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0. Introduction

In the case of planar Brownian motion, if we denote h(x,y)= ——log\x—y\,
7t

the following results are well known (see [13], [16]). (i) If F is a non-polar
compact set, then there exists a probability measure ξF on F such that

(h(xy y)ζF(dy) equals a constant R(F) on F except on a polar set. The measure

ξF and the constant R(F) are respectively called the quilibruim measure and
Robin's constant of F. (ii) A compact set F is non-polar if and only if there

exists a non-zero finite measure ξ on F such that \h(x, y)ξ(dy) is locally

bounded.
In this paper we shall be concerned with the similar problem for recurrent

Hunt processes with strong Feller resolvent. In our case, in place of h(x,y),
we shall use a density g(x, y) of a potential kernel G(x, dy) of X relative to the
invariant measure μ(dy). Unfortunately, our density g(x,y) is not equal to
h(x,y) in the case of planar Brownian motion but equal to h(x, y)+f(x)+g(y)
with some locally bounded functions / and g (see §4).

Now we shall outline the contents of this paper. Let X be a recurrent Hunt
process with strong Feller resolvent and μ an invariant measure of X. If we
are given a certain finite non-negative continuous additive functional A of X
then we can construct a potential kernel G of X by means of time change and
killing based upon A ([4], [12]). In this paper we shall suppose, for simplicity,

that At=\ Ic(Xs)ds for an arbitrary fixed non-null compact set C but the

similar argument can be applicable for a large class of functionals A.
In section 1, some preliminary results are established. Among others,

a potential kernel KA and an invariant measure VA of the time changed process
by A are described. In section 2, for any other finite non-negative continuous
additive functional J3, a potential kernel KB and an invariant measure VB of
the time changed process by B are constructed by making use of KA and V A .
In section 3, let us introduce the duality hypothesis that there exists a dual
process X (of X relative to μ) satisfying those regularity conditions like X.
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We shall then construct a kernel function g(xfy) such that g( ,y) [resp. g(x, •)]
is finely [resp. confinely] continuous, finite except on a polar set and KB(x, dy)=
g(x,y)vB(dy) [resp. &B(dx,y)=g(x,y)vB(dx)] for all continuous additive func-
tionals B, where KB is the potential kernel of the time changed process of X by
the dual functional £ of B. In particular, when Bt=ty we have G(xy dy)=
g(x,y)μ(dy) and G(dx,y)=g(x,y)μ(dx), where G is the potential kernel of X

associated with At=\ IC(XS)ds in the sense of section 2. In this sense, our

function g(x,y) may be called the potential kernel function associated with
(G, G). In section 4, we introduce the notion of potential kernel function h(x, y)
in a more general sense and then establish a relation between h(x,y) andg(x,y).
In section 5, we shall show the equilibrium principle. This means that, if
F=supp (J5), then there is a probability measure ξF on supp (a) such that

\g(x>y)%F(dy)=R(F) o*1 F. In °ur case, the equilibrium measure ξF and

Robin's constant R(F) have intuitive probablistic meanings. If X and X are
equivalent, the results of section 5 have simpler forms and the analogous poten-
tial principles to classical potential theory hold. This case is treated in section
6. There a characterization of the equilibrium measure by means of energy
is also given.

1. Notations and preliminary results

Let E be a locally compact HausdorίF space with countable base, 6 the
Borel σ-field on E and Q* the σ-field obtained by the universal completion of <?.
If Jl is a σ-field of subsets of E then the classes of all bounded cJZ-measurable
functions, all bounded non-negative ^-measurable functions and all bounded <JL-
measurable functions with compact support are denoted by δ«J£, b^Λ+ and bJlcy

respectively.
Throughout in this paper, let -Y=(Ω, £F, £?„ Xt, θt, P

x) be a recurrent
Hunt process on E with strong Feller resolvent, that is, a Hunt process satisfying

(i) (Recurrence); For allf^bβ+> G°f(x)=Ex[ζf(Xt)dt] = Q or =00 on E.

(ii) (Strong Feller property of resolvent); For all p>0 and f^bS, Gpf(x)=

Ex[^e~ptf(Xt)dt] is bounded continuous.

In this case, it is well known that there exists a unique (except a constant
multiple) invariant Radon measure μ of X> which is positive on every open sets
(see [1], [2]). Let Φ be the family of all non-negative continuous additive
functional (abbreviated CAF) A=(At)t^ of X such that ^<°° a.s. for all
£<oo and let Φ+ be the subfamily of functionals A^Φ which are not equivalent
to the zero functional. If A<=Φ+ then P^^oo^l for all x ([!]). For

and p^O we define a kernel KP

A by
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(1.1) «/(*) = E*[\~e->*f(Xt)dAt] .
Jo

Note that (K^)p>0 is the resolvent of the time changed process of X by A.

Moreover, for A, B^Φ+ and/), q^Q we define two auxiliary kernels UPAQB
and Vp

A

qB as follows:

(1.2) 174.VΛ*) = Ex[Γe-pAr**tf(Xt)dAt},
Jo

(1.3) n.VOO = E*[\~e-*A<-<B<f(Xt}dBΛ .
Jo

Obviously, Up

A

q

B=-VqBp

A. The family (Up

A

9β)p>Q is the resolvent of the
time changed process by At of the £~9β<-subprocess of X. If Bt=t, we shall
write Kp

A

q for UpAq

[t] and GpAq for Vp

A

q

{t], i.e.,

0 4Λ Kp;qf(κ\ -.t) J^A J(X) -

Note that J7u=-Ki°=X5, V^ΰ=Kq

B and G^'^G9 (the resolvent of -Y).
In the sequel, if there is no danger of confusion, the suffices A, B will be

often omitted.

Lemma 1.1 (Nagasawa-Sato [10; theorem 2.1 and 2.2]). Write Up'q and

Vp>«for UPA?B and VPA*B. For allp>0,

(1.6) Up <f-U*' Sf+(p-p?)U* 'U*' Sf+(q-tfV*^^

(1.7) V' tf-VS t'f+te-tfV' tV ' t'f+te-qf) Uq pV«' p'f= 0 .

If, in particular, C/° 9o|/| \resp. Vq^\f\] is bounded for some qQ^0 then

U°>q\f\ [resp. V*°\f\] is bounded for all q>0 and (1.6) [resp. (1.7)] holds for all
p, pf, q, q'^Q satίfysing p+q>0 and p'+q'>Q.

Lemma 1.2 ([12 lemma 2.2]). There exists an increasing sequence {En} n^
[resp. {Fn}n^] of subsetsinβ* such that U En=E[resp. (J Fn=E]andU°'1( , En)

n~^\ »>l

[resp. F1'0^, Fn)] is bounded for alln^l.

Lemma 1.3 (Blumenthal-Getoor [3; III, section 5]). If A^φ+ then
GPA\ , F) is bounded for all compact set F andp>Q.

A set C is said to be null if it is a set of potential zero relative to (Gp)p>Q.
Let C be an arbitrary (but fixed) non-null compact subset of E and let us assume
that μ is normalized on C as μ(C)— 1.
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In the remainder of this paper, unless otherwise stated, the CAF
always represents the CAF defined by

(1.8) A, =

Then for every

t/S M(*) = Ex[Γe-BtIc(Xt)dt\ = Glt\x, C)
Jo

is bounded by lemma 1.3. Moreover we have

Lemma 1.4. For any p, q>Q and /<E&?*, the functions Kp

Af and GpAqf
are bounded continuous. In case f&bβf, GpA°f is bounded continuous for all

p>0.

Proof. Drop the suffix A in the related kernels. For any^>>0 and/eό<?*
we have, from (1.7),

Gpf-Gp pf-pK°>pGp>pf = 0 .

Since K°'pg=Gp(Icg) for any^eiί* the function

G' pf = Gpf-pGp(IcG
p>pf)

= Gp(f-pIcG
p>pf)

is bounded continuous by the strong Feller property of Gp. Therefore,

G* *f= Gp p(f+(q-p)Gp pGp «f)

is bounded continuous. If /ei<?? then Gp °f is bounded by lemma 1.3, so
that the above equality for #=0 shows that GptQf is bounded continuous.

Since (KP

A)P>Q is a strong Feller resolvent by lemma 1.4, the mapping
x-*Kl

A(x, •) of the compact set C into the space of measures over C is strongly
continuous by a theorem of Mokobodzki (see Meyer [9]). Since, in addi-
tion, K\(x, •) are equivalent for all x^E, we have

ag.\\K\(x, )-K\(y, ) l l = α<l .

Thus there exists a unique invariant probability measure VA of Kl such that

(1.9) sup IK^i)"-^*, 0-"X )ll^2β"
XGB

for all M^O ([7; lemma 1.3]). Therefore the kernel

(1.10) KA(x, F) = ± [(Ktf(x, F)-vA(F)]
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is well defined and satisfies

(I-K1

Λ)KAf=Kl

Λf-<rΛ,f>

Lemma 1.5. The kernel KA defined by (1 . 10) satisfies

(1.11) Km sup \\Kp

A(x, .)-v-A^-KA(X, )|| = 0 ,
p-*0 x&E p

in particular,

(1.12) Km sup \\pKp

A(x, )-^( )ll = ° -P+Q XGH

Proof. From the resolvent equation for (KP

A) we have

for all x^E and 0<p<l. Thus it follows that

\\K"A(x, .)-v-A^-KA(x, .)||
P

^ Σ {i-ίi-p)"'1
» = 1

00

=SΣV V--J-/ j~ -"•ϊ̂ -i- î̂ ί
Therefore the lemma follows.

2. An invariant measure and a potential kernel of (KP

B]

Similarly to [4] and [12], for any J3eΦ+, an invariant measure VB and a
potential kernel KB of (K^)p>0 can be constructed by making use of VA and X^
defined in section 1. In [12], we have treated only the case of Bt—t but the
same arguments are valid for all £eΦ+. We shall outline it in the form of our
present use.

For any J5eΦ+ define the measure VB by

(2.1) VB = vAVY,B

Then VB charges no semipolar set and satisfies the following properties.

Lemma 2.1. The measure VB is a σ-finite invariant measure of (K^)p>Q.
In particular, v[t]=μ.

Proof, (cf. [12; theorem 2.7]) Since Vlχ*B( , Fn) is bounded for all n by
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lemma 1.2, VB is σ -finite. Integrating the equality

VlA%-Kp

B+Kl

AK
p

B-pVlA%Kp

B = 0

by VA we have

that is, VB is an invariant measure of (KP

B).
By the uniqueness of the invariant measure of X, V[t] is a constant multiple

of μ, say,

"w = vAGA° = bμ

for some constant b. Since μ(C)=l we have

b = VAG
IA\C) = ̂ '(C) = ^(C) = i ,

Hence v(t}=μ.

Lemma 2.2 (cf. [4; proposition 2]). For any B, £'eΦ+,

(2.2) *v=^n.v.
In particular, VB is the measure associated with B in the sense of Revuz ([14]).
Moreover it holds that vA=μ\C) where μ\c is the restriction of μ to C.

Proof. Similarly to lemma 1.1, we can prove easily that

(2.3) n,v- n.v+?« n.v-j>m n,v = o
for sufficiently many /e b6*. Letting q=l and integrating by vA9 (2.2) follows.
Set Bt=t at (2.2) then vB'=pv{t} Vp$,B>=pμK*Bf by lemma 2.1. Hence vj is the
measure associated with B'. In particular, when B'=A, it follows that <(VA, />=

J V>=Xμ, G»Icf>=p<μG>, Icf>=<μ, Icf>=<μ\c,f>

Define a kernel ίΓ5 by

(2.4) #X*, ) = KΛV
l&(x, )+ Fi.°B(*, )-VB( .

In case Bt=t we shall denote ίCB by G, which is the kernel we have con-
structed in [12]. Obviously, KB(x, •) is a σ-finite signed measure on E and, for
any w^l, the total variation of KB(x, •) on Fn are uniformly bounded for all
x^E by (1.9) ana lemma 1.2. Similarly, for any compact set Fy the total varia-
tion of G(x, •) on F is uniformly bounded for all x^E by lemma 1.3. If we
denote the total variation of a measure on F by || ||F, then the following theorem
holds.

Theorem 2.3. For a

(2.5) limsup ||Fi .V*, )-v--Kfa )ll^ = 0 ,
P +Q XGB P
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and in partciular,

(2.6) Km sup \\pV>&(x, )-v^')\\r, = 0 .
j>->o*es

If Bt=t then we can take arbitrary compact set in place of Fn.

Proof. Write VPΛ for VP

A\. For any Borel subset D of Fn

V*-\x, D)-Vl>\x3 D)+pKp

AV
1'°(x, D)-Kp

AV
l>\Xί D) = 0

from (1.7). This can be written, by noting (2.1),

{V* \x, D)-}-V1>\x) D)+pKp

AV
1'°(xί D)

P

Thus we have

\\VP-\x, .)-^)-
P

This proves the theorem from lemma 1.5.

Corollary 1. Iffebδ* vanishes outside of some Fny then

(2.7) (I-pKp

B)KBf = Ktf- UVsXp,, />

for all p>0. If V1

A*B 1 is bounded, then

(2.8) KB(I-pKp

B)f = Kp

Bf-<vA, Kp

βfy

forallp>Qandf<=b£*.

Proof. Suppose that VliQl is bounded, then obviously (2.5) holds for E
in place of Fn, so we have

KB(I-pKp

B)f(x) = Urn (V^-^vB)(I-pKp

B)f(oc)
9-+Q q

= Km V« 0(I-pK»B)f(x) = Hm(Kp

Bf-qKp

AKίf)(x)

from (1.13). The proof of (2.7) is similar.

Let us denote

(2.9) NB = {/;/eft<5*, = 0 outside of some Fn and <^β,/> = 0} ,
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(2.10) N= {/ /eW?*, <>,/> = 0} .

DEFINITION. If a kernel H on E satisfies the condition that (i) for any

f<=NB [resp. /eΛΓJ, HftΞbS* and that (ii) for any /eΛΓ* [resp. /eJV],
(I-pKp

B) Hf=Kp

ΰf [resp. (I~pGp)Hf=Gpf] for all/>>0, then we shall say that
if is a potential kernel of (Kp

β)p>0 [resp. X].

Corollary 2. The kernels KB and G are the potential kernels of(Kp

β)p>0 and
X, respectively.

Corollary 3. For every compact set F, the function G( , F) is finely con-
tinuous.

Proof. Set Bt=t at (2.7)

G(*, F) - pGpG(x, F)+Gp(x, F)-(K%*l(x))μ(F).

Since K°Apl is ^-excessive, the result is obvious.

3. Hypothesis of duality and the kernel function g(x, y)

In this section we shall assume that there exists a Hunt process X with

strong Feller resolvent Gp such that X and X are in duality relative to μ. It
follows that X is also recurrent and μ is the invariant measure of X.

Let Φ+ be the family of all non-zero non-negative finite continuous additive
functionals of X. For any A, J$eΦ+, we define Up^β etc. by

etc. (in general, a kernel with respect to the dual process X is written such as

K(D, #), so that K operates to function from the right side and to measure from

the left).
By Revuz [14; theorem VII. 1], for any B^Φ+, there exists a polar set PB

and a CAF $<ΞΦ+ of ̂  restricted to E— PB such that vB=ίt*B

Λ μ. Also, by

[14; theorem VII. 2], there exists a jointly measurable kernel function

gpB9(x, y) satisfying

(i) gPBq( >y) [resp. gp

B

q(x, •)] is finely [resp. cofinely] continuous and q-excessive
[resp. q-coexcessive] relative to the resolvent (Gp

B

q\>Q [resp. (όpβq)q>0\ for

all p>0 and y^E—PB [resp. x^E],
(ii) For all p, q>0 and xSΞE, Kp

B

q(x, dy)=gp

β'
q(x, y)vB(dy), Gpέq(x, dy)=

gpβq(x,y}μ(dy) and for all p, q>Q andy^E-PB) &p

B

q(dx, y)=&*(x, y)
}=gpBq(x, y)μ(dx).

As before, the set C with μ(C)=l is fixed and A is given by (1.8). If

B=A9 PB may be supposed to be empty and the dual CAF of A is given exactly by
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(3.1) At =

In the following, unless otherwise stated, A always represents this CAF
and we shall drop the suffix A in gp^q. Further, we shall denote gq(x,y) for
gA9(x, y), which is Kunita-Watanabe's potential kernel function. Note that
g°Bq(x, y)=gq(x,y) for all BeΦ+. Form the resolvent equation (1.6), for any

ί>0,

(3.2) f"(x, y) = gq(x, y}-K^gq(x, y)

= ?(*>y)-f&lΛ*>y)
on {(x, y)] gq(x, y)<°°} . Hence for any y&E, KlAqgq(x, y)=gqKlAq(x, y) a.a.
x(μ). Since both sides of the equality are ^-excessive, it holds for all x,y^E
(cf. Getoor [5 theorem 2.5]).

Lemma 3.1. For all x^E and jBeΦ+,

(3.3) Vft(x, dy) = f\x, y}vB(dy) .

Proof. Set At'=At+qt. Replacing A', {t}, B for A, B, B' in (2.3) we
have

for sufficiently many functions /. Noting that V\$,B=K*Bq,
and VlA?Λt]=GlAq, it follows that

E*[Γe-*,-«>f(Xt)dBt] = *%/(*)
Jo

y)-KlAqg\x, y)}f(y)vB(dy)

= j &(*, y)-KYg"(χ, y)}f(y)vB(dy)

The last equality follows from (3.2) since VB has no mass on the polar set
{y "> gq(x> y)= °°} Letting q-*Q we have the result.

Dually, if β is the dual CAF of B then

(3.4) PA*B(dx, y) = f \x, y)vB(dx) for ally<=PB .

Hence we have

Corollary. For allf, g<=.b(6*)+ ,
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<3J5)

<3.6)

Since

KA(X, dy) = Kl

B(xy dy)-vA(dy}+KAK
l

A(x9 dy) ,

it is easy to show that, for each x, KA(xy •) is absolutely continuous relative
to VA and its density is given by

up to a set of ^-measure 0.
However, in order to solve the problem proposed in the introduction, we have

to choose a more elaborated density g(x, y). To do this, we need one more
preliminary observation.

For all x, y^E and w^l, set

<3.7) /„(*, y) = (rfl)"-1*1-0^ y)-l= g™(K\γ-\X> y)-\ ,

then

,3 8, /.(*, y)Ά(dy) = (Kl

A)
n(X, dy)-VA(dy)

' MX, y)vA(dx} = (&\)n(dX, y)-*Λ(d*) .

.Since

(Σ !/.(*,y)\vΛ(έy) = Σ ll(«i)"(*, )-"
J n — 1 tt — i

|<00

for all x^E from (1.9) and (3.8), the series Σ/n(#, J>) converges absolutely for
n = i

CO

^.α.Λ?(^). Similarly for all y^E, Σf»(x> y) converges absolutely for a.a.x(vA).
n = ι

Also

= Σ» — i

for all De<?, that is, Σ/n(#> •) is a density of KA(xy •) relative to VA. Dually,
Λ = l

CO

Σ/n('j j) is a density of

<3.9) &Λ(.,y) = Σ {(&)"(•, ?)-"Λ( )}

relative to v^. Here the proof of the strong convergence of (3.9) is similar to
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Lemma 3.2. There exists q Borel subset Γ of ExE satisfying the following

conditions.

( i ) Set Ty= {x; (x, 3>)eΓ} and Γx—{y; (x, j)eΓ}, then Tc

y and ΓJ are polar
for all x, yξΞE.

υO

(i i) For all (x, j)eΓ, Σ/«(^ y) converges absolutely, \KA\gl>0(x, y)<°° and
n = ι

g1)Q\KA\(xf y)<°°, where \KA\(x, •) is the total variation measure of

KA(x, .)•
(iii) For all (x, j)eΓ,

(3.10) Σ/.(*. y) = gl'°(x, y)-l+KAg^(x, y)

We define the kernel function g(x, y) by

(3.11) *(*,jO = (3.10) *7 (

By the lemma, it is easy to see that the function g( , y) [resp. g(x, •)] is.
finely [resp. cofinely] continuous on the fine [resp. cofine] open set Γ^ [resp.
ΓJ for all y [resp. all x]

Proof. Noting that,

\fn+1(x,y)\ =

= I Xi/.-ι£i(*, j) I ̂ Xi I /._, I &A(x, y)

forn^Zand

\\(K\)*(x,dz)-VA(ds)\?\*,y)

= J I K\ {(K\γ~^- 1} (*, *) I g^(z, y) VA(dz)

£K\\fn_i\&\(x,y)

for w^2, let us define the set Γ by
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r= {(*,?); \

Then the proofs of (ii) and (iii) are obvious. For the proof of (i) set

ξ,(dy) = S,(dy)+Kί

A(X, dy)+ g (K\\fn \ )(x, y)vΛ(<fy) .

Then

ξ,(E) = 2+

Moreover, it is easy to see that,

r= {(*, y);

Hence ί̂  is polar if and only if [ξx(dz)glt0(z, y)<oo except on a polar set.

Since gl>0 is the potential kernel function of the £~^'-subprocess (which is a

transient Hunt process on E (13; ΠI.3.16])) of X, the potential \ξx(dz)glt\z, y)

of the bounded measure ξ x is finite except on a polar set if it is finite for
a.a.y(μ) ([3; VI.2.3]). Since, for

by lemma 1.3, \ξt(dz)g1Λ(z, y)<°°a.a.y(μ). Therefore ΓJ is polar. Similarly

Ty is ploar.

Suppose we are given a CAP 5eΦ+ and let a be its dual CAP. Just as

(2.4), define a kernel j£β by

(3.12) KB(dx, y) = te£x(<fe, Jθ+ ̂ iΛ(Λ, ̂ )-̂ (̂ ) ,

for y&PB, where KA is the kernel defined by (3.9). In the case Bt=t denote GB

by G. For these kernels, the dual results of section 2 are valid.

Theorem 3.3. For all x^E, ^E and

and B(dx, z) = g(x, z) vB(dx) .

Proof. The first two equalities have been already proved. For the proof
of the third equality, take a function /e b<S+ such that Vl^Bf is bounded. Then,
since VB charges no polar set, it follows from lemma 3.1 and 3.2 that
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HI
Hence

^1,0 f/\ rs rt \
' A.BJ\X) — J±Bj(X)

The last equality follows similarly.

Corollary. For all x^E andy^E,

(3.14) G(x, dy) = g(x, y) μ(dy) and 0(dx, y) = g(x, y) μ(dx).

For a measure ξ on E, let us denote

Π 1^ Gl>Q£(κ\O.LD) O £^E

(3.16) Gf(*) -

if they are well defined.
Let XA and XA be the subprocesses of X and Xby the multiplicative func-

tionals Mt=e~Λ* and Mt=e~At, respectively. Then a set is polar if and only if
it is polar relative to XA or XA. Moreover, as we have seen at lemma 1.4, the
resolvents (GA

P)P>0 and (όA

p)p>0 of the processes XA and itA are strong Feller,
so that, it is well known that a compact set F is non-polar if and only if GltQξ
is locally bounded for some non-zero finite measure ξ on F. Also, it is well
known that if G1Λξ is locally bounded then ξ charges no polar set (see [3;
p. 285]). Hence we have the following theorem.

Theorem 3.4. If F is a compact subset of E, then F is non-polar if and only

if there exists a non-zero finite measure ξ on F such that j | g(x, y) \ ζ(dy) is
locally bounded.

Proof. It is enough to prove that G l f0£ is locally bounded if and only if

\ \g(x> y)\ ζ(*fy) is locally bounded.

If GίtQξ is locally bounded for some non-zero finite measure ξ then ξ
charges no polar set and hence, in particular, ξ(Γc

x)=0 for all x&E. So, it
follows that,

j I g(x, y) I ζ(dy) ^ Gί'°ξ(x)+ξ(E)+ I K A | G™ξ(x).

In the right side of the inequality, since Glf°f is bounded on the compact set C,

the last two terms are bounded. Therefore, \ \g(x, y)\ζ(dy) is locally

bounded.
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Conversely, if \\g(x, y)\ξ(dy) is locally bounded then f(Γί)=0 from.

the definition of g(x, y). Therefore, for any

g(x, y) = g™(x, y)-ί + (x, z)g(z, y)vA(dz)

a.a.y(ξ). Thus

G"f(*)^ \\g(x,y)\ξ(dy)+ξ(E)

+ \S1'\x, *){\ \g(*.

Since GlΛvA(x)=Kl

A\(x)=\,

Therefore the theorem is proved.

4. Potential kernel functions

By the corollary of theorem 3.3, we shall say thatg(x,y) is the potential kernel
function associated with (G, ό). Moreover the kernel function g(x, y) satis-
fies several regularity conditions (corollaries 2 and 3 of theorem 2.3, lemma
3.2).

We now extend the notion of potential kernel functions.

DEFINITION. An <5* X (?*-measurable kernel function h(x, y) is said to be
a potential kernel function if the following conditions are satisfied.

( i) Set H(x, dy)=h(x, y)μ(dy) and ή(dx, y)=h(xy y)μ(dx). Then H and ti
are the potential kernels of X and JX" such that Hf and f f ί are well defined
and locally bounded for all f^bδf. Moreover, the functions H( ,F}
and H(F, •) are finely and cofinely continuous for any compact set F+
respectively.

(ii) The sections (ΓA)J and (Γh)
c

x (see §3) of the set Π— {(x, y) | h(x, y) \ = 00}
are polar sets and the functions h( , y) and h(x, ) are finely and cofinely

continuous on the fine and cofine open sets (Th)y and (ί\)x for all x,
respectively.

We shall show how any potential kernel function h(x, y) is related to g(x,
Recall that Γ= {(x, y) | g(x, y}\=™}.

Theorem 4.1. If h(x, y) is a potential kernel function of X, then
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(4.1) g(x, y) = h(x, y)-H(x> C)-ή(C, y)+H(C, C),

for all (x, y)^T Π ΓΛ, where H(C, C)=J #(*, C)μ(dx).

Proof. If f<=N then, by (i), Gf—Hf is bounded and satisfies (I—pGp)
(Gf—Hf )=Q, so that, Gf—Hf equals a constant on £". Particularly, set
f=IF—μ(F)Ic^N for a relatively compact set F^6* then, since G( , C)=0,

( 4.2) G(*, F)-H(x, F)+H(x, C)μ(F) = a

for some constant a. Integrating both sides of (4.2) by vA=μ\c and noting

that vAG=Q, we have

-H(C,F)+H(C,C)μ(F) = a.

Thus,

G(*, F) = H(xy F)-H(x, C)μ(F)-H(C,'F)+H(C, C)μ(F).

Therefore, for all x^E, (4.1) holds for a.a.y(μ). Since μ is equivalent to
όp( ,y) for all_p>0 and ye£([!]), μ charges all cofine open sets. Hence, for
all x^E, (4.1) holds for cofinely dense y^E. Since both sides of (4.1) are

cofinely continuous relative to y on the cofine open set f1, Γl (f\)*> (4.1) holds

for all;yeΞί\n(iU
If 5eΦ+ then, since the associated measure VB of B has no mass on any

semipolar set, we have

Corollary 1. If h(x, y) is a potential kernel function of X, then the kernels

HB(xy dy)=h(x,y)vB(dy) and ήΰ(dx, y)=h(x, y)vB(dx) are potential kernels of
(Kp

β) and (KP

B\ respectively.

Corollary 2. Let h(x, y) be a potential kernel function such that ΓACΓ, then

a compact subset F of E is non-polar if and only if j | h(x, y) \ ξ(dy) is locally bounded

for some non-zero finite measure ξ on F. In particular, if X and X are equivalent,

then F is non-polar iff j | h(xy y) \ ξ(dy) is bounded on F for some ξ as above.

Proof. It is enough to show that j | g(x, y) \ ξ(dy) is locally bounded if and

only if j | h(xy y) \ ξ(dy) is locally bounded.

If )l£(Λ l j,y)lf( έfy) is locally bounded, then ξ charges no polar set by

theorem 3.4 and, in particular, ξ( {Γx Π (f^)x}
c)=0. Hence it follows from (4.1)

that ^ I h(x, y) \ ξ(dy) is locally bounded.

Conversely, if j | h(x, y) \ ξ(dy) is locally bounded, then ξ has no mass on (Γh)
c

x

for all x^E, so that (4.1) holds a.a.y(ξ) for all x^E. Hence j \g(x, y)\ξ(dy) is

locally bounded. If X and X are equivalent, then all semipolar sets are polar.
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Hence sup Glί0ξ(x)=sup Glt0ξ(x) ([3]), so that the last part of the corollary is
*e# χ<=F

obvious from the proof of theorem 3.4.

REMARK. If h(x, y) is a potential kernel function of X, then the kernel func-
tion h\xs y] denned by

h'(χ>y) = h(χ>y) tf ((43) > >
= «> if (*,;>>)£ rnr A

is a potential kernel function of X. For this kernel function, the hypothesis
ΓA'CΓ of the corollary 2 holds obviously.

REMARK. So far we have fixed a compact set Cand assumed that μ(C)=l.
If we delete such normalization condition, the only minor change is necessary;
VA equals [μ(C)]~lμ\c for μ\c and V(t) equals [μ(C)]~lμ for μ. It then follows
thatG(*, dy)=g(X, y)[μ(C)Γμ(dy).

For two compact sets CΊ and C2, let GΊ, G2 and gl9 g2 be their associated
potential kernels and kernel functions. Let μ be an arbitrary invariant measure
(not necessarily normalized either on CΊ or C2). By an argument similar to

the proof of theorem 4.1, we have Gfa F)-G^^=^G2(xf F)-

fΓί\G2(x, CΊ). By the preceding remark, we obtain the following relation:
M^i)

(4-4) *&—±-Gl(C» y) = fifeLZi-l * C
μ(C2)

5. Equilibrium measure

Let F be the family of all non-empty relatively compact sets F which is the
fine support of some CAF J5eΦ+. In this section we shall fix a set FG F and
the corresponding CAF B. Let {Pn}n ^i be an increasing sequence satisfying
that \J Pn = E and l^i'.V^ •) are bounded for all n. The existence of such
a sequence is the same as in lemma 1.2. Define the continuous additive func-

tionals BMeΦ by B*t=^IFitn$J(Xs)dBt. Then the fine support of each Bn is

relatively compact. The kernels defined by A and Bn are denoted by Up

n'
q and

Vϊ*. By the definition of B\V\'* |/| and |/| 1/J 0 are bounded for all/e W?*.
Let VB be the measure assoicated with B as before and set z>M( )— VB( Γ) Fn Π ̂ «).
The fine support of z^ is equal to F (see [14; remark II. 2]) and vn is the
measure associated with B". Write Kn for KBn. It follows that Knf is well
defined and bounded for a

Lemma 5.1. // B" Φ 0 then, for all ρ>0,
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(5.1)

is a finite constant on E.

Proof. If £"ΦO then 5"eΞΦ+, so that, by theorem 2.3, formulas (1.6) and
(2.2), and lemma 1.5,

pKn(U'n Ί)(x) = pKm {Vl \x, •)-—",} E/Ϊ'Ί7-*° q

= Urn {pFί βt/.β Ί(*)— 1}
* *0 (£

= Urn {qK<A I/; Ί(*)- u»-'l(*)}

Therefore,

(5.2) .̂(I7J >1)(*)+ l/2 Ί(*) - i^tf Ί = Rn(p)

is a constant.

Let ΓF be the hitting time of the set F, τ=inf {t; Bt>Q} and
τ"=inf {t; B">Q}, where mfφ=°°. Then, TF=τ a.s. (see [3; proposition

V.3.5]) and TM J r β,.f. as n f oo. Since Rn(p)=E^[\~e-pB"lc(Xt)dt] decreases

when n or p increases, the limit

(5.3) R(F) = Km Km Rn(p) = Urn Urn Rn(p)
V ' V ' »^«> ^oo ΛVjr/ ^^00 «^« MV^^

exists and it is finite since J3ΦO (see the proof of lemma 5.2 below).

DEFINITION. We shall call the constant R(F) as Robin's constant of F
(relative to the potential kernel function g(x, y)).

Lemma 5.2. R(F)=E^[[T'l^Xt)d£\.
Jo

Proof. Since J5ΦO, U*'1! is bounded for all large n. Hence, for all />;>
and large n,

Therefore, by the Lebesque theorem,

Urn Rn(p) = Urn 1

o P-+°*



300 Y. OSHIMA

Letting ra— >oo we have the result.

REMARK. From the lemma 5.2, Robin's constant R(F) of F does not depend
on the choice of B.

Lemma 5.3. If F^F then there exists a probability measure ξF on F such
that

(5.4) Urn lim Vl

n \pU»n

 pl}(x) = Gl *ξF(x)
«->«> ί->«

for a.a.x(μ). Moreover, Vl'*(pUltpV)(x) are uniformly bounded for all x^E, p^l
and large n.

Proof. From (1.6), for all ρ>0 and n^l such that 5WΦO,

As in the proof of lemma 5.2, Un'pl(x) are uniformly bounded for all
p^l and n^ί such that jB'ΦO, and

-Km lim U°n'
pl(x) = UQ>°°l(x) = Ex Ic(Xt}dt] .

n+oΛ p+o* J θ

Hence,

Km lim Vl

n \ρUl *V)(x) = \-U«'~\(x}+Kl

AU
Q>-\(x) ,

«^<x> /»^oo

boundedly. Define a measure ξ p f Λ on the compact set F by
ξp.n(dy)=ρUΌ

H

 pl(y)vΛ(dy) for'pX) and n^l such that jB"Φθ, then

Thus there exists a sequence />Λ-* oo such that {ξpktn}k>ι converges weakly to a
probability measure ξn on F as ^->oo? for all w. Therefore, we can choose a

subsequence {?«m} of {|Λ} which converges weakly to a probability measure ξF

on P as m-»oo. Taking an arbitrary function /eδ<??, we have

= Km Km
»«->00 jfe^.00

= Km lim \f(x)G™ξPk,nm(x)μ(dx)
m^oo fe^.co J
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where we used the boundedness and continuity of/Gi'°, which follows from
the dual facts of lemmas 1.3 and 1.4. Therefore,

(5.5) \-U»>~\(x)+Kl

AV»>-\(x} = GlΛξf(x), for a.a.x(μ).

Let β be the dual CAF of B as in section 3 and let F be the cofine support
of B. As before, P is the cofine support of VB. Set^=m/{ί; $,>()}, then
Ϊ=TF a.s. P* for all x^E—PB, where TF is the hitting time of Prelative to j£.

Lemma 5.4. For allf<=b£*y

(5.6)

In particular, ξF is a probability measure on P which attains no mass on any polar
set.

Proof. It is enough to show the equality (5.6) for f^Cc. Iίf^Ccy then
by the corollary of lemma 3.1,

\f(y}Udy) = Urn lim \f(y)pkU^l(y)Vnm(dy)
J /»-><» Jfe^oo J

= Km lim £v

»»->.<» k-*°°

where 0") t=J, ι ιn,.(.)</A.iβ"thedualCAf lof.5" and *.(«)=»/ {u;

Since, for all n^ί, *«(*)->*,, = *„(()) α.ί. αί J-^ O,

Also, since fΛW->^..α.ί.. when m-*°°, the lemma follows.

Theorem 5.5 (Equilibrium principle). Let F^β* be a relatively compact
subset of E and suppose that there exists a CAF B^Φ+ with fine support F. Then
there exists a unique probability measure ξF on P such that

(5.7) GξF(x) = a constant on F.

Here, F is the cofine support of the dual CAF U of B and the constant is equal to
Robin's constant R(F) of F. The measure ξF is given by (5.6) and called the
equilibrium measure of F.
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Proof. Let us show that the measure ξF in lemma 5.3 satisfies

(5.8) GξF(x)+ U">~\(x) = R(F) everywhere on E.

This proves (5.7) since U«>-\(x)=Ex[^Ic(Xt)dt\=Q on F. From (2.2), (2.4)

and lemma 5.1,

Rn(p) =

-ι+ε/2 Ί(*),

since pvβU% pl=vΛ(C)=l. Let p—><χ> and »-» °o, then, as we have seen in
lemmas 5.2 and 5.3, Rn(p)-»R(F) and Fi-e(iZ72-'l)(*)-»Gw£X*) α.β. «(/»),
boundedly,. Since KA(x, •) is a bounded signed measure and which is ab-
solutely continuous relative to μ, we have, for a.a.x(μ),

(5.9) R(F) = KΛG
lΛξt(x)+G™ξr(x)-l+ U° ~l(X)

= J

from lemmas 3.2 and 5.4. Denote

Σ {(̂ )B- }̂/'°(̂  *
n — i

then I is a bounded signed measure on F and

Since GltΌξF(x) is bounded, Gl'°ξ(x) is the difference of two bounded excessive
functions relative to (GAP)P>Q. Therefore,

limpGlApGl>»ξ(x) = GlΛξ(x) for all

Moreover,

pG¥l(x) = E'[[ _ .
Jo Jo

as/>->oo for all x^E and GIAP(X, •) is absolutely continuous relative to μ, for
all x^E and p>0. Thus, operating pGlAp to both sides of (5.9) and letting

5, we have

Λ(F) = GξF(x)+lim pG1ApU°'°°l(x) for all
ί->»
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Therefore, it is enough to show that

(5.10) limpGlApU°-\(x) = t/°-l(*) for all

Let/>>! then,

= E*[\"pexp {-
Jo Jo

Λoo Γ(tfp)+ToOf/f.

^E'( *-<{ "PIc(Xu)du}dt\
J 0 J tip

^ E'[\ ~e-'{Γ™Ίc(Xtt)du} dt]+l
Jo Jt

rS||t70 ~l| |+l.

Thus, noting that lim(t+τoθt)=τ (see [3; p. 214]), by the Lebesgue theorem,
t+Q

limpGY U° "l(x)
P~***

ί ft/p Γ(f/^)+To^//*
eXp{-\ Ic(Xs)ds-t}dt\ 'PIc(Xu)du]

o Jo Jt/p

= [%-'£«[Γ/c(J:.)Λ]Λ= U° "l(x).
Jo Jo

Now, it remains only the proof of the uniqueness. Let ξ be a bounded signed
measure on P satisfying ξ(E)—Q and Gξ(x)=a, for some constant a, on F.
For the proof of uniqueness we claim that ξ =0. Integrating both sides of
Gξ(x)=a (x&F) by f(x)vn(dx\ we have

(s.ii)

for all /efi<?* and n^l, where Kn(dx, y)=g(x, y)vn(dx) as before. Set
f=g(I—p&ίB») for a bounded continuous function g. It follows, from the dual
result of (2.8), that

for zlly&PBn, n^l and^>>0. Substituting this function into (5.11), we have

\gKp

β«(y) ξ(dy) = 0 for all n^ 1 and p> 0 ,

because |(£)=0, <£(I—p&p

Bn\ vn^=Q and ξ vanishes outside of Fc.E—PBc:
E—PBn. Therefore, similarly to the proof of lemma 5.4, we have
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This implies that \g(y)ξ(dy)=0, since Py[ί=Q]=l for all jeA

6. Symmetric case

In this section we shall assume, in addition, that gp(x, y)=gp(y, x) for
all p>0 and x, y^E, that is, X and X are equivalent. In this case, as is
well known (see [3; proposition VI. 4. 10]), any semipolar set is polar. Hence,
for every compact set F, the set F—Fr is polar, where Fr is the set of all
regular points of F (see [3; II. 3.3]). Therefore F is a projective set (see [3;
V. 4.5]). Hence, by considering the projection of CAF {t}, there exists a CAF
B such that

(6.1) E*[e-τ'] = E*[(~e-'dBt]
Jo

and supp (B)=Fr ([3 V. 4.6 and 4.7]), where supp (B) is the fine support of B.
Obviously, F is a polar set if and only if the corresponding CAF B is zero. Let
T=inf {t Bt= 00} . We have

This implies that T=°° a.s. Px for all x<=E, that is, B<=Φ. Let $ be the
dual CAF of B then, under our present hypothesis, the corresponding polar
set PB may be supposed empty (see the proof of [14 VII. 1]) and the cofine
support F of & is equal to rF=Fr, since the fine and cofine topologies conicide,
where rF is the set of all coregular points of F. Therefore, by theorem 5.5 we
have

Theorem 6.1. If F is a non-polar compact subset of E} then there exists
a unique probability measure ξF on Fr such that

(6.2) GξF(x) = R(F) onFr.

Here, the measure ξF and the constant R(F) are given by

(6.3) ξF(dy) = P^[$ϊFedy] and

(6.4)

respectively. The measure ξF is called the equilibrium measure of F (relative to the
potential kernel function g(x, y)).

Corollary. Under the hypothesis of theorem 6.1 there exists a unique proba-
bility measure ξF on F such that GζF is bounded on F and satisfies (6.2).
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Proof. It is enough to prove the uniqueness. Suppose that a measure
ξ on F satisfies the conditions of the corollary. Then since Gξ is bounded on
F, ξ charges no polar set (see the proofs of theorem 3.4 and corollary 2 of
theorem 4.1). Hence ξ is a measure on Fr, so that the corollary follows from
theorem 6.1.

REMARK. By the proof of the corollary, the result of the corollary may be
replaced by the following result. "There exists a unique probability measure
on F which attains no mass on any polar set and satisfies (6.2)".

By using the relation (4.1) of g(x,y) and an arbitrary potential kernel func-
tion h(x, y), we would like to investigate the equilibrium principle relative to
h(x, y). At present, however, we can get only a partial result on this problem;
we have to impose very strong conditions on h(x, y) and we do not know even if
the logarithmic potential kernel function of planar Brownian motion satisfies
these conditions. Our conditions are the following.

(HI) For every compact set Z),

(6.5) Km sup \g\oc, y)-φ(p)-h(x, y) \ = 0
ί->o χ,y^D

for some function φ and a potential kernel function h.

(H2) For allp> 0 and bounded continuous function/, Kp

Bf is continuous, where
B is a CAF with fine support Fr, as before.

To find the equilibrium measure ξ relative to hy we shall attempt a formal
calculation. Suppose that a probability measure ξ on F satisfies Hξ(x)=

\h(x,y)ξ(dy)=a on Fr for some constant a. Then, from (4.1), for all

Gξ(x) = Hξ(x)-H(x, C)-(C,y)ξ(dy)+H(C, C)

= -#(*, Q+a-\ή(Cfy)ξ(dy)+H(C, C) .

Operating I—pKp

B and integrating byfdvB, it follows that

(6.6) </, (I-pK>B)Gξ\B = -</, (I-

The left side of (6.6) becomes

from the dual formula of (2.8).
On the other hand, the right side of (6.6) becomes
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= -Km<f, (I-pKWG (., C)-φ(g))>

, C)\B = lim<f, -G$°(., C)+j<W( , C)

m<f, qG^G\-, C)\B .
7->0

Hence (6.6) becomes

<flβ, f> - fin </, ?G W
?->0

Multiplying/) and letting p-*°° we have

(6.7) </, K> = Zm /ίm^</, G^G\- , C)>v, .

Theorem 6.2. L^/ F be a non-polar compact subset of E. Under the hy-
pothesis (HI) and (H2), ί/sere ocάfo ^ unique probability measure ξ on Fr such that

(6.8) Hξ = a constant on Fr .

Proof. Since

the measure pqGpBQGq(x, C)vB(dx) is a probability measure on F for any
py q>0. Hence, for all/>>0, we can choose a sequence qn-*Q and a probability
measure ξp on F such that pqnG

pBQGq»(x, C)vB(dx)-^ξp(dx)> weakly. Similarly,
there exists a sequence pm-^°° and a probability measure ? on Fsuch that ξpm-*ξ>

weakly. From the hypothesis (H2), for all bounded continuous function /,

> = Urn Urn <

= Urn Urn

= Km Urn
" "

Hence, letting k-* °°, it follows that

that is, f = [ / (A)]=5«[/(J5ΓΓjl)]. So that ξ is a measure on Fr.
To prove (6.8), let /be a bounded continous function with compact support.

By restricting the CAT B as in section 5, we may suppose that VIA%\ is bounded.
Then, since fό is bounded and continuous from (2.7), we have
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</, Gξyμ = <fO, £> =* Hm Urn <fG, pmqnGt-°G<°( , C)\s

= KmKmpm<fO, G&"\; C)-G«'( , C)+pmK^Gί'(' , C)>VB

= KmKmpm<f, KBGB-\ , C)-KJI
m n

= KmKmpm<f, KBG$» °( , C)-K$>"
m n

from (2.8). By the definition of KB and H,

limpmKBGt-\X, C) = limlimpm\V^Bm m q+Q ^

= Urn Urn {paV<A?BUA°;M(x)--}m i +o I )

= Km Km

Km Hmpm{KB"Gg"(x, C)-v AKB<"G**(C)}

G^x, C)-φ(qn)}-vAKB"' {&'(-, C)-φ(qH)}]

(x, C)-vAKB"H(C)}

= E'[H(XTf, C)]-S^[H(XTf, C)] .

Hence

</, Gζ\ = <f, -E'[\TfIc(X,)dS]-E'[E(XTf)Jo

Therefore

Gξ(x] = -^[Γ'/c^Λ+tf^, CH+^Mf''/̂ .)̂ ^ ,̂.,, C)]
Jo Jo

for a.a.x (μ). In particular,

Gξ(x) - -»(«, C)+5^[(Γp/c(^)ά+H(JίΓ^ C)]
Jo

for a.a.x<=Fr (μ\ and hence for all x&Fr. Hence, by (4.1), (6.8) holds. If
ξl and ξ2 are measures on Fr satisfying (6.8), then G(ξl— ξ2) equals to a con-
stant on Fr. Hence ξι=ξ2 by the proof of theorem 5.5.

In the classical case, the equilibrium measure is characterized as the measure
which minimize the energy. In our case, the analogous result holds. Denote
Jit the family of all bounded signed measures ξ on E with compact support
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such that \ \ g ( x , y ) \ \ ξ \ ( d y ) is bounded, Oll+={g^0;-feJH} and JK°=

{feJΓE; £(£)=()}. For f, feOH, define the mutual energy of ξ and f by

Denote (ξ, ξ) by I(ξ) and call it the energy of ξ.

Lemma 6.3. //"geOTZ0, then I(ξ) is non-negative. Moreover, I(ξ)=Q if
and only if ξ=0.

Proof. Suppose that £<Ξ 3TC°. Since GLO \ξ\(x) is bounded,

converges uniformly in x. Hence for any £>0 there exists a number N such
that

' ξ ( * ) \ < e

for all x^E. From our definition o£g(x, y), for (Λ,

+€(*, J, ΛO ,

where £(*, Λ Λ0= Σ {(K\)n-vA} gl'\x, y). Since |(fi[)=0) for all *e £,

From the resolvent equation (1.7), we have

This combined with glt\x, y)^g2'°(x, y), we have

Kltf^x, y )^K2

Ag™(x, y)^gl °(x, y)

so that

Hence we have, from the symmetry of g2(x, y)
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Similarly it follows that

Σίn = ι

Therefore 7(f)^-£ and hence
Suppose that /(£)— 0. By a routine argument, we have \(ξ, ζ)\2^

I(ξ)I(ζ) for all ζ(Ξ Jΐl°. Hence (£, f)=0 for all f e Jlt°. This implies that G^
equlas to a constant on E. Integrating by vA, we can see that the constant is

equals to 0. Hence f = 0.

Theorem 6.4. ΓAtf equilibrium measure ξF of a compact set F is the unique

measure which attains the

(6.10) min{I(^ξ^J{ί+,ξ(E}=l, support of

and Robin's constant R(F) equals the minimum value of (6.10).

Proof. The proof is similar to the classical case [16]. If a measure ξ
satisfies the conditions of (6.10), then, since GξF=R(F) on F except a polar
subset of F and ξ charges no polar set,

= I(ξ-ξF)+R(F) .

Since ξ — £Fe Jfl°, this implies the result by lemma 6.2.
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