ON THE EQUILIBRIUM MEASURE OF RECURRENT MARKOV PROCESSES

YoIchi ŌSHIMA

(Received February 21, 1977)

0. Introduction

In the case of planar Brownian motion, if we denote $h(x, y)=-\frac{1}{\pi} \log |x-y|$, the following results are well known (see [13], [16]). (i) If F is a non-polar compact set, then there exists a probability measure ξ_{F} on F such that $\int h(x, y) \xi_{F}(d y)$ equals a constant $R(F)$ on F except on a polar set. The measure ξ_{F} and the constant $R(F)$ are respectively called the quilibruim measure and Robin's constant of F. (ii) A compact set F is non-polar if and only if there exists a non-zero finite measure ξ on F such that $\int h(x, y) \xi(d y)$ is locally bounded.

In this paper we shall be concerned with the similar problem for recurrent Hunt processes with strong Feller resolvent. In our case, in place of $h(x, y)$, we shall use a density $g(x, y)$ of a potential kernel $G(x, d y)$ of X relative to the invariant measure $\mu(d y)$. Unfortunately, our density $g(x, y)$ is not equal to $h(x, y)$ in the case of planar Brownian motion but equal to $h(x, y)+f(x)+g(y)$ with some locally bounded functions f and g (see $\S 4$).

Now we shall outline the contents of this paper. Let X be a recurrent Hunt process with strong Feller resolvent and μ an invariant measure of X. If we are given a certain finite non-negative continuous additive functional A of X then we can construct a potential kernel G of X by means of time change and killing based upon A ([4], [12]). In this paper we shall suppose, for simplicity, that $A_{t}=\int_{0}^{t} I_{C}\left(X_{s}\right) d s$ for an arbitrary fixed non-null compact set C but the similar argument can be applicable for a large class of functionals A.

In section 1, some preliminary results are established. Among others, a potential kernel K_{A} and an invariant measure ν_{A} of the time changed process by A are described. In section 2, for any other finite non-negative continuous additive functional B, a potential kernel K_{B} and an invariant measure ν_{B} of the time changed process by B are constructed by making use of K_{A} and ν_{A}. In section 3, let us introduce the duality hypothesis that there exists a dual process \hat{X} (of X relative to μ) satisfying those regularity conditions like X.

We shall then construct a kernel function $g(x, y)$ such that $g(\cdot, y)$ [resp. $g(x, \cdot)$] is finely [resp. confinely] continuous, finite except on a polar set and $K_{B}(x, d y)=$ $g(x, y) \nu_{B}(d y)$ [resp. $\left.\hat{K}_{B}(d x, y)=g(x, y) \nu_{B}(d x)\right]$ for all continuous additive functionals B, where \hat{K}_{B} is the potential kernel of the time changed process of \hat{X} by the dual functional \hat{B} of B. In particular, when $B_{t}=t$, we have $G(x, d y)=$ $g(x, y) \mu(d y)$ and $\hat{G}(d x, y)=g(x, y) \mu(d x)$, where \hat{G} is the potential kernel of \hat{X} associated with $\hat{A}_{t}=\int_{0}^{t} I_{c}\left(\hat{X}_{s}\right) d s$ in the sense of section 2 . In this sense, our function $g(x, y)$ may be called the potential kernel function associated with (G, \hat{G}). In section 4, we introduce the notion of potential kernel function $h(x, y)$ in a more general sense and then establish a relation between $h(x, y)$ and $g(x, y)$. In section 5 , we shall show the equilibrium principle. This means that, if $F=\operatorname{supp}(B)$, then there is a probability measure ξ_{F} on $\operatorname{supp}(\hat{B})$ such that $\int g(x, y) \xi_{F}(d y)=R(F)$ on F. In our case, the equilibrium measure ξ_{F} and Robin's constant $R(F)$ have intuitive probablistic meanings. If X and \hat{X} are equivalent, the results of section 5 have simpler forms and the analogous potential principles to classical potential theory hold. This case is treated in section 6. There a characterization of the equilibrium measure by means of energy is also given.

1. Notations and preliminary results

Let E be a locally compact Hausdorff space with countable base, \mathcal{E} the Borel σ-field on E and \mathcal{E}^{*} the σ-field obtained by the universal completion of \mathcal{E}. If \mathcal{A} is a σ-field of subsets of E then the classes of all bounded \mathcal{A}-measurable functions, all bounded non-negative \mathcal{A}-measurable functions and all bounded \mathcal{A} measurable functions with compact support are denoted by $b \mathcal{A}, b \mathcal{A}_{+}$and $b \mathcal{A}_{c}$, respectively.

Throughout in this paper, let $X=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, X_{t}, \theta_{t}, P^{x}\right)$ be a recurrent Hunt process on E with strong Feller resolvent, that is, a Hunt process satisfying
(i) (Recurrence); For all $f \in b \mathcal{E}_{+}, G^{0} f(x)=E^{x}\left[\int_{0}^{\infty} f\left(X_{t}\right) d t\right] \equiv 0$ or $\equiv \infty$ on E.
(ii) (Strong Feller property of resolvent); For all $p>0$ and $f \in b \mathcal{E}, G^{\triangleright} f(x)=$ $E^{x}\left[\int_{0}^{\infty} e^{-p t} f\left(X_{t}\right) d t\right]$ is bounded continuous.

In this case, it is well known that there exists a unique (except a constant multiple) invariant Radon measure μ of X, which is positive on every open sets (see [1], [2]). Let Φ be the family of all non-negative continuous additive functionals (abbreviated CAF) $A=\left(A_{t}\right)_{t \geq 0}$ of X such that $A_{t}<\infty$ a.s. for all $t<\infty$ and let Φ^{+}be the subfamily of functionals $A \in \Phi$ which are not equivalent to the zero functional. If $A \in \Phi^{+}$then $P^{x}\left(A_{\infty}=\infty\right)=1$ for all x ([1]). For $A \in \Phi^{+}$and $p \geqq 0$ we define a kernel K_{A}^{p} by

$$
\begin{equation*}
K_{A}^{p} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-p A_{t}} f\left(X_{t}\right) d A_{t}\right] \tag{1.1}
\end{equation*}
$$

Note that $\left(K_{A}^{p}\right)_{p>0}$ is the resolvent of the time changed process of X by A.
Moreover, for $A, B \in \Phi^{+}$and $p, q \geqq 0$ we define two auxiliary kernels $U_{A, B}^{p, q}$ and $V_{A, B}^{p, q}$ as follows:

$$
\begin{align*}
& U_{A, B}^{p, q} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-p A_{t}-q B_{t}} f\left(X_{t}\right) d A_{t}\right], \tag{1.2}\\
& V_{A, B}^{p, q} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-p A_{t}-q B_{t}} f\left(X_{t}\right) d B_{t}\right] \tag{1.3}
\end{align*}
$$

Obviously, $U_{A, B}^{p, q}=V_{B, A}^{q, p}$. The family $\left(U_{A, B}^{p, q}\right)_{p>0}$ is the resolvent of the time changed process by A_{t} of the $e^{-q B_{t}}$-subprocess of X. If $B_{t}=t$, we shall write $K_{A}^{p, q}$ for $U_{A, t]}^{p, q}$ and $G_{A}^{p q}$ for $V_{A,(t)}^{p, q}$, i.e.,

$$
\begin{align*}
& K_{A}^{p, q} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-p A_{t}-q t} f\left(X_{t}\right) d A_{t}\right] \tag{1.4}\\
& G_{A}^{p, q} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-p A_{t}-q t} f\left(X_{t}\right) d t\right] \tag{1.5}
\end{align*}
$$

Note that $U_{A, B}^{p, 0}=K_{A}^{p, 0}=K_{A}^{p}, V_{A, B}^{0, q}=K_{B}^{q}$ and $G_{A}^{0, q}=G^{q}$ (the resolvent of X).
In the sequel, if there is no danger of confusion, the suffices A, B will be often omitted.

Lemma 1.1 (Nagasawa-Sato [10; theorem 2.1 and 2.2]). Write $U^{p, q}$ and $V^{p, q}$ for $U_{A, B}^{p_{i}, q_{B}}$ and $V_{A, B}^{p, q}$. For all $p>0, p^{\prime}>0 q \geqq 0, q^{\prime} \geqq 0$ and $f \in b \mathcal{E}^{*}$,

$$
\begin{align*}
& U^{p, q} f-U^{p^{\prime}, q^{\prime}} f+\left(p-p^{\prime}\right) U^{p, q} U^{p^{\prime}, q^{\prime}} f+\left(q-q^{\prime}\right) V^{p, q} U^{p^{\prime}, q^{\prime}} f=0, \tag{1.6}\\
& V^{q, p} f-V^{q^{\prime}, p^{\prime}} f+\left(p-p^{\prime}\right) V^{q, p} V^{q^{\prime}, p^{\prime}} f+\left(q-q^{\prime}\right) U^{q, p} V^{q^{\prime}, p^{\prime}} f=0 \tag{1.7}
\end{align*}
$$

If, in particular, $U^{0, q_{0}}|f|\left[\right.$ resp. $\left.V^{q_{0}, 0}|f|\right]$ is bounded for some $q_{0} \geqq 0$ then $U^{0, q}|f|\left[r e s p . V^{q, 0}|f|\right]$ is bounded for all $q>0$ and (1.6) [resp. (1.7)] holds for all $p, p^{\prime}, q, q^{\prime} \geqq 0$ satifysing $p+q>0$ and $p^{\prime}+q^{\prime}>0$.

Lemma 1.2 ([12; lemma 2.2]). There exists an increasing sequence $\left\{E_{n}\right\}_{n \geq 1}$ $\left[\right.$ resp. $\left.\left\{F_{n}\right\}_{n \geq 1}\right]$ of subsets in \mathcal{E}^{*} such that $\bigcup_{n \geq 1} E_{n}=E\left[\right.$ resp. $\left.\cup_{n \geq 1} F_{n}=E\right]$ and $U^{0,1}\left(\cdot, E_{n}\right)$ $\left[\right.$ resp. $\left.V^{1,0}\left(\cdot, F_{n}\right)\right]$ is bounded for all $n \geqq 1$.

Lemma 1.3 (Blumenthal-Getoor [3; III, section 5]). If $A \in \Phi^{+}$then $G_{A}^{p, 0}(\cdot, F)$ is bounded for all compact set F and $p>0$.

A set C is said to be null if it is a set of potential zero relative to $\left(G^{p}\right)_{p>0}$. Let C be an arbitrary (but fixed) non-null compact subset of E and let us assume that μ is normalized on C as $\mu(C)=1$.

In the remainder of this paper, unless otherwise stated, the CAF $A=\left(A_{t}\right)_{t \geq 0} \in \Phi^{+}$always represents the CAF defined by

$$
\begin{equation*}
A_{t}=\int_{0}^{t} I_{c}\left(X_{s}\right) d s \tag{1.8}
\end{equation*}
$$

Then for every $B \in \Phi^{+}$,

$$
U_{A, B}^{0,1} 1(x)=E^{x}\left[\int_{0}^{\infty} e^{-B t} I_{C}\left(X_{t}\right) d t\right]=G_{B}^{1,0}(x, C)
$$

is bounded by lemma 1.3. Moreover we have
Lemma 1.4. For any $p, q>0$ and $f \in b \mathcal{E}^{*}$, the functions $K_{A}^{p} f$ and $G_{A}^{p q} f$ are bounded continuous. In case $f \in b \mathcal{E}_{c}^{*}, G_{A}^{p, 0} f$ is bounded continuous for all $p>0$.

Proof. Drop the suffix A in the related kernels. For any $p>0$ and $f \in b \mathcal{E}^{*}$ we have, from (1.7),

$$
G^{p} f-G^{p, p} f-p K^{0, p} G^{p, p} f=0
$$

Since $K^{0, p} g=G^{p}\left(I_{c} g\right)$ for any $g \in b \mathcal{E}^{*}$ the function

$$
\begin{aligned}
G^{p, p} f & =G^{p} f-p G^{p}\left(I_{c} G^{p, p} f\right) \\
& =G^{p}\left(f-p I_{c} G^{p, p} f\right)
\end{aligned}
$$

is bounded continuous by the strong Feller property of G^{p}. Therefore,

$$
G^{p, q} f=G^{p, p}\left(f+(q-p) G^{p, p} G^{p, q} f\right)
$$

is bounded continuous. If $f \in b \mathcal{E}_{c}^{*}$ then $G^{p, 0} f$ is bounded by lemma 1.3, so that the above equality for $q=0$ shows that $G^{p, 0} f$ is bounded continuous.

Since $\left(K_{A}^{p}\right)_{p>0}$ is a strong Feller resolvent by lemma 1.4, the mapping $x \rightarrow K_{A}^{1}(x, \cdot)$ of the compact set C into the space of measures over C is strongly continuous by a theorem of Mokobodzki (see Meyer [9]). Since, in addition, $K_{A}^{1}(x, \cdot)$ are equivalent for all $x \in E$, we have

$$
\sup _{x, y \in c} \frac{1}{2}\left\|K_{A}^{1}(x, \cdot)-K_{A}^{1}(y, \cdot)\right\| \equiv a<1 .
$$

Thus there exists a unique invariant probability measure ν_{A} of K^{1} such that

$$
\begin{equation*}
\sup _{x \in B}\left\|\left(K_{A}^{1}\right)^{n+1}(x, \cdot)-\nu_{A}(\cdot)\right\| \leqq 2 a^{n} \tag{1.9}
\end{equation*}
$$

for all $n \geqq 0$ ([7; lemma 1.3]). Therefore the kernel

$$
\begin{equation*}
K_{A}(x, F)=\sum_{n=1}^{\infty}\left[\left(K_{A}^{1}\right)^{n}(x, F)-\nu_{A}(F)\right] \tag{1.10}
\end{equation*}
$$

is well defined and satisfies

$$
\left(I-K_{A}^{1}\right) K_{A} f=K_{A}^{1} f-\left\langle\nu_{A}, f\right\rangle
$$

for all $f \in b \mathcal{E}^{*}$.
Lemma 1.5. The kernel K_{A} defined by (1.10) satisfies

$$
\begin{equation*}
\lim _{p \rightarrow 0} \sup _{x \in \mathcal{D}}\left\|K_{A}^{p}(x, \cdot)-\frac{\nu_{A}(\cdot)}{p}-K_{A}(x, \cdot)\right\|=0 \tag{1.11}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
\lim _{p \rightarrow 0} \sup _{x \in B}\left\|p K_{A}^{p}(x, \cdot)-\nu_{A}(\cdot)\right\|=0 . \tag{1.12}
\end{equation*}
$$

Proof. From the resolvent equation for $\left(K_{A}^{p}\right)$ we have

$$
\begin{aligned}
K_{A}^{p}(x, \cdot) & =K_{A}^{1} \sum_{n=0}^{\infty}(1-p)^{n}\left(K_{A}^{1}\right)^{n}(x, \cdot) \\
& =\sum_{n=1}^{\infty}(1-p)^{n-1}\left\{\left(K_{A}^{1}\right)^{n}(x, \cdot)-\nu_{A}(\cdot)\right\}+\frac{\nu_{A}(\cdot)}{p}
\end{aligned}
$$

for all $x \in E$ and $0<p<1$. Thus it follows that

$$
\begin{aligned}
& \left\|K_{A}^{p}(x, \cdot)-\frac{\nu_{A}(\cdot)}{p}-K_{A}(x, \cdot)\right\| \\
& \quad \leqq \sum_{n=1}^{\infty}\left\{1-(1-p)^{n-1}\right\}\left\|\left(K_{A}^{1}\right)^{n}(x, \cdot)-\nu_{A}(\cdot)\right\| \\
& \quad \leqq \sum_{n=1}^{\infty}\left\{1-(1-p)^{n-1}\right\} 2 a^{n-1}=2\left\{\frac{1}{1-a}-\frac{1}{1-a(1-p)}\right\} .
\end{aligned}
$$

Therefore the lemma follows.

2. An invariant measure and a potential kernel of (K_{B}^{p})

Similarly to [4] and [12], for any $B \in \Phi^{+}$, an invariant measure ν_{B} and a potential kernel K_{B} of $\left(K_{B}^{p}\right)_{p>0}$ can be constructed by making use of ν_{A} and K_{A} defined in section 1. In [12], we have treated only the case of $B_{t}=t$ but the same arguments are valid for all $B \in \Phi^{+}$. We shall outline it in the form of our present use.

For any $B \in \Phi^{+}$define the measure ν_{B} by

$$
\begin{equation*}
\nu_{B}=\nu_{A} V_{A, B}^{1,0} \tag{2.1}
\end{equation*}
$$

Then ν_{B} charges no semipolar set and satisfies the following properties.
Lemma 2.1. The measure ν_{B} is a σ-finite invariant measure of $\left(K_{B}^{p}\right)_{p>0}$. In particular, $\nu_{(t)}=\mu$.

Proof. (cf. [12; theorem 2.7]) Since $V_{A, B}^{1,0}\left(\cdot, F_{n}\right)$ is bounded for all n by
lemma $1.2, \nu_{B}$ is σ-finite. Integrating the equality

$$
V_{A, B}^{1,0}-K_{B}^{p}+K_{A}^{1} K_{B}^{p}-p V_{A, B}^{1,0} K_{B}^{p}=0
$$

by ν_{A} we have

$$
\nu_{B}=p \nu_{B} K_{B}^{p},
$$

that is, ν_{B} is an invariant measure of $\left(K_{B}^{p}\right)$.
By the uniqueness of the invariant measure of $X, \nu_{(t)}$ is a constant multiple of μ, say,

$$
\nu_{(t)}=\nu_{A} G_{A}^{1,0}=b \mu
$$

for some constant b. Since $\mu(C)=1$ we have

$$
b=\nu_{A} G_{A}^{1,0}(C)=\nu_{A} K^{1}(C)=\nu_{A}(C)=1
$$

Hence $\nu_{(t)}=\mu$.
Lemma 2.2 (cf. [4; proposition 2]). For any $B, B^{\prime} \in \Phi^{+}$,

$$
\begin{equation*}
\nu_{B^{\prime}}=p \nu_{B} V_{B, B^{\prime}}^{p, 0} . \tag{2.2}
\end{equation*}
$$

In particular, ν_{B} is the measure associated with B in the sense of Revuz ([14]). Moreover it holds that $\nu_{A}=\left.\mu\right|_{C}$, where $\left.\mu\right|_{C}$ is the restriction of μ to C.

Proof. Similarly to lemma 1.1, we can prove easily that

$$
\begin{equation*}
V_{A, B^{\prime}}^{q, 0}-V_{B, B^{\prime}}^{p, 0}+q K_{A}^{q} V_{B, B^{\prime}}^{p, 0}-p V_{A, B}^{q, 0} V_{B, B^{\prime}}^{p, 0}=0 \tag{2.3}
\end{equation*}
$$

for sufficiently many $f \in b \mathcal{E}^{*}$. Letting $q=1$ and integrating by ν_{A}, (2.2) follows. Set $B_{t}=t$ at (2.2) then $\nu_{B^{\prime}}=p \nu_{[t]} V_{i t i)}^{p, 0}=p \mu K_{B}^{0, p}$ by lemma 2.1. Hence $\nu_{B^{\prime}}$ is the measure associated with B^{\prime}. In particular, when $B^{\prime}=A$, it follows that $\left\langle\nu_{A}, f\right\rangle=$ $p\left\langle\mu, K_{A}^{0, p} f\right\rangle=p\left\langle\mu, G^{p} I_{c} f\right\rangle=p\left\langle\mu G^{p}, I_{c} f\right\rangle=\left\langle\mu, I_{c} f\right\rangle=\left\langle\left.\mu\right|_{c}, f\right\rangle$.

Define a kernel K_{B} by

$$
\begin{equation*}
K_{B}(x, \cdot)=K_{A} V_{A, B}^{1,0}(x, \cdot)+V_{A, B}^{1,0}(x, \cdot)-\nu_{B}(\cdot) \tag{2.4}
\end{equation*}
$$

In case $B_{t}=t$ we shall denote K_{B} by G, which is the kernel we have constructed in [12]. Obviously, $K_{B}(x, \cdot)$ is a σ-finite signed measure on E and, for any $n \geqq 1$, the total variation of $K_{B}(x, \cdot)$ on F_{n} are uniformly bounded for all $x \in E$ by (1.9) and lemma 1.2. Similarly, for any compact set F, the total variation of $G(x, \cdot)$ on F is uniformly bounded for all $x \in E$ by lemma 1.3. If we denote the total variation of a measure on F by $\|\cdot\|_{F}$, then the following theorem holds.

Theorem 2.3. For all $n \geqq 1$,

$$
\begin{equation*}
\lim _{p \rightarrow 0} \sup _{x \in B}\left\|V_{A, B}^{p, 0}(x, \cdot)-\frac{\nu_{B}(\cdot)}{p}-K_{B}(x, \cdot)\right\|_{F_{n}}=0 \tag{2.5}
\end{equation*}
$$

and in partciular,
(2.6) $\quad \lim _{p \rightarrow 0} \sup _{x \in B}\left\|p V_{A, B}^{p_{i}, 0}(x, \cdot)-\nu_{B}(\cdot)\right\|_{F_{n}}=0$.

If $B_{t}=t$ then we can take arbitrary compact set in place of F_{n}.
Proof. Write $V^{p, 0}$ for $V_{A, B}^{p, 0}$. For any Borel subset D of F_{n}

$$
V^{p, 0}(x, D)-V^{1,0}(x, D)+p K_{A}^{p} V^{1,0}(x, D)-K_{A}^{p} V^{1,0}(x, D)=0
$$

from (1.7). This can be written, by noting (2.1),

$$
\begin{gathered}
\left\{V^{p, 0}(x, D)-\frac{\nu_{B}(D)}{p}\right\}-V^{1,0}(x, D)+p K_{A}^{p} V^{1,0}(x, D) \\
-\left(K_{A}^{p}-\frac{1}{p} \nu_{A}\right) V^{1,0}(x, D)=0
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
& \left\|V^{p, 0}(x, \cdot)-\frac{\nu_{B}(\cdot)}{p}-K_{B}(x, \cdot)\right\|_{F_{n}} \\
& \quad \leqq\left\|\left\{p K_{A}^{p}(x, \cdot)-\nu_{A}(\cdot)\right\} V^{1,0}\right\|_{F_{n}} \\
& \quad+\left\|\left\{K_{A}^{p}(x, \cdot)-\frac{\nu_{A}(\cdot)}{p}-K_{A}(x, \cdot)\right\} V^{1,0}\right\|_{F_{n}} .
\end{aligned}
$$

This proves the theorem from lemma 1.5.
Corollary 1. If $f \in b \mathcal{E}^{*}$ vanishes outside of some F_{n}, then

$$
\begin{equation*}
\left(I-p K_{B}^{p}\right) K_{B} f=K_{B}^{p} f-U_{A, B}^{0, p} 1\left\langle\nu_{B}, f\right\rangle \tag{2.7}
\end{equation*}
$$

for all $p>0$. If $V_{A, B}^{1,0} 1$ is bounded, then

$$
\begin{equation*}
K_{B}\left(I-p K_{B}^{p}\right) f=K_{B}^{p} f-\left\langle\nu_{A}, K_{B}^{p} f\right\rangle \tag{2.8}
\end{equation*}
$$

for all $p>0$ and $f \in b \mathcal{E}^{*}$.
Proof. Suppose that $V^{1,0} 1$ is bounded, then obviously (2.5) holds for E in place of F_{n}, so we have

$$
\begin{aligned}
& K_{B}\left(I-p K_{B}^{p}\right) f(x)=\lim _{q \rightarrow 0}\left(V^{q, 0}-\frac{1}{q} \nu_{B}\right)\left(I-p K_{B}^{p}\right) f(x) \\
& \quad=\lim _{q \rightarrow 0} V^{q, 0}\left(I-p K_{B}^{p}\right) f(x)=\lim _{q \rightarrow 0}\left(K_{B}^{p} f-q K_{A}^{p} K_{B}^{q} f\right)(x) \\
& \quad=K_{B}^{p} f(x)-\left\langle\nu_{A}, K_{B}^{p} f\right\rangle,
\end{aligned}
$$

from (1.13). The proof of (2.7) is similar.
Let us denote
(2.9) $\quad N_{B}=\left\{f ; f \in b \mathcal{E}^{*},=0\right.$ outside of some F_{n} and $\left.\left\langle\nu_{B}, f\right\rangle=0\right\}$,

$$
\begin{equation*}
N=\left\{f ; f \in b \mathcal{E}^{*},\langle\mu, f\rangle=0\right\} \tag{2.10}
\end{equation*}
$$

Definition. If a kernel H on E satisfies the condition that (i) for any $f \in N_{B}$ [resp. $f \in N$], $H f \in b \mathcal{E}^{*}$ and that (ii) for any $f \in N_{B}$ [resp. $f \in N$], $\left(I-p K_{B}^{p}\right) H f=K_{B}^{p} f\left[\right.$ resp. $\left.\left(I-p G^{p}\right) H f=G^{p} f\right]$ for all $p>0$, then we shall say that H is a potential kernel of $\left(K_{B}^{p}\right)_{p>0}[$ resp. $X]$.

Corollary 2. The kernels K_{B} and G are the potential kernels of $\left(K_{B}^{p}\right)_{p>0}$ and X, respectively.

Corollary 3. For every compact set F, the function $G(\cdot, F)$ is finely continuous.

Proof. Set $B_{t}=t$ at (2.7)

$$
G(x, F)=p G^{p} G(x, F)+G^{p}(x, F)-\left(K_{A}^{0, p} 1(x)\right) \mu(F) .
$$

Since $K_{A}^{0, p} 1$ is p-excessive, the result is obvious.

3. Hypothesis of duality and the kernel function $g(x, y)$

In this section we shall assume that there exists a Hunt process \hat{X} with strong Feller resolvent \hat{G}^{p} such that X and \hat{X} are in duality relative to μ. It follows that \hat{X} is also recurrent and μ is the invariant measure of \hat{X}.

Let $\hat{\Phi}^{+}$be the family of all non-zero non-negative finite continuous additive functionals of \hat{X}. For any $\hat{A}, \hat{B} \in \hat{\Phi}^{+}$, we define $\hat{U}_{A, B}^{p, q}$ etc. by

$$
f \hat{U}_{A, B}^{p_{A}, q}(x)=\hat{E}^{x}\left[\int_{0}^{\infty} e^{-p \hat{A}_{t}-q \hat{B}_{t}} f\left(\hat{X}_{t}\right) d \hat{A}_{t}\right]
$$

etc. (in general, a kernel with respect to the dual process \hat{X} is written such as $\hat{K}(D, x)$, so that \hat{K} operates to function from the right side and to measure from the left).

By Revuz [14; theorem VII. 1], for any $B \in \Phi^{+}$, there exists a polar set P_{B} and a CAF $\hat{B} \in \hat{\Phi}^{+}$of \hat{X} restricted to $E-P_{B}$ such that $\nu_{B}=\hat{K}_{B}^{0,1} \mu$. Also, by [14; theorem VII. 2], there exists a jointly measurable kernel function $g_{B}^{p, q}(x, y)$ satisfying
(i) $g_{B}^{p, q}(\cdot, y)\left[r e s p . g_{B}^{p, q}(x, \cdot)\right]$ is finely $[r e s p . ~ c o f i n e l y]$ continuous and q-excessive $[$ resp. q-coexcessive $]$ relative to the resolvent $\left(G_{B}^{p, q}\right)_{q>0}\left[\right.$ resp. $\left.\left(\hat{G}_{B}^{p, q}\right)_{q>0}\right]$ for all $p>0$ and $y \in E-P_{B}[r e s p . x \in E]$,
(ii) For all $p, q>0$ and $x \in E, K_{B}^{p, q}(x, d y)=g_{B}^{p, q}(x, y) \nu_{B}(d y), G_{B}^{p, q}(x, d y)=$ $g_{B}^{p, q}(x, y) \mu(d y)$ and for all $p, q>0$ and $y \in E-P_{B}, \hat{K}_{B}^{p, q}(d x, y)=g_{B}^{p, q}(x, y)$ $\nu_{B}(d x), \hat{G}_{B}^{\phi, q}(d x, y)=g_{B}^{\not p q}(x, y) \mu(d x)$.

As before, the set C with $\mu(C)=1$ is fixed and A is given by (1.8). If $B=A, P_{B}$ may be supposed to be empty and the dual CAF of A is given exactly by

$$
\begin{equation*}
\hat{A}_{t}=\int_{0}^{t} I_{c}\left(\hat{X}_{s}\right) d s . \tag{3.1}
\end{equation*}
$$

In the following, unless otherwise stated, \hat{A} always represents this CAF and we shall drop the suffix A in $g_{A}^{p q}$. Further, we shall denote $g^{q}(x, y)$ for $g_{A}^{0, q}(x, y)$, which is Kunita-Watanabe's potential kernel function. Note that $g_{B}^{0, q}(x, y)=g^{q}(x, y)$ for all $B \in \Phi^{+}$. Form the resolvent equation (1.6), for any $q>0$,

$$
\begin{align*}
g^{1, q}(x, y) & =g^{q}(x, y)-K_{A}^{1, q} g^{q}(x, y) \tag{3.2}\\
& =g^{q}(x, y)-g^{q} \hat{K}_{A}^{1, q}(x, y)
\end{align*}
$$

on $\left\{(x, y) ; g^{q}(x, y)<\infty\right\}$. Hence for any $y \in E, K_{A}^{1, q} g^{q}(x, y)=g^{q} \hat{K}_{A}^{1, q}(x, y)$ a.a. $x(\mu)$. Since both sides of the equality are q-excessive, it holds for all $x, y \in E$ (cf. Getoor [5; theorem 2.5]).

Lemma 3.1. For all $x \in E$ and $B \in \Phi^{+}$,

$$
\begin{equation*}
V_{A, B}^{1,0}(x, d y)=g^{1,0}(x, y) \nu_{B}(d y) \tag{3.3}
\end{equation*}
$$

Proof. Set $A_{t}^{\prime}=A_{t}+q t$. Replacing $A^{\prime},\{t\}, B$ for A, B, B^{\prime} in (2.3) we have

$$
V_{A^{\prime}, B}^{1,0} f=V_{\{t \mid, B}^{q, 0} f-K_{A^{\prime}}^{1} V_{\{t \mid, B}^{q, 0} f+q V_{A^{\prime},(t)}^{1,0} V_{\{i t, B}^{q} q^{q},
$$

for sufficiently many functions f. Noting that $V_{i t, B}^{q, 0}=K_{B}^{0, q}, K_{A^{\prime}}^{1}=K_{A}^{1, q}+q G_{A}^{1, q}$ and $V_{A^{\prime},(t)}^{1,0}=G_{A}^{1, q}$, it follows that

$$
\begin{aligned}
E^{x} & {\left[\int_{0}^{\infty} e^{-A_{t}-q t} f\left(X_{t}\right) d B_{t}\right]=V_{A^{\prime}, B}^{1,0} f(x) } \\
& =K_{B}^{0, q} f(x)-K_{A}^{1, q} K_{B}^{0, q} f(x) \\
& =\int\left\{g^{q}(x, y)-K_{A}^{1, q} g^{q}(x, y)\right\} f(y) \nu_{B}(d y) \\
& =\int\left\{g^{q}(x, y)-K_{A}^{1, q} g^{q}(x, y)\right\} f(y) \nu_{B}(d y) \\
& =\int\left\{g^{1, q}(x, y) f(y)\right\} \nu_{B}(d y)
\end{aligned}
$$

The last equality follows from (3.2) since ν_{B} has no mass on the polar set $\left\{y ; g^{q}(x, y)=\infty\right\}$. Letting $q \rightarrow 0$ we have the result.

Dually, if \hat{B} is the dual CAF of B then

$$
\begin{equation*}
\hat{V}_{A, B}^{1,0}(d x, y)=g^{1,0}(x, y) \nu_{B}(d x) \quad \text { for all } y \in P_{B} \tag{3.4}
\end{equation*}
$$

Hence we have
Corollary. For all $f, g \in b\left(\mathcal{E}^{*}\right)^{+}$,

$$
\begin{align*}
& \int f(x) V_{A, B}^{1,0} g(x) \nu_{A}(d x)=\int f \hat{U}_{A, B}^{1,0}(y) g(y) \nu_{B}(d y) \tag{3.5}\\
& \int f \hat{V}_{A, B}^{1,0}(y) g(y) \nu_{A}(d y)=\int f(x) U_{A, B}^{1,0} g(x) \nu_{B}(d x) .
\end{align*}
$$

Since

$$
K_{A}(x, d y)=K_{B}^{1}(x, d y)-\nu_{A}(d y)+K_{A} K_{A}^{1}(x, d y),
$$

it is easy to show that, for each $x, K_{A}(x, \cdot)$ is absolutely continuous relative to ν_{A} and its density is given by

$$
g^{1,0}(x, y)-1+K_{A} g^{g^{1,0}}(x, y)
$$

up to a set of ν_{A}-measure 0 .
However, in order to solve the problem proposed in the introduction, we have to choose a more elaborated density $g(x, y)$. To do this, we need one more preliminary observation.

For all $x, y \in E$ and $n \geqq 1$, set

$$
f_{n}(x, y)=\left(\hat{K}_{A}^{1}\right)^{n-1} g^{1,0}(x, y)-1=g^{1,0}\left(K_{A}^{1}\right)^{n-1}(x, y)-1,
$$

then

$$
\begin{align*}
& f_{n}(x, y) \nu_{A}(d y)=\left(K_{A}^{1}\right)^{n}(x, d y)-\nu_{A}(d y) \\
& f_{n}(x, y) \nu_{A}(d x)=\left(\hat{K}_{A}^{1}\right)^{n}(d x, y)-\nu_{A}(d x) . \tag{3.8}
\end{align*}
$$

Since

$$
\int \sum_{n=1}^{\infty}\left|f_{n}(x, y)\right| \nu_{A}(d y)=\sum_{n=1}^{\infty}\left\|\left(K_{A}^{1}\right)^{n}(x, \cdot)-\nu_{A}(\cdot)\right\|<\infty
$$

for all $x \in E$ from (1.9) and (3.8), the series $\sum_{n=1}^{\infty} f_{n}(x, y)$ converges absolutely for a.a.x(ν_{A}). Similarly for all $y \in E, \sum_{n=1}^{\infty} f_{n}(x, y)$ converges absolutely for a.a.x $\left(\nu_{A}\right)$. Also

$$
\begin{aligned}
& \int_{D} \sum_{n=1}^{\infty} f_{n}(x, y) \nu_{A}(d y)=\sum_{n=1}^{\infty} \int_{D} f_{n}(x, y) \nu_{A}(d y) \\
& =\sum_{n=1}^{\infty}\left\{\left(K_{A}^{1}\right)^{n}(x, D)-\nu_{A}(D)\right\}=K_{A}(x, D)
\end{aligned}
$$

for all $D \in \mathcal{E}$, that is, $\sum_{n=1}^{\infty} f_{n}(x, \cdot)$ is a density of $K_{A}(x, \cdot)$ relative to ν_{A}. Dually, $\sum_{n=1}^{\infty} f_{n}(\cdot, y)$ is a density of

$$
\begin{equation*}
\hat{K}_{A}(\cdot, y)=\sum_{n=1}^{\infty}\left\{\left(\hat{K}_{A}^{1}\right)^{n}(\cdot, y)-\nu_{A}(\cdot)\right\} \tag{3.9}
\end{equation*}
$$

relative to ν_{A}. Here the proof of the strong convergence of (3.9) is similar to (1.9).

Lemma 3.2. There exists a Borel subset Γ of $E \times E$ satisfying the following conditions.
(i) Set $\Gamma_{y}=\{x ;(x, y) \in \Gamma\}$ and $\hat{\Gamma}_{x}=\{y ;(x, y) \in \Gamma\}$, then Γ_{y}^{c} and $\hat{\Gamma}_{x}^{c}$ are polar for all $x, y \in E$.
(ii) For all $(x, y) \in \Gamma, \sum_{n=1}^{\infty} f_{n}(x, y)$ converges absolutely, $\left|K_{A}\right| g^{1,0}(x, y)<\infty$ and $g^{1,0}\left|\hat{K}_{A}\right|(x, y)<\infty$, where $\left|K_{A}\right|(x, \cdot)$ is the total variation measure of $K_{A}(x, \cdot)$.
(iii) For all $(x, y) \in \Gamma$,

$$
\begin{align*}
\sum_{n=1}^{\infty} f_{n}(x, y) & =g^{1,0}(x, y)-1+K_{A} g^{1,0}(x, y) \tag{3.10}\\
& =g^{1,0}(x, y)-1+g^{1,0} \hat{K}_{A}(x, y)
\end{align*}
$$

We define the kernel function $g(x, y)$ by

$$
\begin{align*}
g(x, y) & =(3.10) & & \text { if } \quad(x, y) \in \Gamma \tag{3.11}\\
& =\infty & & \text { if } \quad(x, y) \notin \Gamma
\end{align*}
$$

By the lemma, it is easy to see that the function $g(\cdot, y)$ [resp. $g(x, \cdot)]$ is finely [resp. cofinely] continuous on the fine [resp. cofine] open set Γ_{y} [resp. $\left.\hat{\Gamma}_{x}\right]$ for all $y[$ resp. all $x] \in E$.

Proof. Noting that,

$$
\begin{aligned}
& \left|f_{n+1}(x, y)\right|=\left|K_{A}^{1}\left\{\left(K_{A}^{1}\right)^{n-1} g^{1,0}-1\right\}(x, y)\right| \\
& =\mid \int K_{A}^{1}(x, d z)\left\{\iint\left(K_{A}^{1}\right)^{n-2}(z, d u) g^{1,0}(u, v) g^{1,0}(v, y) \nu_{A}(d v)\right. \\
& \left.\quad-\int g^{1,0}(v, y) \nu_{A}(d v)\right\} \mid \\
& =\left|\int K_{A}^{1}(x, d z) \int\left\{\left(K_{A}^{1}\right)^{n-2} g^{1,0}(z, v)-1\right\} g^{1,0}(v, y) \nu_{A}(d v)\right| \\
& =\left|K_{A}^{1} f_{n-1} \hat{K}_{A}^{1}(x, y)\right| \leqq K_{A}^{1}\left|f_{n-1}\right| \hat{K}_{A}^{1}(x, y)
\end{aligned}
$$

for $n \geqq 2$ and

$$
\begin{aligned}
& \int\left|\left(K_{A}^{1}\right)^{n}(x, d z)-\nu_{A}(d z)\right| g^{1,0}(z, y) \\
& \quad=\int\left|\left(K_{A}^{1}\right)^{n-1} g^{1,0}(x, z)-1\right| g^{1,0}(z, y) \nu_{A}(d z) \\
& \quad=\int\left|K_{A}^{1}\left\{\left(K_{A}^{1}\right)^{n-2} g^{1,0}-1\right\}(x, z)\right| g^{1,0}(z, y) \nu_{A}(d z) \\
& \quad \leqq K_{A}^{1}\left|f_{n-1}\right| \hat{K}_{A}^{1}(x, y)
\end{aligned}
$$

for $n \geqq 2$, let us define the set Γ by

$$
\Gamma=\left\{(x, y) ;\left|f_{1}\right|(x, y)+\left|f_{2}\right|(x, y)+\sum_{n=1}^{\infty} K_{A}^{1}\left|f_{n}\right| \hat{K}_{A}^{1}(x, y)<\infty\right\} .
$$

Then the proofs of (ii) and (iii) are obvious. For the proof of (i) set

$$
\xi_{x}(d y)=\delta_{x}(d y)+K_{A}^{1}(x, d y)+\sum_{n=1}^{\infty}\left(K_{A}^{1}\left|f_{n}\right|\right)(x, y) \nu_{A}(d y)
$$

Then

$$
\xi_{x}(E)=2+\sum_{n=1}^{\infty} \int K_{A}^{1}(x, d y)\left|\left(K_{A}^{1}\right)^{n}(y, \cdot)-\nu_{A}(\cdot)\right|<\infty .
$$

Moreover, it is easy to see that,

$$
\Gamma=\left\{(x, y) ; \int \xi_{x}(d z) g^{1,0}(z, y)<\infty\right\}
$$

Hence $\hat{\Gamma}_{x}^{c}$ is polar if and only if $\int \xi_{x}(d z) g^{1,0}(z, y)<\infty$ except on a polar set. Since $g^{1,0}$ is the potential kernel function of the $e^{-A_{t}}$-subprocess (which is a transient Hunt process on $E\left(13 ;\right.$ III.3.16])) of X, the potential $\int \xi_{x}(d z) g^{1,0}(z, y)$ of the bounded measure ξ_{x} is finite except on a polar set if it is finite for a.a. $y(\mu)\left(\left[3 ;\right.\right.$ VI.2.3]). Since, for all $f \in b \mathcal{E}_{c}^{+}$,

$$
\begin{aligned}
& \iint \xi_{x}(d z) g^{1,0}(z, y) f(y) \mu(d y) \\
& \quad=\int \xi_{x}(d z) G_{A}^{1,0} f(z) \leqq\left\|G_{A}^{1,0} f\right\| \xi_{x}(E)<\infty
\end{aligned}
$$

by lemma 1.3, $\int \xi_{x}(d z) g^{1,0}(z, y)<\infty$ a.a. $y(\mu)$. Therefore $\hat{\Gamma}_{x}^{c}$ is polar. Similarly Γ_{y}^{c} is ploar.

Suppose we are given a CAF $B \in \Phi^{+}$and let \hat{B} be its dual CAF. Just as (2.4), define a kernel \hat{K}_{B} by

$$
\begin{equation*}
\hat{K}_{B}(d x, y)=\hat{V}_{A, B}^{1,0} \hat{K}_{A}(d x, y)+\hat{V}_{A, B}^{1,0}(d x, y)-\nu_{B}(d x) \tag{3.12}
\end{equation*}
$$

for $y \notin P_{B}$, where \hat{K}_{A} is the kernel defined by (3.9). In the case $B_{t}=t$ denote \hat{G}_{B} by \hat{G}. For these kernels, the dual results of section 2 are valid.

Theorem 3.3. For all $x \in E, y \in E$ and $z \in E-P_{B}$,

$$
\begin{align*}
& K_{A}(x, d y)=g(x, y) \nu_{A}(d y), \hat{K}_{A}(d x, y)=g(x, y) \nu_{A}(d x) \\
& K_{B}(x, d y)=g(x, y) \nu_{B}(d y) \quad \text { and } \quad \hat{K}_{B}(d x, z)=g(x, z) \nu_{B}(d x) . \tag{3.13}
\end{align*}
$$

Proof. The first two equalities have been already proved. For the proof of the third equality, take a function $f \in b \mathcal{E}^{+}$such that $V_{A, B}^{1,0} f$ is bounded. Then, since ν_{B} charges no polar set, it follows from lemma 3.1 and 3.2 that

$$
\iint|g(x, y)| f(y) \nu_{B}(d y) \leqq V_{A, B}^{1,0} f(x)+\left\langle\nu_{B}, f\right\rangle+\left|K_{A}\right| V_{A, B}^{1,0} f(x)<\infty
$$

Hence

$$
\begin{aligned}
& \int g(x, y) f(y) \nu_{B}(d y) \\
& \quad=V_{A, B}^{1,0} f(x)-\left\langle\nu_{B}, f\right\rangle+K_{A} V_{A, B}^{1,0} f(x)=K_{B} f(x)
\end{aligned}
$$

The last equality follows similarly.
Corollary. For all $x \in E$ and $y \in E$,

$$
\begin{equation*}
G(x, d y)=g(x, y) \mu(d y) \quad \text { and } \quad \hat{G}(d x, y)=g(x, y) \mu(d x) \tag{3.14}
\end{equation*}
$$

For a measure ξ on E, let us denote

$$
\begin{align*}
& G^{1,0} \xi(x)=\int g^{1,0}(x, y) \xi(d y) \tag{3.15}\\
& G \xi(x)=\int g(x, y) \xi(d y) \tag{3.16}
\end{align*}
$$

if they are well defined.
Let X_{A} and \hat{X}_{A} be the subprocesses of X and \hat{X} by the multiplicative functionals $M_{t}=e^{-A_{t}}$ and $\hat{M}_{t}=e^{-\hat{A}_{t}}$, respectively. Then a set is polar if and only if it is polar relative to X_{A} or \hat{X}_{A}. Moreover, as we have seen at lemma 1.4, the resolvents $\left(G_{A}^{1, p}\right)_{p>0}$ and $\left(\hat{G}_{A}^{1, p}\right)_{p>0}$ of the processes X_{A} and \hat{X}_{A} are strong Feller, so that, it is well known that a compact set F is non-polar if and only if $G^{1,0} \xi$ is locally bounded for some non-zero finite measure ξ on F. Also, it is well known that if $G^{1,0} \xi$ is locally bounded then ξ charges no polar set (see [3; p. 285]). Hence we have the following theorem.

Theorem 3.4. If F is a compact subset of E, then F is non-polar if and only if there exists a non-zero finite measure ξ on F such that $\int|g(x, y)| \xi(d y)$ is locally bounded.

Proof. It is enough to prove that $G^{1,0} \xi$ is locally bounded if and only if $\int|g(x, y)| \xi(d y)$ is locally bounded.

If $G^{1,0} \xi$ is locally bounded for some non-zero finite measure ξ then ξ charges no polar set and hence, in particular, $\xi\left(\hat{\Gamma}_{x}^{c}\right)=0$ for all $x \in E$. So, it follows that,

$$
\int|g(x, y)| \xi(d y) \leqq G^{1,0} \xi(x)+\xi(E)+\left|K_{A}\right| G^{1,0} \xi(x)
$$

In the right side of the inequality, since $G^{1,0} \xi$ is bounded on the compact set C, the last two terms are bounded. Therefore, $\int|g(x, y)| \xi(d y)$ is locally bounded.

Conversely, if $\int|g(x, y)| \xi(d y)$ is locally bounded then $\xi\left(\hat{\Gamma}_{x}^{c}\right)=0$ from the definition of $g(x, y)$. Therefore, for any $x \in E$,

$$
g(x, y)=g^{1,0}(x, y)-1+\int g^{1,0}(x, z) g(z, y) \nu_{A}(d z)
$$

a.a. $y(\xi)$. Thus

$$
\begin{aligned}
G^{1,0} \xi(x) \leqq & \int|g(x, y)| \xi(d y)+\xi(E) \\
& +\int g^{1,0}(x, z)\left\{\int|g(z, y)| \xi(d y)\right\} \nu_{A}(d z)
\end{aligned}
$$

Since $G^{1,0} \nu_{A}(x)=K_{A}^{1} 1(x)=1$,

$$
\begin{aligned}
& \int g^{1,0}(x, z)\left\{\int|g(z, y)| \xi(d y)\right\} \nu_{A}(d z) \\
& \quad \leqq \sup _{z \in G} \int|g(z, y)| \xi(d y)
\end{aligned}
$$

Therefore the theorem is proved.

4. Potential kernel functions

By the corollary of theorem 3.3, we shall say that $g(x, y)$ is the potential kernel function associated with (G, \hat{G}). Moreover the kernel function $g(x, y)$ satisfies several regularity conditions (corollaries 2 and 3 of theorem 2.3, lemma 3.2).

We now extend the notion of potential kernel functions.
Definition. An $\mathcal{E}^{*} \times \mathcal{E}^{*}$-measurable kernel function $h(x, y)$ is said to be a potential kernel function if the following conditions are satisfied.
(i) Set $H(x, d y)=h(x, y) \mu(d y)$ and $\hat{H}(d x, y)=h(x, y) \mu(d x)$. Then H and \hat{H} are the potential kernels of X and \hat{X} such that $H f$ and $f \hat{H}$ are well defined and locally bounded for all $f \in b \mathcal{E}_{c}^{*}$. Moreover, the functions $H(\cdot, F)$ and $\hat{H}(F, \cdot)$ are finely and cofinely continuous for any compact set F, respectively.
(ii) The sections $\left(\Gamma_{h}\right)_{y}^{c}$ and $\left(\hat{\Gamma}_{h}\right)_{x}^{c}$ (see $\S 3$) of the set $\Gamma_{h}^{c}=\{(x, y) ;|h(x, y)|=\infty\}$ are polar sets and the functions $h(\cdot, y)$ and $h(x, \cdot)$ are finely and cofinely continuous on the fine and cofine open sets $\left(\Gamma_{h}\right)_{y}$ and $\left(\hat{\Gamma}_{h}\right)_{x}$ for all $x, y \in E$, respectively.

We shall show how any potential kernel function $h(x, y)$ is related to $g(x, y)$. Recall that $\Gamma^{c}=\{(x, y) ;|g(x, y)|=\infty\}$.

Theorem 4.1. If $h(x, y)$ is a potential kernel function of X, then

$$
\begin{equation*}
g(x, y)=h(x, y)-H(x, C)-\hat{H}(C, y)+H(C, C), \tag{4.1}
\end{equation*}
$$

for all $(x, y) \in \Gamma \cap \Gamma_{h}$, where $H(C, C)=\int_{C} H(x, C) \mu(d x)$.
Proof. If $f \in N$ then, by (i), $G f-H f$ is bounded and satisfies $\left(I-p G^{p}\right)$ $(G f-H f)=0$, so that, $G f-H f$ equals a constant on E. Particularly, set $f=I_{F}-\mu(F) I_{C} \in N$ for a relatively compact set $F \in \mathcal{E}^{*}$ then, since $G(\cdot, C)=0$,
(4.2) $\quad G(x, F)-H(x, F)+H(x, C) \mu(F)=a$
for some constant a. Integrating both sides of (4.2) by $\nu_{A}=\left.\mu\right|_{C}$ and noting that $\nu_{A} G=0$, we have

$$
-H(C, F)+H(C, C) \mu(F)=a
$$

Thus,

$$
G(x, F)=H(x, F)-H(x, C) \mu(F)-H(C, F)+H(C, C) \mu(F)
$$

Therefore, for all $x \in E$, (4.1) holds for a.a. $y(\mu)$. Since μ is equivalent to $\hat{G}^{p}(\cdot, y)$ for all $p>0$ and $y \in E([1]), \mu$ charges all cofine open sets. Hence, for all $x \in E$, (4.1) holds for cofinely dense $y \in E$. Since both sides of (4.1) are cofinely continuous relative to y on the cofine open set $\hat{\Gamma}_{x} \cap\left(\hat{\Gamma}_{h}\right)_{x}$, (4.1) holds for all $y \in \hat{\Gamma}_{x} \cap\left(\hat{\Gamma}_{h}\right)_{x}$.

If $B \in \Phi^{+}$then, since the associated measure ν_{B} of B has no mass on any semipolar set, we have

Corollary 1. If $h(x, y)$ is a potential kernel function of X, then the kernels $H_{B}(x, d y)=h(x, y) \nu_{B}(d y)$ and $\hat{H}_{B}(d x, y)=h(x, y) \nu_{B}(d x)$ are potential kernels of $\left(K_{B}^{p}\right)$ and $\left(\hat{K}_{B}^{p}\right)$, respectively.

Corollary 2. Let $h(x, y)$ be a potential kernel function such that $\Gamma_{h} \subset \Gamma$, then a compact subset F of E is non-polar if and only if $\int|h(x, y)| \xi(d y)$ is locally bounded for some non-zero finite measure ξ on F. In particular, if X and \hat{X} are equivalent, then F is non-polar iff $\int|h(x, y)| \xi(d y)$ is bounded on F for some ξ as above.

Proof. It is enough to show that $\int|g(x, y)| \xi(d y)$ is locally bounded if and only if $\int|h(x, y)| \xi(d y)$ is locally bounded.

If $\int|g(x, y)| \xi(d y)$ is locally bounded, then ξ charges no polar set by theorem 3.4 and, in particular, $\xi\left(\left\{\hat{\Gamma}_{x} \cap\left(\hat{\Gamma}_{h}\right)_{x}\right\}^{c}\right)=0$. Hence it follows from (4.1) that $\int|h(x, y)| \xi(d y)$ is locally bounded.

Conversely, if $\int|h(x, y)| \xi(d y)$ is locally bounded, then ξ has no mass on $\left(\hat{\Gamma}_{h}\right)_{x}^{c}$ for all $x \in E$, so that (4.1) holds a.a. $y(\xi)$ for all $x \in E$. Hence $\int|g(x, y)| \xi(d y)$ is locally bounded. If X and \hat{X} are equivalent, then all semipolar sets are polar.

Hence $\sup _{x \in B} G^{1,0} \xi(x)=\sup _{x \in F} G^{1,0} \xi(x)$ ([3]), so that the last part of the corollary is obvious from the proof of theorem 3.4.

Remark. If $h(x, y)$ is a potential kernel function of X, then the kernel function $h^{\prime}(x, y)$ defined by

$$
\begin{align*}
h^{\prime}(x, y) & =h(x, y) & & \text { if } \quad(x, y) \in \Gamma \cap \Gamma_{h} \tag{4.3}\\
& =\infty & & \text { if } \quad(x, y) \notin \Gamma \cap \Gamma_{h}
\end{align*}
$$

is a potential kernel function of X. For this kernel function, the hypothesis $\Gamma_{h^{\prime}} \subset \Gamma$ of the corollary 2 holds obviously.

Remark. So far we have fixed a compact set C and assumed that $\mu(C)=1$. If we delete such normalization condition, the only minor change is necessary; ν_{A} equals $\left.[\mu(C)]^{-1} \mu\right|_{C}$ for $\left.\mu\right|_{C}$ and $\nu_{(t)}$ equals $[\mu(C)]^{-1} \mu$ for μ. It then follows that $G(x, d y)=g(x, y)[\mu(C)]^{-1} \mu(d y)$.

For two compact sets C_{1} and C_{2}, let G_{1}, G_{2} and g_{1}, g_{2} be their associated potential kernels and kernel functions. Let μ be an arbitrary invariant measure (not necessarily normalized either on C_{1} or C_{2}). By an argument similar to the proof of theorem 4.1, we have $G_{1}(x, F)-\frac{G_{1}\left(C_{2}, F\right)}{\mu\left(C_{2}\right)}=G_{2}(x, F)-$ $\frac{\mu(F)}{\mu\left(C_{1}\right)} G_{2}\left(x, C_{1}\right)$. By the preceding remark, we obtain the following relation:

$$
\begin{equation*}
\frac{g_{1}(x, y)}{\mu\left(C_{1}\right)}-\frac{1}{\mu\left(C_{2}\right)} G_{1}\left(C_{2}, y\right)=\frac{g_{2}(x, y)}{\mu\left(C_{2}\right)}-\frac{1}{\mu\left(C_{1}\right)} G_{2}\left(x, C_{1}\right) \tag{4.4}
\end{equation*}
$$

on $\Gamma g_{1} \cap \Gamma g_{2}$.

5. Equilibrium measure

Let \boldsymbol{F} be the family of all non-empty relatively compact sets F which is the fine support of some CAF $B \in \Phi^{+}$. In this section we shall fix a set $F \in \boldsymbol{F}$ and the corresponding CAF B. Let $\left\{\hat{F}_{n}\right\}_{n \geqq 1}$ be an increasing sequence satisfying that $\cup \hat{F}_{n}=E$ and $\hat{V}_{A, B}^{1,0}\left(\hat{F}_{n}, \cdot\right)$ are bounded for all n. The existence of such a sequence is the same as in lemma 1.2. Define the continuous additive functionals $B^{n} \in \Phi$ by $B_{t}^{n}=\int_{0}^{t} I_{F_{n} \cap \hat{F}_{n}}\left(X_{s}\right) d B_{s}$. Then the fine support of each B^{n} is relatively compact. The kernels defined by A and B^{n} are denoted by $U_{n}^{p, q}$ and $V_{n}^{p, q}$. By the definition of $B^{n}, V_{n}^{1,0}|f|$ and $|f| \hat{V}_{n}^{1,0}$ are bounded for all $f \in b \mathcal{E}^{*}$. Let ν_{B} be the measure assoicated with B as before and set $\nu_{n}(\cdot)=\nu_{B}\left(\cdot \cap F_{n} \cap \hat{F}_{n}\right)$. The fine support of ν_{B} is equal to F (see [14; remark II.2]) and ν_{n} is the measure associated with B^{n}. Write K_{n} for $K_{B n}$. It follows that $K_{n} f$ is well defined and bounded for all $f \in b \mathcal{E}^{*}$.

Lemma 5.1. If $B^{n} \neq 0$ then, for all $p>0$,

$$
\begin{equation*}
p K_{n}\left(U_{n}^{0, p} 1\right)+U_{n}^{0, p} 1 \equiv R_{n}(p) \tag{5.1}
\end{equation*}
$$

is a finite constant on E.
Proof. If $B^{n} \neq 0$ then $B^{n} \in \Phi^{+}$, so that, by theorem 2.3, formulas (1.6) and (2.2), and lemma 1.5,

$$
\begin{aligned}
& p K_{n}\left(U_{n}^{0, p} 1\right)(x)=p \lim _{a \rightarrow 0}\left\{V_{n}^{q, 0}(x, \cdot)-\frac{1}{q} \nu_{n}\right\} U_{n}^{0, p} 1 \\
& \\
& =\lim _{q \rightarrow 0}\left\{p V_{n}^{q, 0} U_{n}^{0, p} 1(x)-\frac{1}{q}\right\} \\
& \\
& =\lim _{n \rightarrow 0}\left\{q K_{A}^{q} U_{n}^{0, p} 1(x)-U_{n}^{0, p} 1(x)\right\} \\
& \\
& =\nu_{A} U_{n}^{0, p} 1-U_{n}^{0, p} 1(x) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
p K_{n}\left(U_{p}^{0, p} 1\right)(x)+U_{n}^{0, p} 1(x)=\nu_{A} U_{n}^{0, p} 1=R_{n}(p) \tag{5.2}
\end{equation*}
$$

is a constant.
Let T_{F} be the hitting time of the set $F, \tau=\inf \left\{t ; B_{t}>0\right\}$ and $\tau^{n}=\inf \left\{t ; B_{t}^{n}>0\right\}$, where $\inf \phi=\infty$. Then, $T_{F}=\tau$ a.s. (see [3; proposition V.3.5]) and $\tau^{n} \downarrow \tau a$,.s. as $n \uparrow \infty$. Since $R_{n}(p)=E^{\nu} \Lambda\left[\int_{0}^{\infty} e^{-p B_{t}^{n}} I_{C}\left(X_{t}\right) d t\right]$ decreases when n or p increases, the limit

$$
\begin{equation*}
R(F)=\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} R_{n}(p)=\lim _{p \rightarrow \infty} \lim _{n \rightarrow \infty} R_{n}(p) \tag{5.3}
\end{equation*}
$$

exists and it is finite since $B \neq 0$ (see the proof of lemma 5.2 below).
Definition. We shall call the constant $R(F)$ as Robin's constant of F (relative to the potential kernel function $g(x, y)$).

Lemma 5.2. $\quad R(F)=E^{\nu_{\Lambda}}\left[\int_{0}^{T_{F}} I_{C}\left(X_{t}\right) d t\right]$.
Proof. Since $B \neq 0, U_{n}^{0,1} 1$ is bounded for all large n. Hence, for all $p \geqq 1$ and large n,

$$
R_{n}(p) \leqq R_{n}(1)=\nu_{A} U_{n}^{0,1} 1<\infty,
$$

Therefore, by the Lebesque theorem,

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} R_{n}(p)=\lim _{p \rightarrow \infty} E^{\nu} \Delta\left[\int_{0}^{\infty} e^{-p B_{t}^{n}} I_{c}\left(X_{t}\right) d t\right] \\
& =E^{\nu} \Lambda\left[\int_{0}^{\infty}\left(\lim _{p \rightarrow \infty} e^{-B_{t}^{n}}\right) I_{c}\left(X_{t}\right) d t\right] \\
& =E^{\nu_{\Lambda}}\left[\int_{0}^{\tau_{n}} I_{c}\left(X_{t}\right) d t\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have the result.
Remark. From the lemma 5.2, Robin's constant $R(F)$ of F does not depend on the choice of B.

Lemma 5.3. If $F \in F$ then there exists a probability measure ξ_{F} on \bar{F} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x)=G^{1,0} \xi_{F}(x) \tag{5.4}
\end{equation*}
$$

for a.a.x(μ). Moreover, $V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x)$ are uniformly bounded for all $x \in E, p \geqq 1$ and large n.

Proof. From (1.6), for all $p>0$ and $n \geqq 1$ such that $B^{n} \neq 0$,

$$
V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x)=1-U_{n}^{0, p} 1(x)+K_{A}^{1} U_{n}^{0, p} 1(x)
$$

As in the proof of lemma $5.2, U_{n}^{0, p} 1(x)$ are uniformly bounded for all $x \in E$, $p \geqq 1$ and $n \geqq 1$ such that $B^{n} \neq 0$, and

$$
\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} U_{n}^{0, p} 1(x)=U^{0, \infty} 1(x) \equiv E^{x}\left[\int_{0}^{\tau} I_{c}\left(X_{t}\right) d t\right]
$$

Hence,

$$
\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x)=1-U^{0, \infty} 1(x)+K_{A}^{1} U^{0, \infty} 1(x),
$$

boundedly. Define a measure $\xi_{p, n}$ on the compact set \bar{F} by
$\xi_{p, n}(d y)=p U_{n}^{0, p} 1(y) \nu_{n}(d y)$ for $p>0$ and $n \geqq 1$ such that $B^{n} \neq 0$, then

$$
\xi_{p, n}(E)=\left\langle\nu_{n}, p U_{n}^{0, p} 1\right\rangle=\left\langle\nu_{A}, 1\right\rangle=1
$$

Thus there exists a sequence $p_{k} \rightarrow \infty$ such that $\left\{\xi_{p_{k}, n}\right\}_{k \geq 1}$ converges weakly to a probability measure ξ_{n} on \bar{F} as $k \rightarrow \infty$, for all n. Therefore, we can choose a subsequence $\left\{\xi_{n_{m}}\right\}$ of $\left\{\xi_{n}\right\}$ which converges weakly to a probability measure ξ_{F} on \bar{F} as $m \rightarrow \infty$. Taking an arbitrary function $f \in b \mathcal{E}_{c}^{*}$, we have

$$
\begin{aligned}
\int & f(x)\left\{1-U^{0, \infty} 1(x)+K_{A}^{1} U^{0, \infty} 1(x)\right\} \mu(d x) \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int f(x) V_{n_{m}}^{1,0}\left(p_{k} U_{n_{m}}^{0, p} k_{k}\right)(x) \mu(d x) \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int f(x) G^{1,0} \xi_{p_{k}, n_{m}}(x) \mu(d x) \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int f \hat{G}_{A}^{1,0}(y) \xi_{p_{k}, n_{m}}(d y) \\
& =\int f \hat{G}_{A}^{1,0}(y) \xi_{F}(d y)=\int f(x) G^{1,0} \xi_{F}(x) \mu(d x)
\end{aligned}
$$

where we used the boundedness and continuity of $f \hat{G}_{A}^{1,0}$, which follows from the dual facts of lemmas 1.3 and 1.4. Therefore,

$$
\begin{equation*}
1-U^{0, \infty} 1(x)+K_{A}^{1} U^{0, \infty} 1(x)=G^{1,0} \xi_{F}(x), \quad \text { for } a . a \cdot x(\mu) . \tag{5.5}
\end{equation*}
$$

Let \hat{B} be the dual CAF of B as in section 3 and let \hat{F} be the cofine support of B. As before, \hat{F} is the cofine support of ν_{B}. Set $\hat{\tau}=\inf \left\{t ; \hat{B}_{t}>0\right\}$, then $\hat{\tau}=\hat{T}_{F}$ a.s. \hat{P}^{x} for all $x \in E-P_{B}$, where \hat{T}_{F} is the hitting time of \hat{F} relative to \hat{X}.

Lemma 5.4. For all $f \in b \mathcal{E}^{*}$,

$$
\begin{equation*}
\int f(y) \xi_{F}(d y)=\hat{E}^{\nu_{\Delta}}\left[f\left(\hat{X}_{\hat{\tau}}\right)\right] \tag{5.6}
\end{equation*}
$$

In particular, ξ_{F} is a probability measure on \hat{F} which attains no mass on any polar set.

Proof. It is enough to show the equality (5.6) for $f \in \mathcal{C}_{c}$. If $f \in \mathcal{C}_{c}$, then by the corollary of lemma 3.1,

$$
\begin{aligned}
& \int f(y) \xi_{F}(d y)=\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int f(y) p_{k} U_{n_{m}}^{0, p_{k}} 1(y) \nu_{n_{m}}(d y) \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int p_{k} f \hat{V}_{n_{m}}^{0, p_{k}}(y) \nu_{A}(d y) \\
& =\lim _{m_{\rightarrow \infty}} \lim _{k \rightarrow \infty} \hat{E}^{\nu_{\Lambda}}\left[p_{k} \int_{0}^{\infty} e^{-p_{k}\left(\hat{B}_{n_{m}}\right)} t\left(\hat{X}_{t}\right) d\left(\hat{B}^{n_{m}}\right)_{t}\right] \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \hat{E}^{\nu_{\Lambda}}\left[\int_{0}^{\infty} e^{-u} f\left(\hat{X}_{\hat{\tau}_{n_{m}}\left(u / p_{k}\right)}\right) d u\right],
\end{aligned}
$$

where $\left(\hat{B}^{n}\right)_{t}=\int_{0}^{t} I_{F_{n} \cap F_{n}}\left(\hat{X}_{u}\right) d \hat{B}_{u}$ is the dual CAF of B^{n} and $\hat{\tau}_{n}(s)=\inf \left\{u ;\left(\hat{B}^{n}\right)_{u}>s\right\}$. Since, for all $n \geqq 1, \hat{\tau}_{n}(s) \rightarrow \hat{\tau}_{n} \equiv \hat{\tau}_{n}(0)$ a.s. as $s \rightarrow 0$,

$$
\begin{aligned}
\int f(y) \xi_{F}(d y) & =\lim _{m \rightarrow \infty} \hat{E}^{\nu} \Delta\left[\int_{0}^{\infty} e^{-u} f\left(\hat{X}_{\hat{\tau}_{n_{m}}}\right) d u\right] \\
& =\lim _{m \rightarrow \infty} \hat{E}^{\nu_{\Lambda}}\left[f\left(\hat{X}_{\hat{\tau}_{n_{m}}}\right)\right]
\end{aligned}
$$

Also, since $\hat{\tau}_{n m} \rightarrow \hat{\mathrm{t}}$ a.s. when $m \rightarrow \infty$, the lemma follows.
Theorem 5.5 (Equilibrium principle). Let $F \in \mathcal{E}^{*}$ be a relatively compact subset of E and suppose that there exists a $C A F B \in \Phi^{+}$with fine support F. Then there exists a unique probability measure ξ_{F} on \hat{F} such that
(5.7) $\quad G \xi_{F}(x)=a$ constant on F.

Here, \hat{F} is the cofine support of the dual $C A F \hat{B}$ of B and the constant is equal to Robin's constant $R(F)$ of F. The measure ξ_{F} is given by (5.6) and called the equilibrium measure of F.

Proof. Let us show that the measure ξ_{F} in lemma 5.3 satisfies

$$
\begin{equation*}
G \xi_{F}(x)+U^{0, \infty} 1(x)=R(F) \quad \text { everywhere on } E \tag{5.8}
\end{equation*}
$$

This proves (5.7) since $U^{0, \infty} 1(x)=E^{x}\left[\int_{0}^{\tau} I_{c}\left(X_{t}\right) d t\right]=0$ on F. From (2.2), (2.4) and lemma 5.1,

$$
\begin{aligned}
R_{n}(p)= & K_{n}\left(p U_{n}^{0, p} 1\right)(x)+U_{n}^{0, p} 1(x) \\
= & K_{A} V_{n}^{1,0}\left(p U_{n}^{1, p} 1\right)(x)+V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x) \\
& -p v_{n} U_{n}^{0, p} 1+U_{n}^{0, p} 1(x) \\
= & K_{A} V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x)+V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x) \\
& -1+U_{n}^{0, p} 1(x),
\end{aligned}
$$

since $p \nu_{n} U_{n}^{0 . p} 1=\nu_{A}(C)=1$. Let $p \rightarrow \infty$ and $n \rightarrow \infty$, then, as we have seen in lemmas 5.2 and 5.3, $R_{n}(p) \rightarrow R(F)$ and $V_{n}^{1,0}\left(p U_{n}^{0, p} 1\right)(x) \rightarrow G^{1,0} \xi_{F}(x)$ a.a. $x(\mu)$, boundedly,. Since $K_{A}(x, \cdot)$ is a bounded signed measure and which is absolutely continuous relative to μ, we have, for a.a.x(μ),

$$
\begin{align*}
R(F) & =K_{A} G^{1,0} \xi_{F}(x)+G^{1,0} \xi_{F}(x)-1+U^{0, \infty} 1(x) \tag{5.9}\\
& =\int\left\{K_{A} g^{1,0}(x, y)+g^{1,0}(x, y)-1\right\} \xi_{F}(d y)+U^{0, \infty} 1(x) \\
& =G \xi_{F}(x)+U^{0, \infty} 1(x)
\end{align*}
$$

from lemmas 3.2 and 5.4. Denote

$$
\xi(d y)=\xi_{F}(d y)+\int \sum_{n=1}^{\infty}\left\{\left(\hat{K}_{A}^{1}\right)^{n}-\nu_{A}\right\} g^{1,0}(d y, z) \xi_{F}(d z)
$$

then ξ is a bounded signed measure on F and

$$
G \xi_{F}(x)=G^{1,0} \xi(x)-1
$$

Since $G^{1,0} \xi_{F}(x)$ is bounded, $G^{1,0} \xi(x)$ is the difference of two bounded excessive functions relative to $\left(G_{A}^{1, p}\right)_{p>0}$. Therefore,

$$
\lim _{p \rightarrow \infty} p G_{A}^{1, p} G^{1,0} \xi(x)=G^{1,0} \xi(x) \quad \text { for all } x \in E .
$$

Moreover,

$$
p G_{A}^{1, p} 1(x)=E^{x}\left[\int_{0}^{\infty} \exp \left(-\int_{0}^{t / p} I_{c}\left(X_{s}\right) d s-t\right) d t\right] \rightarrow 1
$$

as $p \rightarrow \infty$ for all $x \in E$ and $G_{A}^{1, p}(x, \cdot)$ is absolutely continuous relative to μ, for all $x \in E$ and $p>0$. Thus, operating $p G_{A}^{1, p}$ to both sides of (5.9) and letting $p \rightarrow \infty$, we have

$$
R(F)=G \xi_{F}(x)+\lim _{p \rightarrow \infty} p G_{A}^{1, p} U^{0, \infty} 1(x) \quad \text { for all } x \in E .
$$

Therefore, it is enough to show that

$$
\begin{equation*}
\lim _{p} p G_{A}^{1, p} U^{0, \infty} 1(x)=U^{0, \infty} 1(x) \quad \text { for all } x \in E . \tag{5.10}
\end{equation*}
$$

Let $p>1$ then,

$$
\begin{aligned}
& p G_{A}^{1, p} U^{0, \infty} 1(x) \\
&=E^{x}\left[\int_{0}^{\infty} p \exp \left\{-\int_{0}^{t} I_{c}\left(X_{s}\right) d s-p t\right\} E^{X_{t}}\left[\int_{0}^{\tau} I_{c}\left(X_{u}\right) d u\right] d t\right] \\
& \leqq E^{x}\left[\int_{0}^{\infty} p e^{-p t}\left\{\int_{t}^{t+\tau_{0} \theta_{t}} I_{C}\left(X_{u}\right) d u\right\} d t\right] \\
& \quad \leqq E^{x}\left[\int_{0}^{\infty} e^{-t}\left\{\int_{t / p}^{(t / p)+\tau_{0} \theta_{t / p}} I_{C}\left(X_{u}\right) d u\right\} d t\right] \\
& \leqq E^{x}\left[\int_{0}^{\infty} e^{-t}\left\{\int_{t}^{t+\tau_{0} \theta_{t}} I_{C}\left(X_{u}\right) d u\right\} d t\right]+1 \\
& \leqq\left\|U^{0, \infty} 1\right\|+1
\end{aligned}
$$

Thus, noting that $\lim _{t \rightarrow 0}\left(t+\tau \circ \theta_{t}\right)=\tau$ (see [3; p. 214]), by the Lebesgue theorem,

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} p G_{A}^{1, p} U^{0, \infty} 1(x) \\
& \quad=\lim _{p \rightarrow \infty} E^{x}\left[\int_{0}^{\infty} \exp \left\{-\int_{0}^{t / p} I_{c}\left(X_{s}\right) d s-t\right\} d t \int_{t / p}^{(t / p)+\tau_{0} \theta_{t / p}} I_{c}\left(X_{u}\right) d u\right] \\
& \quad=\int_{0}^{\infty} e^{-t} E^{x}\left[\int_{0}^{\tau} I_{c}\left(X_{u}\right) d u\right] d t=U^{0, \infty} 1(x)
\end{aligned}
$$

Now, it remains only the proof of the uniqueness. Let ξ be a bounded signed measure on \hat{F} satisfying $\xi(E)=0$ and $G \xi(x)=a$, for some constant a, on F. For the proof of uniqueness we claim that $\xi=0$. Integrating both sides of $G \xi(x)=a(x \in F)$ by $f(x) \nu_{n}(d x)$, we have

$$
\begin{equation*}
\int f \hat{K}_{n}(y) \xi(d y)=a\left\langle\nu_{n}, f\right\rangle \tag{5.11}
\end{equation*}
$$

for all $f \in b \mathcal{E}^{*}$ and $n \geqq 1$, where $\hat{K}_{n}(d x, y)=g(x, y) \nu_{n}(d x)$ as before. Set $f=g\left(I-p \hat{K}_{B^{n}}^{\dagger}\right)$ for a bounded continuous function g. It follows, from the dual result of (2.8), that

$$
f \hat{K}_{n}(y)=g\left(I-p \hat{K}_{B^{n}}^{p}\right) \hat{K}_{n}(y)=g \hat{K}_{B}^{p}(y)-\left\langle g \hat{K}_{B^{n}}^{p}, \nu_{A}\right\rangle,
$$

for all $y \notin P_{B^{n}}, n \geqq 1$ and $p>0$. Substituting this function into (5.11), we have

$$
\int g \hat{K}_{B^{n}}^{p}(y) \xi(d y)=0 \quad \text { for all } n \geqq 1 \text { and } p>0
$$

because $\xi(E)=0,\left\langle g\left(I-p \hat{K}_{B^{n}}^{p}\right), \nu_{n}\right\rangle=0$ and ξ vanishes outside of $\hat{F} \subset E-P_{B} \subset$ $E-P_{B^{n}}$. Therefore, similarly to the proof of lemma 5.4 , we have

$$
\int \hat{E}^{y}\left[g\left(\hat{X}_{\hat{\tau}}\right)\right] \xi(d y)=0
$$

This implies that $\int g(y) \xi(d y)=0$, since $\hat{P}^{y}[\hat{r}=0]=1$ for all $y \in \hat{P}$.

6. Symmetric case

In this section we shall assume, in addition, that $g^{p}(x, y)=g^{p}(y, x)$ for all $p>0$ and $x, y \in E$, that is, X and \hat{X} are equivalent. In this case, as is well known (see [3; proposition VI. 4. 10]), any semipolar set is polar. Hence, for every compact set F, the set $F-F^{r}$ is polar, where F^{r} is the set of all regular points of F (see [3; II. 3.3]). Therefore F is a projective set (see [3; V. 4.5]). Hence, by considering the projection of CAF $\{t\}$, there exists a CAF B such that

$$
\begin{equation*}
E^{x}\left[e^{-T_{F}}\right]=E^{x}\left[\int_{0}^{\infty} e^{-t} d B_{t}\right] \tag{6.1}
\end{equation*}
$$

and $\operatorname{supp}(B)=F^{r}([3 ; \mathrm{V} .4 .6$ and 4.7]), where $\operatorname{supp}(B)$ is the fine support of B. Obviously, F is a polar set if and only if the corresponding CAF B is zero. Let $T=\inf \left\{t ; B_{t}=\infty\right\}$. We have

$$
1 \geqq E^{x}\left[e^{-T_{F}}\right] \geqq E^{x}\left[\int_{0}^{T} e^{-t} d B_{t}\right] \geqq E^{x}\left[e^{-T} B_{T}\right]
$$

This implies that $T=\infty$ a.s. P^{x} for all $x \in E$, that is, $B \in \Phi$. Let \hat{B} be the dual CAF of B then, under our present hypothesis, the corresponding polar set P_{B} may be supposed empty (see the proof of [14; VII. 1]) and the cofine support \hat{F} of \hat{B} is equal to ${ }^{r} F=F^{r}$, since the fine and cofine topologies conicide, where ${ }^{r} F$ is the set of all coregular points of F. Therefore, by theorem 5.5 we have

Theorem 6.1. If F is a non-polar compact subset of E, then there exists a unique probability measure ξ_{F} on F^{r} such that

$$
\begin{equation*}
G \xi_{F}(x)=R(F) \quad \text { on } F^{r} \tag{6.2}
\end{equation*}
$$

Here, the measure ξ_{F} and the constant $R(F)$ are given by

$$
\begin{align*}
& \xi_{F}(d y)=\hat{P}^{\nu_{\Delta}}\left[\hat{X}_{\hat{T}_{F}} \in d y\right] \quad \text { and } \tag{6.3}\\
& R(F)=E^{\nu_{\Lambda}}\left[\int_{0}^{T_{F}} I_{C}\left(X_{t}\right) d t\right]
\end{align*}
$$

respectively. The measure ξ_{F} is called the equilibrium measure of F (relative to the potential kernel function $g(x, y)$).

Corollary. Under the hypothesis of theorem 6.1 there exists a unique probability measure ξ_{F} on F such that $G \xi_{F}$ is bounded on F and satisfies (6.2).

Proof. It is enough to prove the uniqueness. Suppose that a measure ξ on F satisfies the conditions of the corollary. Then since $G \xi$ is bounded on F, ξ charges no polar set (see the proofs of theorem 3.4 and corollary 2 of theorem 4.1). Hence ξ is a measure on F^{r}, so that the corollary follows from theorem 6.1.

Remark. By the proof of the corollary, the result of the corollary may be replaced by the following result. "There exists a unique probability measure on F which attains no mass on any polar set and satisfies (6.2)".

By using the relation (4.1) of $g(x, y)$ and an arbitrary potential kernel function $h(x, y)$, we would like to investigate the equilibrium principle relative to $h(x, y)$. At present, however, we can get only a partial result on this problem; we have to impose very strong conditions on $h(x, y)$ and we do not know even if the logarithmic potential kernel function of planar Brownian motion satisfies these conditions. Our conditions are the following.
(H1) For every compact set D,
$\lim _{p \rightarrow 0} \sup _{x, y \in D}\left|g^{p}(x, y)-\phi(p)-h(x, y)\right|=0$
for some function ϕ and a potential kernel function h.
(H2) For all $p>0$ and bounded continuous function $f, K_{B}^{p} f$ is continuous, where B is a CAF with fine support F^{r}, as before.

To find the equilibrium measure ξ relative to h, we shall attempt a formal calculation. Suppose that a probability measure ξ on F satisfies $H \xi(x)=$ $\int h(x, y) \xi(d y)=a$ on F^{r} for some constant a. Then, from (4.1), for all $x \in F^{r}$

$$
\begin{aligned}
& G \xi(x)=H \xi(x)-H(x, C)-\int \hat{H}(C, y) \xi(d y)+H(C, C) \\
& =-H(x, C)+a-\int \hat{H}(C, y) \xi(d y)+H(C, C)
\end{aligned}
$$

Operating $I-p K_{B}^{p}$ and integrating by $f d \nu_{B}$, it follows that

$$
\begin{equation*}
\left\langle f,\left(I-p K_{B}^{p}\right) G \xi\right\rangle_{v_{B}}=-\left\langle f,\left(I-p K_{B}^{p}\right) H(\cdot, C)\right\rangle_{v_{B}} . \tag{6.6}
\end{equation*}
$$

The left side of (6.6) becomes

$$
\begin{aligned}
& \left\langle f,\left(I-p K_{B}^{p}\right) G \xi\right\rangle_{\nu_{B}}=\left\langle f\left(I-p \hat{K}_{B}^{p}\right) \hat{K}_{B}, \xi\right\rangle \\
& \quad=\left\langle f \hat{K}_{B}^{p}, \xi\right\rangle-\left\langle f \hat{K}_{B}^{p}, \nu_{A}\right\rangle
\end{aligned}
$$

from the dual formula of (2.8).
On the other hand, the right side of (6.6) becomes

$$
\begin{aligned}
- & \left\langle f,\left(I-p K_{B}^{p}\right) H(\cdot, C)\right\rangle_{\nu_{B}}=-\lim _{q \rightarrow 0}\left\langle f,\left(I-p K_{B}^{p}\right)\left(G^{q}(\cdot, C)-\phi(q)\right)\right\rangle_{\nu_{B}} \\
& =-\lim _{h \rightarrow 0}\left\langle f,\left(I-p K_{B}^{p}\right) G^{q}(\cdot, C)\right\rangle_{\nu_{B}}=\lim _{h \rightarrow 0}\left\langle f,-G_{B}^{p, 0}(\cdot, C)+q G_{B}^{p, 0} G^{q}(\cdot, C)\right\rangle_{\nu_{B}} \\
& =-\left\langle f K_{B}^{p}, \nu_{A}\right\rangle+\lim _{\imath \rightarrow 0}\left\langle f, q G_{B}^{p, 0} G^{q}(\cdot, C)\right\rangle_{\nu_{B}} .
\end{aligned}
$$

Hence (6.6) becomes

$$
\left\langle f \hat{K}_{B}^{p}, \xi\right\rangle=\lim _{\rightarrow \rightarrow 0}\left\langle f, q G_{B}^{p, 0} G^{q}(\cdot, C)\right\rangle_{v_{B}} .
$$

Multiplying p and letting $p \rightarrow \infty$ we have

$$
\begin{equation*}
\langle f, \xi\rangle=\lim _{p \rightarrow \infty} \lim _{q \rightarrow 0} p q\left\langle f, G_{B}^{p, 0} G^{q}(\cdot, C)\right\rangle_{v_{B}} . \tag{6.7}
\end{equation*}
$$

Theorem 6.2. Let F be a non-polar compact subset of E. Under the hypothesis $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$, there exists a unique probability measure ξ on F^{r} such that (6.8) $\quad H \xi=a$ constant on F^{r}.

Proof. Since

$$
\left\langle 1, p q G_{B}^{p, 0} G^{q}(\cdot, C)\right\rangle_{v_{B}}=p q\left\langle 1 \hat{K}_{B}^{p} \hat{G}^{q}, \nu_{A}\right\rangle=1,
$$

the measure $p q G_{B}^{p, 0} G^{q}(x, C) \nu_{B}(d x)$ is a probability measure on F for any $p, q>0$. Hence, for all $p>0$, we can choose a sequence $q_{n} \rightarrow 0$ and a probability measure ξ_{p} on F such that $p q_{n} G_{B}^{\phi_{B}} G^{q_{n}}(x, C) \nu_{B}(d x) \rightarrow \xi_{p}(d x)$, weakly. Similarly, there exists a sequence $p_{m} \rightarrow \infty$ and a probability measure ξ on F such that $\xi_{p_{m}} \rightarrow \xi$, weakly. From the hypothesis (H2), for all bounded continuous function f,

$$
\begin{aligned}
& \left\langle p_{k} f \hat{K}_{B}^{\left.p_{k}, \xi\right\rangle}=\lim _{m} \lim _{n}\left\langle p_{k} f \hat{K}_{B}^{p_{k}}, p_{m} q_{n} G B_{B}^{p_{m}, 0} G^{q_{n}}(\cdot, C)\right\rangle_{\nu_{B}}\right. \\
& \quad=\lim _{m} \lim _{n}\left\langle p_{k} p_{m} q_{n} f \hat{K}_{B}^{p_{k}} \hat{K}_{B}^{p_{m}} \hat{G}^{q_{n}}, \nu_{A}\right\rangle \\
& \quad=\lim _{m} \lim _{n} \frac{1}{p_{m}-p_{k}}\left\langle p_{k} p_{m} q_{n} f\left(\hat{K}_{B}^{p_{k}}-\hat{K}_{B}^{p_{m}}\right) \hat{G}^{q_{n}}, \nu_{A}\right\rangle \\
& \quad=\lim _{m} \lim _{n} \frac{1}{p_{m}-p_{k}} p_{k} p_{m} q_{n}\left\langle f \hat{K}_{B}^{p_{k}} \hat{G}^{q_{n}}, \nu_{A}\right\rangle \\
& \quad=\lim _{n} p_{k} q_{n}\left\langle f \hat{K}_{B}^{p_{k}} \hat{G}^{q_{n}}, \nu_{A}\right\rangle=\left\langle f, \xi_{k}\right\rangle .
\end{aligned}
$$

Hence, letting $k \rightarrow \infty$, it follows that

$$
\lim _{k}\left\langle p_{k} f \hat{K}_{B}^{b^{k}}, \xi\right\rangle=\langle f, \xi\rangle,
$$

that is, $\xi=\hat{E}^{\xi}\left[f\left(\hat{X}_{\hat{\gamma}}\right)\right]=E^{\xi}\left[f\left(X_{T_{F}}\right)\right]$. So that ξ is a measure on F^{r}.
To prove (6.8), let f be a bounded continous function with compact support. By restricting the CAT B as in section 5, we may suppose that $V_{A, B}^{1,0} 1$ is bounded. Then, since $f \hat{G}$ is bounded and continuous from (2.7), we have

$$
\begin{aligned}
& \langle f, G \xi\rangle_{\mu}=\langle f \hat{G}, \xi\rangle=\lim _{m} \lim _{n}\left\langle f \hat{G}, p_{m} q_{n} G_{B}^{p_{m}, 0} G^{q_{n}}(\cdot, C)\right\rangle_{\nu_{B}} \\
& \quad=\lim _{m} \lim _{n} p_{m}\left\langle f \hat{G}, G_{B}^{p_{m}, 0}(\cdot, C)-G^{q_{n}}(\cdot, C)+p_{m} K_{B}^{p_{m}} G^{q_{n}}(\cdot, C)\right\rangle_{\nu_{B}} \\
& \quad=\lim _{m} \lim _{n} p_{m}\left\langle f, K_{B} G_{B}^{p_{m}, 0}(\cdot, C)-K_{B}\left(I-p_{m} K_{B}^{p_{m}}\right) G^{q_{n}}(\cdot, C)\right\rangle_{\mu} \\
& \quad=\lim _{m} \lim _{n} p_{m}\left\langle f, K_{B} G_{B}^{p_{m}, 0}(\cdot, C)-K_{B}^{p_{m}} G^{q_{n}}(\cdot, C)+\nu_{A} K_{B}^{p_{m}} G^{q_{n}}(C)\right\rangle_{\mu}
\end{aligned}
$$

from (2.8). By the definition of K_{B} and H,

$$
\begin{aligned}
& \lim _{m} p_{m} K_{B} G_{B}^{p_{m}, 0}(x, C)=\lim _{m} \lim _{q \rightarrow 0} p_{m}\left\{V_{A, B}^{q, 0}-\frac{\nu_{B}}{q}\right\} U_{A, B}^{0, p_{m}} 1(x) \\
& =\lim _{m} \lim _{i \rightarrow 0}\left\{p_{m} V_{A, B}^{q, 0} U_{A, B}^{0, B_{m}} 1(x)-\frac{1}{q}\right\} \\
& =\lim _{m} \lim _{q \rightarrow 0}\left\{K_{A}^{q} 1-U_{A, B}^{0 ; p_{m}} 1+q K_{A}^{q} U_{A, B}^{0 ; b_{m}} 1-\frac{1}{q}\right\}(x) \\
& =\lim _{m}\left\{-U_{A, B}^{0, D_{m} m} 1+\nu_{A} U_{A},{ }_{B}^{0, B_{m}} 1\right\}(x) \\
& =-E^{x}\left[\int_{0}^{T_{F}} I_{c}\left(X_{s}\right) d s\right]+E^{\nu} \Lambda\left[\int_{0}^{T_{F}} I_{c}\left(X_{s}\right) d s\right],
\end{aligned}
$$

$\lim _{m} \lim _{n} p_{m}\left\{K_{B}^{p_{m}} G^{q_{n}}(x, C)-\nu_{A} K_{B m}^{p_{m}} G^{q_{n}}(C)\right\}$
$=\lim _{m} \lim _{n} p_{m}\left[K_{B}^{{ }_{B}{ }^{m}}\left\{G^{q_{n}}(x, C)-\phi\left(q_{n}\right)\right\}-\nu_{A} K_{B^{m}}{ }^{m}\left\{G^{q_{n}}(\cdot, C)-\phi\left(q_{n}\right)\right\}\right]$
$=\lim _{m} p_{m}\left\{K_{B}^{p_{m}} H(x, C)-\nu_{A} K_{B}^{p_{m}} H(C)\right\}$
$=E^{x}\left[H\left(X_{T_{F}}, C\right)\right]-E^{\nu_{\Lambda}}\left[H\left(X_{T_{F}}, C\right)\right]$.
Hence

$$
\begin{aligned}
\langle f, G \xi\rangle_{\mu}= & \left\langle f,-E^{*}\left[\int_{0}^{T_{F}} I_{C}\left(X_{s}\right) d s\right]-E^{\cdot}\left[E\left(X_{T_{F}}, C\right]\right\rangle_{\mu}\right. \\
& +\langle f, 1\rangle_{\mu} E^{\nu_{\Lambda}}\left[\int_{0}^{T_{F}} I_{C}\left(X_{s}\right) d s+H\left(X_{T_{B}}, C\right)\right] .
\end{aligned}
$$

Therefore

$$
G \xi(x)=-E^{x}\left[\int_{0}^{T_{F}} I_{c}\left(X_{s}\right) d s+H\left(X_{T_{F}}, C\right)\right]+E^{\nu_{\Lambda}}\left[\int_{0}^{T_{F}} I_{C}\left(X_{s}\right) d s+H\left(X_{T_{F}}, C\right)\right]
$$

for a.a.x (μ). In particular,

$$
G \xi(x)=-H(x, C)+E^{\nu_{\Lambda}}\left[\int_{0}^{T_{F}} I_{C}\left(X_{s}\right) d s+H\left(X_{T_{F}}, C\right)\right]
$$

for a.a. $x \in F^{r}(\mu)$, and hence for all $x \in F^{r}$. Hence, by (4.1), (6.8) holds. If ξ_{1} and ξ_{2} are measures on F^{r} satisfying (6.8), then $G\left(\xi_{1}-\xi_{2}\right)$ equals to a constant on F^{r}. Hence $\xi_{1}=\xi_{2}$ by the proof of theorem 5.5.

In the classical case, the equilibrium measure is characterized as the measure which minimize the energy. In our case, the analogous result holds. Denote I $గ$ the family of all bounded signed measures ξ on E with compact support
such that $\int|g(x, y)||\xi|(d y)$ is bounded, $\mathfrak{N}^{+}=\{\xi \geqq 0 ; \xi \in \mathfrak{N}\}$ and $\mathbb{K}^{0}=$ $\{\xi \in \mathfrak{N} ; \xi(E)=0\}$. For $\xi, \zeta \in \mathfrak{N}$, define the mutual energy of ξ and ζ by
(6.9) $\quad(\xi, \zeta)=\iint g(x, y) \xi(d x) \zeta(d y)$.

Denote (ξ, ξ) by $I(\xi)$ and call it the energy of ξ.
Lemma 6.3. If $\xi \in \mathfrak{N} \mathbb{Z}^{0}$, then $I(\xi)$ is non-negative. Moreover, $I(\xi)=0$ if and only if $\xi=0$.

Proof. Suppose that $\xi \in \mathscr{I} Z^{0}$. Since $G^{1.0}|\xi|(x)$ is bounded,

$$
\begin{aligned}
& \int \sum_{n=1}^{\infty}\left|\left(K_{A}^{1}\right)^{n}-\nu_{A}\right|(x, d z) G^{1,0}|\xi|(z) \\
& \quad \leqq\left\|G^{1,0}|\xi|\right\| \sum_{n=1}^{\infty}\left\|\left(K_{A}^{1}\right)(x, \cdot)-\nu_{A}\right\|
\end{aligned}
$$

converges uniformly in x. Hence for any $\varepsilon>0$ there exists a number N such that

$$
\left|\sum_{n=N}^{\infty} \int\left\{\left(K_{A}^{1}\right)^{n}-\nu_{A}\right\} \quad(x, d z) G^{1,0} \xi(z)\right|<\varepsilon
$$

for all $x \in E$. From our definition of $g(x, y)$, for $(x, y) \in \Gamma$,

$$
\begin{aligned}
g(x, y)= & g^{1,0}(x, y)-1+\sum_{n=1}^{N-1}\left\{\left(K_{A}^{1}\right)^{n}-\vartheta_{A}\right\} g^{1,0}(x, y) \\
& +\varepsilon(x, y, N)
\end{aligned}
$$

where $\varepsilon(x, y, N)=\sum_{n=N}^{\infty}\left\{\left(K_{A}^{1}\right)^{n}-\nu_{A}\right\} g^{1,0}(x, y) . \quad$ Since $\xi\left(\hat{\Gamma}_{x}\right)=0$, for all $x \in E$,

$$
\begin{aligned}
I(\xi)= & \iint g^{1,0}(x, y) \xi(d x) \xi(d y)+\sum_{n=1}^{N-1} \iint\left(K_{A}^{1}\right)^{n} g^{1,0}(x, y) \xi(d x)(d y) \\
& +\iint \varepsilon(x, y, N) \xi(d x) \xi(d y)
\end{aligned}
$$

From the resolvent equation (1.7), we have

$$
g^{2,0}(x, y)-g^{1,0}(x, y)+K_{A}^{2} g^{1,0}(x, y)=0
$$

This combined with $g^{1,0}(x, y) \geqq g^{2,0}(x, y)$, we have

$$
K_{A}^{2} g^{2,0}(x, y) \leqq K_{A}^{2} g^{1,0}(x, y) \leqq g^{1,0}(x, y),
$$

so that

$$
\int g^{2,0}(x, z) g^{2,0}(z, y) \nu_{A}(d z) \leqq g^{1,0}(x, y)
$$

Hence we have, from the symmetry of $g^{2}(x, y)$

$$
\iint g^{1,0}(x, y) \xi(d x) \xi(d y) \geqq \int\left\{\int g^{2,0}(x, y) \xi(d y)\right\}^{2} \nu_{A}(d x) \geqq 0
$$

Similarly it follows that

$$
\sum_{n=1}^{N-1} \iint\left(K_{A}^{1}\right)^{n} g^{1,0}(x, y) \xi(d x) \xi(d y) \geqq 0 .
$$

Therefore $I(\xi) \geqq-\varepsilon$ and hence $I(\xi) \geqq 0$.
Suppose that $I(\xi)=0$. By a routine argument, we have $|(\xi, \zeta)|^{2} \leqq$
 equlas to a constant on E. Integrating by ν_{A}, we can see that the constant is. equals to 0 . Hence $\xi=0$.

Theorem 6.4. The equilibrium measure ξ_{F} of a compact set F is the uniquemeasure which attains the

$$
\begin{equation*}
\min \left\{I(\xi) ; \xi \in \Re^{+}, \xi(E)=1, \text { support of } \xi \subseteq F\right\} \tag{6.10}
\end{equation*}
$$

and Robin's constant $R(F)$ equals the minimum value of (6.10).
Proof. The proof is similar to the classical case [16]. If a measure ξ satisfies the conditions of (6.10), then, since $G \xi_{F}=R(F)$ on F except a polar subset of F and ξ charges no polar set,

$$
\begin{aligned}
I(\xi) & =I\left(\xi-\xi_{F}\right)-I\left(\xi_{F}\right)+2\left(\xi, \xi_{F}\right) \\
& =I\left(\xi-\xi_{F}\right)+R(F)
\end{aligned}
$$

Since $\xi-\xi_{F} \in \mathscr{I}^{0}$, this implies the result by lemma 6.2.
Kumamoto University

References

[1] J. Azema, M. Kaplan Duflo and D. Revuz: Mesure invariante sur les classes recur-rentes des processus de Markov, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete8 (1967), 157-181.
[2] -_: Note sur la mesure invariante des processus de markov recurrents, Ann. Inst. Henri Poincare Sect. B, 3 (1967), 397-402.
[3] R.M. Blumenthal and R.K. Getoor: Markov processes and potential theory, Academic Press, New York, 1968.
[4] M. Brancovan: Fonctionneless additives speciales d'un processus de Harris, C.R. Acad Sc. Paris Serie A, 283 (1976), 57-59.
[5] R.K. Getoor: Multiplicative functional of dual processes, Ann. Inst. Fourier, Grenoble 21 (1971), 43-83.
[6] R. Kondo: On weak potential operators for recurenet markov processes, J. Math. Kyoto Univ. 11 (1971), 11-44.
[7] R. Kondo and Y. Oshima: A characterization of weak potential kernels for strongFeller recurrent Markov chains, Proc. of 2nd Japan-USSR symp. on prob. theory, Lecture Notes in Math., 330, Springer, Berlin, (1973).
[8] H. Kunita and T. Watanabe: Markov processes and Martin boundaries part 1, Illinois J. Math. 9 (1965), 485-526.
[9] P.A. Meyer: Les resolvantes fortement Felleriennes d'après Mokobodzki, Sem. de probabilités II, Lecture Notes in Math. 51, Springer, Berlin, (1968), 171-174.
[10] M. Nagasawa and K. Sato: Some theorems on time change and killing of Markov processes, Kodai Math. Sem. Rep. 15 (1963), 195-219.
[11] J. Neveu: Potentiel Markovien recurrent des chaines de Harris, Ann. Inst. Fourier, Grenoble 22 (1972), 85-130.
[12] Y. Oshima: On a construction of a recurrent potential kernel by means of time change and killing, J. Math. Soc. Japan. 29 (1977), 151-159.
[13] S.C. Port and C.J. Stone: Logarithmic potentials and planar Brownian motion, Proc. 6th Berkeley Symposium of probability and Math. Stat., U. of California Press, III (1972), 177-192.
[14] D. Revuz: Mesures associees aux fonctionelles additives de Markov, Trans. Amer. Math. Soc. 148 (1970), 501-531.
[15] K. Takasu: On the eigenvalues of recurrent potential kernels, Hiroshima Math. J. 2 (1972), 19-31.
[16] J. Takeuchi, S. Watanabe and T. Yamada: Stable processes, Seminar on prob. 13 (1962), (Japanese).

