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The purpose of this note is to generalize the theorem that the Alexander
polynomial of a slice knot is of the form f(#)- f(¢™') for an integral polynomial
f(t) with | f(1)|=1 (see [3]). We will show the following:

Theorem. Let L be a slice link with u components in the strong sense, then
there exists an integral polynomial F(t,, ---, t.y with |F(1, ---,1)| =1 and the Alexan-
der polynomial A(t,, ++-, tu) of L is of the form

A(tu ey t,,,)iF(tl, ey t#).F(tl—l, .y t;l)(*) .
Conversely for a given integral polynomial F(t,, ---, t,) with |F(1, -, 1)| =1,

there exists a slice link with u components in the strong sense whose Alexander
polynomial is F(t,, -+, t.)-F(t7", -, t2").

To prove the above Theorem, we will consider two theorems. In §2
the necessary condition of the Alexander polynomials will be considered for
not only slice links in the strong sense, but also cobordant links. We will
prove the following:

Theorem 1. For cobordant links L;, i=1, 2, with u components, there exist
two integral polynomials F(t,, ++-, t.), i=1, 2, with |F(1, -+, 1)| =1 such that

Al(tlv *%y tlb)'Fl(tl’ °tty t#)'Fl(tfl, °%y t;l)
=Ay(ty, vy tu) Fyty, ooy tu)Fo(t7, -+, 1),
where A; is the Alexander polynomial of the link L,.

Since a slice link L with x components in the strong sense is cobordant to
the trivial link with px components, the following corollary will be obtained.

Corollary. The Alexander polynomial A(t,, -+, t.) of a slice ink L with
u components in the strong semse mecessarily satisfies A(ty, -+, tu)=F(t;, -+, )

2

* The notation “="’ means equal up to *#,"12,"2--tu"* for suitable integers 1, ***, 7.
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X F(t7Y, «++, tz") for an integral polynomial F(t,, ---,t.) with |F(1,---,1)|=1.

In §3, it will be shown that the condition in the Cor. to Theorem 1 is
sufficient; i.e., the following theorem will be proved:

Theorem 2. For a given integral polynomial F(t,, ---, t,) with |F(1, ---, 1)|
=1, there exists a slice link L with u components in the strong sense whose Alex-
ander polynomial is F(t,, ---, t,)-F(t7", -+, tz").

In §4, some examples will be considered.

A. Kawauchi [5] has obtained some of the results of this paper. Our work
is independent of his; on the other hand, it was useful to us in that it showed
the re-definition of the Alexander polynomials and the numerical invariant Q.
By Fox’s definition [1], slice links in the strong sense have 0-Alexander polynomi-
als for u>2.

Throughout the paper, spaces are considered in the piecewise-linear cate-
gory, and the Alexander polynomials are non-zero.

1. Preliminaries and definitions

A link is the disjoint union of peicewise-linearly embedded, oriented 1-
spheres in the oriented 3-sphere S°. Two links L, and L, with u components
are cobordant, if there exist mutually disjoint, locally flat, piecewise-linearly
embedded proper annuli Fy, -+, F,, in S*X [0, 1] spanning S*x 0 and S*x 1 such
that (F,U--UF)N(S*X0)=L;x0 and (F,U--UF,)N(S*x1)=(—Ly)x1,
where —L, is L, with orientation reversed. A link that is cobordant to the
trivial link is called a slice link in the strong sense ([1]). For cobordant links L,,
i=1, 2, with x components the Alexander polynomials 4(¢,, --+, #,) of L, should
be chosen to be the Alexander polynomials associated with the meridian bases
of H\(S3—L;; Z) consistent through the cobordism annuli Fy, -+, F.

Let LC.S® be a link with x components and B, :++, B, be mutually disjoint
2-cells in S$® such that for each j, B,NL=0B,NL consists of two arcs. The

resulting link L'=(L— U 0B;NL)U Ucl(GB —L) with the induced orientation
from L— U 0B,NL is called the (orzented) link obtained from L by the hyperbolic

tmnsformatums along the bands B, ---,B,. If the number of the components of
L’ is p—v, then the link L’ is said to be obtained from L by the fusion* along By, ---,
B,.

Let a link L consist of sublinks L, and L, that are separated by a 2-sphere in
S3. Then the link L is denoted by L;oL,. Let O*=OQo0---00 be the trivial

~—————

link with » components. v

* This terminology is the same as in [6], but more general than that of F. Hosokawa [4].
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2. Proof of Theorem 1

Theorem 1. For cobordant links L;, i=1, 2, with u components, there exist
two integral polynomials F(t,,--,t.), i=1, 2, with |Fy1,--+,1)| =1 such that

Al(tl) T tw)'Fl(th Y tM)'Fl(tl_l) T tﬁl)
i‘42(t1) Y tﬂ-)'FZ(th MRS} tM)'FZ(tI—I’ T t;l) ’

where A; is the Alexander polynomial of the link L.
To prove Theorem 1, it is enough to consider the following lemmas.

Lemma 1. Let L, and L, be cobordant links with u components. Then there
exist integers vy, v,>0 and a link L with components such that for each i, i=1, 2,
L is obtained from the (n+v,)-component link L,oO by the fusion along certain
bands B, ---, BS? joining each component of O with the link L,.

This lemma is generally known. (See [2], [4] and [6].)

Lemma 2. If a p-component link L is obtained from the (p—v)-component
link LoO" by the fusion along bands B,, ---, B, joining each component of O” with L,
then there exists a polynomial F(t,, ---,t.) such that g(tl, sy tu)=(t, oy ) X
F(t,, -, t,)-F(t7Y -+, t7Y), |F(1, -+, 1)| =1, where A and A are the Alexander
polynomials of L and L, respectively.

Proof of Theorem 1. It is straightforward from Lemmas 1 and 2.

Proof of Lemma 2. We will consider a case in which x=2, =3 to avoid
unnecessary complexity, but as we will see later, the calculation method will
not depend on the numbers x and v.

Consider the plane projection of L as in Fig. 1. The link group G(L) can
be then presented as follows:

generators; X, «-+, X,
Y s Yy s
relators  ; 7{ = wawrxiliw; s =1, -,n—1)
7D = x, wiexTw, o
rY) = yiw;’y;_hw;s’ (=1, ”y_l)
rS) = Ya i ywy"
where wy is an element in the set {x; y,; i=1, ---, n,, j=1, -, n,}, and &,=

+1or —1.
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J

Let a be the Alexander matrix of L, then a is equivalent to the following
matrix with entries in Z[x, y], where {x, y} is the meridian base of G(L)/G(L)'.

X Xy et Xy Xy 0t Xy, V1t Yy

(1 —wy

X R A

7o |-y S =a.
S IR A . |

' A S S S S

ry



165

ALEXANDER POLYNOMIALS OF SLICE LINKS

Let us use this presentation of G(L) to consider a presentation of G(Z)/G(E)” .
Let &/, ¥/, %/, a;, b, and ¢, be the generators corresponding to the trivial link

and the attaching bands as in Fig. 1.
We will study how the upper paths of L are divided by the attaching bands
in the projection of L;

) i
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by the attaching bands (see

166
°y Xiiy

The upper path x; is divided into x;,
The relators obtained from these parts are as follows

Fig. 2).
—g
Xii, = 0{* x“z la* *
—8x

D g
Xip = a* X104
Thus, we get 7, generators

Here, €xis +1 or —1, and a4 is one of ay, by, cx

instead of one generator of G(L) and 7,—1 defining relators (I).
Assume that the attaching bands attach at the upper paths iy Xy and y;

of L (see, for example, Fig. 3), so that the resulting upper paths of L are denoted
by x;, and ,,, x;,; and x;,, and ¥, and y,
More generators and relators related to O, U O, U O, and the attaching bands

have to be considered (see, for example, Fig. 4)

Fig. 4
As a result, one presentation of G(E)/G(Z)” is as follows™
i l,4,2, - 01,52, -, 0,
ey f1,52, e my)
* In addition to the relators stated below, the generators of G(L)” should be added as the

,
But these relators become 0 by Fox’s free calculus on each generator

Hence we need not think of these relators for our purpose and omit

generators; X, ¥ m, (=1
i=1

relators of G(L)/G(LY".
of G(L)/G(LY”.
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relators; 7/ = w5 Wil 15w OF Wy nihWTiwry , caused
from the presentation of G(L), where w4 € {x;;, ¥,,} and n=n, or n, (=1, 2,
ey ntmy,
From (I), x; = Ax,A™! (=1 n,j=1-,n)
Yim= Byle—l

where A and B are some words of {af?, b, ¢7'}.

From (III), S, = s, -+ 5, &'s; ! == 57"+ a, &'

Sy =] e sy 25 e 517, 27
Sy = sy s7y'si 1

Il

/77—=1
e 571,y
where s,, s/, s/ are some of af?, b;! and ;.

From (IV), R, = w; - w,a/a;'w;* - wi'x;}

Rl =w, - wx'w;’ -+ wi'ni;

R, = wj -+ wmz’c[‘wm w7
R} = wi -+ wpdw, ™ - wl w5

R; = Wl ee wfy’b—l -1, w!’~ 1yl1
Rs = wi’- wly'wl ™" - w7y 3%,

where w,, w! and w/!’ are some of {x3, y7», a', bi', 7'} .

Since ay, by, and cy4 are the elements of G(E)’ , these generators are com-
mutative mutually, so that their indices are changed only after the attaching
bands crossing under the upper paths of O,00,00;L;

a, = ot

———t . —1 e _1
Ay, = OQy,-1 " QA0 Oy,—1

Cz. = 7677"
V) § ¢

P .. _1 soe —1
Coe = Vne—1 " V10N Vo, -1

bg = 36,67}
b;bz IBnb—l : Blbllgl n,,—l

where ax, B, and 74 are some of x;; and y,, since x;; and y,,, have the form in

().

For the same reason, S;, S, and S; are equivalent to the following:

(aenaelz aeu) (cfhceh Cejm) (bekxbﬁkz b;k")x”l
n

X(bk—ne B oues Ekl)( —E],,, e —E]l)( —'621 i—l'b'il)x/
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Sz =c, I(C]E{‘ vee c;::;"’) (af:} vee ae")(bekl . b;’:}'/)z"‘l
x(b,;‘, - bk_l/ekl/) (ai,_'a' a.——,ezl) (c.“ffm’ c]?jl,)z,
S5 = by Mo -+ b)Y (afly - af) (- .c€f:','”)3"'l
X(C_E]m —e]: )( —ez; —s;1 )(b— k—l',fkl”)y’

where n,>4,>-->4>1, n,> ;> >j,>1, n,>k>--->k,>1, and so on.
Since the sets (I) and (V) are the defining relations, x,(I=+1), y,(n+1),
a(i=+1), b(j=+1) and ¢,(k=+1) vanish. Let us use x;, y,, a, b and ¢ instead of
X1, Y15 &, by and ¢, respectively.
After a;, b; and ¢, vanishing, let us use these notations as words having the
following forms.

a; = aie“—l vee aflaa‘l‘ a;'!l-—l
b = /3;111 ws BHBBTE - "’J 1
Cp = VR e YTIEYTT e '7;‘"
Then, the presentation of G(L)/G(L)” is the following:
p g
GENErators; &y, «+, X; 1, Xi g+, Figt, Xigzy =+, &

Y15 "':yjl)yjb "')yn_y )
/ ’ /
x’y)z b

ny >

a b, c,
relators;  r! = Aw A7 WawiW - Arw AL W w, W,
(e=1, -, n,4m,),

where Ay and W are some words of {a#',b7',¢;"}, and wy is some of {x;’,y;},
and (¢, ")=(k, k+1) or (n,, 1) or (n,, 1).

R, = Wi(%1,3;, @x, by, cx, ¥, ¥, ) g} Wik(x;, -+, 2')x7}

Rl = W(%;, 9 @, by, €4, &', ¥, 2V Wik, oo, 2)x7 2

R, = Wy(x;, ), ax, bx, cx, &, y', Ve Wal(xy, -, 2)x)

R} = Wy(x;, », &) W3 (%, +++, 2')%7,5

Ry = Wiy(x;, -+, z,)ylbf;IW; (xi’ ) z,)y '11

Rf = Wiy, =+, )y W3k, -+, 27,

where W), W, and W, are the words of {x;, y,, ax, bx, ¢x, &', ¥/, 2'}.
-1, ei 3 € Efm ek ek -1
S, = a, (ai:l 11) (c ... cj,,], )(b 1. b ")x/

X(b];fk" e b];:Ekl) (c':ej,,, e —E]l) (a—€11 vee ai-l—éh)x/
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( E]l ves C;'{Z"/) (afli}/ . 511)(b€k1 . b;’:}'/)z"l
X(b’;, S b_,ek‘/) (a‘—;ez, . a-_f’l)(c,*fim’ . _5]1 )z
S; = b;l(bze,‘} cee be )(aeu ez, )(051‘ . cs]”' )y, 1
X(c—elm .. C].x_”eh )(aiT”Eil g ”511 )(b_ek . b};,ik'”)y’ ‘

Before considering the Alexander matrix of G(L)/G(L)”, we will introduce
several properties of the free calculus.

Proposition 1.

or!
ow

=0 (w=x,y,2,c=1, -, n+n).

Proof. If w appeares in 7/, then w is contained in the words A4 or Wy that
have the special forms; for example, let us consider the form of Ay,

A* — a‘.l coe a'.l.bj1 ees bjm.ck
e -1 -1
= (aill “es a',lnaela‘.ln rxy aill) (aizl X agz ---)X
-1
oes X('Yikl vee fy‘,"cg eee ly'.kl) .

een ck

1 ”n

Since a, b and ¢ are mapped to 1 by the abelianized map, a;, b ; and ¢, are also
mapped to 1. Let us consider the case that a;=w, which appears in a;, then

0a; _ _ -
afu; =0y *** ai—,-+1(1+wai-,~—1 e ayaayt - aflj—l(_w )]
=0.
In the case that w appears in g; in more than one place, it is easy to get the same
result by using a similar calculation as above.

So, it is not difficult to get 654* =0, since A4 consists of only {af'}, {67}
w
and {c;'}.
Proposition 2.
ol _Or
ow  Ow Vi

ek, 0,4, 45—1, ,—1, j—1).

Proof. In the case that w appears in some of A4 and Wy, there is no change
in this part, by the same reasoning introduced in the previous proposition, since
the words 44 and Wy in r/ are mapped to 1 by abelianization;

or! A ow 047!
? — ¢ A 3 A ¢
ow  Ow A ow A, ow

-+ .-
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= ALawl‘i‘A,‘w‘A‘_le%—l— vee
ow ow
) ow’ Ow ! e 10wt

_ O(w, wiw, 1 w;F) _ or,
ow ow

The following is similarly obtained:

Proposition 3.

g:;: = g; (‘w:inll; X125 Xigls Xig2s yjlv) y,-z) ’
or; oy or’_, Or,_,
Ox;,  Oxy’ Ox;; — Oxy ’
or., or,, or!_, Or,,
0x;, 0y ’ 0x;,1 = Ox;,
or’ or; orj_, Or;,,
O U T T
Proposition 4.
OR, _ ORi (W = x; (%01, 5,2), y,, &, ¥, &),
ow ow !
OR, _ oR4 (0 = wi (i, i2) ¥, %, 5, 7).
Oow ow !
2% _ o1 (2 = %3, (% i ¥, %)
dw  Ow !
OR, _ OR{ | OR(_OR_;
6xi11 axill Xi2 Xi2
OR, __ ORj} 1 oR; _ 6R2_1
0x;,, 0x;,, ’ 0x;, 0x;, ’
0R; __ ORj 1 OR; _ 6R3_1.
0y, 0y " 9y 2 0y5

Proof. The differences between R, and R{ are in the last letters and the

-1
"a

0
. —1
center parts. Since p) =0 and a,,a

is mapped to 1 by abelianization, we have

oR, _ o(Wx'Wi")
0x; 1 0x;

_awWw'wih) 1
0x; 1

+ Wlxra;al /8% —xill)
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_ OR;

= —1.
0x; 4

By using a similar calculation, the other equations are also obtained.

Proposition 5.

0S, _ 0
ow

(L =123, w= Xis Y x/)y/, 2/) .

Proof. 'This is easily derived considering the forms of a;, b, and ¢;.

Now consider the Alexander matrix of L. By Propositions 1, 4 and 5, this
matrix is equivalent to the following matrix: ‘

xl.”xn;yl cee yﬂv xill xilz xizl xizz yjl .ij x’ 2«/ y/ a Cc b

r{ . . . . E .
5 S L A | 3
rfl 0 1 :

: Pl —we 00

: 0 1 : 0 *
r;'_l : —Wx 0
7} 0 1
rz;*—ny :
Rl pl... cee “ee P”y Pl_l P]{ Pizl 3 E sz

/ P e e p, PAP{—1P, 1 i p,
RZ ql..- cen coe eoe coe qi12 P2_1 PZ, .

) , ; * *

s R A N
R, Py e e e e e g P 1P
R} Freee e e e e e e g, PyPI—]
Sy
S, 0 0 *
S

where P,= OR; , Pl= OR, , Pz=%', Pj= OR, , P= OR; 1nd Pj—0Rs
Xi 1 0x; 0x;,1 0x;, 0y 0y

By Proposition 3, each entry of (x;,-th row--x; ,-th row) is equal to the
x;y-th row, and (x;,-th row+-x;,-th row) and (y,,-th row-y ,-th row) are equal
to the x;,-th row and the y ;-th row of the Alexander matrix of L, so that this
matrix is equivalent to the following:
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Xy o X1 Xig Ya Xiz Xip Yp ¥ 2ylach
] 0 0 0
; 0 i i
1 0
0 1 :
@ i 0 0 0 *
: D1
0
6 o
R, : P+P{—1: : P{ P, P,
{ ‘ ! P1+P{_1 E 5 Pf"'lpigz sz
R, EE: : P+-Pi—1 g2 Pi g . .
5 P Ppt-Pi—1 q:‘lzpé_lqiz
R, B : : PPi—1 Tip Tip P;
4 : : i PH-Pi—1 Tin rizzP§—1
S,
Sy

By Proposition 4, this matrix is equivalent to the following:
(substitute R/—R; to R} for i=1, 2, 3)

Xig Xip Vj ¥ 2y lach
a ¥ 0 * ¥y 2|lach
R, a 0 *
1100 —1 0 00 0O R,
R | e , R | * M, *
F ]l () eeooancen p—
51 0 0 1 0000 ~ R,
Ry | e
72 I 0 0 —1/000 Sy
e e —_— S, 0 M,
S;

where M,— @i) (:=1,2,3, w=a, b, c) and Mz=<aR
ow 0

‘w‘) (e=1,2,3, w=x",y,%).
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To complete the proof of the special case, it suffices to show that if
det M,=F(x,y), then det M,=F(x"%, y~!) and |F(1,1)|=1, since the first non-
zero polynomial of the above matrix is a product of the first non-zero polynomial

of (a), det M, and det M,. Therefore, consider OR, (c=1,2,3, w=x, ¥, ¥)and

ow
66*:; (=1, 2, 3, w=a, b, ¢).

Since the words of a@;s,bs and ¢,’s are the conjugates of a, b and ¢, we
obtain the following:

Proposition 6.
6_121 a(Wl('xi’ y,-, 1’ 1) 1’ xl) J", z’)'x,;W.l_l(xi) AR 2’).%';_111

ow ow ‘

0R, O(Wyw, v, 1,1,1,a,y,2")-2 - W35 (;, -+, &) &7}
ow — ow ‘

= Al L2 ) W s Rl
ow — ow ’

where w=x', y' or 2.
Let us consider the words W,= W(x, v 1, 1, 1, &, y', 2') (e=1, 2, 3).
Since the relators R,(:=1, 2, 3) are obtained from the edges of the attaching

bands, the length of W, are related to the indices #,, n, and n,. The indices of
@y, by and ¢y are changed when the attaching bands pass under the edges of

0,U0,UO;U L, at the same time the length of W, increases by just one letter.
Assume that

I‘7[/1 =W W, W,
ﬁ/; =0 U 0 Uy (2, O, Us = x5, y;: &%,y 2 € = +1)
ﬁ/3=ul“z U,
where n=n,—1, m=n,—1 l=n,—1.
Since a,, b,, and ¢, are obtained by the paths of the attaching bands, it
follows that
a,, = w, e witeaew, - w,
= ur' e upleben, - u,
e = Vp' o v7lecen, e 0,
Similarly,

— gyl —1
Qiy = Wiyg **" Wy QW) = Wiy

o~
|

= y7l. ..oyl .
 Uje urtebeu, - U1

=1 -1
Chx = Ukym1 **° V1 *C2Tp ** Upyy ©
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Proposition 7.

%—‘21 = —w;t e wi - (1—27Y) (& wik, - wi' e w7y e wi)
68—‘5;‘ = (1—x7") (& iy - T =+ +E Uiy - UTY)

aa—fl = (1—a7") (§, 07,11 » 0T oo +-E; 07,y -+ 0TY)

%i:-? = (L—a™t) (&, w7 )y = Wi - & Wiy - wi)

%_‘2'2 = (1—x7Y (Eh'“k_ll’—l vy e _,_gkm,u;':,_l s urt)

66_‘32 = —0x - o7 (1—x7Y) (8;’1’7’;11’—1 R TR SR +Ej,,,"v;,:/—1 )
% = (L=y7Y) (& jroy ++ W' o+ & pwTpry -+ i)

% = —urt e uT (=YY (Gl 0 UT - oo Gty o uTY)
0S

-1 -1 — — -
36—3 = (1—y )(Eil,,'vjl,,_l v D l+ oo +8jm/,‘vj';//_l e U 1) .

Proof. These are deduced from the forms of S,.

To calculate oR, (e=1, 2, 3, w=x’, ¥/, '), we check where &/, ¥' and %’
7

appear. When the attaching bands cross under O,UO,U O;, then «/, " or 2/
appears in w..
Let us consider aj* in S;. There are two cases (see, Fig. 5).

,/’/,' iy (Ei*=1)

- X'ay} “ By
::::ﬂ 7
N\

W\

iy i1 '\“ N a (6,=—1)
Fig. 5

(Iv)

Case (I). If a;, crosses over O, from left to right, then &;,,=1 and a;,=«"a,,_,x'"".

So there exists w;,_; in R, (1<iy—1<mn), such that w,,_,=x""".
Case (II). If a;, crosses over O, from right to left, then &,=—1 and a;,,,=
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®'"la;x’. So there exists w;, in R, (1<ix<n), such that w,=x'.
Then, for aq,, in S, there exists index i4—1 or iy, and a letter w;,_; or w;,
in R, such that w;,_,=x""! or w;,,=x". Corresponding to this letter,

oR, _ { Fwy e Wiy (¥ (=1

ax/ coe +w1 .oe wi*—l( 1 )+ cee (8‘.* a— __._1)
= ese +(_8i*wl P w‘.*_l)—'_ ee

By the same reasoning, corresponding to the letters &,, and ¢, in S;, we
obtain the equations

oOR

500—’3 = eor H(—Epthy 0t Upyn)F o
and

oR

o = T Tt
respectively.

Using these equations, we can prove Proposition 8.

Proposition 8.

%% =y e W,—(1—x) (& 20y~ w; .y + -+ &0y -+ w;, )
Z_I;} = —(L—x) (&, 7wy Wy 7yt oo +E w0y e W, y)

gf,‘ = —(1=x) (&, -+ w; g+ - +E w0y o w; /)

%ii’z = —(1—x) (8,01 V4 ** +E;,01 +* V;,20)

gljf = —(1—x) (§;,701 = 0,7yt =+ +E; 70y 0,7 1)

%ii/z =0y Up—(1—2) (§;/0 - 0,/ F +++ +E; 10y -+ 0,,74)
gff = —(1—) (Euts ++ Upy 1+ o+ +Ety - Uy, 1)

OR,

537 =ty o up—(L—y) (Ety ++ Wy oo € Uy o 7 y)
253 = —(1—9) (E/th + Uyt »+ +Ep /s o Uy /1)

Proof. For example, consider the form of R,. Except for the letter &’ in the
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center of Ry, all letters & appear in w, corresponding to the parts of the attaching
bands crossing over O,. Then, it is not difficult to get the desired equation of

g—lxil. And all ¥/ (or 2’) appear in W, corresponding to the parts of the attaching
bands crossing over O4(0,).
Using Propositions 7 and 8, let 8——— l( ) ——(1 x'l) f2(%, ¥), 6S1
- - - 6S
(1=2")fs(% ), ———(l—x g, y) ——(1 ¥ g, ), =g y) 50
=(1—y Yhy(x, y), 3= I, ¥) and —(1 Yy Dy, ¥). Then,
aRlz_ | %__ _ ORy _ (1
™ 1  — ( x)fs,  — Y)fs
OR, oR. oR
91— 2 s __(1—
9 (—x)g, =& o (1=5)2
OR, 7 OR 7 OR 7
= —(1— oK _ _(1— s
By (1—x)h,, 2y (1—x)hs, 2y by,
where f; means f(x~%, %) and so on.
We have
a c b
Sy fr (I=2)fs (1=27)f,
My ~S, | (1= & (1=2")g,
S; L(1—y™ ) 1=y )k, k,
and
x/ zl yl
R, i —(=xa —(1—x)h
M, ~R, | —(1—2)fs —&s — (1)
R\ —(1=p)f: —(1—p)z. —h,

Thus, F(x,y) = det M,=—(1—x"") (1—y ) f1gls—(1—27") (1—y ") 283l
==Y fagr b (1= Y(1—y7") f3g. 7
+f1g:h+ (1= 1=y ") fogi b5,

and  det M, = (1—x) (1—y)f 18 ks +(1—x) (1—) o2 i+ (1—x)f 8, R,
—(1—xy(1—y)f 8 li—F18: F— (1 —xY(1—y)f 221 hs
= —F(x'y ).

It is immediate that

|F(1’ l)l = |f1(1’ 1’ 1)'g3(1) 1’ 1)"’2(1) 1’ l)l =1.
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For general cases of p and v, it is sufficient only to check the matrices M,
and M, as in the previous step. These matrices are related to the trivial link
O, U -+ U O, and the attaching bands.

Instead of a, b,¢,%’,y, 2, R,, S, (:=1, 2, 3), we need generators a,, ¥/ (t=
1,2, .-+, ») and relators R,, S, (¢=1, 2, -+, »). Since the situation is just the same
as in the previous case,

al lllllllll av
Sy
Pl s,
My~ 0,
S,
and
x{ ......... x:
R,
: OR,
MZN § axf/
R,
Let 95— £, (x, -, %) (=1, )
Oa,
aSt __ ’7-1 . *)
~ —(l—xz )f:.p(xla '"»xﬂ) (“— 17 Yy P#:‘) ,(
Oa,
then
OR,
ax; =—fu (c=1,-7)
OR
axzz ——(1~x,’)f’pl (e=1, v, p*d).
So, det M, = fu (I—=x{")f1p == (l_x.{_l)fl\‘
(1—x"Y)fn Sz

L

(1=, fn For

det My=|  —Fy (=) —(1—a)fu
—(1—.xi)flz : :

—’(1—:.’)6'{)_};., é _.:fw

* Here, x; denotes a suitable letter in {x1, -, x,}.
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=0 Fa o (—sfa (=D
(=), :

(1—x)f For
= (—1)"det’ M, = (—1)"det M,.

Thus, there exists a polynomial F(x,, -+, x,) such that

det M, = F(x, +++, %),
det M, = F(x7?, -+, x3")

and |F(1, -+, 1)|=1.
This completes the proof of Lemma 2.

RemMARK. In the proof of Lemma 2, we can also find that the integer
B(L) is the invariant of PL cobordant links [5]. To see this, let L;, i=1, 2, be
PL cobordant links. L, is cobordant to a link L/, where each component of L}
is obtained from a component of L, by tying a knot in a small 3-cell. We have
B(L,)=PB(L3), since det M,=+0 and det M,=0 in the proof of Lemma 2 imply
that B(L) is the cobordism invariant. B(L3)=3(L,) easily follows from a direct
use of Fox’s free calculus. Hence B(L,)=/B(L,).

3. Proof of Theorem 2

Theorem 2. For a given polynomial F(t,, -+, t,) with |F(1, --+,1)| =1, there
exists a slice link L with p components in the strong sense whose Alexander polynomial
s F(tl’ R tll-)'F(tl—l; *tt tl_l)-

To avoid unnecessary complexity, let us consider the case that p=3, but
the construction of a slice link L with x components in the strong sense are com-
pletely done by the same way.

Theorem 2'. For a given polynomial F(x, y, 2) with |F(1,1,1)|=1, there
exists a slice link L with 3 components in the strong sense whose Alexander poly-
nomial is F(x, y, 2)-F(x", y~1, 27Y).

Proof. Since | F(1, 1,1)|=1, we can assume that F(x, y, 2) will be splitted
into the form

F(x, y, 8) = 1—(1=x)f1(x, , 2)—(1—y)f2(x, ¥, 2)
"(l_z)fa(x: e .2‘) .
In order to construct a slice link L, it’s enough to get the informations of

attaching bands. So we need relators R; and S; (i=1, 2, 3). Since the relators
S; can be automatically obtained from R;, let us consider R;. Therefore, we
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have to consider a part of the Alexander matrix Mz_(%£> (w=x', ¥, ).

To consider the matrix M,, let us deform the polynomial F(x, y, ) as follows;
F(x, y, 2)
= {1-(1=2)fi(x, 3, )} {1—-(1—=p)fo (% 3, 2)} {1—(1—2)fa(x, , 2)}
—(1=2) A=9)/1(% 3, )f2 (%, y, 2)—(1—y) 1—2)f2(x, , 2)fa(%, 3, 2)
—(1=2) (1=2)f3(%, 3, 2)f1(x, 3, 2)
+(1=2) (1=y) 1=2)f1(% 3, 2)- f2(%, 3, 2)- fa(%, 3, 2) -
It’s easy to check that this form is the determinant of the following matrix M ;
I—(1-%)f, —(—®f,  —(1—x)f
M~| —(1=y)f: 1—=(=yp)f:  —(A=n)f:
—(1—=2)fs —(1=2)fs 1—(1=2)fy .

Let us take the matrix M as M,; i.e.,

OR Ro, oR

o — 10 = —(1=x)f1, ;= —(1=x)f,
x 2y’ 0z

OR, OR, oR

—=—(1— , —2=1-(1 , —=—(1-— ,
P (1=9)f 3y A=z 52 (A=)t

OR oR oR

o = U L= (=9 TE=1-(-3),.

Instead of the relator R; is a word of x, &, y, 9/, 2, 2/, a,, b, and ¢, it’s enough
to construct R; as a word of x, %, y,', 3, %, a,, b,, and ¢,
: — e g =) e =)
Since R, = wyw, *** w,¥'a, wy' - wxy
? A R—1 -1 -1
Rzzw{ cee wmyb , ces w; y*
Ry = /- wf/ e i/t - ol Tz,
we will make the words w,++-w,, w!{---w}, and w/.--w/.
For example let us assume that

fi(x, v, 2) = glx‘”xyﬁlzyl—{—gzxmzyﬂzz‘fz_}- e & x%r Pl

Then, w,---w, contains ¥/, ¥/, 2’ in r places, respectively.
Let us put these 37 letters as the following manner;

Decide w,---wy to satisfy the equation

6(‘101 ves

w
%) — Ex"1y51"M
02’
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Depending on a; >0 or a; <0, @, letters among w,--wy are x or x~%, and B3, letters
among w,---wy are y or y~'. If §>0 and v,>0, there must be 41 letters z
among w,---wy. Then,

1 +1 ., mEl,,tl

w; - w*z”‘ =X e XTI YT e Y e z.z’_l,
~————— N———
a B mtl

Let us repeat this step 3r—1 times more. After these steps, the word w,---w,
can be obtained. By the same way, w{---w;, and @Y:--w}’ can also be obtained.
By using these words, the following relators will be read;

a,, = Wyl e wileaewy oo- w,
J— /-1 /-1 ’ ’
bﬂb =)t e w{Tleby e w] - W),

/77-1

=1 o

— ’’ ’
C”c _.wl ‘cl.wl (XX /1Y

Since the indices of @, b and ¢ are changed when the attaching bands cross
under the overpasses of the link, the relators above give us the informations
about the attaching bands;

a, = wila w b, = w{~'b wi ¢, = wi/ e, wf

— _l : .
a; = w;la,w, : :

J— —l‘ —_ ’7—-1 7 ’ —_ /I—.l 24
a,,=w;'a, w, b, =w.b,, ,w, Co. =W/ ey Wl .

To construct a link L, put the trivial link with 6 components, representing
the generators «, %/, y, 3/, # and 2/, and contact two components representing x
and x’ by a attaching band which goes over according as relators 4,, and so on.
Since the attaching bands can freely go over the other parts of attaching bands,
it is possible to combine two components to represent the relators a,, b, and c,.
This completes the proof.

Note that there may be many different links satisfying conditions for the
given polynomial.
4. Some examples

ExampLE 1. Let F(x, y)=x—xy-+y. Then, this polynomial can be defor-
med into

FF(x, y)=1—y+4x"'y = 1—(1—x) (—x7'y).
This is the determinant of a matrix M,;

1—(1—x) (—x"'y) 0]

M, ~
2 0 1
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Then 2R — 1_(1—x) (—x1y), %_
ox’ ay’
oR, oR
0k, _ JOR g
ox’ 0y’

So there are three x” but no )’ among letters of R,. Since %G—B—) —xly,
%/

6(104'-- A

— -1 Wy)__ _ a1
&=—1, wl-—x ,wz_-y, 3—x and since . )_l,n—4 and w,=y".

Then, we get ”
Ry = x7lyx'y tenluy e yx/ Ty e a7
and a, = wi'law, = xax~,
a3 = wy'aw, =y 4y,
a, = wilagw; = ¥’ lagx’
a; = wi'aw, = ya,y*
Similarly, R,=y'b,,y7.
By using these relators, it’s possible to construct a link L with 2 components.

oy TN /Oy\\_/oy

7

"o r O |
v Fig. 9

ExampLE 2*. Let F(x, y, 2)=—x-yz+xyz. Then
F(x, y, 2)
= l4x—xy2 = 1—(1—x) (1—32)—(1—y)j—(1—=2)y=
= (1=(1—x) (1-3%)) (1—(1—y)y) (1—(1—=2)7%)
—(1=2)(1=y) (1-528)-5—(1—-y) 1—2)-3- 3=
—(1—2) (1—x)- 52-(1—32)+(1—=) (1—y) (1—2)-(1—3%)- 5- 3=

* In example 2, @ means w1,
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Then,
I—(1—2)(1=58) —(l—%)(1—3%) —(1—x)(1— %)
M, ~| —(1-y)¥ 1—(1—y)y —(1=y)y
—(1—2)y= —(1—=2)y= 1—(1—2)y=
Let us construct R;;
wlgunw* ..................... I ..................... w**
......... b4 fvee | veeees ! vee XL eeeens / ceeeseces /.
> R e y y x x
1 2 1 2 1 yz 1
Since 8—(w—‘—z—)~1 w,=2 and w,=% and 22’M=—5)2, W=7, W,=2%
0z’ 02’

and w;=2'. Since 2% y22’- 1, we=Yy, w,=y and wy=y’. By the similar

/ a(ws ,)_
dy’
way, we can get
R, = 2% | 32’ |yyy' | 2y’ szx’ly2x’|£yzx a;!

X 8yxx zyx'%2y 2yy’ yy¥ 2y'2. 27!

and n,=21

a, = ;3 ay = y'a;y W= Ya;5y
a; = 2'a,¥ A= ya,y ay,= ;%
a, = yay ay= 3,8 ag= Xa;x’
a; = za8 ap= y'z,y A= Xa;gX
ag = ¥az3’ a3= Bap3 W= Yay
a, = yagy ay=Xa,3x = Raxn3 .
ag = ya;y as= x'ay ¥

YamacucHl WOMEN’S UNIVERSITY
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