ON SMALL RING HOMOMORPHISMS

Manabu HARADA
(Received February, 3, 1977)
(Revised May 11, 1977)

The author studied the total quotient ring of a commutative ring R from the point of view of small R-submodules [2]. In this note, we shall extend those methods to a ring extension of R. Let R and R^{\prime} be commutative rings and $f: R \rightarrow R^{\prime}$ a ring homomorphism. If $f(R)$ is a small R-submodule of R^{\prime}, we say f being small or R being small in R^{\prime}. In the first section, we shall give a criterion for R to be small in R^{\prime} in terms of maximal ideals in R and R^{\prime} and obtain fundamental properties of small homomorphisms. In the second section, we shall give a characterization of maximal ideals M by the multiplicative systems $R-M$ and small homomorphisms.

Throughout this note, we assume every ring R is a commutative ring with identity unless otherwise stated and very ring homomorphism is also unitary, i.e. $f(1)$ is the identity.

The author would like to express his thanks to his colleague Mr. T. Sumioka for his useful advice on Theorem 1.

1. Small homomorphisms

Let R be a (commutative) ring and let $M \supseteq N$ be R-modules. N is called a small submodule in M if it satisfies the following condition: the fact $M=N+T$ for some R-submodule T implies $T=M$. Let R^{\prime} be commutative and $f: R \rightarrow$ R^{\prime} a ring homomorphism. Then every R^{\prime}-module may be regarded as an R-module via f. If $f(R)$ is a small R-submodule in R^{\prime}, we say that f is small or R is small in R^{\prime}. Let A and A^{\prime} be ideals in R and R^{\prime}, respectively. We put $f(A) R^{\prime}=A R^{\prime}$ and $f^{-1}\left(f(R) \cap A^{\prime}\right)=A^{\prime} \cap R$. We shall denote the set of prime ideals by $\operatorname{spec}(R)$ and the set of maximal ideals by $\operatorname{Spec}(R)$. Then we have the induced map $f_{*}: \operatorname{spec}\left(R^{\prime}\right) \rightarrow \operatorname{spec}(R)$.

The following lemma is well known and the proofs are trivial.
Lemma 0. 1) Let $X \supseteq Y \supseteq Z$ be R-modules. If Z is a small R-submodule in Y, so is in X and if Y is small in X, so is Z. 2) Let W be an R-module and $f: X \rightarrow W$ an R-homomorphism. If Z is small in $X, f(Z)$ is small in W. 3) Furthermore, if U is a small submodule in $W, Z \oplus U$ is small in $X \oplus W$.

Theorem 1. Let R and R^{\prime} be commutative rings and $f: R \rightarrow R^{\prime}$ a ring homomorphism. Then the following conditions are equivalent.

1) f is a small homomorphism.
2) Every R-finitely generated submodule of R^{\prime} is small in R^{\prime}.
3) $f_{*}\left(\operatorname{Spec}\left(R^{\prime}\right)\right) \cap \operatorname{Spec}(R)=\phi$.

Proof. We may assume $R=f(R) \subseteq R^{\prime}$.
$1) \rightarrow 2$). Let $N=\sum_{i=1}^{l} n_{i} R$ be a finitely generated R-submodule in R^{\prime}. We consider a standard exact sequence: $F=\sum_{i=1}^{l} \oplus u_{i} R^{\prime} \xrightarrow{h} \sum_{i=1}^{l} n_{i} R^{\prime} \rightarrow 0$. Since R is small in $R^{\prime}, \sum_{i=1}^{l} \oplus u_{i} R$ is small in F from Lemma 0 . Hence, $N=h\left(\sum_{i=1}^{l} \oplus u_{i} R\right)$ is small in $\sum_{i=1}^{l} n_{i} R^{\prime}$ and so in R^{\prime} from Lemma 0.
$2) \rightarrow 1$). It is trivial.
$1) \rightarrow 3$). Let M^{\prime} be a maximal ideal in R^{\prime} and put $M=f_{*}\left(M^{\prime}\right)=R \cap M^{\prime}$. If M is maximal, R / M is a subfield of R^{\prime} / M^{\prime}. Hence, there exists an R-submodule L in R^{\prime} such that $L \supseteq M^{\prime}, L \neq R^{\prime}$ and $R^{\prime}=R+L$, which is a contradiction. $3) \rightarrow 1$). Let M be a maximal ideal in R. If $M R^{\prime} \neq R^{\prime}$, we can take a maximal ideal M^{\prime} in R^{\prime} containing $M R^{\prime}$. Then $M=M^{\prime} \cap R$. Hence, $M R^{\prime}=R^{\prime}$ for every $M \in \operatorname{Spec}(R)$. Now, we assume $R^{\prime}=R+T$ for an R-submodule T in R^{\prime}. Then $R_{M}^{\prime}=R^{\prime} M R_{M}=R_{M} M+T_{M}$. Since R_{M}^{\prime} / T_{M} is a finitely generated $R_{M^{-}}$ module, $R_{M}^{\prime}=T_{M}$ from Nakayama's Lemma. Hence, $R^{\prime}=T$.

Remarks. 1. The condition 3) is equivalent to 3^{\prime}) $M R^{\prime}=R^{\prime}$ for M $\in \operatorname{Spec}(R)$.
2. In case R^{\prime} is a non-commutative ring but an R-algebra, Theorem 1 remains valid. We assume that R is a non-commutative ring with Jacobson radical J such that R / J is artinian. Then we obtain form the above proof that $f: R \rightarrow R^{\prime}$ is small as a right R-module if and only if $R^{\prime} J=R^{\prime}$. Hence, if R is right perfect [1], then any ring extension f is never small. We note that the concept of small homomorphism as a right R-module is defferent from one as a left R-modules in case of non-commutative rings.
3. The following is also valid for non-commutative rings from Lemma $0,2)$.

Let R, R^{\prime} and $R^{\prime \prime}$ be rings and $f: R \rightarrow R^{\prime}, g: R^{\prime} \rightarrow R^{\prime \prime}$ ring homomorphisms. If f is small, then $g f$ is small.

We shall give several fundamental properties of a small homomorphism as applications of Theorem 1.

Proposition 2. Let K be a field and R a subring of K. Then R is small in K if and only if R is not a field.

Let P be in $\operatorname{spec}(R) . \quad$ By μ_{P} we shall denote the natural homomorphism of R to R_{P}.

Proposition 3. Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism.

1) f is small if and only if $f_{M}: R_{M} \rightarrow R_{M}^{\prime}$ is small for every M in $\operatorname{Spec}(R)$. 2) For $P \in \operatorname{spec}(R), f_{P}$ is small if and only if $P \notin \operatorname{Im} f_{*}$. In this case $f_{P} \mu_{P}$ is also small. 3) For $P^{\prime} \in \operatorname{spec}\left(R^{\prime}\right)$ and $P=f_{*}\left(P^{\prime}\right), f_{P^{\prime}}: R_{P} \rightarrow R_{P}^{\prime}$ is never small, but $f_{P^{\prime}} \mu_{P}$ is small if and only if μ_{P} is small, namely $P \notin \operatorname{Spec}(R)$.

Proof. 1) $M R^{\prime}=R^{\prime}$ for $M \in \operatorname{Spec}(R)$ if and only if $\left(M R^{\prime}\right)_{N}=R_{N}^{\prime}$ for every $N \in \operatorname{Spec}(R)$. 2) It is clear from a commutative diagram
3) It is clear that $f_{P^{\prime} *}\left(P^{\prime} R_{P}^{\prime}\right)=R_{P} P$. Hence, $f_{P^{\prime}}$ is not small. Furthermore, from Theorem $1 f_{P^{\prime} \mu_{P}}$ is small if and only if P is not maximal.

Proposition 4. Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism. Then the following are equivalent.

1) For any ring homomorphism $g: R^{\prime} \rightarrow R^{\prime \prime}, g$ is small if and only if $g f$ is small.
2) $f_{*}^{-1}(\operatorname{Spec}(R))=\operatorname{Spec}\left(R^{\prime}\right)$.

Proof. 1) $\rightarrow 2$). Let M^{\prime} be maximal in R^{\prime}. Since $\mu_{M}^{\prime}: R^{\prime} \rightarrow R_{M^{\prime}}^{\prime}$ is not small from Theorem 1, $\mu_{M}^{\prime} f$ is not small Hence, $f_{*}\left(M^{\prime}\right)=\left(\mu_{M^{\prime}} f\right)_{*}\left(M^{\prime} R_{M^{\prime}}^{\prime}\right)$ is maximal. Let P^{\prime} be in $\operatorname{spec}\left(R^{\prime}\right)-\operatorname{Spec}\left(R^{\prime}\right)$. Then $\mu_{P^{\prime}}: R^{\prime} \rightarrow R_{P}^{\prime}$, is small from Theorem 1. Hence, $\mu_{P^{\prime}} f$ is small. Therefore, $f_{*}\left(P^{\prime}\right)=\left(f \mu_{P^{\prime}}\right)_{*}\left(P^{\prime} R_{P^{\prime}}^{\prime}\right)$ is not maximal by Theorem 1.
$2) \rightarrow 1$). We assume g is small. Then $g_{*}\left(M^{\prime \prime}\right)$ is in $\operatorname{spec}\left(R^{\prime}\right)-\operatorname{Spec}\left(R^{\prime}\right)$ for any maximal ideal $M^{\prime \prime}$ in $R^{\prime \prime}$. Hence, $(g f)_{*}\left(M^{\prime \prime}\right)$ is not maximal from 2). Therefore, $g f$ is small from Theorem 1. Conversely, we assume $g f$ is small. Then $(g f)_{*}\left(M^{\prime \prime}\right)$ is not maximal and so $g_{*}\left(M^{\prime \prime}\right)$ is not maximal from 2). Therefore, g is small.

If $R^{\prime}=R_{M}$ for a maximal ideal $M, R^{\prime}=R(x)$ or R^{\prime} is integral over R, then they satisfy the above conditions [3].

Let A be an ideal in R. By ρ_{A} we denote the natural epimorphism of R to R / A.

Proposition 5. Let R and R^{\prime} be rings and $f: R \rightarrow R^{\prime}$ a ring homomorphism. Then the following statements are equivalent.

1) f is small.
2) $\rho_{M^{\prime}} f$ is small for every M^{\prime} in $\operatorname{Spec}\left(R^{\prime}\right)$.
3) $\rho_{M R^{\prime}} f$ is small for every M in $\operatorname{Spec}(R)$.
4) $\rho_{J^{\prime}} f$ is small for the Jacobson radical J^{\prime} of R^{\prime}.
5) $\rho_{J_{R^{\prime}}} f$ is small for the Jacosbon radical J of R.

Proof. 1) $\leftrightarrow 2$) and 1) $\leftrightarrow 3$) are clear from Remark 3, Proposition 2 and Theorem 1.
$4) \rightarrow 1$). Let M^{\prime} be a maximal ideal in R^{\prime}. Then $\rho_{M^{\prime}} f=\rho_{M^{\prime} / J^{\prime}} \rho_{J^{\prime}} f$ is small from Proposition 1. Hence, f is small by 2).
$5) \rightarrow 1$). We can prove it similarly to the above by using 3).
Remark 4. If R^{\prime} (resp. R) is local, we can replace 2) (resp. 3)) by $\rho_{A^{\prime}} f$ (resp. $\rho_{A R^{\prime}} f$) for some ideal A^{\prime} (resp. A such that $A R^{\prime} \neq R^{\prime}$).

Proposition 6. Let $R \xrightarrow[\rightarrow]{f} R^{\prime} \xrightarrow{g} R^{\prime \prime}$ be rings and ring homomorphisms. We assume that R^{\prime} is local and $g f$ is small, then either f or g is small, (see Example 2 below).

Proof. Let M^{\prime} be the unique maximal ideal in R^{\prime}. If $R \cap M^{\prime}$ is maximal, $R^{\prime \prime}=R^{\prime \prime}\left(R \cap M^{\prime}\right)=R^{\prime \prime} M^{\prime}$ from Theorem 1.

2. Quotient rings

Let S be a multiplicative system in R. If $\mu_{S}: R \rightarrow R_{S}$ is small, S is called large. If S satisfies the following two conditions, we call S critical.

1) If $S \subsetneq S^{\prime}, S^{\prime}$ is large.
2) If $S \supseteq S^{\prime}, S^{\prime}$ is not large,
where S^{\prime} is a multiplicative system in R.
We obtain immediately from Theorem 1
Proposition 7 ([2]). Let S be a multiplicative system. Then the following are equivalent.
3) S is large.
4) $M \cap S \neq \phi$ for every M in $\operatorname{Spec}(R)$.

Theorem 8. Let R be a commutative ring. Then there exists a one-to-one mapping between $\operatorname{Spec}(R)$ and the set of critical multiplicative systems S in R as follows: $M=R-S$ and $S=R-M$, where $M \in \operatorname{Spec}(R)$.

Proof. Let M be a maximal ideal and $S=R-M$. Then it is clear from Proposition 7 that S is critical. Conversely, let S be critical. Since S is not large, there exists a maximal ideal M^{\prime} such that $M^{\prime} \cap S=\phi$ from Proposition 7. Then we obtain again from Proposition 7 and the definition that $S=R-M^{\prime}$.

Proposition 9. R is never small for any non-zero ring homomorphism $f: R \rightarrow$
R^{\prime} if and only if $M R_{M}$ is a nil ideal for every maximal ideal M in R.
Proof. "Only if" part. We may assume R is local from Proposition 3. If there exists m in M which is not nil, then $\left\{m_{i}\right\}_{i}$ is large from Proposition 7. Which is a contradiction. "If" part. If $R^{\prime} M=R^{\prime}, 1=\sum_{i=1}^{t} r_{i}^{\prime} m_{i} ; r_{i}^{\prime} \in R^{\prime}, m_{i} \in M$. There exists s in $R-M$ such that $s m_{i}^{n}=0$ for all i and some n. Then $s=s\left(\sum_{i=1}^{t} r_{i}^{\prime} m_{i}\right)^{t n}$ $=0$.

Proposition 10. Let R be an integral domain and K the field of quotients. Then R is local if and only if R is small in any subring T is K such that $T \supset R$ and there exists an element $a^{-1} \in T-R, a \in R$.

Proof. Let R be a local and T as above. Then $\left\{a^{i}\right\}_{i}$ is large from Proposition 7. Hence, R is small in T by Remark 3. Conversely, let M be maximal. Then R is not small in R_{M}. Hence, $R=R_{M}$ from the assumption.

Proposition 11. Let R be a domain with K quotient field. Then the following are equivalent.

1) Let R^{\prime} be an over ring of R. If R is small in $R^{\prime}, R^{\prime}=K$.
2) Krull $\operatorname{dim} R=1$ i.e. every non-zero prime is maximal in R.

Proof. 1) $\rightarrow 2$). Let P be a non-zero prime ideal. Then $R_{P}=R$ or R is not small in R_{P}. Hence, P is maximal from Proposition 7.
$2) \rightarrow 1$). Let $K \supsetneq R^{\prime}$ be an over ring and R be small in R^{\prime}. Then for every maximal ideal $M^{\prime}, M^{\prime} \cap R \neq 0$ is not maximal, which is a contradiction.

Proposition 12. Let R be a Dedekind domain and L an R-submodule in K containing R. Then

1) R is small in L if and only if $L \supset \sum_{P} P^{-1}$ where P runs through the set \boldsymbol{P} of non-zero primes in R. If L is a subring, then
2) R is small in L if and only if $K=L$, and L is small in K as an R-module if and only if $L=R$.

Proof. Since $K / R=\sum_{P} \oplus\left(\sum_{n} P^{-n} / R\right)$ and every R-submodule in $\sum_{n} P^{-n} / R$ is of $P^{-m} / R, L=\sum_{P} P^{-n(P)} ; n(P) \geqslant 0$. First, we shall show R is small in $\sum_{P} P^{-1}$ $=A . \quad$ If $A=R+T, A_{P}=P^{-1} R_{P}=R_{P}+T_{P} . \quad$ Let $R_{P} P=(p)$ and $R_{P} \cap T_{P}=\left(p^{e}\right)$. Then $p^{-1}=r+t s^{-1} ; r \in R_{P}, t \in T$ and $s \in R-P$. Hence, $s(1-r p)=t p \in T_{P} \cap R_{P}$ and so $(1-r p) \in\left(p^{e}\right)$. Therefore, $e=1$ and $A_{P}=T_{P}$ for every P. Accordingly, $A=T$. Next, we consider a submodule $A(L)=\sum_{P \neq L} P^{-n(P)}$. Then we can show as above $A(L)=R+L A(L)$ and $A(L) \neq L A(L)$. Hence, R is not small in $A(L)$.

We have proved 1). 2) is clear from 1) and the structure of K / R.
Examples 1) Let K be a field and x an indeterminant. Then K is not small in $K(x)$, however $K[x](\supset K)$ is small in $K(x)$ (cf. Lemma 0).
2) Let Z be the ring of integers with Q quotient field and p a prime. Then $Z_{p}[x]$ is not small in $Q[x]$, since $(p x-1)$ is a maximal ideal in $Z_{p}[x]$ such that $Q[x](p x-1) \neq Q[x]$. Hence, Proposition 6 is not true without the assumption "local."
3) Let $R=K[x, y]_{(x, y)}$. Then R is not small in $R\left[y x^{-1}\right]$ as an R-module and $R\left[y x^{-1}\right]$ does not contain any element a^{-1} as in Proposition 10.
4) $Z_{p}=Z_{p} /\left((x p-1) \cap Z_{p}\right)$ is small in $Q=Z_{p}[x] /(x p-1)$, but Z_{p} is not small in $Z_{p}[x]$ (cf. Proposition 5).

Osaka City University

References

[1] H. Bass: Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
[2] M. Harada: On small submodules in the total quotient ring of a commutative ring, Rev. Union Mat. Argentina 28 (1977), 99-102.
[3] M. Nagata: Local ring, Interscience, New York, 1962.

