ON THE ALEXANDER POLYNOMIALS OF SLICE LINKS

Yоко NAKAGAWA

(Received November 26, 1976)
(Revised September 1, 1977)

The purpose of this note is to generalize the theorem that the Alexander polynomial of a slice knot is of the form $f(t) \cdot f\left(t^{-1}\right)$ for an integral polynomial $f(t)$ with $|f(1)|=1$ (see [3]). We will show the following:

Theorem. Let L be a slice link with μ components in the strong sense, then there exists an integral polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ with $|F(1, \cdots, 1)|=1$ and the Alexander polynomial $A\left(t_{1}, \cdots, t_{\mu}\right)$ of L is of the form

$$
A\left(t_{1}, \cdots, t_{\mu}\right) \doteq F\left(t_{1}, \cdots, t_{\mu}\right) \cdot F\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)^{(*)}
$$

Conversely for a given integral polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ with $|F(1, \cdots, 1)|=1$, there exists a slice link with μ components in the strong sense whose Alexander polynomial is $F\left(t_{1}, \cdots, t_{\mu}\right) \cdot F\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$.

To prove the above Theorem, we will consider two theorems. In §2 the necessary condition of the Alexander polynomials will be considered for not only slice links in the strong sense, but also cobordant links. We will prove the following:

Theorem 1. For cobordant links $L_{i}, i=1,2$, with μ components, there exist two integral polynomials $F_{i}\left(t_{1}, \cdots, t_{\mu}\right), i=1,2$, with $\left|F_{i}(1, \cdots, 1)\right|=1$ such that

$$
\begin{aligned}
& A_{1}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{1}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{1}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right) \\
\doteq & A_{2}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{2}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{2}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right),
\end{aligned}
$$

where A_{i} is the Alexander polynomial of the link L_{i}.
Since a slice link L with μ components in the strong sense is cobordant to the trivial link with μ components, the following corollary will be obtained.

Corollary. The Alexander polynomial $A\left(t_{1}, \cdots, t_{\mu}\right)$ of a slice link L with μ components in the strong sense necessarily satisfies $A\left(t_{1}, \cdots, t_{\mu}\right) \doteq F\left(t_{1}, \cdots, t_{\mu}\right)$

[^0]$\times F\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$ for an integral polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ with $|F(1, \cdots, 1)|=1$.
In §3, it will be shown that the condition in the Cor. to Theorem 1 is sufficient; i.e., the following theorem will be proved:

Theorem 2. For a given integral polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ with $|F(1, \cdots, 1)|$ $=1$, there exists a slice link L with μ components in the strong sense whose Alexander polynomial is $F\left(t_{1}, \cdots, t_{\mu}\right) \cdot F\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$.

In §4, some examples will be considered.
A. Kawauchi [5] has obtained some of the results of this paper. Our work is independent of his; on the other hand, it was useful to us in that it showed the re-definition of the Alexander polynomials and the numerical invariant β. By Fox's definition [1], slice links in the strong sense have 0-Alexander polynomials for $\mu \geq 2$.

Throughout the paper, spaces are considered in the piecewise-linear category, and the Alexander polynomials are non-zero.

1. Preliminaries and definitions

A link is the disjoint union of peicewise-linearly embedded, oriented 1spheres in the oriented 3 -sphere S^{3}. Two links L_{1} and L_{2} with μ components are cobordant, if there exist mutually disjoint, locally flat, piecewise-linearly embedded proper annuli F_{1}, \cdots, F_{μ} in $S^{3} \times[0,1]$ spanning $S^{3} \times 0$ and $S^{3} \times 1$ such that $\left(F_{1} \cup \cdots \cup F_{\mu}\right) \cap\left(S^{3} \times 0\right)=L_{1} \times 0 \quad$ and $\quad\left(F_{1} \cup \cdots \cup F_{\mu}\right) \cap\left(S^{3} \times 1\right)=\left(-L_{2}\right) \times 1$, where $-L_{2}$ is L_{2} with orientation reversed. A link that is cobordant to the trivial link is called a slice link in the strong sense ([1]). For cobordant links L_{i}, $i=1$, 2, with μ components the Alexander polynomials $A_{i}\left(t_{1}, \cdots, t_{\mu}\right)$ of L_{i} should be chosen to be the Alexander polynomials associated with the meridian bases of $H_{1}\left(S^{3}-L_{i} ; Z\right)$ consistent through the cobordism annuli F_{1}, \cdots, F_{μ}.

Let $L \subset S^{3}$ be a link with μ components and B_{1}, \cdots, B_{ν} be mutually disjoint 2-cells in S^{3} such that for each $j, B_{j} \cap L=\partial B_{j} \cap L$ consists of two arcs. The resulting link $L^{\prime}=\left(L-\bigcup_{j=1}^{\nu} \partial B_{j} \cap L\right) \cup \bigcup_{j=1}^{\nu} c l\left(\partial B_{j}-L\right)$ with the induced orientation from $L-\bigcup_{j=1} \partial B_{j} \cap L$ is called the (oriented) link obtained from L by the hyperbolic transformations along the bands B_{1}, \cdots, B_{ν}. If the number of the components of L^{\prime} is $\mu-\nu$, then the link L^{\prime} is said to be obtained from L by the fusion* along B_{1}, \cdots, B_{ν}.

Let a link L consist of sublinks L_{1} and L_{2} that are separated by a 2 -sphere in S^{3}. Then the link L is denoted by $L_{1} \circ L_{2}$. Let $O^{\nu}=\underbrace{O \circ \cdots \circ O}$ be the trivial link with ν components.

[^1]
2. Proof of Theorem 1

Theorem 1. For cobordant links $L_{i}, i=1,2$, with μ components, there exist two integral polynomials $F_{i}\left(t_{1}, \cdots, t_{\mu}\right), i=1,2$, with $\left|F_{i}(1, \cdots, 1)\right|=1$ such that

$$
\begin{aligned}
& A_{1}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{1}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{1}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right) \\
\doteq & A_{2}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{2}\left(t_{1}, \cdots, t_{\mu}\right) \cdot F_{2}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)
\end{aligned}
$$

where A_{i} is the Alexander polynomial of the link L_{i}.
To prove Theorem 1, it is enough to consider the following lemmas.
Lemma 1. Let L_{1} and L_{2} be cobordant links with μ components. Then there exist integers $\nu_{1}, \nu_{2} \geq 0$ and a link \widetilde{L} with μ components such that for each $i, i=1,2$, \widetilde{L} is obtained from the $\left(\mu+\nu_{i}\right)$-component link $L_{i} \circ O^{v i}$ by the fusion along certain bands $B_{1}^{(i)}, \cdots, B_{v_{i}}^{(i)}$ joining each component of $O^{\nu_{i}}$ with the link L_{i}.

This lemma is generally known. (See [2], [4] and [6].)
Lemma 2. If a μ-component link \widetilde{L} is obtained from the ($\mu+\nu$)-component link $L \circ O^{\nu}$ by the fusion along bands B_{1}, \cdots, B_{μ} joining each component of O^{ν} with L, then there exists a polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ such that $\tilde{A}\left(t_{1}, \cdots, t_{\mu}\right) \doteq\left(t_{1}, \cdots, t_{\mu}\right) \times$ $F\left(t_{1}, \cdots, t_{\mu}\right) \cdot F\left(t_{1}^{-1}, \cdots, t_{1}^{-1}\right),|F(1, \cdots, 1)|=1$, where A and \tilde{A} are the Alexander polynomials of L and \tilde{L}, respectively.

Proof of Theorem 1. It is straightforward from Lemmas 1 and 2.
Proof of Lemma 2. We will consider a case in which $\mu=2, \nu=3$ to avoid unnecessary complexity, but as we will see later, the calculation method will not depend on the numbers μ and ν.

Consider the plane projection of L as in Fig. 1. The link group $G(L)$ can be then presented as follows:

$$
\begin{aligned}
& \text { generators; } x_{1}, \cdots, x_{n_{x}} \\
& y_{1}, \cdots, y_{n y} \text {, } \\
& \text { relators } \quad ; r_{i}^{(x)}=x_{i} w_{p}^{8} x_{i+1}^{-1} w_{p}^{-\varepsilon} \quad\left(i=1, \cdots, n_{x}-1\right) \\
& r_{n_{x}}^{(x)}=x_{n_{x}} w_{p}^{\varepsilon} p x_{1}^{-1} w_{p}^{-\varepsilon} p \\
& r_{i}^{(y)}=y_{i} w_{p}^{\ell} p y_{i+1}^{-1} w_{p}^{-q} p \quad\left(i=1, \cdots, n_{y}-1\right) \\
& r_{n_{y}}^{(y)}=y_{n_{y}} w_{p}^{\ell} p y_{1}^{-1} w_{p}^{-q} p,
\end{aligned}
$$

where u_{*} is an element in the set $\left\{x_{i}, y_{j} ; i=1, \cdots, n_{x}, j=1, \cdots, n_{y}\right\}$, and $\varepsilon_{p}=$ +1 or -1 .

\widetilde{L}

Fig. 1
Let \mathfrak{a} be the Alexander matrix of L, then \mathfrak{a} is equivalent to the following matrix with entries in $Z[x, y]$, where $\{x, y\}$ is the meridian base of $G(L) / G(L)^{\prime}$.

Let us use this presentation of $G(L)$ to consider a presentation of $G(\widetilde{L}) / G(\widetilde{L})^{\prime \prime}$. Let $x^{\prime}, y^{\prime}, z^{\prime}, a_{i}, b_{j}$ and c_{k} be the generators corresponding to the trivial link and the attaching bands as in Fig. 1.

We will study how the upper paths of L are divided by the attaching bands in the projection of \tilde{L};

Fig. 2
(II)

L

Fig. 3

The upper path x_{i} is divided into $x_{i 1}, \cdots, x_{i i_{x}}$ by the attaching bands (see Fig. 2). The relators obtained from these parts are as follows:

$$
\text { (I) }\left\{\begin{array}{l}
x_{i i_{x}}=\alpha_{*}^{\varepsilon_{*}^{*} *} x_{i i_{x-1}} \alpha_{*}^{-\varepsilon_{*}} \\
\vdots \\
x_{i 2}=\alpha_{*}^{\varepsilon^{\varepsilon} *} x_{i 1} \alpha_{*}^{-\varepsilon *} .
\end{array}\right.
$$

Here, ε_{*} is +1 or -1 , and α_{*} is one of a_{*}, b_{*}, c_{*}. Thus, we get i_{x} generators instead of one generator of $G(L)$ and $i_{x}-1$ defining relators (I).

Assume that the attaching bands attach at the upper paths $x_{i_{1}}, x_{i_{2}}$ and y_{j} of L (see, for example, Fig. 3), so that the resulting upper paths of \hat{L} are denoted by $x_{i_{1} 1}$ and $x_{i_{1} 2}, x_{i_{2} 1}$ and $x_{i_{2}}$, and $y_{j_{1}}$ and $y_{j 2}$.

More generators and relators related to $O_{1} \cup O_{2} \cup O_{3}$ and the attaching bands have to be considered (see, for example, Fig. 4).

Fig. 4
As a result, one presentation of $G(\widetilde{L}) / G(\widetilde{L})^{\prime \prime}$ is as follows*:

$$
\begin{aligned}
\text { generators; } x_{i l}, y_{j m},(i & =1, \cdots, i_{1} 1, i_{1} 2, \cdots, i_{2} 1, i_{2} 2, \cdots, n_{x} \\
j & \left.=1, \cdots, j 1, j 2, \cdots n_{y}\right)
\end{aligned}
$$

[^2]relators; $r_{t}^{\prime}=w_{k *} w_{l *}^{\varepsilon l} w_{k+1 *}^{-1} w_{l *}^{-\varepsilon l}$ or $w_{n *} w_{l *}^{\varepsilon l} w_{1 *}^{-1} w_{l *}^{\varepsilon l}$, caused
from the presentation of $G(L)$, where $w_{* *} \in\left\{x_{i l}, y_{j m}\right\}$ and $n=n_{x}$ or $n_{y}, \iota=1,2$, $\cdots, n_{x}+n_{y}$.

From (I), $\quad x_{i l}=A x_{i 1} A^{-1} \quad\left(i=1, \cdots, n_{x}, j=1, \cdots, n_{y}\right)$

$$
y_{j m}=B y_{j_{1}} B^{-1},
$$

where A and B are some words of $\left\{a_{i}^{ \pm 1}, b_{k}^{ \pm 1}, c_{j}^{ \pm 1}\right\}$.

$$
\text { From (III), } \begin{aligned}
S_{1} & =s_{1} \cdots s_{n_{s}} x^{\prime} s_{n_{s}}^{-1} \cdots s_{1}^{-1} \cdot a_{n_{a}} \cdot x^{\prime-1} \\
S_{2} & =s_{1}^{\prime} \cdots s_{m_{s}}^{\prime} z^{\prime} s_{m_{s}^{\prime}}^{\prime-1} \cdots s_{1}^{\prime-1} c_{n_{c}} z^{\prime-1} \\
S_{3} & =s_{1}^{\prime \prime} \cdots s_{l_{s}^{\prime}}^{\prime \prime} y_{s_{s}^{\prime}}^{\prime \prime-1} \cdots s_{1}^{\prime \prime-1} b_{n_{b}} y^{\prime-1},
\end{aligned}
$$

where $s_{\imath}, s_{\imath}^{\prime}, s_{\imath}^{\prime \prime}$ are some of $a_{i}^{ \pm 1}, b_{k}^{ \pm 1}$ and $c_{j}^{ \pm 1}$.

$$
\begin{aligned}
& \text { From (IV), } R_{1}=w_{1} \cdots w_{n} x^{\prime} a_{n_{a}}^{-1} w_{n}^{-1} \cdots w_{1}^{-1} x_{i_{1} 1}^{-1} \\
& R_{1}^{\prime}=w_{1} \cdots w_{n} x^{\prime} w_{n}^{-1} \cdots w_{1}^{-1} x_{i_{1}{ }^{-1}}^{-1} \\
& R_{2}=w_{1}^{\prime} \cdots w_{m}^{\prime} z^{\prime}{c_{n}}_{-1} w_{m}^{\prime-1} \cdots w_{1}^{-1} x_{i_{2}}^{-1} \\
& R_{2}^{\prime}=w_{1}^{\prime} \cdots w_{m}^{\prime} z^{\prime} w_{m}^{\prime-1} \cdots w_{1}^{\prime-1} x_{i_{2}{ }^{-1}} \\
& R_{3}=w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime} y^{\prime} b_{n_{b}}^{-1} w_{l}^{\prime \prime-1} \cdots w_{1}^{\prime \prime-1} y_{j 1}^{-1} \\
& R_{3}^{\prime}=w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime} y^{\prime} w_{l}^{\prime \prime-1} \cdots w_{1}^{\prime \prime-1} y_{j 2}^{-2},
\end{aligned}
$$

where $w_{\iota}, w_{\imath}^{\prime}$ and $w_{\imath}^{\prime \prime}$ are some of $\left\{x_{i l}^{ \pm 1}, y_{j m}^{ \pm 1}, a_{i}^{ \pm 1}, b_{k}^{ \pm 1}, c_{j}^{ \pm 1}\right\}$.
Since a_{*}, b_{*}, and c_{*} are the elements of $G(\widetilde{L})^{\prime}$, these generators are commutative mutually, so that their indices are changed only after the attaching bands crossing under the upper paths of $O_{1} \circ O_{2} \circ O_{3} \circ L$;

$$
\text { (V) }\left\{\begin{array}{l}
a_{2}=\alpha_{1} a_{1} \alpha_{1}^{-1} \\
\vdots \\
a_{n_{a}}=\alpha_{n_{a}-1} \cdots \alpha_{1} a_{1} \alpha_{1}^{-1} \cdots \alpha_{n_{a}-1}^{-1} \\
c_{2}=\gamma_{1} c_{1} \gamma_{1}^{-1} \\
\vdots \\
c_{n_{c}}=\gamma_{n_{c}-1} \cdots \gamma_{1} c_{1} \gamma_{1}^{-1} \cdots \gamma_{n_{c}-1}^{-1} \\
b_{2}=\beta_{1} b_{1} \beta_{1}^{-1} \\
\vdots \\
b_{n_{b}}=\beta_{n_{b}-1} \cdots \beta_{1} b_{1} \beta_{1}^{-1} \cdots \beta_{n_{b}-1}^{-1}
\end{array}\right.
$$

where α_{*}, β_{*}, and γ_{*} are some of $x_{i 1}$ and $y_{j 1}$, since $x_{i l}$ and $y_{j m}$ have the form in (I).

For the same reason, S_{1}, S_{2} and S_{3} are equivalent to the following:

$$
\begin{aligned}
S_{1}= & a_{n_{a}}^{-1}\left(a_{i_{1}}^{\varepsilon i_{1}} a_{i_{2}}^{\varepsilon i_{2}} \cdots a_{i_{l}}^{\varepsilon i_{i}}\right)\left(c_{j_{1}}^{\varepsilon j_{1}} c_{j_{2}}^{\varepsilon j_{2}} \cdots c_{j_{m}}^{\varepsilon j_{m}}\right)\left(b_{k_{1}}^{\varepsilon k_{1}} b_{k_{2}}^{\varepsilon k_{2}} \cdots b_{k_{n}}^{\varepsilon k_{n}}\right) x^{\prime-1} \\
& \left(b_{k_{n}}^{-\varepsilon k_{n}} \cdots b_{k_{1}}^{-\varepsilon k_{1}}\right)\left(c_{j_{m}}^{-\varepsilon j_{m}} \cdots c_{j_{1}}^{-\varepsilon j_{1}}\right)\left(a_{i_{l}}^{-\varepsilon i_{l}} \cdots a_{i_{1}}^{-\varepsilon i_{1}}\right) x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}=c_{n_{c}}^{-1}\left(c_{j_{1}}^{\varepsilon j_{1}{ }^{\prime}} \cdots c_{j_{m}}^{\varepsilon j_{m^{\prime}}{ }^{\prime}}\right)\left(a_{i_{1}}^{\varepsilon i_{1}^{\prime}} \cdots a_{i_{i}}^{\varepsilon i_{i}^{\prime}}\right)\left(b_{k_{1}}^{\varepsilon k_{1}{ }^{\prime}} \cdots b_{k_{n}}^{\varepsilon k_{n^{\prime}}{ }^{\prime}}\right) z^{\prime-1} \\
& \times\left(b_{k_{n}^{\prime}}^{-\varepsilon k_{n}{ }^{\prime}} \cdots b_{k_{1}^{\prime}}^{-\varepsilon k_{1}^{\prime}}\right)\left(a_{i_{l}^{\prime}}^{-\varepsilon i_{l}^{\prime}} \cdots a_{i_{1}^{\prime}}^{-\varepsilon i_{1}^{\prime}}\right)\left(c_{j_{m}^{\prime}}^{-\varepsilon j_{m^{\prime}}} \cdots c_{j_{1}^{\prime}}^{-\varepsilon j_{1}^{\prime}}\right) z^{\prime} \\
& S_{3}=b_{n_{b}}^{-1}\left(b_{k_{1}^{\prime \prime}}^{\varepsilon k_{1}{ }^{\prime \prime}} \cdots b_{k_{n}{ }^{\prime \prime}}^{\varepsilon k_{n^{\prime \prime}}}\right)\left(a_{i_{1}^{\prime \prime}}^{\varepsilon i^{\prime \prime}} \cdots a_{i_{1}^{\prime \prime}}^{\varepsilon i^{\prime \prime}}\right)\left(c_{j_{1}^{\prime \prime}}^{\varepsilon j_{j^{\prime \prime}}} \cdots c_{j_{m}}^{\varepsilon j_{m^{\prime \prime}}{ }^{\prime \prime}}\right) y^{\prime-1} \\
& \times\left(c_{j_{m^{\prime \prime}}}^{-\varepsilon j_{m^{\prime \prime}}^{\prime \prime}} \cdots c_{j_{1}{ }^{\prime}}^{-\varepsilon j_{1}^{\prime \prime}}\right)\left(a_{i_{1} i^{\prime \prime}}^{-\varepsilon i_{l}^{\prime \prime}} \cdots a_{i_{1}{ }^{\prime \prime}}^{-\varepsilon i_{1}^{\prime \prime}}\right)\left(b_{k_{n}}^{-\varepsilon k_{n}^{\prime \prime}} \cdots b_{k_{1}^{\prime \prime}}^{-\varepsilon k_{1}{ }^{\prime \prime}}\right) y^{\prime}
\end{aligned}
$$

where $n_{a}>i_{1}>\cdots>i_{l}>1, n_{c}>j_{1}>\cdots>j_{m}>1, n_{a}>k_{1}>\cdots>k_{n}>1$, and so on.
Since the sets (I) and (V) are the defining relations, $x_{i l}(l \neq 1), y_{j n}(n \neq 1)$, $a_{i}(i \neq 1), b_{j}(j \neq 1)$ and $c_{k}(k \neq 1)$ vanish. Let us use x_{i}, y_{j}, a, b and c instead of $x_{i 1}, y_{j 1}, a_{1}, b_{1}$ and c_{1}, respectively.

After a_{i}, b_{j} and c_{k} vanishing, let us use these notations as words having the following forms:

$$
\begin{aligned}
& a_{i}=\alpha_{i-1}^{\varepsilon_{i-1}} \cdots \alpha_{1}^{\varepsilon_{1}} a \alpha_{1}^{\varepsilon_{1}} \cdots \alpha_{i-1}^{\varepsilon_{i}^{2}-1} \\
& b_{j}=\beta_{j-1}^{\mathrm{e}_{j-1}} \cdots \beta_{1}^{\mathrm{\varepsilon}} \mathrm{l} b \beta_{1}^{-\mathrm{\varepsilon}_{1}} \cdots \beta_{j-1}^{-\mathrm{e}_{j-1}} \\
& c_{k}=\gamma_{k-1}^{\varepsilon_{k}-1} \cdots \gamma_{1}^{\mathcal{R}_{1}} c \gamma_{1}^{-\varepsilon_{1}} \ldots \gamma_{k-1}^{-\varepsilon_{k}-1} .
\end{aligned}
$$

Then, the presentation of $G(\widetilde{L}) / G(\widetilde{L})^{\prime \prime}$ is the following:

$$
\begin{array}{ll}
\text { generators } & x_{1}, \cdots, x_{i_{1}}, x_{i_{1} 2}, \cdots, x_{i_{2} 1}, x_{i_{2} 2}, \cdots, x_{n_{x}} \\
& y_{1}, \cdots, y_{j 1}, y_{j 2}, \cdots, y_{n_{y}}, \\
& x^{\prime}, y^{\prime}, z^{\prime}, \\
& a, b, c, \\
\text { relators; } \quad & r_{\iota}^{\prime}=A_{\iota}^{\prime} w_{\iota}^{\prime} A_{\iota^{\prime}}^{-1} \cdot W_{\rho} w_{\rho}^{\ell} W_{\rho}^{-1} \cdot A_{\iota^{\prime \prime}}^{\prime} w_{\iota^{\prime \prime}}^{-1} A_{\iota^{\prime \prime}}^{-1} \cdot W_{\rho}^{-1} w_{\rho}^{-8} W_{\rho} \\
& \left(\iota=1, \cdots, n_{x}+n_{y}\right),
\end{array}
$$

where A_{*} and W_{*} are some words of $\left\{a_{i}^{ \pm 1}, b_{j}^{ \pm 1}, c_{k}^{ \pm 1}\right\}$, and w_{*} is some of $\left\{x_{i}^{ \pm 1}, y_{j}^{ \pm 1}\right\}$, and $\left(\iota^{\prime}, \iota^{\prime \prime}\right)=(k, k+1)$ or $\left(n_{x}, 1\right)$ or $\left(n_{y}, 1\right)$.

$$
\begin{aligned}
& R_{1}=W_{1}\left(x_{i}, y_{j}, a_{*}, b_{*}, c_{*}, x^{\prime}, y^{\prime}, z^{\prime}\right) x^{\prime} a_{n_{a}}^{-1} W_{1}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{1} 1}^{-1} \\
& R_{1}^{\prime}=W_{1}\left(x_{i}, y_{j}, a_{*}, b_{*}, c_{*}, x^{\prime}, y^{\prime}, z^{\prime}\right) x^{\prime} W_{1}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{1}-1}^{-1} \\
& R_{2}=W_{2}\left(x_{i}, y_{j}, a_{*}, b_{*}, c_{*}, x^{\prime}, y^{\prime}, z^{\prime}\right) z^{\prime} c_{n_{c}}^{-1} W_{2}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{2} 1}^{-1} \\
& R_{2}^{\prime}=W_{2}\left(x_{i}, \cdots, z^{\prime}\right) z^{\prime} W_{2}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{2} 2}^{-1} \\
& R_{3}=W_{3}\left(x_{i}, \cdots, z^{\prime}\right) y^{\prime} b_{n_{b}-1}^{W_{3}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) y_{j_{1}}^{-1}} \\
& R_{3}^{\prime}=W_{3}\left(x_{i}, \cdots, z^{\prime}\right) y^{\prime} W_{3}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) y_{j_{2}}^{-1},
\end{aligned}
$$

where W_{1}, W_{2} and W_{3} are the words of $\left\{x_{i}, y_{j}, a_{*}, b_{*}, c_{*}, x^{\prime}, y^{\prime}, z^{\prime}\right\}$.

$$
\begin{aligned}
S_{1}= & a_{n_{a}}^{-1}\left(a_{i_{1}}^{\varepsilon i_{1}} \cdots a_{i_{l}}^{\varepsilon i_{1}}\right)\left(c_{j_{1}}^{\varepsilon j_{1}} \cdots c_{j_{m}}^{\varepsilon j_{m}}\right)\left(b_{k_{1}}^{\varepsilon k_{1}} \cdots b_{k_{n}}^{\varepsilon k_{n}}\right) x^{\prime-1} \\
& \times\left(b_{k_{n}}^{-\varepsilon k_{n}} \cdots b_{k_{1}}^{-\varepsilon k_{1}}\right)\left(c_{j_{m}}^{-\varepsilon j_{m}} \cdots c_{j_{1}}^{-\varepsilon j_{1}}\right)\left(a_{i_{l}}^{-\varepsilon i_{l}} \cdots a_{i_{1}}^{-\varepsilon i_{l}}\right) x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}=c_{n_{c}}^{-1}\left(c_{j_{1}}^{\varepsilon j_{1}{ }^{\prime}} \cdots c_{j_{m}}^{\varepsilon j_{m}{ }^{\prime}}\right)\left(a_{i_{1}}^{\varepsilon i_{1}{ }^{\prime}} \cdots a_{i_{i}}^{\varepsilon i_{i}^{\prime}}\right)\left(b_{k_{1}}^{\varepsilon k_{1}{ }^{\prime}} \cdots b_{k_{n}}^{\varepsilon k_{n^{\prime}}{ }^{\prime}}\right) z^{\prime-1} \\
& \times\left(b_{k_{n}^{\prime}}^{-\varepsilon k_{n}^{\prime}} \cdots b_{k_{1}{ }^{-}}^{-\varepsilon k_{1}^{\prime}}\right)\left(a_{i_{l}^{\prime}}^{-\varepsilon i_{l}^{\prime}} \cdots a_{i_{1}^{\prime}}^{-\varepsilon i_{1}^{\prime}}\right)\left(c_{j_{m}^{\prime}}^{-\varepsilon j_{m^{\prime}}} \cdots c_{j_{1}^{\prime}}^{-\varepsilon j_{1}^{\prime}}\right) z^{\prime} \\
& S_{3}=b_{n_{b}}^{-1}\left(b_{k_{1}^{\prime \prime}}^{\varepsilon k_{1}{ }^{\prime \prime}} \cdots b_{k_{n}}^{\varepsilon k_{n}{ }^{\prime \prime}}\right)\left(a_{i_{1}{ }^{\prime \prime}}^{\varepsilon i_{1}{ }^{\prime \prime}} \cdots a_{i_{1}^{\prime \prime}}^{\varepsilon i_{i}^{\prime \prime}}\right)\left(c_{j_{1}{ }^{\prime \prime}}^{\varepsilon j_{1}{ }^{\prime \prime}} \cdots c_{j_{m}}^{\varepsilon j_{m^{\prime \prime}}}\right) y^{\prime-1} \\
& \times\left(c_{j_{m}{ }^{\prime \prime}}^{-\varepsilon j_{m}^{\prime \prime}} \cdots c_{j_{1}{ }^{\prime \prime}}^{-\varepsilon j_{j_{1} \prime \prime}^{\prime \prime}}\right)\left(a_{i_{1}^{\prime \prime}}^{-\varepsilon i_{i^{\prime \prime}}} \cdots a_{i_{1}^{\prime \prime}}^{-\varepsilon i_{1}{ }^{\prime \prime}}\right)\left(b_{k_{n}^{\prime \prime}}^{-\varepsilon k_{n}^{\prime \prime}} \cdots b_{k_{1}^{\prime \prime}}^{-\varepsilon k_{1}{ }^{\prime \prime}}\right) y^{\prime} .
\end{aligned}
$$

Before considering the Alexander matrix of $G(\tilde{L}) / G(\tilde{L})^{\prime \prime}$, we will introduce several properties of the free calculus.

Proposition 1.

$$
\frac{\partial r_{1}^{\prime}}{\partial w}=0 \quad\left(w=x^{\prime}, y^{\prime}, z^{\prime}, \iota=1, \cdots, n_{x}+n_{y}\right)
$$

Proof. If w appeares in r_{ι}^{\prime}, then w is contained in the words A_{*} or W_{*} that have the special forms; for example, let us consider the form of A_{*},

$$
\begin{aligned}
& A_{*}=a_{i_{1}} \cdots a_{i_{l}} \cdot b_{j_{1}} \cdots b_{j_{m}} \cdot c_{k_{1}} \cdots c_{k_{n}} \\
& =\left(\alpha_{i_{1}} \cdots \alpha_{i_{1} a^{2}}{ }^{\boldsymbol{Q}_{1}} \alpha_{i_{1}}^{-1} \cdots \alpha_{i_{1}}^{-1}\right)\left(\alpha_{i_{2} 1} \cdots a^{\varepsilon_{2}} \cdots\right) \times \\
& \cdots \times\left(\gamma_{i_{k}} \cdots \gamma_{i_{k}{ }^{*}} \epsilon^{\varepsilon} \cdots \gamma_{i_{k}}^{-1}\right) \text {. }
\end{aligned}
$$

Since a, b and c are mapped to 1 by the abelianized map, a_{i}, b_{j} and c_{k} are also mapped to 1 . Let us consider the case that $\alpha_{j}=w$, which appears in a_{i}, then

$$
\begin{aligned}
\frac{\partial a_{i}}{\partial w} & =\alpha_{i-1} \cdots \alpha_{i-j+1}\left(1+w \alpha_{i-j-1} \cdots \alpha_{1} a \alpha_{1}^{-1} \cdots \alpha_{j-j-1}^{-1}\left(-w^{-1}\right)\right) \\
& =0 .
\end{aligned}
$$

In the case that w appears in a_{i} in more than one place, it is easy to get the same result by using a similar calculation as above.

So, it is not difficult to get $\frac{\partial A_{*}}{\partial w}=0$, since A_{*} consists of only $\left\{a_{i}^{ \pm 1}\right\},\left\{b_{j}^{ \pm 1}\right\}$ and $\left\{c_{k}^{ \pm 1}\right\}$.

Proposition 2.

$$
\begin{aligned}
\frac{\partial r_{l}^{\prime}}{\partial w}=\frac{\partial r_{\iota}}{\partial w} & \left(w=x_{i}, y_{j}\right. \\
& \left.\iota \neq i_{1}, i_{2}, j, i_{1}-1, i_{2}-1, j-1\right)
\end{aligned}
$$

Proof. In the case that w appears in some of A_{*} and W_{*}, there is no change in this part, by the same reasoning introduced in the previous proposition, since the words A_{*} and W_{*} in r_{1}^{\prime} are mapped to 1 by abelianization;

$$
\frac{\partial r_{i}^{\prime}}{\partial w}=\frac{\partial A_{\imath}}{\partial w}+A_{\imath} \frac{\partial w_{\imath}}{\partial w}+A_{\imath} w_{\imath} \frac{\partial A_{\imath}^{-1}}{\partial w}+\cdots
$$

$$
\begin{aligned}
& =A_{\iota} \frac{\partial w_{\iota}}{\partial w}+A_{\imath} w_{\imath} A_{\imath}^{-1} W_{\rho} \frac{\partial w_{\rho}^{\mathrm{e}}}{\partial w}+\cdots \\
& =\frac{\partial w_{\iota}}{\partial w}+w_{\iota} \frac{\partial w_{\rho}^{\mathrm{e}}}{\partial w}+w_{\imath} w_{\rho}^{\mathrm{e}} \frac{\partial w_{\iota}-1}{\partial w}+w_{\imath} w_{\rho}^{\mathrm{e}} w_{\iota+1}^{-1} \frac{\partial w_{\rho}^{-\varepsilon}}{\partial w} \\
& =\frac{\partial\left(w_{\imath} w_{\rho}^{\mathrm{e}} w_{\iota+1} w_{\rho}^{-\varepsilon}\right)}{\partial w}=\frac{\partial r_{\iota}}{\partial w} .
\end{aligned}
$$

The following is similarly obtained:

Proposition 3.

$$
\begin{array}{ll}
\frac{\partial r_{i}^{\prime}}{\partial w}=\frac{\partial r_{i}}{\partial w} & \left(w \neq x_{i_{1} 1}, x_{i_{1}}, x_{i_{2} 1}, x_{i_{2}}, y_{j 1}, y_{j 2}\right), \\
\frac{\partial r_{i_{1}}^{\prime}}{\partial x_{i_{1} 2}}=\frac{\partial r_{i 1}}{\partial x_{i 1}}, & \frac{\partial r_{i_{1}-1}^{\prime}}{\partial x_{i_{1} 1}}=\frac{\partial r_{i_{1}-1}}{\partial x_{i 1}}, \\
\frac{\partial r_{i_{2} 2}^{\prime}}{\partial x_{i_{2} 1}^{\prime}}=\frac{\partial r_{i 2}}{\partial x_{i 2}}, & \frac{\partial r_{i_{2}-1}^{\prime}}{\partial x_{i_{2} 1}}=\frac{\partial r_{i_{2}-1}}{\partial x_{i 2}}, \\
\frac{\partial r_{j}^{\prime}}{\partial y_{j 2}}=\frac{\partial r_{j}}{\partial y_{j}}, & \frac{\partial r_{j-1}^{\prime}}{\partial y_{j 1}}=\frac{\partial r_{j-1}}{\partial y_{j}} .
\end{array}
$$

Proposition 4.

$$
\begin{array}{ll}
\frac{\partial R_{1}}{\partial w}=\frac{\partial R_{1}^{\prime}}{\partial w} & \left(w=x_{i}\left(i \neq i_{1} 1, i_{1} 2\right), y_{j}, x^{\prime}, y^{\prime}, z^{\prime}\right) \\
\frac{\partial R_{2}}{\partial w}=\frac{\partial R_{2}^{\prime}}{\partial w} & \left(w=w_{i}\left(\neq i_{2} 1, i_{2} 2\right) y_{j}, x^{\prime}, y^{\prime}, z^{\prime}\right) \\
\frac{\partial R_{3}}{\partial w}=\frac{\partial R_{3}^{\prime}}{\partial w} & \left(w=x_{i}, y_{j}\left(j \neq j_{1}, j_{2}\right), x^{\prime}, y^{\prime}, z^{\prime}\right) \\
\frac{\partial R_{1}}{\partial x_{i_{1} 1}}=\frac{\partial R_{1}^{\prime}}{\partial x_{i_{1} 1}}-1, & \frac{\partial R_{1}^{\prime}}{x_{i_{1} 2}}=\frac{\partial R_{1}}{x_{i_{1} 2}}-1 \\
\frac{\partial R_{2}}{\partial x_{i_{2} 1}}=\frac{\partial R_{2}^{\prime}}{\partial x_{i_{2} 1}}-1, & \frac{\partial R_{2}^{\prime}}{\partial x_{i_{2} 2}}=\frac{\partial R_{2}}{\partial x_{i_{2} 2}}-1 \\
\frac{\partial R_{3}}{\partial y_{j 1}}=\frac{\partial R_{3}^{\prime}}{\partial y_{j 1}}-1, & \frac{\partial R_{3}^{\prime}}{\partial y_{j 2}}=\frac{\partial R_{3}}{\partial y_{j 2}}-1
\end{array}
$$

Proof. The differences between R_{1} and R_{1}^{\prime} are in the last letters and the center parts. Since $\frac{\partial a_{a_{a}}^{-1}}{\partial w}=0$ and $a_{n_{a}}^{-1}$ is mapped to 1 by abelianization, we have

$$
\begin{aligned}
\frac{\partial R_{1}}{\partial x_{i_{1} 1}} & =\frac{\partial\left(W_{1} x^{\prime} W_{1}^{-1}\right)}{\partial x_{i_{1} 1}}+W_{1} x^{\prime} a_{n_{a}}^{-1} W_{1}^{-1}\left(-x_{i_{1} 1}\right) \\
& =\frac{\partial\left(W_{1} x^{\prime} W_{1}^{-1}\right)}{\partial x_{i_{1} 1}}-1
\end{aligned}
$$

$$
=\frac{\partial R_{1}^{\prime}}{\partial x_{i_{1}}}-1
$$

By using a similar calculation, the other equations are also obtained.

Proposition 5.

$$
\frac{\partial S_{\iota}}{\partial w}=0 \quad\left(\iota=1,2,3, w=x_{i}, y_{j}, x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

Proof. This is easily derived considering the forms of a_{i}, b_{j} and c_{k}.
Now consider the Alexander matrix of \tilde{L}. By Propositions 1, 4 and 5, this matrix is equivalent to the following matrix:

where $P_{1}=\frac{\partial R_{1}^{\prime}}{\partial x_{i_{1} 1}}, P_{1}^{\prime}=\frac{\partial R_{1}}{\partial x_{i_{1} 2}}, \quad P_{2}=\frac{\partial R_{2}^{\prime}}{\partial x_{i_{2} 1}}, \quad P_{2}^{\prime}=\frac{\partial R_{2}}{\partial x_{i_{2} 2}}, \quad P_{3}=\frac{\partial R_{3}^{\prime}}{\partial y_{j 1}}$ and $P_{3}^{\prime}=\frac{\partial R_{3}}{\partial y_{j 2}}$.
By Proposition 3, each entry of ($x_{i_{1} 1}$-th row $+x_{i_{1} 2}$-th row) is equal to the $x_{i 1}$-th row, and ($x_{i_{21}}$-th row $+x_{i_{2} 2}$-th row) and ($y_{j 1}$ - th row $+y_{j 2}$-th row) are equal to the $x_{i 2}$-th row and the y_{j}-th row of the Alexander matrix of L, so that this matrix is equivalent to the following:

r_{1}^{\prime}	$\left\{\begin{array}{cccc} x_{1} \cdots & x_{i_{1} 1} & x_{i_{2} 1} & y_{j 1} \\ & & & \\ & & & \\ & & \mathfrak{a} & \\ & & & \\ & & & \\ & & \end{array}\right.$	$\begin{array}{ccc}x_{i_{1} 2} & x_{i_{2} 2} & y_{j 2} \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots \\ 1 & 0 & \vdots \\ 0 & 1 & \vdots \\ \vdots & 0 & 0 \\ \vdots & \vdots & 1 \\ \vdots & \vdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0\end{array}$	$x^{\prime} z^{\prime} y^{\prime}$ 0	$a c b$
R_{1} R_{1}^{\prime} R_{2} R_{2}^{\prime} R_{3} R_{3}^{\prime}	$\begin{aligned} & \vdots \\ & P_{1}+P_{1}^{\prime}-1 \end{aligned} \vdots \quad \vdots$	$\left\|\begin{array}{ccc} P_{1}^{\prime} & P_{i_{2} 2} & P_{j 2} \\ P_{1}^{\prime}-1 P_{i_{2}} & P_{j 2} \\ q_{i_{1} 2} & P_{2}^{\prime} & q_{j 2} \\ q_{i_{1} 2} & P_{2}^{\prime} & - \\ r_{i^{2}} \\ r_{i_{1}} & r_{i_{2} 2} & P_{3}^{\prime} \\ r_{i_{1} 1} & r_{i_{2} 2} & \prime \end{array}\right\|$	*	*
$\begin{aligned} & S_{1} \\ & S_{2} \\ & S_{3} \end{aligned}$	0			*

By Proposition 4, this matrix is equivalent to the following:
(substitute $R_{i}^{\prime}-R_{i}$ to R_{i}^{\prime} for $i=1,2,3$)

where $M_{1}=\left(\frac{\partial S_{\iota}}{\partial w}\right)(\iota=1,2,3, w=a, b, c)$ and $M_{2}=\left(\frac{\partial R_{\iota}}{\partial w}\right)\left(\iota=1,2,3, w=x^{\prime}, y^{\prime}, z^{\prime}\right)$.

To complete the proof of the special case, it suffices to show that if det $M_{1} \doteq F(x, y)$, then $\operatorname{det} M_{2} \doteq F\left(x^{-1}, y^{-1}\right)$ and $|F(1,1)|=1$, since the first nonzero polynomial of the above matrix is a product of the first non-zero polynomial of (\mathfrak{a}), $\operatorname{det} M_{1}$ and $\operatorname{det} M_{2}$. Therefore, consider $\frac{\partial R_{i}}{\partial w}\left(\iota=1,2,3, w=x^{\prime}, y^{\prime}, z^{\prime}\right)$ and $\frac{\partial S_{\iota}}{\partial w}(\iota=1,2,3, w=a, b, c)$.

Since the words of a_{i} 's, b_{j} 's and c_{k} 's are the conjugates of a, b and c, we obtain the following:

Proposition 6.

$$
\begin{aligned}
& \frac{\partial R_{1}}{\partial w}=\frac{\partial\left(W_{1}\left(x_{i}, y_{j}^{\prime}, 1,1,1, x^{\prime}, y^{\prime}, z^{\prime}\right) \cdot x^{\prime} \cdot W_{1}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{1} 1}^{-1}\right.}{\partial w} \\
& \frac{\partial R_{2}}{\partial w}=\frac{\partial\left(W_{2}\left(x_{i}, y_{j}, 1,1,1, x^{\prime}, y^{\prime}, z^{\prime}\right) \cdot z^{\prime} \cdot W_{2}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) x_{i_{2} 1}^{-1}\right.}{\partial w} \\
& \frac{\partial R_{3}}{\partial w}=\frac{\partial\left(W_{3}\left(x_{i}, y_{j}, 1,1,1, x^{\prime}, y^{\prime}, z^{\prime}\right) \cdot y^{\prime} \cdot W_{3}^{-1}\left(x_{i}, \cdots, z^{\prime}\right) y_{j_{11}}^{-1}\right.}{\partial w},
\end{aligned}
$$

where $w=x^{\prime}, y^{\prime}$ or z^{\prime}.
Let us consider the words $\tilde{W}_{\iota}=W_{\iota}\left(x_{i}, y_{j}, 1,1,1, x^{\prime}, y^{\prime}, z^{\prime}\right)(\iota=1,2,3)$. Since the relators $R_{\iota}(\iota=1,2,3)$ are obtained from the edges of the attaching bands, the length of \widetilde{W}_{\imath} are related to the indices n_{a}, n_{b} and n_{c}. The indices of a_{*}, b_{*} and c_{*} are changed when the attaching bands pass under the edges of $O_{1} \cup O_{2} \cup O_{3} \cup L$, at the same time the length of \tilde{W}_{ι} increases by just one letter.

Assume that

$$
\begin{aligned}
& \widetilde{W}_{1}=w_{1} w_{2} \cdots w_{n} \\
& \widetilde{W}_{2}=v_{1} v_{2} \cdots v_{m} \quad\left(w_{*}, v_{*}, u_{*}=x_{i}^{\mathrm{g}}, y_{j}^{\mathrm{g}}, x^{\prime \ell}, y^{\prime \ell}, z^{\prime \ell}, \varepsilon= \pm 1\right) \\
& \widetilde{W}_{3}=u_{1} u_{2} \cdots u_{l},
\end{aligned}
$$

where $n=n_{a}-1, m=n_{c}-1 \quad l=n_{b}-1$.
Since $a_{n_{a}}, b_{n_{b}}$ and $c_{n_{c}}$ are obtained by the paths of the attaching bands, it follows that

$$
\begin{aligned}
& a_{n_{a}}=w_{n}^{-1} \cdots w_{1}^{-1} \cdot a \cdot w_{1} \cdots w_{n} \\
& b_{n_{b}}=u_{l}^{-1} \cdots u_{1}^{-1} \cdot b \cdot u_{1} \cdots u_{l} \\
& c_{n_{c}}=v_{m}^{-1} \cdots v_{1}^{-1} \cdot c \cdot v_{1} \cdots v_{m} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
a_{i *} & =w_{i_{*-1}}^{-1} \cdots w_{1}^{-1} \cdot a \cdot w_{1} \cdots w_{i *-1} \\
b_{j^{*}} & =u_{j_{*-1}-1}^{\cdots} u_{1}^{-1} \cdot b \cdot u_{1} \cdots u_{j^{*-1}} \\
c_{k *} & =v_{k_{*-1}^{-1}}^{-1} \cdots v_{1}^{-1} \cdot c \cdot v_{1} \cdots v_{k *-1} .
\end{aligned}
$$

Proposition 7.

$$
\begin{aligned}
& \frac{\partial S_{1}}{\partial a}=-w_{n}^{-1} \cdots w_{1}^{-1}+\left(1-x^{-1}\right)\left(\varepsilon_{i_{1}} w_{i_{1}-1}^{-1} \cdots w_{1}^{-1}+\cdots+\varepsilon_{i_{l}} w_{i_{l}-1}^{-1} \cdots w_{1}^{-1}\right) \\
& \frac{\partial S_{1}}{\partial b}=\left(1-x^{-1}\right)\left(\varepsilon_{k_{1}} u_{k_{1}-1}^{-1} \cdots u_{1}^{-1}+\cdots+\varepsilon_{k_{n}} u_{k_{n}-1}^{-1} \cdots u_{1}^{-1}\right) \\
& \frac{\partial S_{1}}{\partial c}=\left(1-x^{-1}\right)\left(\varepsilon_{j_{1}} v_{j_{1}-1}^{-1} \cdots v_{1}^{-1}+\cdots+\varepsilon_{j_{m}} v_{j_{m}-1}^{-1} \cdots v_{1}^{-1}\right) \\
& \frac{\partial S_{2}}{\partial a}=\left(1-x^{-1}\right)\left(\varepsilon_{i_{1}} w_{i_{1^{\prime}}-1}^{-1} \cdots w_{1}^{-1}+\cdots+\varepsilon_{i_{i^{\prime}}} w_{i_{i^{\prime}-1}^{-1}}^{-1} \cdots w_{1}^{-1}\right) \\
& \frac{\partial S_{2}}{\partial b}=\left(1-x^{-1}\right)\left(\varepsilon_{k_{1} u^{\prime}} u_{k_{1}^{\prime}-1}^{-1} \cdots u_{1}^{-1}+\cdots+\varepsilon_{k_{m^{\prime}}} u_{k_{m^{\prime}-1}}^{-1} \cdots u_{1}^{-1}\right) \\
& \frac{\partial S_{2}}{\partial c}=-v_{m}^{-1} \cdots v_{1}^{-1}+\left(1-x^{-1}\right)\left(\varepsilon_{j_{1}} v_{j_{1}^{\prime}-1}^{-1} \cdots v_{1}^{-1}+\cdots+\varepsilon_{j_{m}} / v_{j_{m^{\prime}-1}^{-1}}^{-1} \cdots v_{1}^{-1}\right) \\
& \frac{\partial S_{3}}{\partial a}=\left(1-y^{-1}\right)\left(\varepsilon_{i_{1}^{\prime \prime}} w_{i_{1^{\prime \prime}}-1}^{-1} \cdots w_{1}^{-1}+\cdots+\varepsilon_{i_{l^{\prime \prime}}} w_{i_{i^{\prime \prime}-1}^{-1}}^{-1} \cdots w_{1}^{-1}\right) \\
& \frac{\partial S_{3}}{\partial b}=-u_{l}^{-1} \cdots u_{1}^{-1}+\left(1-y^{-1}\right)\left(\varepsilon_{k_{1}^{\prime \prime}} u_{k_{1^{\prime \prime}}-1}^{-1} \cdots u_{1}^{-1}+\cdots+\varepsilon_{k_{n^{\prime}}^{\prime \prime}} \|_{k_{n^{\prime \prime}}-1}^{-1} \cdots u_{1}^{-1}\right) \\
& \frac{\partial S_{3}}{\partial c}=\left(1-y^{-1}\right)\left(\varepsilon_{i_{1}^{\prime \prime}} v_{j_{1^{\prime \prime}}-1}^{-1} \cdots v_{1}^{-1}+\cdots+\varepsilon_{j m^{\prime}} \cdot v_{j_{m^{\prime \prime \prime}}}^{-1} \cdots v_{1}^{-1}\right) \text {. }
\end{aligned}
$$

Proof. These are deduced from the forms of S_{\imath}.
To calculate $\frac{\partial R_{\iota}}{\partial w}\left(\iota=1,2,3, w=x^{\prime}, y^{\prime}, z^{\prime}\right)$, we check where x^{\prime}, y^{\prime} and z^{\prime} appear. When the attaching bands cross under $O_{1} \cup O_{2} \cup O_{3}$, then x^{\prime}, y^{\prime} or z^{\prime} appears in \widetilde{W}_{\imath}.

Let us consider $a_{i_{*}}^{\mathbf{\varepsilon}_{i *}}$ in S_{1}. There are two cases (see, Fig. 5).

Fig. 5
Case (I). If $a_{i *}$ crosses over O_{1} from left to right, then $\varepsilon_{i *}=1$ and $a_{i *}=x^{\prime} a_{i *-1} x^{\prime-1}$.
So there exists $w_{i *-1}$ in $R_{1}\left(1 \leq i_{*}-1 \leq n\right)$, such that $w_{i *-1}=x^{\prime-1}$.
Case (II). If $a_{i *}$ crosses over O_{1} from right to left, then $\varepsilon_{i *}=-1$ and $a_{i *+1}=$
$x^{\prime-1} a_{i *} x^{\prime}$. So there exists $w_{i *}$ in $R_{1}\left(1 \leq i_{*} \leq n\right)$, such that $w_{i *}=x^{\prime}$.
Then, for $a_{i *}$ in S_{1}, there exists index $i_{*}-1$ or i_{*}, and a letter $x_{i *-1}$ or $w_{i *}$ in R_{1}, such that $w_{i *-1}=x^{\prime-1}$ or $w_{i *}=x^{\prime}$. Corresponding to this letter,

$$
\begin{aligned}
\frac{\partial R_{1}}{\partial x^{\prime}} & = \begin{cases}\cdots+w_{1} \cdots w_{i *-2}\left(x^{\prime-1}\right)+\cdots & \left(\varepsilon_{i *}=1\right) \\
\cdots+w_{1} \cdots w_{i *-1}(1)+\cdots & \left(\varepsilon_{i *}=-1\right)\end{cases} \\
& =\cdots+\left(-\varepsilon_{i *} w_{1} \cdots w_{i *-1}\right)+\cdots
\end{aligned}
$$

By the same reasoning, corresponding to the letters $b_{k *}$ and $c_{j *}$ in S_{1}, we obtain the equations

$$
\frac{\partial R_{3}}{\partial x^{\prime}}=\cdots+\left(-\varepsilon_{k *} u_{1} \cdots u_{k *-1}\right)+\cdots
$$

and

$$
\frac{\partial R}{\partial x^{\prime}}=\cdots+\left(-\varepsilon_{j *} v_{1} \cdots v_{j^{*-1}}\right)+\cdots
$$

respectively.
Using these equations, we can prove Proposition 8.

Proposition 8.

$$
\begin{aligned}
& \frac{\partial R_{1}}{\partial x^{\prime}}=w_{1} \cdots w_{n}-(1-x)\left(\varepsilon_{i_{1}} w_{1} \cdots w_{i_{1}-1}+\cdots+\varepsilon_{i_{l}} w_{1} \cdots w_{i_{l}-1}\right) \\
& \frac{\partial R_{1}}{\partial y^{\prime}}=-(1-x)\left(\varepsilon_{i_{1}}{ }^{\prime \prime} w_{1} \cdots w_{i_{1}{ }^{\prime \prime}-1}+\cdots+\varepsilon_{i_{l}}{ }^{\prime \prime} w_{1} \cdots w_{i_{l}-1}\right) \\
& \frac{\partial R_{1}}{\partial z^{\prime}}=-(1-x)\left(\varepsilon_{i_{1}}{ }^{\prime} w_{1} \cdots w_{i_{1}{ }^{\prime}-1}+\cdots+\varepsilon_{i_{l}}{ }^{\prime} w_{1} \cdots w_{i_{l}-1}\right) \\
& \frac{\partial R_{2}}{\partial x^{\prime}}=-(1-x)\left(\varepsilon_{j_{1}} v_{1} \cdots v_{j_{1}-1}+\cdots+\varepsilon_{j m} v_{1} \cdots v_{j_{m}-1}\right) \\
& \frac{\partial R_{2}}{\partial y^{\prime}}=-(1-x)\left(\varepsilon_{j_{1}}{ }^{\prime \prime} v_{1} \cdots v_{j_{1}{ }^{\prime \prime}-1}+\cdots+\varepsilon_{\left.j_{m}{ }^{\prime \prime} v_{1} \cdots v_{j_{m}{ }^{\prime \prime}-1}\right)}\right. \\
& \frac{\partial R_{2}}{\partial z^{\prime}}=v_{1} \cdots v_{m}-(1-x)\left(\varepsilon_{j_{1}}{ }^{\prime} v_{1} \cdots v_{j_{1}-1}+\cdots+\varepsilon_{j_{m}}{ }^{\prime} v_{1} \cdots v_{j_{m}-1}\right) \\
& \frac{\partial R_{3}}{\partial x^{\prime}}=-(1-y)\left(\varepsilon_{k_{1}} u_{1} \cdots u_{k_{1}-1}+\cdots+\varepsilon_{k_{n}} u_{1} \cdots u_{k_{n}-1}\right) \\
& \frac{\partial R_{3}}{\partial y^{\prime}}=u_{1} \cdots u_{l}-(1-y)\left(\varepsilon_{k_{1}}{ }^{\prime \prime} u_{1} \cdots u_{k_{1}{ }^{\prime \prime}}{ }^{\prime}+\cdots+\varepsilon_{k_{n}}{ }^{\prime \prime} u_{1} \cdots u_{k_{n}{ }^{\prime \prime}-1}\right) \\
& \frac{\partial R_{3}}{\partial z^{\prime}}=-(1-y)\left(\varepsilon_{k_{1}} u_{1} \cdots u_{k_{1}{ }^{\prime}-1}+\cdots+\varepsilon_{k_{n}}{ }^{\prime} u_{1} \cdots u_{k_{n}{ }^{\prime}-1}\right) .
\end{aligned}
$$

Proof. For example, consider the form of R_{1}. Except for the letter x^{\prime} in the
center of R_{1}, all letters x^{\prime} appear in \tilde{W}_{1} corresponding to the parts of the attaching bands crossing over O_{1}. Then, it is not difficult to get the desired equation of $\frac{\partial R_{1}}{\partial x^{\prime}}$. And all y^{\prime} (or z^{\prime}) appear in \tilde{W}_{1} corresponding to the parts of the attaching bands crossing over $O_{3}\left(O_{2}\right)$.

Using Propositions 7 and 8, let $\frac{\partial S_{1}}{\partial a}=f_{1}(x, y), \frac{\partial S_{1}}{\partial b}=\left(1-x^{-1}\right) f_{2}(x, y), \frac{\partial S_{1}}{\partial c}=$ $\left(1-x^{-1}\right) f_{3}(x, y), \frac{\partial S_{2}}{\partial a}=\left(1-x^{-1}\right) g_{1}(x, y), \frac{\partial S_{2}}{\partial b}=\left(1-x^{-1}\right) g_{2}(x, y), \frac{\partial S_{2}}{\partial c}=g_{3}(x, y), \frac{\partial S_{3}}{\partial a}$ $=\left(1-y^{-1}\right) h_{1}(x, y), \frac{\partial S_{3}}{\partial b}=h_{2}(x, y)$ and $\frac{\partial S_{3}}{\partial c}=\left(1-y^{-1}\right) h_{3}(x, y)$. Then,

$$
\begin{array}{lll}
\frac{\partial R_{1}}{\partial x^{\prime}}=-\bar{f}_{1} & \frac{\partial R_{2}}{\partial x^{\prime}}=-(1-x) \bar{f}_{3}, & \frac{\partial R_{3}}{\partial x^{\prime}}=-(1-y) \bar{f}_{2} \\
\frac{\partial R_{1}}{\partial z^{\prime}}=-(1-x) \bar{g}_{1}, & \frac{\partial R_{2}}{\partial z^{\prime}}=-g_{3}, & \frac{\partial R_{3}}{\partial z^{\prime}}=-(1-y) \bar{g}_{2} \\
\frac{\partial R_{1}}{\partial y^{\prime}}=-(1-x) \bar{h}_{1}, & \frac{\partial R_{2}}{\partial y^{\prime}}=-(1-x) \bar{h}_{3}, & \frac{\partial R_{3}}{\partial y^{\prime}}=-\bar{h}_{2}
\end{array}
$$

where \bar{f}_{i} means $f_{i}\left(x^{-1}, y^{-1}\right)$ and so on.
We have

$$
\left.M_{1} \sim \begin{array}{r}
\\
S_{1} \\
S_{2} \\
S_{3}
\end{array} \begin{array}{ccc}
a & c & b \\
f_{1} & \left(1-x^{-1}\right) f_{3} & \left(1-x^{-1}\right) f_{2} \\
\left(1-x^{-1}\right) g & g_{3} & \left(1-x^{-1}\right) g_{2} \\
\left(1-y^{-1}\right) h_{1} & \left(1-y^{-1}\right) h_{3} & h_{2}
\end{array}\right)
$$

and

Thus, $F(x, y)=\operatorname{det} M_{1}=-\left(1-x^{-1}\right)\left(1-y^{-1}\right) f_{1} g_{2} h_{3}-\left(1-x^{-1}\right)\left(1-y^{-1}\right) f_{2} g_{3} h_{1}$

$$
\begin{aligned}
& -\left(1-x^{-1}\right)^{2} f_{3} g_{1} h_{2}+\left(1-x^{-1}\right)^{2}\left(1-y^{-1}\right) f_{3} g_{2} h_{1} \\
& +f_{1} g_{3} h_{2}+\left(1-x^{-1}\right)^{2}\left(1-y^{-1}\right) f_{2} g_{1} h_{3},
\end{aligned}
$$

and $\quad \operatorname{det} M_{2}=(1-x)(1-y) \bar{f}_{1} \bar{g}_{2} \bar{h}_{3}+(1-x)(1-y) \bar{f}_{2} g_{3} \bar{h}_{1}+(1-x)^{2} \bar{f}_{3} \bar{g}_{1} \bar{h}_{2}$

$$
\begin{aligned}
& -(1-x)^{2}(1-y) \bar{f}_{3} \bar{g}_{2} \bar{h}_{1}-\bar{f}_{1} \bar{g}_{3} \bar{h}_{2}-(1-x)^{2}(1-y) \bar{f}_{2} g_{1} \bar{h}_{3} \\
& =-F\left(x^{-1}, y^{-1}\right)
\end{aligned}
$$

It is immediate that

$$
|F(1,1)|=\left|f_{1}(1,1,1) \cdot g_{3}(1,1,1) \cdot h_{2}(1,1,1)\right|=1
$$

For general cases of μ and ν, it is sufficient only to check the matrices M_{1} and M_{2} as in the previous step. These matrices are related to the trivial link $O_{1} \cup \cdots \cup O_{\nu}$ and the attaching bands.

Instead of $a, b, c, x^{\prime}, y^{\prime}, z^{\prime}, R_{\iota}, S_{\iota}(\iota=1,2,3)$, we need generators $a_{\imath}, x_{\imath}^{\prime}(\iota=$ $1,2, \cdots, \nu)$ and relators $R_{\iota}, S_{\iota}(\iota=1,2, \cdots, \nu)$. Since the situation is just the same as in the previous case,

and

$$
M_{2} \sim \begin{array}{c}
R_{1} \\
\vdots \\
\vdots \\
R_{v}
\end{array} \underbrace{x_{1}^{\prime} \cdots \cdots \cdots x_{v}^{\prime}} \begin{array}{c}
\\
\frac{\partial R_{\iota}}{\partial x_{\iota^{\prime}}^{\prime}} \\
\end{array}) .
$$

$$
\text { Let } \begin{aligned}
\frac{\partial S_{\iota}}{\partial a_{\iota}} & =f_{\iota}\left(x, \cdots, x_{\mu}\right) & (\iota=1, \cdots, \nu) \\
\frac{\partial S_{\iota}}{\partial a_{\rho}} & =\left(1-x_{\iota}^{\prime-1}\right) f_{\iota \rho}\left(x_{1}, \cdots, x_{\mu}\right) & (\iota=1, \cdots, \nu, \rho \neq \iota),(*)
\end{aligned}
$$

then

$$
\begin{array}{ll}
\frac{\partial R_{\iota}}{\partial x_{\iota}^{\prime}}=-\bar{f}_{\iota \iota} & (\iota=1, \cdots, \nu) \\
\frac{\partial R_{\iota}}{\partial x_{\iota}^{\prime}}=-\left(1-x_{\imath}^{\prime}\right) \bar{f}_{\rho_{\iota}} & (\iota=1, \cdots, \nu, \rho \neq \iota)
\end{array}
$$

So, det $M_{1}=\left|\begin{array}{ccc}f_{11} & \left(1-x_{1}^{\prime-1}\right) f_{12} & \cdots\left(1-x_{1}^{\prime-1}\right) f_{1 v} \\ \left(1-x_{2}^{\prime-1}\right) f_{21} & f_{22} & \vdots \\ \left(1-x_{3}^{\prime-1}\right) f_{31} & & \vdots \\ \ldots \\ \left(1-x_{v}^{\prime-1}\right) f_{v 1} & \ldots \ldots \ldots\end{array}\right|$

$$
\operatorname{det} M_{2}=\left|\begin{array}{ccc}
-\bar{f}_{11} & -\left(1-x_{2}^{\prime}\right) \bar{f}_{21} & -\left(1-x_{v}^{\prime}\right) \bar{f}_{v 1} \\
-\left(1-x_{1}^{\prime}\right) \bar{f}_{12} & \vdots & \cdots \\
\vdots & \vdots & \vdots \\
-\left(1-x_{1}^{\prime}\right) \bar{f}_{1 v} & \vdots & \\
\vdots \\
\bar{f}_{v \nu}
\end{array}\right|
$$

[^3]\[

$$
\begin{aligned}
& =(-1)^{v}\left|\begin{array}{cccc}
f_{11} & \left(1-x^{\prime}\right) \bar{f}_{21} & \left(1-x_{v}^{\prime}\right) f_{v 1} \\
\left(1-x_{1}^{\prime}\right) f_{12} & \vdots & \cdots & \vdots \\
\vdots & \vdots & & \vdots \\
\left(1-x_{1}^{\prime}\right) \bar{f}_{1 v} & \vdots & & \bar{f}_{v v}
\end{array}\right| \\
& =(-1)^{\frac{2}{\operatorname{det}}{ }^{t} M_{1}=(-1)^{\nu} \overline{\operatorname{det}} M_{1} .}
\end{aligned}
$$
\]

Thus, there exists a polynomial $F\left(x_{1}, \cdots, x_{\mu}\right)$ such that

$$
\begin{aligned}
& \operatorname{det} M_{1} \doteq F\left(x_{1}, \cdots, x_{\mu}\right) \\
& \operatorname{det} M_{2} \doteq F\left(x_{1}^{-1}, \cdots, x_{\mu}^{-1}\right)
\end{aligned}
$$

and $|F(1, \cdots, 1)|=1$.
This completes the proof of Lemma 2.
Remark. In the proof of Lemma 2, we can also find that the integer $\beta(L)$ is the invariant of $P L$ cobordant links [5]. To see this, let $L_{i}, i=1,2$, be $P L$ cobordant links. L_{1} is cobordant to a link L_{1}^{\prime}, where each component of L_{2}^{\prime} is obtained from a component of L_{2} by tying a knot in a small 3-cell. We have $\beta\left(L_{1}\right)=\beta\left(L_{2}^{\prime}\right)$, since $\operatorname{det} M_{1} \neq 0$ and $\operatorname{det} M_{2} \neq 0$ in the proof of Lemma 2 imply that $\beta(L)$ is the cobordism invariant. $\quad \beta\left(L_{2}^{\prime}\right)=\beta\left(L_{2}\right)$ easily follows from a direct use of Fox's free calculus. Hence $\beta\left(L_{1}\right)=\beta\left(L_{2}\right)$.

3. Proof of Theorem 2

Theorem 2. For a given polynomial $F\left(t_{1}, \cdots, t_{\mu}\right)$ with $|F(1, \cdots, 1)|=1$, there exists a slice link L with μ components in the strong sense whose Alexander polynomial is $F\left(t_{1}, \cdots, t_{\mu}\right) \cdot F\left(t_{1}^{-1}, \cdots, t_{1}^{-1}\right)$.

To avoid unnecessary complexity, let us consider the case that $\mu=3$, but the construction of a slice link L with μ components in the strong sense are completely done by the same way.

Theorem 2'. For a given polynomial $F(x, y, z)$ with $|F(1,1,1)|=1$, there exists a slice link L with 3 components in the strong sense whose Alexander polynomial is $F(x, y, z) \cdot F\left(x^{-1}, y^{-1}, z^{-1}\right)$.

Proof. Since $|F(1,1,1)|=1$, we can assume that $F(x, y, z)$ will be splitted into the form

$$
\begin{aligned}
F(x, y, z)=1-(1-x) f_{1}(x, y, z)- & (1-y) f_{2}(x, y, z) \\
& -(1-z) f_{3}(x, y, z) .
\end{aligned}
$$

In order to construct a slice link L, it's enough to get the informations of attaching bands. So we need relators R_{i} and $S_{i}(i=1,2,3)$. Since the relators S_{i} can be automatically obtained from R_{i}, let us consider R_{i}. Therefore, we
have to consider a part of the Alexander matrix $M_{2}=\left(\frac{\partial R_{\mathbf{t}}}{\partial w}\right),\left(w=x^{\prime}, y^{\prime}, z^{\prime}\right)$.
To consider the matrix M_{2}, let us deform the polynomial $F(x, y, z)$ as follows;

$$
\begin{aligned}
& F(x, y, z) \\
& =\begin{aligned}
& \left\{1-(1-x) f_{1}(x, y, z)\right\}\left\{1-(1-y) f_{2}(x, y, z)\right\}\left\{1-(1-z) f_{3}(x, y, z)\right\} \\
& -(1-x)(1-y) f_{1}(x, y, z) f_{2}(x, y, z)-(1-y)(1-z) f_{2}(x, y, z) f_{3}(x, y, z) \\
& -(1-z)(1-x) f_{3}(x, y, z) f_{1}(x, y, z) \\
& +(1-x)(1-y)(1-z) f_{1}(x, y, z) \cdot f_{2}(x, y, z) \cdot f_{3}(x, y, z) .
\end{aligned}
\end{aligned}
$$

It's easy to check that this form is the determinant of the following matrix M;

$$
M \sim\left(\begin{array}{lll}
1-(1-x) f_{1} & -(1-x) f_{1} & -(1-x) f_{1} \\
-(1-y) f_{2} & 1-(1-y) f_{2} & -(1-y) f_{2} \\
-(1-z) f_{3} & -(1-z) f_{3} & 1-(1-z) f_{3}
\end{array}\right)
$$

Let us take the matrix M as M_{2}; i.e.,

$$
\begin{array}{lll}
\frac{\partial R_{1}}{\partial x^{\prime}}=1-(1-x) f_{1}, & \frac{R \partial_{1}}{\partial y^{\prime}}=-(1-x) f_{1}, & \frac{\partial R_{1}}{\partial z^{\prime}}=-(1-x) f_{1} \\
\frac{\partial R_{2}}{\partial x^{\prime}}=-(1-y) f_{2}, & \frac{\partial R_{2}}{\partial y^{\prime}}=1-(1-y) f_{2}, & \frac{\partial R_{2}}{\partial z^{\prime}}=-(1-y) f_{2} \\
\frac{\partial R_{3}}{\partial x^{\prime}}=-(1-z) f_{3}, & \frac{\partial R_{3}}{\partial y^{\prime}}=-(1-z) f_{3}, & \frac{\partial R_{3}}{\partial z^{\prime}}=1-(1-z) f_{3} .
\end{array}
$$

Instead of the relator R_{i} is a word of $x, x^{\prime}, y, y^{\prime}, z, z^{\prime}, a_{\imath}, b_{\imath}$ and c_{\imath} it's enough to construct R_{i} as a word of $x, x^{\prime}, y, y^{\prime}, z, z^{\prime}, a_{n_{a}}, b_{n_{b}}$ and $c_{n_{c}}$.

Since $R_{1}=w_{1} w_{2} \cdots w_{n} x^{\prime} a_{n_{a}}^{-1} w_{n}^{-1} \cdots w^{-1} x_{*}$

$$
R_{2}=w_{1}^{\prime} \cdots w_{m}^{\prime} y^{\prime} b_{n_{b}}^{-1} w_{m}^{\prime-1} \cdots w_{1}^{\prime-1} y_{*}
$$

$$
R_{3}=w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime} z^{\prime} C_{n_{c}}^{-1} w_{l}^{\prime \prime-1} \cdots w_{1}^{\prime \prime-1} z_{*},
$$

we will make the words $w_{1} \cdots w_{n}, w_{1}^{\prime} \cdots w_{m}^{\prime}$ and $w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime}$.
For example let us assume that

$$
f_{1}(x, y, z)=\varepsilon_{1} x^{\omega_{1}} y^{\beta_{1}} z^{\gamma_{1}}+\varepsilon_{2} x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}+\cdots+\varepsilon_{r} x^{\alpha_{r}} y^{\beta_{r}} z^{\gamma_{r}} .
$$

Then, $w_{1} \cdots w_{n}$ contains $x^{\prime}, y^{\prime}, z^{\prime}$ in r places, respectively.
Let us put these $3 r$ letters as the following manner;

$$
z^{\prime-\varepsilon_{1}} \cdots z^{\prime-\varepsilon_{i}} \cdots z^{\prime-\varepsilon_{r}} \cdots y^{\prime-\varepsilon_{1}} \cdots y^{\prime-\varepsilon_{r}} \cdots x^{\prime-\varepsilon_{1}} \cdots x^{\prime-\varepsilon_{r}} .
$$

Decide $w_{1} \cdots w_{*}$ to satisfy the equation

$$
\frac{\partial\left(w_{1} \cdots w_{*}\right)}{\partial z^{\prime}}=\varepsilon_{1} x^{\alpha} y^{\beta_{1}} z^{\gamma_{1}} .
$$

Depending on $\alpha_{1}>0$ or $\alpha_{1}<0, \alpha_{1}$ letters among $w_{1} \cdots w_{*}$ are x or x^{-1}, and β_{1} letters among $w_{1} \cdots w_{*}$ are y or y^{-1}. If $\varepsilon_{1}>0$ and $\gamma_{1}>0$, there must be $\gamma_{1}+1$ letters z among $w_{1} \cdots w_{*}$. Then,

$$
w_{1} \cdots w_{*} z^{\prime-1}=\underbrace{x^{ \pm 1} \cdots x^{ \pm 1}}_{\alpha_{1}} \underbrace{y^{ \pm 1} \cdots y^{ \pm 1}}_{\beta_{1}} \underbrace{z \cdots z}_{\gamma_{1}+1} \cdot z^{\prime-1} .
$$

Let us repeat this step $3 r-1$ times more. After these steps, the word $w_{1} \cdots w_{n}$ can be obtained. By the same way, $w_{1}^{\prime} \cdots w_{m}^{\prime}$ and $w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime}$ can also be obtained.

By using these words, the following relators will be read;

$$
\begin{aligned}
& a_{n_{a}}=w_{n}^{-1} \cdots w_{1}^{-1} \cdot a_{1} \cdot w_{1} \cdots w_{n} \\
& b_{n_{b}}=w_{m}^{\prime-1} \cdots w_{1}^{\prime-1} \cdot b_{1} \cdot w_{1}^{\prime} \cdots w_{m}^{\prime} \\
& c_{n_{c}}=w_{l}^{\prime \prime-1} \cdots w_{1}^{\prime \prime-1} \cdot c_{1} \cdot w_{1}^{\prime \prime} \cdots w_{l}^{\prime \prime} .
\end{aligned}
$$

Since the indices of a, b and c are changed when the attaching bands cross under the overpasses of the link, the relators above give us the informations about the attaching bands;

$$
\begin{array}{lcc}
a_{2}=w_{1}^{-1} a_{1} w_{1} & b_{2}=w_{1}^{\prime-1} b_{1} w_{1}^{\prime} & c_{2}=w_{1}^{\prime \prime-1} c_{1} w_{1}^{\prime \prime} \\
a_{3}=w_{2}^{-1} a_{2} w_{2} & \vdots & \vdots \\
a_{n_{a}}=w_{n}^{-1} a_{n_{a}-1} w_{n} & b_{n_{b}}=w_{m}^{\prime-1} \vdots_{m_{b}-1} w_{m}^{\prime} & c_{n_{c}}=w_{l}^{\prime \prime-1} c_{n_{c}-1} w_{l}^{\prime \prime} .
\end{array}
$$

To construct a link L, put the trivial link with 6 components, representing the generators $x, x^{\prime}, y, y^{\prime}, z$ and z^{\prime}, and contact two components representing x and x^{\prime} by a attaching band which goes over according as relators a_{\imath}, and so on. Since the attaching bands can freely go over the other parts of attaching bands, it is possible to combine two components to represent the relators a_{\imath}, b_{\imath} and c_{\imath}.

This completes the proof.
Note that there may be many different links satisfying conditions for the given polynomial.

4. Some examples

Example 1. Let $F(x, y)=x-x y+y$. Then, this polynomial can be deformed into

$$
F F(x, y) \doteq 1-y+x^{-1} y=1-(1-x)\left(-x^{-1} y\right) .
$$

This is the determinant of a matrix M_{2};

$$
M_{2} \sim\left(\begin{array}{cc}
1-(1-x)\left(-x^{-1} y\right) & 0 \\
0 & 1
\end{array}\right)
$$

Then $\frac{\partial R_{1}}{\partial x^{\prime}}=1-(1-x)\left(-x^{-1} y\right), \frac{\partial R_{1}}{\partial y^{\prime}}=0$,

$$
\frac{\partial R_{2}}{\partial x^{\prime}}=0 \quad, \frac{\partial R_{2}}{\partial y^{\prime}}=1
$$

So there are three x^{\prime} but no y^{\prime} among letters of R_{1}. Since $\frac{\partial\left(w_{1} \cdots w_{*}\right)}{\partial x^{\prime}}=-x^{-1} y$, $\varepsilon_{i}=-1, w_{1}=x^{-1}, w_{2}=y, w_{3}=x^{\prime}$, and since $\frac{\partial\left(w_{4} \cdots w_{n}\right)}{\partial x^{\prime}}=1, n=4$ and $w_{4}=y^{-1}$.

Then, we get
and

$$
\begin{aligned}
& R_{1}=x^{-1} y x^{\prime} y^{-1} \cdot x^{\prime} x_{n_{a}}^{-1} \cdot y x^{\prime-1} y^{-1} x \cdot x_{i}^{-1}, \\
& a_{2}=w_{1}^{-1} a_{1} w_{1}=x a_{1} x^{-1}, \\
& a_{3}=w_{2}^{-1} a_{2} w_{2}=y^{-1} a_{2} y, \\
& a_{4}=w_{3}^{-1} a_{3} w_{3}=x^{\prime-1} a_{3} x^{\prime}, \\
& a_{5}=w_{4}^{-1} a_{4} w_{4}=y a_{4} y^{-1} .
\end{aligned}
$$

Similarly, $R_{2}=y^{\prime} b_{n b} y_{j_{1}}^{-1}$.
By using these relators, it's possible to construct a link L with 2 components.

Fig. 9
Example 2*. Let $F(x, y, z)=-x+y z+x y z$. Then

$$
\begin{aligned}
& F(x, y, z) \\
& \doteq 1+x-x \bar{y} z=1-(1-x)(1-\bar{y} z)-(1-y) \bar{y}-(1-z) \bar{y} z \\
& =(1-(1-x)(1-\bar{y} z))(1-(1-y) \bar{y})(1-(1-z) \bar{y} z) \\
& \quad-(1-x)(1-y)(1-\bar{y} z) \cdot \bar{y}-(1-y)(1-z) \cdot \bar{y} \cdot \bar{y} z \\
& \quad-(1-z)(1-x) \cdot \bar{y} z \cdot(1-\bar{y} z)+(1-x)(1-y)(1-z) \cdot(1-\bar{y} z) \cdot \bar{y} \cdot \bar{y} z .
\end{aligned}
$$

[^4]Then,

$$
M_{2} \sim\left(\begin{array}{lll}
1-(1-x)(1-\bar{y} z) & -(1-x)(1-\bar{y} z) & -(1-x)(1-\bar{y} z) \\
-(1-y) \bar{y} & 1-(1-y) \bar{y} & -(1-y) \bar{y} \\
-(1-z) \bar{y} z & -(1-z) \bar{y} \bar{z} & 1-(1-z) \bar{y} \bar{z}
\end{array}\right)
$$

Let us construct R_{1};

$$
\begin{array}{c|c|c|c|c|c|c|}
w_{1} \cdots w_{*} & \cdots \cdots & \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots w_{* *} \\
\cdots \cdots \cdots & z^{\prime} & \underbrace{\cdots}_{\bar{y} z} & \underbrace{\prime \cdots \bar{y}^{\prime}}_{1} & \underbrace{\cdots \cdots}_{\bar{y}^{\prime}} & y^{\prime} \underbrace{\cdots \bar{x}^{\prime}}_{1} & \underbrace{\cdots \cdots}_{\bar{y} z} \\
x^{\prime} & \underbrace{\cdots \cdots \cdots}_{1}
\end{array} x^{\prime} .
$$

Since $\frac{\partial\left(w_{1} \cdots z^{\prime}\right)}{\partial z^{\prime}}=1, w_{1}=z$ and $w_{2}=z^{\prime}$ and $z z^{\prime} \frac{\partial\left(w_{3} \cdots z^{\prime}\right)}{\partial z^{\prime}}=-\bar{y} z, w_{3}=\bar{y}, w_{4}=z$ and $w_{5}=z^{\prime}$. Since $z z^{\prime} \bar{y} z z^{\prime} \cdot \frac{\partial\left(w_{6} \cdots \bar{y}^{\prime}\right)}{\partial y^{\prime}}=1, w_{6}=y, w_{7}=y$ and $w_{8}=y^{\prime}$. By the similar way, we can get

$$
\begin{aligned}
R_{1} & =z z^{\prime}\left|\bar{y} z z^{\prime}\right| y y \bar{y}^{\prime}\left|\bar{y} z y^{\prime}\right| z x \bar{x}^{\prime}\left|\bar{y} z x^{\prime}\right| \bar{x} y z x^{\prime} a_{n_{a}}^{-1} \\
& \times \bar{z} \bar{y} x \bar{x}^{\prime} z y x^{\prime} \bar{x} z \bar{y}^{\prime} z y y^{\prime} \bar{y} \bar{y} z^{\prime} z y z^{\prime} \bar{z} \cdot x_{i}^{-1},
\end{aligned}
$$

and $n_{a}=21$

$$
\begin{array}{lll}
a_{2}=\Sigma a_{1} z & a_{9}=y^{\prime} a_{8} \bar{y}^{\prime} & a_{16}=y a_{15} \bar{y} \\
a_{3}=z^{\prime} a_{2} \Sigma^{\prime} & a_{10}=y a_{9} \bar{y} & a_{17}=z a_{16} \Sigma^{\prime} \\
a_{4}=y a_{3} \bar{y} & a_{11}=z a_{10} \Sigma^{\Sigma} & a_{18}=\bar{x}^{\prime} a_{17} x^{\prime} \\
a_{5}=z a_{4} \Sigma & a_{12}=\bar{y}^{\prime} z_{11} y^{\prime} & a_{19}=x a_{18} \bar{x} \\
a_{6}=z^{\prime} a_{5} z^{\prime} & a_{13}=\Sigma a_{12} z & a_{20}=\bar{y} a_{19} y \\
a_{7}=\bar{y} a_{6} y & a_{14}=\bar{x} a_{13} x & a_{21}=\Sigma a_{20} z . \\
a_{8}=\bar{y} a_{7} y & a_{15}=x^{\prime} a_{14} \bar{x}^{\prime} &
\end{array}
$$

Yamaguchi Women's University

References

[1] R.H. Fox: A quick trip through knot theory, some problems in knot theory, Topology of 3-Manifolds and Related Topices, M.K. Fort, Jr., ed., Prentice-Hall, 1962, 120-176.
[2] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and equivalence of knots (unpublished).
[3] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[4] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1967), 362373.
[5] A. Kawauchi: On the Alexander polynomials of cobordant links, Osaka J. Math. 15 (1978), 151-159.
[6] A. Kawauchi and T. Shibuya: Descriptions on surfaces in four-space (mimeographed notes), 1975.
[7] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.

[^0]: * The notation " \doteq " means equal up to $\pm t_{1}{ }^{n}{ }_{1} t_{2}{ }^{n}{ }_{2} \cdots t \mu^{n} \mu$ for suitable integers n_{1}, \cdots, n_{μ}.

[^1]: * This terminology is the same as in [6], but more general than that of F. Hosokawa [4].

[^2]: * In addition to the relators stated below, the generators of $G(\widetilde{L})^{\prime \prime}$ should be added as the relators of $G(\widetilde{L}) / G(\widetilde{L})^{\prime \prime}$. But these relators become 0 by Fox's free calculus on each generator of $G(\widetilde{L}) / G(\widetilde{L})^{\prime \prime}$. Hence we need not think of these relators for our purpose and omit.

[^3]: * Here, x_{\imath}^{\prime} denotes a suitable letter in $\left\{x_{1}, \cdots, x_{\mu}\right\}$.

[^4]: * In example 2, w means w^{-1}.

