(R’)—Spec(R’) for any
maximal ideal M” in R”. Hence, (gf)x(M"’) is not maximal from 2). There-
fore, gf is small from Theorem 1. Conversely, we assume gf is small. Then
(gf)«(M") is not maximal and so g«(M"’) is not maximal from 2). Therefore,
g is small.

If R”=R,, for a maximal ideal M, R"=R(x) or R’ is integral over R, then they
satisfy the above conditions [3].

Let A be an ideal in R. By p, we denote the natural epimorphism of R
to R/A.

Proposition 5. Let R and R’ be rings and f: R—R’ a ring homomorphism.
Then the following statements are equivalent.

1) fis small.

2) py fis small for every M’ in Spec(R’).
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3) pux’ f is small for every M in Spec(R).
4) py f is small for the Jacobson radical ]’ of R’'.
5) psr’ fis small for the Jacosbon radical J of R.

Proof. 1)e2) and 1)«23) are clear from Remark 3, Proposition 2 and
Theorem 1.
4)—1). Let M’ be a maximal ideal in R’. Then py’ f=p,’,rpy f is small
from Proposition 1. Hence, f is small by 2).
5)—1). We can prove it similarly to the above by using 3).

ReEmMARK 4. If R’ (resp. R) is local, we can replace 2) (resp. 3)) by pu f
(resp. pax’ f) for some ideal 4’ (resp. 4 such that 4R'+R’).

Proposition 6. Let RLR’ —g;R” be rings and ring homomorphisms.
We assume that R’ is local and gf is small, then either f or g is small, (see Example
2 below).

Proof. Let M’ be the unique maximal ideal in R’. If RN M’ is maximal,
R’"=R"(RNM")=R"”M’ from Theorem 1.

2. Quotient rings

Let .S be a multiplicative system in R. If ug: R—R; is small, S is called
large. 1If S satisfies the following two conditions, we call S critical.

1) If SES’, S is large.

2) If S28’, S’ is not large,
where S’ is a multiplicative system in R.

We obtain immediately from Theorem 1

Proposition 7 ([2]). Let S be a multiplicative system. Then the following
are equivalent.

1) Sis large.

2) MNS=¢ for every M in Spec(R).

Theorem 8. Let R be a commutative ring. Then there exists a one-to-one
mapping between Spec(R) and the set of critical multiplicative systems S in R as
follows: M=R—S and S=R—M, where M < Spec(R).

Proof. Let M be a maximal ideal and S=R—M. Then it is clear from
Proposition 7 that S is critical. Conversely, let S be critical. Since .S is not
large, there exists a maximal ideal M’ such that M’ N S=¢ from Proposition
7. Then we obtain again from Proposition 7 and the definition that S=R—1".

Proposition 9. R is never small for any non-zero ring homomorphism f: R—
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R’ if and only if MRy, is a nil ideal for every maximal ideal M in R.

Proof. “Only if” part. We may assume R is local from Proposition 3.
If there exists m in M which is not nil, then {m;}; is large from Proposition 7.

Which is a contradiction. “If” part. If R’M=R/, 1=i‘, rim;;rieR, m;e M.
i=1
There exists s in R— M such that sm?=0 for all 7 and some n. Then s=s(2' rim;)"
i=1
=0.

Proposition 10. Let R be an integral domain and K the field of quotients.
Then R is local if and only if R is small in any subring T is K such that T DR and
there exists an element a '€ T—R, acR.

Proof. Let R be a local and T as above. Then {a'}; is large from
Proposition 7. Hence, R is small in T by Remark 3. Conversely, let M be
maximal. Then R is not small in R,. Hence, R=R,, from the assumption.

Proposition 11. Let R be a domain with K quotient field. Then the follow-
ing are equivalent.

1) Let R be an over ring of R. If R is small in R’, R'=K.

2) Krull dim R=1 i.e. every non-zero prime is maximal in R.

Proof. 1)—2). Let P be a non-zero prime ideal. Then R,=R or R is
not small in R,. Hence, P is maximal from Proposition 7.
2)—1). Let K2R’ be an over ring and R be small in R’. Then for every
maximal ideal M’, M’ N R=0 is not maximal, which is a contradiction.

Proposition 12. Let R be a Dedekind domain and L an R-submodule in K
containing R. Then

1) Ris small in L if and only ifLD; P!
where P runs through the set P of non-zero primes in R.
If L is a subring, then

2) Ris small in L if and only if K=L, and L is small in K as an R-module
if and only if L=R.

Proof. Since K/R=3}D(3} P "|R) and every R-submodule in >} P~"/R
P " 7
is of P™"|R, L=3YP~"®; n(P)>0. First, we shall show R is small in >} P!
P

P
=A. If A=R+T, Ap=P 'Rp=Rp+Tp. Let R,P=(p) and RpN Tpr=(p").
Then pl'=r+4ts7';7r&Rp, t€T and s&e R—P. Hence, s(1—rp)=tp=TrN R,
and so (1—7p)e(p?). Therefore, e=1 and A,=T, for every P. Accordingly,
A=T. Next, we consider a submodule A(L)=§LP‘”(P ). Then we can show as

above A(L)=R+-LA(L) and A(L)#+LA(L). Hence, R is not small in A(L).
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We have proved 1). 2) is clear from‘l) and the structure of K/R.

ExampLeEs 1) Let K be a field and x an indeterminant. Then K is not
small in K(x), however K[x] (DK) is small in K(x) (cf. Lemma 0).

2) Let Z be the ring of integers with Q quotient field and p a prime.
Then Z,[x] is not small in Q[x], since (px—1) is a maximal ideal in Z,[x] such
that O[«x] (px—1)==0Q[x]. Hence, Proposition 6 is not true without the assump-
tion “local.”

3) Let R=K[x,y]¢.,,»- Then R is not small in R[yx~] as an R-module
and R[yx~'] does not contain any element ¢! as in Proposition 10.

4) Z,=Z,/(xp—1)NZ,) is small in Q=Z [x]/(xp—1), but Z, is not small
in Z,[x] (cf. Proposition 5).
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