ON MULTIPLY TRANSITIVE GROUPS XIV

Tuyosi OYAMA

(Received April 22, 1977)
(Revised September 12, 1977)

1. Introduction

Let G be a 4-fold transitive group on Ω. If the stabilizer of four points i, j, k, l in G has an orbit of length one in $\Omega-\{i, j, k, l\}$, then G is S_{5}, A_{6} or M_{11} by a theorem of H. Nagao [2]. We now consider the case in which the stabilizer of four points in G has an orbit of length two and have the following results.

Theorem 1. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$. If the stabilizer of four points in G has an orbit of length two, then G is S_{6}.

Corollary. Let D be a $4-(v, k, \lambda)$ design, where $k=5$ or 6 and $\lambda=1$ or 2. If an automorphism group G of D is 4-fold transitive on the set of points of D, then D is a 4-(11,5,1) design or a trivial design: a4-(5,5,1) design, a 4-(6,5,2,) design or a 4-(6,6,1) design.

The case $k=5$ and $\lambda=1$ has proved by H. Nagao [2]. Hence in this paper we shall prove the remaining cases.

We shall use the same notations as in [3].

2. Proof of Theorem 1

Let G be a group satisfying the assumption of Theorem 1. If the order of the stabilizer of four points in G is not divisible by three, then $G=S_{6}$ by Theorem of [7]. Hence from now on we assume that the order of the stabilizer of four points in G is divisible by three and proceed by way of contradiction.

Let $\left\{i_{1}, i_{2}\right\}$ be a G_{1234}-orbit of length two and P be a Sylow 3-subgroup of G_{1234}. Then $I(P) \supseteq\left\{1,2,3,4, i_{1}, i_{2}\right\}$. By a theorem of E. Witt [9], $N_{G}(P)^{I(P)}$ is 4-fold transitive on $I(P)$. By assumption, $3 \times\left|\left(N_{G}(P)^{I(P)}\right)_{1234}\right|$ and $\left(N_{G}(P)^{I(P)}\right)_{1234}$ has an orbit $\left\{i_{1}, i_{2}\right\}$. Hence by Theorem of [7], $N_{G}(P)^{I(P)}=S_{6}$ and $|I(P)|=6$.

Hence G_{1234} has exactly one orbit $\left\{i_{1}, i_{2}\right\}$ of length two and lengths of orbits in $\Omega-\left\{1,2,3,4, i_{1}, i_{2}\right\}$ are all divisible by three. Furthermore any Sylow 3subgroup of G_{1234} fixes exactly six points $1,2,3,4, i_{1}, i_{2}$.

Let Q be a 3-subgroup of G such that the order of Q is maximal among all 3-subgroups of G fixing more than six points. Set $N=N_{G}(Q)^{I(0)}$. Then for any four points i, j, k, l of $I(Q)$ any Sylow 3-subgroup of $N_{i j k l}$ fixes exactly six points $i, j, k, l, i^{\prime}, j^{\prime}$, where $\left\{i^{\prime}, j^{\prime}\right\}$ is the unique $G_{i j k l^{\prime}}$-orbit of length two, and is semiregular on $I(Q)-\left\{i, j, k, l, i^{\prime}, j^{\prime}\right\}$. Hence to complete the proof of Theorem 1, it will suffice to show the following

Lemma. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$, where $n>6$. Then it is impossible that G satisfies the following condition:

Let i, j, k, l be any four points of Ω. Then there exist two points i_{1}, i_{2} in Ω $\{i, j, k, l\}$ such that any Sylow 3-subgroup of $G_{i j k l}$ fixes six points i, j, k, l, i_{1}, i_{2} and is semiregular on $\Omega-\left\{i, j, k, l, i_{1}, i_{2}\right\}$.

Proof. Suppose by way of contradiction that G is a counter-example to Lemma. For four points i, j, k, l let i_{1}, i_{2} be two points in $\Omega-\{i, j, k, l\}$ uniquely determined by Sylow 3-subgroups of $G_{i j k l}$. Set $\Delta(i, j, k, l)=\left\{i, j, k, l, i_{1}, i_{2}\right\}$. Then $\{\Delta(i, j, k, l) \mid i, j, k, l \in \Omega\}$ forms a $4-(v, 6,1)$ design on Ω and G is an automorphism group of this design.

We may assume that $\Delta(1,2,3,4)=\{1,2,3,4,5,6\}$. Let a be an element of order three in G_{1234}. Then we may assume that

$$
a=(1)(2) \cdots(6)(789) \cdots
$$

Since $a \in N_{G}\left(G_{1789}\right)$, there is an element b of order three in G_{1789} such that $a b=$ $b a$. Then we may assume that

$$
b=(1)(2)(3)(456)(7)(8)(9) \cdots
$$

Similarly G_{4789} has an element c of order three such that $a c=c a$. Since $\Delta(1,7,8,9) \neq \Delta(4,7,8,9), \Delta(1,7,8,9) \cap \Delta(4,7,8,9)=\{7,8,9\}$. Hence $\Delta(4,7,8,9)$ $=\{4,5,6,7,8,9\}$ and we may assume that

$$
c=(123)(4)(5)(6)(7)(8)(9) \cdots .
$$

Then a Sylow 3-subgroup of $\langle a, b, c\rangle$ has the same form as $\langle a, b, c\rangle$ on $\{1,2, \cdots$, 9\}. By assumption, $3 \backslash\left|\langle a, b, c\rangle_{1,2, \ldots 9}\right|$ and so the order of a Sylow 3-subgroup of $\langle a, b, c\rangle$ is 3^{3}. Hence we may assume that $\langle a, b, c\rangle$ is a 3-group. Then since $I\left(b^{c} b^{-1}\right) \supseteq\{1,2, \cdots, 9\}, b^{c} b^{-1}=1$. Hence $\langle a, b, c\rangle$ is an elementary abelian 3group.

Let r be the number of $\langle a, b\rangle$-orbits of length three. For a point i of a $\langle a, b\rangle$-orbit of length three, $\langle a, b\rangle_{i}$ is of order three and so exactly two elements of $\langle a, b\rangle-\{1\}$ fixes $1,2,3$ and three points of the $\langle a, b\rangle$-orbit containing i. Hence $2 r \leqq|\langle a, b\rangle-1|=8$ and so $r \leqq 4$. Since $\{4,5,6\}$ and $\{7,8,9\}$ are $\langle a, b\rangle$-orbits of length three, $r=2,3$ or 4 .

Suppose that $\langle a, b, c\rangle$ has an orbit of length nine. Since $\langle a, b, c\rangle$ is an abelian group of order twenty-seven, $\langle a, b, c\rangle$ has an element of order three fixing nine points of this $\langle a, b, c\rangle$-orbit of length nine, contrary to the assumption. Thus the lengths of $\langle a, b, c\rangle$-orbits are three or twenty-seven and every $\langle a, b\rangle$-orbit of length three is a $\langle a, b, c\rangle$-orbit.

Case I. $r=4$.
Assume that $\langle a, b\rangle$-orbits of length three are $\{4,5,6\},\{7,8,9\},\{10,11,12\}$ and $\{13,14,15\}$. Then we may assume that

$$
\begin{aligned}
a & =(1)(2) \cdots(6)(789)(101112)(131415) \cdots, \\
b & =(1)(2)(3)(456)(7)(8)(9)(101112) \cdots, \\
c & =(123)(4)(5)(6)(7)(8)(9)(101112) \cdots
\end{aligned}
$$

Since $\left|I\left(a b^{-1}\right)\right| \leqq 6$ and $\left|I\left(a c^{-1}\right)\right| \leqq 6, b=c=\left(\begin{array}{ll}13 & 15 \\ 14\end{array}\right)$ on $\{13,14,15\}$. Then $I\left(b c^{-1}\right) \supseteq\{7,8, \cdots, 15\}$ and so $\left|I\left(b c^{-1}\right)\right| \geqq 9$, contrary to the assumption.

Case II. $r=2$ or 3 .
When $r=2,\langle a, b\rangle$-orbits of length three are $\{4,5,6\}$ and $\{7,8,9\}$. If $|\Omega|=9$, then we have a $4-(9,6,1)$ design. Then the number of blocks is $\frac{\binom{9}{4}}{\binom{6}{4}}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{6 \cdot 5 \cdot 4 \cdot 3}$
assume that

$$
\begin{aligned}
a & =(1)(2) \cdots(6)(789)(101112)(131415)(161718) \cdots, \\
b & =(1)(2)(3)(456)(7)(8)(9)(101316)(111417)(121518) \cdots
\end{aligned}
$$

Then

$$
a b=(1)(2)(3)(456)(789)(101418)(111516)(121317) \cdots,
$$

and $I(a b)=\{1,2,3\}$. Since $\langle a, b, c\rangle$ has no orbit of length nine, the lengths of $\langle a, b, c\rangle$-orbits in $\{10,11, \cdots, n\}$ are twenty-seven. Thus $n \equiv 9(\bmod 27)$ and $n>9$.

Next when $r=3$, we may assume that $\langle a, b\rangle$-orbits of length three are $\{4,5,6\},\{7,8,9\}$ and $\{10,11,12\}$. If $|\Omega|=12$, then we have a $4-(12,6,1)$ design. Then the number of blocks containing a given point is $\frac{\binom{11}{3}}{\binom{5}{3}}=\frac{11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3}$, which is not an integer. Thus $|\Omega|>12$. Hence we may assume that

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(789)(101112)(131415)(161718)(192021) \cdots, \\
& b=(1)(2)(3)(456)(7)(8)(9)(101112)(131619)(141720)
\end{aligned}
$$

$$
(151821) \cdots
$$

Then

$$
\begin{aligned}
a b= & (1)(2)(3)(456)(789)(101211)(131721)(141819) \\
& (151620) \cdots,
\end{aligned}
$$

and $I(a b)=\{1,2,3\}$. Then by the same reason as above $n \equiv 12(\bmod 27)$ and $n>12$.

For any two points i, j, of $\{2,3, \cdots, 6\}$ set $\Gamma(i, j)=\left\{\left(i_{1} i_{2} i_{3}\right) \mid a=\left(i_{1} i_{2} i_{3}\right) \cdots\right.$ and $\left.i, j \in \Delta\left(1, i_{1}, i_{2}, i_{3}\right)\right\}$. For any 3 -cycle $\left(i_{1} i_{2} i_{3}\right)$ of $a \Delta\left(1, i_{1}, i_{2}, i_{3}\right)^{a}=\Delta\left(1, i_{1}, i_{2}, i_{3}\right)$. Hence there are two points i, j in $\{2,3, \cdots, 6\}$ such that $\Delta\left(1, i_{1}, i_{2}, i_{3}\right)=\left\{1, i, j, i_{1}\right.$, $\left.i_{2}, i_{3}\right\}$. Thus $\left(i_{1} i_{2} i_{3}\right) \in \Gamma(i, j)$.

For any 3 -cycle $\left(i^{\prime} j^{\prime} k^{\prime}\right)$ of $a b \Delta\left(i^{\prime}, j^{\prime}, k^{\prime}, 1\right)^{a b}=\Delta\left(i^{\prime}, j^{\prime}, k^{\prime}, 1\right)$. Hence $\Delta\left(i^{\prime}\right.$, $\left.j^{\prime}, k^{\prime}, 1\right)=\left\{i^{\prime}, j^{\prime}, k^{\prime}, 1,2,3\right\}$. Thus for any point i^{\prime} of $\{4,5, \cdots, n\} \Delta\left(1,2,3, i^{\prime}\right)=$ $\left\{1,2,3, i^{\prime}, j^{\prime}, k^{\prime}\right\}$, where $\left(i^{\prime} j^{\prime} k^{\prime}\right)$ is a 3-cycle of $a b$. Hence $\Gamma(2,3)=\{(789)\}$ or $\left\{\left(\begin{array}{ll}7 & 8\end{array}\right),\left(\begin{array}{ll}1011 & 12\end{array}\right)\right\}$ for $r=2$ or 3 respectively.

Conversely for any two points i, j of $\{2,3, \cdots, 6\}$ if there is a 3-cycle $\left(i_{1} i_{2} i_{3}\right)$ of a such that $\left(i_{1} i_{2} i_{3}\right) \in \Gamma(i, j)$, then $G_{i_{1} i_{1} i_{3}}$ has an element b^{\prime} of order three such that $a b^{\prime}=b^{\prime} a$. Since $\Delta\left(i, i_{1}, i_{2}, i_{3}\right) \cap \Delta\left(1, i_{1}, i_{2}, i_{3}\right) \supseteq\left\{i, i_{1}, i_{2}, i_{3}\right\}, \Delta\left(i, i_{1}, i_{2}, i_{3}\right)$ $=\Delta\left(1, i_{1}, i_{2}, i_{3}\right)=\left\{1, i, j, i_{1}, i_{2}, i_{3}\right\}$. Then $a b^{\prime}$ is of order three and $I\left(a b^{\prime}\right)=\{1, i, j\}$. Hence by the same argument as is used for $\Gamma(2,3),|\Gamma(i, j)|=1$ or 2 for $r=2$ or 3 respectively.

Thus for any two points i, j of $\{2,3, \cdots, 6\}|\Gamma(i, j)| \leqq r-1$. On the other hand the number of unordered pairs (i, j), where $i, j \in\{2,3, \cdots, 6\}$, is $\binom{5}{3}=10$. Hence the number of 3 -cycles of a is at most $10(r-1)$.

Suppose that $r=2$. Then $n \leqq 6+3 \cdot 10=36$. Since $n \equiv 9(\bmod 27)$ and $n>9, n=36$. Thus we have a $4-(36,6,1)$ design. Then the number of blocks containing a given point is $\frac{\binom{35}{3}}{\binom{5}{3}}=\frac{35 \cdot 34 \cdot 33}{5 \cdot 4 \cdot 3}$, which is not an integer. Thus $r \neq 2$.

Suppose that $r=3$. Then $n \leqq 6+3 \cdot 20=66$. Since $n \equiv 9(\bmod 27)$ and $n>12$, $n=39$ or 66 . If $n=39$, then we have a $4-(39,6,1)$ design. Then the number of blocks is $\frac{\binom{39}{4}}{\binom{6}{4}}=\frac{39 \cdot 38 \cdot 37 \cdot 36}{6 \cdot 5 \cdot 4 \cdot 3}$, which is not an integer. Thus $n \neq 39$.

From now on we sasume that $n=66$. Then for any two points i, j of $\{2,3, \cdots$, $6\}$ there is a 3 -subgroup fixing exactly three points $1, i, j$. Let i_{1}, i_{2}, i_{3} be any three points of Ω. Then there is an element of order three which fixes exactly six points containing i_{1}, i_{2}, i_{3}. Then by the same argument as is usd for a, there is a 3 -subgroup fixing exactly three points i_{1}, i_{2}, i_{3}. Thus by a theorem of D.

Livingstone and A. Wagner [1], G is 3-fold transitive on Ω.
Let Γ_{1}, Γ_{2} and Γ_{3} are G_{123}-orbits such that $4 \in \Gamma_{1}, 7 \in \Gamma_{2}$ and $10 \in \Gamma_{3}$. For any point i of $\Omega-\{1,2,3\} \Delta(1,2,3, i)=\{1,2,3, i, j, k\}$, where $a b=(i j k) \cdots$. Hence any element of order three and fixing exactly three points $1,2,3$ has a 3 -cycle $\left(i j k\right.$) or ($i k j$). Thus $\langle a b\rangle$ is a unique 3 -subgroup of G_{123} which is of order three and semiregular on $\Omega-\{1,2,3\}$. Since G is 3 -fold transitive on Ω, for any three points i_{1}, i_{2}, i_{3} there is a unique 3 -subgroup of order three which fixes exactly three points i_{1}, i_{2}, i_{3} and is semiregular on $\Omega-\left\{i_{1}, i_{2}, i_{3}\right\}$.

Hence for a 3 -cycle (13 1721) of $a b$, there is an element c^{\prime} of order three such that $I\left(c^{\prime}\right)=\{13,17,21\}$ and $a b c^{\prime}=c^{\prime} a b$. Then we may assume that

$$
c^{\prime}=\left(\begin{array}{l}
1 \\
2
\end{array} 3\right)(13)(17)(21) \cdots
$$

Furthermore since $\{10,11,12\}$ is a $\langle a, b\rangle$-orbit of length three, we may assume that

$$
c=(123)(4)(5)(6)(7)(8)(9)(101112) \cdots,
$$

and $\langle a, b, c\rangle$ is semiregular on $\Omega-\{1,2, \cdots, 12\}$.
Then since $c^{-1} c^{\prime} \in G_{123}$ and c fixes Γ_{1}, Γ_{2} and Γ_{3}, c^{\prime} fixes Γ_{1}, Γ_{2} and Γ_{3}.
Assume that c^{\prime} fixes $\{4,5,6\}$. Then $\Delta(4,5,6,13)^{c^{\prime}}=\Delta(4,5,6,13)$. Hence $\Delta(4,5,6,13)=\{4,5,6,13,17,21\}$. On the other hand ac is an element of order three fixing exactly three points $4,5,6$. Hence $a c$ fixes $\Delta(4,5,6,13)$. This a contradiction since ac does not fix $\{13,17,21\}$. Thus c^{\prime} does not fix $\{4,5,6\}$. Similarly c^{\prime} fixes neither $\{7,8,9\}$ nor $\{10,11,12\}$. Since c^{\prime} fixes Γ_{1}, Γ_{2} and Γ_{3}, $\{4,5,6\} \subsetneq \Gamma_{1},\{7,8,9\} \subsetneq \Gamma_{2}$ and $\{10,11,12\} \subsetneq \Gamma_{3}$.

Assume that G_{123} has an orbit of length six. Then we may assume that $\{4,5,6,7,8,9\}=\Gamma_{1}=\Gamma_{2}$. Since c^{\prime} commutes with $a b$ and fixes Γ_{1}, c^{\prime} fixes $\{4,5,6\}$, which is a contradiction. Thus G_{123} has no orbit of length six.

Assume that Γ_{1}, Γ_{2} and Γ_{3} are three distinct G_{123}-orbits. Since c fixes Γ_{1}, Γ_{2} and $\Gamma_{3},\left|\Gamma_{i}\right| \geqq 3+27=30(i=1,2,3)$. Hence $\left|\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}\right| \geqq 90$, which is a contradiction.

Assume that $\Gamma_{1}=\Gamma_{2} \neq \Gamma_{3}$. Since c fixes Γ_{1} and $\Gamma_{3},\left|\Gamma_{1}\right|=6+27=33$ and $\left|\Gamma_{3}\right|=3+27=30$. Let R be a Sylow 11 -subgroup of G_{123}. Then since $\left|\Gamma_{1}\right|=33, I(R) \cap \Gamma_{1}=\phi$. Hence $|I(R)|=33,22$ or 11. Since $\langle a, b\rangle$ is the unique 3-subgroup of G_{123} which is of order three and is semiregular on Ω $\{1,2,3\}, R \leq C_{G}(\langle a, b\rangle)$. Hence $a b$ fixes $I(R)$. Thus $|I(R)| \equiv 0(\bmod 3)$ and so $|I(R)|=33$. Since R is an 11-group ($\neq 1$), for any four points i, j, k, l of $I(R) \Delta(i, j, k, l) \subset I(R)$. Thus we have a $4-(33,6,1)$ design on $I(R)$. Then the number of blocks containing given two points is $\frac{\binom{31}{2}}{\binom{4}{2}}=\frac{31 \cdot 30}{4 \cdot 3}$, which is not an integer. Thus we have a contradiction.

Hence $\Gamma_{1}=\Gamma_{2}=\Gamma_{3} \supseteqq\{4,5, \cdots, 12\}$. Then since $\langle a, b\rangle<G_{123}$, the lengths of G_{123}-orbits in $\{4,5, \cdots, 66\}$ are all divisible by nine. On the other hand $\mid\{4,5$, $\cdots, 66\} \mid$ is not divisible by twenty-seven. Hence any Sylow 3-subgroup of G_{123} has an orbit of length nine. Let Q be a Sylow 3-subgroup of G_{123} and i a point of a Q-orbit of length nine. If $Q_{i} \neq 1$, then $\left|I\left(Q_{i}\right)\right|=6$ and Q_{i} is semiregular on $\Omega-I(Q)$ by the assumption. Then since $\left|\Omega-I\left(Q_{i}\right)\right|=60,\left|Q_{i}\right|$ $=3$. Thus $|Q|=9$ or 9.3 .

Assume that $\Gamma_{1}=\{4,5, \cdots, 12\}$. Since c^{\prime} fixes Γ_{1} but does not fix $\{4,5,6\}$, we may assume that

$$
c^{\prime}=(123)(4710)(5812)(6911) \cdots
$$

Then

$$
c^{\prime} c^{-1}=(1)(2)(3)(471258116910) \cdots
$$

Since a Sylow 3-subgroup of $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ has the same form as $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ on $\{1,2, \cdots, 12\}$, we may assume that $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ is a 3 -subgroup. Then since $\left|\left\langle a, b, c^{\prime} c^{-1}\right\rangle\right|=9 \cdot 3,\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ is a Sylow 3-subgroup of G_{123}.

Suppose that $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ has an orbit of length nine in $\{13,14, \cdots, 66\}$. Since $|\{13,14, \cdots, 66\}|=54$, The number of $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$-orbits of length nine in $\{3,4, \cdots, 66\}$ is at least four. Let $\left(i_{1} i_{2} i_{3}\right)$ be a 3 -cycle of a contained in a $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$-orbit of length nine. Then $\left|\left\langle a, b, c^{\prime} c^{-1}\right\rangle_{123 i_{1} i_{2} i_{3}}\right|=3$ and so two non-identity elements of $\left\langle a, b, c^{\prime} c^{-1}\right\rangle_{123 i_{1} i_{2} i_{3}}$ fixes exactly six points $1,2,3, i_{1}, i_{2}, i_{3}$. Thus $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ has at least $4 \cdot 3 \cdot 2=24$ elements which fix exactly six points. On the other hand since $\left(c^{\prime} c^{-1}\right)^{3}=a b,\left\langle c^{\prime} c^{-1}\right\rangle$ is semiregular on $\Omega-\{1,2,3\}$. Thus $\left|\left\langle a, b, c^{\prime} c^{-1}\right\rangle\right| \geqq 24+9=33$, which is a contradiction. Thus Γ_{1} is the only $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$-orbit of length nine.

Let i be any point in $\{4,5, \cdots, 66\}$. Then G_{123} has an element x of order three and fixing i. Then by the same argument as is used for $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$, there is a Sylow 3-subgroup of G_{123} which has exactly one orbit of length nine containing i. Since this Sylow 3-subgroup is conjugate to $\left\langle a, b, c^{\prime} c^{-1}\right\rangle$ in G_{123}, G_{123} is transitive on $\{4,5, \cdots, 66\}$, which is a contradiction. Thus Γ_{1} is not a G_{123}-orbit. This implies that G_{123} has no orbit of length nine.

Suppose that G_{123} is intransitive on $\{4,5, \cdots, 66\}$. Since c fixes $\Gamma_{1},\left|\Gamma_{1}\right|$ $=9+27=36$. Thus G_{123}-orbits on $\{4,5, \cdots, 66\}$ are Γ_{1} and one orbit of length twenty-seven. Then G_{123} has a non-identity 3 -element fixing a point of the G_{123}-orbit of length twenty-seven. Thus a Sylow 3-subgroup of G_{123} is of order more than twenty-seven, which is a contradiction.

Thus G_{123} is transitive on $\{4,5, \cdots, 66\}$. Hence G is 4 -fold transitive on Ω. Let P be a Sylow 2-subgroup of G_{1234}. Then by Corollary of $[4],|I(P)|=4$. Since $\Delta(1,2,3,4)=\{1,2, \cdots, 6\},\{5,6\}$ is a G_{1234}-orbit. By Corollary of [5], $I\left(P_{5}\right)=\{1,2, \cdots, 6\}=I(a)$ and $\left|P: P_{5}\right|=2$.

Suppose that P_{5} is semiregular on $\{7,8, \cdots, 66\}$. Then since $\left|P: P_{5}\right|=2$,
lengths of P-orbits on $\{7,8, \cdots, 66\}$ are $|P|$ or $|P| / 2$. Hence for any point i of $\{7,8, \cdots, 66\},\left|P_{i}\right|=1$ or 2 . Then by Corollary 1 of $[6],|\Omega| \neq 66$, which is a contradiction. Thus P_{5} is not semiregular on $\{7,8, \cdots, 66\}$.

For any three points i, j, k of $\{1,2, \cdots, 6\}$ there is an element x of order three fixing exactly three points i, j, k. Then since $\langle x\rangle$ is the unique 3 -subgroup of $G_{i j k}$ which is of order three and semiregular on $\Omega-\{i, j, k\},[a, x]=1$ and so x fixes $I(a)$. Hence $x \in C_{G}\left(G_{I(a)}\right)$. Let H be a subgroup generated by all elements of order three fixing exactly three points i, j, k, where i, j, k run over all three points of $\{1,2, \cdots, 6\}$. Then $H \leq C_{G}\left(G_{I(a)}\right)$ and $H^{I(a)}=A_{6}$.

Since $H \leq C_{G}(a), H$ induces a permutation group on the set of 3-cycles of a. Let K be a subgroup of H fixing $\{7,8,9\}$. Since $\Delta(7,8,9,1)=\{7,8,9,1,2,3\}$ and $\Delta(7,8,9,4)=\{7,8,9,4,5,6\}$, any element of K fixes or interchanges $\{1,2,3\}$ and $\{4,5,6\}$. Let \bar{K} be a subgroup of H which fixes or interchanges $\{1,2,3\}$ and $\{4,5,6\}$. Then $K \leq \bar{K}$ and $\left|\bar{K}^{I(a)}\right|=6 \cdot 3 \cdot 2$. If $\{1,2,3, i, j, k\}$ is a block and ($i j k$) is a 3 -cycle of a, then $(i j k)=(789)$ or (10 1112). Similarly if $\{4,5,6, i, j, k\}$ is a block and $(i j k)$ is a 3 -cycle of a, then $(i j k)=(789)$ or (10 11 12). Hence any element of \bar{K} fixes or interchanges $\{7,8,9\}$ and $\{10,11$, 12\}. Hence $|\bar{K}: K|=1$ or 2 .

Since $|H: \bar{K}|=\left|A_{6}\right| / 6 \cdot 3 \cdot 2=10,|H: K|=10$ or 20 . Since a has twenty 3-cycles, H is transitive or has two orbits of length ten on the set consisting of 3 -cycles of a. Furthermore for any 3-cycle ($i j k$) of $a H$ has a subgroup which is transitive on $\{i, j, k\}$. Hence H is transitive or has two orbits of length thirty on $\{7,8, \cdots, 66\}$.

Since P_{5} is not semiregular on $\{7,8, \cdots, 66\}$, there is a non-identity element y in P_{5} which has a fixed point i in $\{7,8, \cdots, 66\}$. Then since $H \leq C_{G}(y)$, $I(y) \supseteqq i^{H}$. Hence H has two orbits on $\{7,8, \cdots, 66\}$ and so $|I(y)|=6+30=36$. Then since G is a 4 -fold transitive group of degree sixty-six, we have a contradiction by a theore of W. A. Manning (See [8], Theorem 15.1). Thus we complet the proof of Theorem 1.

3. Proof of Corollary

(i) Let D be a $4-(v, 5,2)$ design. Let $\left\{1,2,3,4, i_{1}\right\}$ and $\left\{1,2,3,4, i_{2}\right\}$ be two blocks containing $\{1,2,3,4\}$. Then G_{1234} fixes $\left\{i_{1}, i_{2}\right\}$. If $\left\{i_{1}\right\}$ and $\left\{i_{2}\right\}$ are G_{1234}-orbits, then $G=A_{6}$ by a theorem of H. Nagao [2]. Hence D is a 4- $(6,5,2)$ design. If $\left\{i_{1}, i_{2}\right\}$ is a G_{1234}-orbit, then $G=S_{6}$ by Theorem 1. Hence D is also a 4- $(6,5,2)$ design.
(ii) Let D be a $4-(v, 6,1)$ design. Then by the same reason as (i), D is a 4-($6,6,1$) design.
(iii) Let D be a $4-(v, 6,2)$ design. Let $\left\{1,2,3,4, i_{1}, j_{1}\right\}$ and $\left\{1,2,3,4, i_{2}, j_{2}\right\}$ be two blocks containing $\{1,2,3,4\}$. Then G_{1234} fixes $\left\{i_{1}, j_{1}, i_{2}, j_{2}\right\}$ and $\mid\left\{i_{1}, j_{1}\right.$, $\left.i_{2}, j_{2}\right\} \mid=3$ or 4 . If G_{1234} has an element which has a 3 -cycle on $\left\{i_{1}, j_{1}, i_{2}, j_{2}\right\}$,
then there are at least three blocks containing $\{1,2,3,4\}$, which is a contradiction.

Let P be a Sylow 3-subgroup of G_{1234}. Then $I(P) \supseteqq\left\{i, 2,3,4, i_{1}, j_{1}, i_{2}, j_{2}\right\}$. Hence by Theorem of [7], $|I(P)|=11$ or 12 and $N_{G}(P)^{I(P)}=M_{11}$ or M_{12}. If $N_{G}(P)^{I(P)}=M_{12}$, then $\left(N_{G}(P)^{I(P)}\right)_{1234}$ is transitive on $I(P)-\{1,2,3,4\}$. This is a contradiction since the number of blocks containing $\{1,2,3,4\}$ is two. If $N_{G}(P)^{I(P)}=M_{11}$, then a subgroup of $N_{G}(P)^{I(P)}$ fixing $\{1,2,3,4\}$ as a set has two orbits of length one and six. Hence by the same reason as above, we have a contradiction. Thus we complete the proof of Corollary.

Osaka Kyoiku University

References

[1] D. Livingstone and A. Wagner: Transitivety of finite permutation groups on unordered sets, Math. Z. 90 (1965), 394-403.
[2] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[3] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
[4] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[5] T. Oyama: On multiply transitive groups X, Osaka J. Math. 8 (1971), 99-130.
[6] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595-636.
[7] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367-383.
[8] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.
[9] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.

