Oyama, T. Osaka J. Math. 15 (1978), 351-358

ON MULTIPLY TRANSITIVE GROUPS XIV

TUYOSI OYAMA

(Received April 22, 1977) (Revised September 12, 1977)

1. Introduction

Let G be a 4-fold transitive group on Ω . If the stabilizer of four points i,j,k,l in G has an orbit of length one in $\Omega - \{i,j,k,l\}$, then G is S_5 , A_6 or M_{11} by a theorem of H. Nagao [2]. We now consider the case in which the stabilizer of four points in G has an orbit of length two and have the following results.

Theorem 1. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. If the stabilizer of four points in G has an orbit of length two, then G is S_6 .

Corollary. Let D be a 4- (v,k,λ) design, where k=5 or 6 and $\lambda=1$ or 2. If an automorphism group G of D is 4-fold transitive on the set of points of D, then D is a 4-(11,5,1) design or a trivial design: a 4-(5,5,1) design, a 4-(6,5,2) design or a 4-(6,6,1) design.

The case k=5 and $\lambda=1$ has proved by H. Nagao [2]. Hence in this paper we shall prove the remaining cases.

We shall use the same notations as in [3].

2. Proof of Theorem 1

Let G be a group satisfying the assumption of Theorem 1. If the order of the stabilizer of four points in G is not divisible by three, then $G=S_6$ by Theorem of [7]. Hence from now on we assume that the order of the stabilizer of four points in G is divisible by three and proceed by way of contradiction.

Let $\{i_1, i_2\}$ be a G_{1234} -orbit of length two and P be a Sylow 3-subgroup of G_{1234} . Then $I(P) \supseteq \{1, 2, 3, 4, i_1, i_2\}$. By a theorem of E. Witt [9], $N_G(P)^{I(P)}$ is 4-fold transitive on I(P). By assumption, $3 \swarrow |(N_G(P)^{I(P)})_{1234}|$ and $(N_G(P)^{I(P)})_{1234}$ has an orbit $\{i_1, i_2\}$. Hence by Theorem of [7], $N_G(P)^{I(P)} = S_6$ and |I(P)| = 6.

Hence G_{1234} has exactly one orbit $\{i_1, i_2\}$ of length two and lengths of orbits in $\Omega - \{1, 2, 3, 4, i_1, i_2\}$ are all divisible by three. Furthermore any Sylow 3subgroup of G_{1234} fixes exactly six points $1, 2, 3, 4, i_1, i_2$. Т. Очама

Let Q be a 3-subgroup of G such that the order of Q is maximal among all 3-subgroups of G fixing more than six points. Set $N=N_G(Q)^{I(O)}$. Then for any four points i,j,k,l of I(Q) any Sylow 3-subgroup of N_{ijkl} fixes exactly six points i,j,k,l,i',j', where $\{i',j'\}$ is the unique G_{ijkl} -orbit of length two, and is semiregular on $I(Q) - \{i,j,k,l,i',j'\}$. Hence to complete the proof of Theorem 1, it will suffice to show the following

Lemma. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$, where n > 6. Then it is impossible that G satisfies the following condition:

Let i,j,k,l be any four points of Ω . Then there exist two points i_1, i_2 in $\Omega - \{i,j,k,l\}$ such that any Sylow 3-subgroup of $G_{i,j,k,l}$ fixes six points i,j,k,l,i_1,i_2 and is semiregular on $\Omega - \{i,j,k,l,i_1,i_2\}$.

Proof. Suppose by way of contradiction that G is a counter-example to Lemma. For four points i,j,k,l let i_1,i_2 be two points in $\Omega - \{i,j,k,l\}$ uniquely determined by Sylow 3-subgroups of $G_{i,j,k,l}$. Set $\Delta(i,j,k,l) = \{i,j,k,l,i_1,i_2\}$. Then $\{\Delta(i,j,k,l) | i,j,k,l \in \Omega\}$ forms a 4-(v, 6, 1) design on Ω and G is an automorphism group of this design.

We may assume that $\Delta(1,2,3,4) = \{1,2,3,4,5,6\}$. Let *a* be an element of order three in G_{1234} . Then we may assume that

$$a = (1) (2) \cdots (6) (7 \ 8 \ 9) \cdots$$
.

Since $a \in N_G(G_{1789})$, there is an element b of order three in G_{1789} such that ab = ba. Then we may assume that

$$b = (1) (2) (3) (4 5 6) (7) (8) (9) \cdots$$

Similarly G_{4789} has an element *c* of order three such that ac=ca. Since $\Delta(1,7,8,9) \pm \Delta(4,7,8,9)$, $\Delta(1,7,8,9) \cap \Delta(4,7,8,9) = \{7,8,9\}$. Hence $\Delta(4,7,8,9) = \{4,5,6,7,8,9\}$ and we may assume that

$$c = (1 \ 2 \ 3) (4) (5) (6) (7) (8) (9) \cdots$$

Then a Sylow 3-subgroup of $\langle a, b, c \rangle$ has the same form as $\langle a, b, c \rangle$ on $\{1, 2, \dots, 9\}$. By assumption, $3 \not\mid |\langle a, b, c \rangle_{1,2,\dots9}|$ and so the order of a Sylow 3-subgroup of $\langle a, b, c \rangle$ is 3³. Hence we may assume that $\langle a, b, c \rangle$ is a 3-group. Then since $I(b^cb^{-1}) \supseteq \{1, 2, \dots, 9\}, b^cb^{-1} = 1$. Hence $\langle a, b, c \rangle$ is an elementary abelian 3-group.

Let r be the number of $\langle a,b\rangle$ -orbits of length three. For a point *i* of a $\langle a,b\rangle$ -orbit of length three, $\langle a,b\rangle_i$ is of order three and so exactly two elements of $\langle a,b\rangle - \{1\}$ fixes 1,2,3 and three points of the $\langle a,b\rangle$ -orbit containing *i*. Hence $2r \leq |\langle a,b\rangle - 1| = 8$ and so $r \leq 4$. Since $\{4,5,6\}$ and $\{7,8,9\}$ are $\langle a,b\rangle$ -orbits of length three, r=2,3 or 4.

Suppose that $\langle a,b,c \rangle$ has an orbit of length nine. Since $\langle a,b,c \rangle$ is an abelian group of order twenty-seven, $\langle a,b,c \rangle$ has an element of order three fixing nine points of this $\langle a,b,c \rangle$ -orbit of length nine, contrary to the assumption. Thus the lengths of $\langle a,b,c \rangle$ -orbits are three or twenty-seven and every $\langle a,b \rangle$ -orbit of length three is a $\langle a,b,c \rangle$ -orbit.

Case I. r=4.

Assume that $\langle a, b \rangle$ -orbits of length three are $\{4, 5, 6\}$, $\{7, 8, 9\}$, $\{10, 11, 12\}$ and $\{13, 14, 15\}$. Then we may assume that

$$a = (1) (2) \cdots (6) (7 \ 8 \ 9) (10 \ 11 \ 12) (13 \ 14 \ 15) \cdots,$$

$$b = (1) (2) (3) (4 \ 5 \ 6) (7) (8) (9) (10 \ 11 \ 12) \cdots,$$

$$c = (1 \ 2 \ 3) (4) (5) (6) (7) (8) (9) (10 \ 11 \ 12) \cdots.$$

Since $|I(ab^{-1})| \leq 6$ and $|I(ac^{-1})| \leq 6$, $b=c=(13\ 15\ 14)$ on $\{13, 14, 15\}$. Then $I(bc^{-1}) \supseteq \{7, 8, \dots, 15\}$ and so $|I(bc^{-1})| \geq 9$, contrary to the assumption.

Case II. r=2 or 3.

When r=2, $\langle a,b \rangle$ -orbits of length three are $\{4,5,6\}$ and $\{7,8,9\}$. If $|\Omega|=9$, then we have a 4-(9,6,1) design. Then the number of blocks is $\binom{9}{\binom{4}{4}}=\frac{9\cdot8\cdot7\cdot6}{6\cdot5\cdot4\cdot3}$, we hich is not an integer. Thus $|\Omega|>9$. Hence we may

assume that

$$a = (1) (2) \cdots (6) (7 \ 8 \ 9) (10 \ 11 \ 12) (13 \ 14 \ 15) (16 \ 17 \ 18) \cdots,$$

$$b = (1) (2) (3) (4 \ 5 \ 6) (7) (8) (9) (10 \ 13 \ 16) (11 \ 14 \ 17) (12 \ 15 \ 18) \cdots.$$

Then

$$ab = (1)(2)(3)(456)(789)(101418)(111516)(121317)\cdots$$

and $I(ab) = \{1, 2, 3\}$. Since $\langle a, b, c \rangle$ has no orbit of length nine, the lengths of $\langle a, b, c \rangle$ -orbits in $\{10, 11, \dots, n\}$ are twenty-seven. Thus $n \equiv 9 \pmod{27}$ and n > 9.

Next when r=3, we may assume that $\langle a,b \rangle$ -orbits of length three are $\{4,5,6\}, \{7,8,9\}$ and $\{10,11,12\}$. If $|\Omega|=12$, then we have a 4-(12,6,1) design. Then the number of blocks containing a given point is $\frac{\binom{11}{3}}{\binom{5}{3}} = \frac{11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3}$,

which is not an integer. Thus $|\Omega| > 12$. Hence we may assume that

$$a = (1) (2) \cdots (6) (7 \ 8 \ 9) (10 \ 11 \ 12) (13 \ 14 \ 15) (16 \ 17 \ 18) (19 \ 20 \ 21) \cdots,$$

$$b = (1) (2) (3) (4 \ 5 \ 6) (7) (8) (9) (10 \ 11 \ 12) (13 \ 16 \ 19) (14 \ 17 \ 20)$$

Then

ab = (1) (2) (3) (4 5 6) (7 8 9) (10 12 11) (13 17 21) (14 18 19)(15 16 20) ... ,

and $I(ab) = \{1, 2, 3\}$. Then by the same reason as above $n \equiv 12 \pmod{27}$ and n > 12.

For any two points i,j, of $\{2,3,\dots,6\}$ set $\Gamma(i,j) = \{(i_1 \ i_2 \ i_3) | a = (i_1 \ i_2 \ i_3) \cdots$ and $i,j \in \Delta(1,i_1,i_2,i_3)\}$. For any 3-cycle $(i_1 \ i_2 \ i_3)$ of $a \ \Delta(1,i_1,i_2,i_3)^a = \Delta(1,i_1,i_2,i_3)$. Hence there are two points i,j in $\{2,3,\dots,6\}$ such that $\Delta(1,i_1,i_2,i_3) = \{1,i,j,i_1,i_2,i_3\}$. Thus $(i_1 \ i_2 \ i_3) \in \Gamma(i,j)$.

For any 3-cycle (i' j' k') of $ab \Delta(i', j', k', 1)^{ab} = \Delta(i', j', k', 1)$. Hence $\Delta(i', j', k', 1) = \{i', j', k', 1, 2, 3\}$. Thus for any point i' of $\{4, 5, \dots, n\} \Delta(1, 2, 3, i') = \{1, 2, 3, i', j', k'\}$, where (i' j' k') is a 3-cycle of ab. Hence $\Gamma(2, 3) = \{(7 \ 8 \ 9)\}$ or $\{(7 \ 8 \ 9), (10 \ 11 \ 12)\}$ for r=2 or 3 respectively.

Conversely for any two points i,j of $\{2,3,\dots,6\}$ if there is a 3-cycle $(i_1 i_2 i_3)$ of a such that $(i_1 i_2 i_3) \in \Gamma(i,j)$, then $G_{i i_1 i_2 i_3}$ has an element b' of order three such that ab'=b'a. Since $\Delta(i,i_1,i_2,i_3) \cap \Delta(1,i_1,i_2,i_3) \supseteq \{i,i_1,i_2,i_3\}$, $\Delta(i,i_1,i_2,i_3)$ $=\Delta(1,i_1,i_2,i_3) = \{1,i,j,i_1,i_2,i_3\}$. Then ab' is of order three and $I(ab') = \{1,i,j\}$. Hence by the same argument as is used for $\Gamma(2,3)$, $|\Gamma(i,j)| = 1$ or 2 for r=2or 3 respectively.

Thus for any two points i,j of $\{2,3,\dots,6\} |\Gamma(i,j)| \leq r-1$. On the other hand the number of unordered pairs (i,j), where $i,j \in \{2,3,\dots,6\}$, is $\begin{pmatrix} 5\\3 \end{pmatrix} = 10$. Hence the number of 3-cycles of a is at most 10(r-1).

Suppose that r=2. Then $n \le 6+3 \cdot 10=36$. Since $n \equiv 9 \pmod{27}$ and n > 9, n=36. Thus we have a 4-(36,6,1) design. Then the number of blocks containing a given point is $\frac{\binom{35}{3}}{\binom{5}{3}} = \frac{35 \cdot 34 \cdot 33}{5 \cdot 4 \cdot 3}$, which is not an integer. Thus

 $r \neq 2$.

Suppose that r=3. Then $n \le 6+3 \cdot 20 = 66$. Since $n \equiv 9 \pmod{27}$ and n > 12, n=39 or 66. If n=39, then we have a 4-(39,6,1) design. Then the number of blocks is $\frac{\binom{39}{4}}{\binom{6}{4}} = \frac{39 \cdot 38 \cdot 37 \cdot 36}{6 \cdot 5 \cdot 4 \cdot 3}$, which is not an integer. Thus $n \neq 39$.

From now on we sasume that n=66. Then for any two points i,j of $\{2,3,\dots,6\}$ there is a 3-subgroup fixing exactly three points 1, i, j. Let i_1, i_2, i_3 be any three points of Ω . Then there is an element of order three which fixes exactly six points containing i_1, i_2, i_3 . Then by the same argument as is usd for a, there is a 3-subgroup fixing exactly three points i_1, i_2, i_3 . Thus by a theorem of D.

Livingstone and A. Wagner [1], G is 3-fold transitive on Ω .

Let Γ_1, Γ_2 and Γ_3 are G_{123} -orbits such that $4 \in \Gamma_1, 7 \in \Gamma_2$ and $10 \in \Gamma_3$. For any point *i* of $\Omega - \{1, 2, 3\} \Delta(1, 2, 3, i) = \{1, 2, 3, i, j, k\}$, where $ab = (i j k) \cdots$. Hence any element of order three and fixing exactly three points 1, 2, 3 has a 3-cycle (i j k) or (i k j). Thus $\langle ab \rangle$ is a unique 3-subgroup of G_{123} which is of order three and semiregular on $\Omega - \{1, 2, 3\}$. Since G is 3-fold transitive on Ω , for any three points i_1, i_2, i_3 there is a unique 3-subgroup of order three which fixes exactly three points i_1, i_2, i_3 and is semiregular on $\Omega - \{i_1, i_2, i_3\}$.

Hence for a 3-cycle (13 17 21) of ab, there is an element c' of order three such that $I(c') = \{13, 17, 21\}$ and abc' = c'ab. Then we may assume that

$$c' = (1 \ 2 \ 3) (13) (17) (21) \cdots$$

Furthermore since $\{10, 11, 12\}$ is a $\langle a, b \rangle$ -orbit of length three, we may assume that

$$c = (1 \ 2 \ 3) \ (4) \ (5) \ (6) \ (7) \ (8) \ (9) \ (10 \ 11 \ 12) \ \cdots$$

and $\langle a, b, c \rangle$ is semiregular on $\Omega - \{1, 2, \dots, 12\}$.

Then since $c^{-1}c' \in G_{123}$ and c fixes Γ_1, Γ_2 and Γ_3, c' fixes Γ_1, Γ_2 and Γ_3 .

Assume that c' fixes {4,5,6}. Then $\Delta(4,5,6,13)^{c'} = \Delta(4,5,6,13)$. Hence $\Delta(4,5,6,13) = \{4,5,6,13,17,21\}$. On the other hand ac is an element of order three fixing exactly three points 4,5,6. Hence ac fixes $\Delta(4,5,6,13)$. This a contradiction since ac does not fix {13,17,21}. Thus c' does not fix {4,5,6}. Similarly c' fixes neither {7,8,9} nor {10,11,12}. Since c' fixes Γ_1 , Γ_2 and Γ_3 , {4,5,6} $\subseteq \Gamma_1$, {7,8,9} $\subseteq \Gamma_2$ and {10,11,12} $\subseteq \Gamma_3$.

Assume that G_{123} has an orbit of length six. Then we may assume that $\{4,5,6,7,8,9\} = \Gamma_1 = \Gamma_2$. Since c' commutes with ab and fixes Γ_1 , c' fixes $\{4,5,6\}$, which is a contradiction. Thus G_{123} has no orbit of length six.

Assume that Γ_1 , Γ_2 and Γ_3 are three distinct G_{123} -orbits. Since *c* fixes Γ_1 , Γ_2 and Γ_3 , $|\Gamma_i| \ge 3+27=30$ (i=1,2,3). Hence $|\Gamma_1 \cup \Gamma_2 \cup \Gamma_3| \ge 90$, which is a contradiction.

Assume that $\Gamma_1 = \Gamma_2 \neq \Gamma_3$. Since *c* fixes Γ_1 and Γ_3 , $|\Gamma_1| = 6+27=33$ and $|\Gamma_3| = 3+27=30$. Let *R* be a Sylow 11-subgroup of G_{123} . Then since $|\Gamma_1| = 33$, $I(R) \cap \Gamma_1 = \phi$. Hence |I(R)| = 33, 22 or 11. Since $\langle a, b \rangle$ is the unique 3-subgroup of G_{123} which is of order three and is semiregular on $\Omega - \{1,2,3\}, R \leq C_c(\langle a, b \rangle)$. Hence *ab* fixes I(R). Thus $|I(R)| \equiv 0 \pmod{3}$ and so |I(R)| = 33. Since *R* is an 11-group (± 1) , for any four points *i,j,k,l* of $I(R) \Delta(i,j,k,l) \subset I(R)$. Thus we have a 4-(33,6,1) design on I(R). Then

the number of blocks containing given two points is $\frac{\binom{31}{2}}{\binom{4}{2}} = \frac{31 \cdot 30}{4 \cdot 3}$, which is

not an integer. Thus we have a contradiction.

Т. Очама

Hence $\Gamma_1 = \Gamma_2 = \Gamma_3 \supseteq \{4, 5, \dots, 12\}$. Then since $\langle a, b \rangle \langle G_{123}$, the lengths of G_{123} -orbits in $\{4, 5, \dots, 66\}$ are all divisible by nine. On the other hand $| \{4, 5, \dots, 66\} |$ is not divisible by twenty-seven. Hence any Sylow 3-subgroup of G_{123} has an orbit of length nine. Let Q be a Sylow 3-subgroup of G_{123} and i a point of a Q-orbit of length nine. If $Q_i \neq 1$, then $|I(Q_i)| = 6$ and Q_i is semiregular on $\Omega - I(Q)$ by the assumption. Then since $|\Omega - I(Q_i)| = 60$, $|Q_i| = 3$. Thus |Q| = 9 or $9 \cdot 3$.

Assume that $\Gamma_1 = \{4, 5, \dots, 12\}$. Since c' fixes Γ_1 but does not fix $\{4, 5, 6\}$, we may assume that

$$c' = (1 \ 2 \ 3) (4 \ 7 \ 10) (5 \ 8 \ 12) (6 \ 9 \ 11) \cdots$$

Then

$$c'c^{-1} = (1)(2)(3)(4\ 7\ 12\ 5\ 8\ 11\ 6\ 9\ 10)\cdots$$

Since a Sylow 3-subgroup of $\langle a, b, c'c^{-1} \rangle$ has the same form as $\langle a, b, c'c^{-1} \rangle$ on $\{1, 2, \dots, 12\}$, we may assume that $\langle a, b, c'c^{-1} \rangle$ is a 3-subgroup. Then since $|\langle a, b, c'c^{-1} \rangle| = 9 \cdot 3, \langle a, b, c'c^{-1} \rangle$ is a Sylow 3-subgroup of G_{123} .

Suppose that $\langle a, b, c'c^{-1} \rangle$ has an orbit of length nine in $\{13, 14, \dots, 66\}$. Since $|\{13, 14, \dots, 66\}| = 54$, The number of $\langle a, b, c'c^{-1} \rangle$ -orbits of length nine in $\{3, 4, \dots, 66\}$ is at least four. Let $(i_1 i_2 i_3)$ be a 3-cycle of *a* contained in a $\langle a, b, c'c^{-1} \rangle$ -orbit of length nine. Then $|\langle a, b, c'c^{-1} \rangle_{123i_1i_2i_3}| = 3$ and so two non-identity elements of $\langle a, b, c'c^{-1} \rangle_{123i_1i_2i_3}$ fixes exactly six points $1, 2, 3, i_1, i_2, i_3$. Thus $\langle a, b, c'c^{-1} \rangle$ has at least $4 \cdot 3 \cdot 2 = 24$ elements which fix exactly six points. On the other hand since $(c'c^{-1})^3 = ab$, $\langle c'c^{-1} \rangle$ is semiregular on $\Omega - \{1, 2, 3\}$. Thus $|\langle a, b, c'c^{-1} \rangle| \ge 24 + 9 = 33$, which is a contradiction. Thus Γ_1 is the only $\langle a, b, c'c^{-1} \rangle$ -orbit of length nine.

Let *i* be any point in $\{4, 5, \dots, 66\}$. Then G_{123} has an element *x* of order three and fixing *i*. Then by the same argument as is used for $\langle a, b, c'c^{-1} \rangle$, there is a Sylow 3-subgroup of G_{123} which has exactly one orbit of length nine containing *i*. Since this Sylow 3-subgroup is conjugate to $\langle a, b, c'c^{-1} \rangle$ in G_{123} , G_{123} is transitive on $\{4, 5, \dots, 66\}$, which is a contradiction. Thus Γ_1 is not a G_{123} -orbit. This implies that G_{123} has no orbit of length nine.

Suppose that G_{123} is intransitive on $\{4, 5, \dots, 66\}$. Since c fixes Γ_1 , $|\Gamma_1| = 9+27=36$. Thus G_{123} -orbits on $\{4, 5, \dots, 66\}$ are Γ_1 and one orbit of length twenty-seven. Then G_{123} has a non-identity 3-element fixing a point of the G_{123} -orbit of length twenty-seven. Thus a Sylow 3-subgroup of G_{123} is of order more than twenty-seven, which is a contradiction.

Thus G_{123} is transitive on $\{4, 5, \dots, 66\}$. Hence G is 4-fold transitive on Ω . Let P be a Sylow 2-subgroup of G_{1234} . Then by Corollary of [4], |I(P)| = 4. Since $\Delta(1,2,3,4) = \{1,2,\dots,6\}, \{5,6\}$ is a G_{1234} -orbit. By Corollary of [5], $I(P_5) = \{1,2,\dots,6\} = I(a)$ and $|P:P_5| = 2$.

Suppose that P_5 is semiregular on $\{7, 8, \dots, 66\}$. Then since $|P:P_5|=2$,

lengths of *P*-orbits on $\{7, 8, \dots, 66\}$ are |P| or |P|/2. Hence for any point *i* of $\{7, 8, \dots, 66\}$, $|P_i| = 1$ or 2. Then by Corollary 1 of [6], $|\Omega| \neq 66$, which is a contradiction. Thus P_5 is not semiregular on $\{7, 8, \dots, 66\}$.

For any three points i,j,k of $\{1,2,\dots,6\}$ there is an element x of order three fixing exactly three points i,j,k. Then since $\langle x \rangle$ is the unique 3-subgroup of $G_{i,j,k}$ which is of order three and semiregular on $\Omega - \{i,j,k\}$, [a,x]=1and so x fixes I(a). Hence $x \in C_G(G_{I(a)})$. Let H be a subgroup generated by all elements of order three fixing exactly three points i,j,k, where i,j,k run over all three points of $\{1,2,\dots,6\}$. Then $H \leq C_G(G_{I(a)})$ and $H^{I(a)} = A_6$.

Since $H \leq C_G(a)$, H induces a permutation group on the set of 3-cycles of a. Let K be a subgroup of H fixing $\{7,8,9\}$. Since $\Delta(7,8,9,1)=\{7,8,9,1,2,3\}$ and $\Delta(7,8,9,4)=\{7,8,9,4,5,6\}$, any element of K fixes or interchanges $\{1,2,3\}$ and $\{4,5,6\}$. Let \overline{K} be a subgroup of H which fixes or interchanges $\{1,2,3\}$ and $\{4,5,6\}$. Then $K \leq \overline{K}$ and $|\overline{K}^{I(a)}|=6\cdot3\cdot2$. If $\{1,2,3,i,j,k\}$ is a block and (ijk) is a 3-cycle of a, then (ijk)=(789) or $(10\ 11\ 12)$. Similarly if $\{4,5,6,i,j,k\}$ is a block and (ijk) is a 3-cycle of a, then (ijk)=(789) or $(10\ 11\ 12)$. Hence any element of \overline{K} fixes or interchanges $\{7,8,9\}$ and $\{10,11,$ $12\}$. Hence $|\overline{K}:K|=1$ or 2.

Since $|H:\bar{K}| = |A_6|/6\cdot 3\cdot 2=10$, |H:K| = 10 or 20. Since *a* has twenty 3-cycles, *H* is transitive or has two orbits of length ten on the set consisting of 3-cycles of *a*. Furthermore for any 3-cycle (i j k) of *a H* has a subgroup which is transitive on $\{i, j, k\}$. Hence *H* is transitive or has two orbits of length thirty on $\{7, 8, \dots, 66\}$.

Since P_5 is not semiregular on $\{7, 8, \dots, 66\}$, there is a non-identity element y in P_5 which has a fixed point *i* in $\{7, 8, \dots, 66\}$. Then since $H \leq C_G(y)$, $I(y) \supseteq i^H$. Hence H has two orbits on $\{7, 8, \dots, 66\}$ and so |I(y)| = 6+30=36. Then since G is a 4-fold transitive group of degree sixty-six, we have a contradiction by a theore of W. A. Manning (See [8], Theorem 15.1). Thus we complet the proof of Theorem 1.

3. Proof of Corollary

(i) Let D be a 4-(v, 5, 2) design. Let $\{1, 2, 3, 4, i_1\}$ and $\{1, 2, 3, 4, i_2\}$ be two blocks containing $\{1, 2, 3, 4\}$. Then G_{1234} fixes $\{i_1, i_2\}$. If $\{i_1\}$ and $\{i_2\}$ are G_{1234} -orbits, then $G=A_6$ by a theorem of H. Nagao [2]. Hence D is a 4-(6, 5, 2) design. If $\{i_1, i_2\}$ is a G_{1234} -orbit, then $G=S_6$ by Theorem 1. Hence D is also a 4-(6, 5, 2) design.

(ii) Let D be a 4-(v, 6, 1) design. Then by the same reason as (i), D is a 4-(6, 6, 1) design.

(iii) Let D be a 4-(v, 6, 2) design. Let $\{1, 2, 3, 4, i_1, j_1\}$ and $\{1, 2, 3, 4, i_2, j_2\}$ be two blocks containing $\{1, 2, 3, 4\}$. Then G_{1234} fixes $\{i_1, j_1, i_2, j_2\}$ and $|\{i_1, j_1, i_2, j_2\}| = 3$ or 4. If G_{1234} has an element which has a 3-cycle on $\{i_1, j_1, i_2, j_2\}$,

Т. Очама

then there are at least three blocks containing $\{1,2,3,4\}$, which is a contradiction.

Let P be a Sylow 3-subgroup of G_{1234} . Then $I(P) \supseteq \{i, 2, 3, 4, i_1, j_1, i_2, j_2\}$. Hence by Theorem of [7], |I(P)| = 11 or 12 and $N_G(P)^{I(P)} = M_{11}$ or M_{12} . If $N_G(P)^{I(P)} = M_{12}$, then $(N_G(P)^{I(P)})_{1234}$ is transitive on $I(P) - \{1, 2, 3, 4\}$. This is a contradiction since the number of blocks containing $\{1, 2, 3, 4\}$ is two. If $N_G(P)^{I(P)} = M_{11}$, then a subgroup of $N_G(P)^{I(P)}$ fixing $\{1, 2, 3, 4\}$ as a set has two orbits of length one and six. Hence by the same reason as above, we have a contradiction. Thus we complete the proof of Corollary.

Osaka Kyoiku University

References

- [1] D. Livingstone and A. Wagner: Transitivety of finite permutation groups on unordered sets, Math. Z. 90 (1965), 394-403.
- [2] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
- [3] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
- [4] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [5] T. Oyama: On multiply transitive groups X, Osaka J. Math. 8 (1971), 99-130.
- [6] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595-636.
- [7] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367-383.
- [8] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.
- [9] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.