INVARIANT SUBRINGS UNDER THE ACTION BY A FINITE GROUP GENERATED BY PSEUDO-REFLECTIONS

Shiro GOTO

(Received October 20, 1976)

1. Introduction

In this note, let R be a regular local ring with maximal ideal m and let k be the residue field of R. Assume that R contains k as a subfield. Let G be a finite subgroup of Aut_k R. Assume that (|G|, ch k)=1 if k has positive characteristic. Further we assume that G is generated by pseudo-reflections relative to the induced action on the Zariski tangent space m/m² of R. (Hence R^{c} is again a regular local ring and R is a finitely generated R^{c} -module (c.f. [3]).) For an arbitrary Macaulay local ring B with maximal ideal n, we put r(B)= $\dim_{B/n}Ext_{B}^{d}(B/n, B)$ ($d=\dim B$) and call it the type of B. Recall that B is a Gorenstein local ring if and only if r(B)=1. The aim of this paper is to prove the following

Theorem. Let a be an ideal of R and assume that a is stable under the G-action on R. We denote R/a by A. Then we have

(1) If A is a Macaulay local ring, then the ring A^{G} of invariants is again a Macaulay local ring and the inequality $r(A^{G}) \leq r(A)$ holds.

(2) If A is a complete intersection, then the ring A^{c} of invariants is again a complete intersection.

It is known that A^{G} is a Macaulay local ring if A is a Macaulay local ring (c.f. Proposition 13, [2]).

As a consequence of this theorem we have

Corollary (c.f. Watanabe, [4]). If A is a Gorenstein local ring, then the ring A^{c} of invariants is again a Gorenstein local ring.

2. Proof of the theorem

An *R*-module *M* is called an (R, G)-module if the group *G* acts on the additive group of the module *M* so that the identity s(ax)=s(a)s(x) holds for every $s \in G$, $a \in R$, and $x \in M$. An *R*-homomorphism of (R, G)-modules is

called a homomorphism of (R, G)-modules if it is compatible with G-action. For an (R, G)-module M, M^c is an R^c -module and it is contained in the R^c -module M as a direct summand. The projection $\rho_M: M \to M^c$ is given by $\rho_M(x) = 1/g \cdot \sum_{s \in G} s(x)$ which is called the Reynolds operator for M, where g = |G|. Note that $[]^c$ is an exact functor.

Let N be a finitely generated R-module and let $i \ge 0$ be an integer. We put $\beta_i^R(N) = \dim_k \operatorname{Tor}_i^R(k, N)$ and call it the *i*-th Betti number of N. Recall that, if the sequence $\dots \rightarrow F_i \rightarrow \dots \rightarrow F_1 \rightarrow F_0 \rightarrow N \rightarrow 0$ is a minimal free resolution of N, then the number $\beta_i^R(N)$ is equal to the rank of the R-module F_i .

First we give the following lemma.

Lemma 1. Let M be an (R, G)-module and assume that M is finitely generated as an R-module. Then there exists an exact sequence

$$\cdots \to F_i \to \cdots \to F_1 \to F_0 \to M \to 0$$

of (R, G)-modules such that each (R, G)-module F_i is a finitely generated free *R*-module with rank_R $F_i = \beta_i^R(M)$.

Proof. We put $r = \beta_0^R(M)$ (= dim_k M/mM). Notice that the sequence $0 \to mM \to M \xrightarrow{\mathcal{E}} M/mM \to 0$ of (R, G)-modules can be regarded as an exact sequence of G-spaces over the field k. Then, by virtue of Maschke's theorem, we can find an r-dimensional G-subspace V of M so that $\mathcal{E}(V) = M/mM$. (Recall that (|G|, ch k) = 1 if k has positive characteristic. This is one of our standard assumptions.) Let $\{e_i\}_{1 \leq i \leq r}$ be a k-basis of V and let $[a_{ij}(s)]$ denote the matrix representation of an element s of G relative to this basis. Let F be a finitely generated free R-module of rank r and let $\{X_i\}_{1 \leq i \leq r}$ be an R-free basis of F. We put $s(X_j) = \sum_{i=1}^r a_{ij}(s)X_i$ for every $s \in G$ and for every $1 \leq j \leq r$, and we define a G-action on F by

$$s(\sum_{j=1}^{r} a_{j}X_{j}) = \sum_{j=1}^{r} s(a_{j})s(X_{j})$$

where $s \in G$ and $a_j \in R$. Then the *R*-module *F* becomes an (R, G)-module under this action. Moreover, if we define an *R*-linear map $f: F \to M$ by $f(X_j) = e_j$ for every $1 \le j \le r$, then *f* is a surjective homomorphism of (R, G)modules. (Note that $M = \sum_{i=1}^{r} Re_i$ by Nakayama's lemma.) Inductively we can construct an exact sequence of (R, G)-modules mentioned above.

Lemma 2. Let M be an (R, G)-module and assume that M is finitely generated as an R-module. Then the inequality $\beta_i^R(M) \ge \beta_i^{R^G}(M^G)$ holds for every integer $i \ge 0$. Proof. Let $\dots \to F_i \to \dots \to F_1 \to F_0 \to M \to 0$ be an exact sequence of (R, G)modules obtained for M by Lemma 1. Since R is a finitely generated free R^c -module and since F_i^G is a direct summand of F_i as an R^c -module, we see that F_i^G is a finitely generated free R^c -module for every integer $i \ge 0$. Therefore, as the sequence $\dots \to F_i^G \to \dots \to F_1^G \to F_0^C \to M^c \to 0$ of R^c -modules is exact, to prove this lemma we have only to show that $\operatorname{rank}_R F \ge \operatorname{rank}_{R^c} F^c$ for every (R, G)-module F which is finitely generated and free as an R-module. We put $r = \operatorname{rank}_{R^c} F^c$ and let $\{x_i\}_{1 \le i \le r}$ be an R^c -free basis of F^c . We denote by K the quotient field of R and consider $K \bigotimes_R F$ as a (K, G)-module naturally (*i.e.*, We define $s(c \otimes x) = s(c) \otimes s(x)$ for $s \in G$, $c \in K$, and $x \in F$.).

Now assume that $r > \operatorname{rank}_R F$. Then $\{1 \otimes x_i\}_{1 \le i \le r}$ is not linearly independent over K and so we may express, without loss of generality, $1 \otimes x_1 = \sum_{i=1}^r c_i \otimes x_i$ for some $c_i \in K$. Let s be an element of G. Then, as $s(x_i) = x_i$ for every $1 \le i \le r$, we have $1 \otimes x_1 = \sum_{i=2}^r s(c_i) \otimes x_1$. Thus we see that $1 \otimes x_1 = \sum_{i=2}^r (1/g \cdot \sum_{s \in G} s(c_i)) \otimes x_i$ where g = |G|. Now we put $b_i = 1/g \cdot \sum_{s \in G} s(c_i)$. Then, since $b_i \in K^G$ and since K^G coincides with the quotient field of R^G , we can find a non-zero element a of R^G so that $ab_i \in R^G$ for every $2 \le i \le r$. Therefore there is an identity $ax_1 = \sum_{i=2}^r a_i x_i$ in F^G where $a_i = ab_i$. But this is impossible, since $\{x_i\}_{1 \le i \le r}$ is linearly independent over R^G . Thus we conclude that $r \le \operatorname{rank}_R F$.

Proof of the theorem.

First consider (1) and suppose that A is a Macaulay local ring. It is known that A^c is a Macaulay local ring (c.f. Proposition 13, [2]). We put $s=\dim R$ $-\dim A^c$. (Note that $s=\dim R^c - \dim A^c$, since $\dim R^c = \dim R$ and $\dim A^c =$ $\dim A$.) Then we have, by Lemma 3.5 of [1], that $\beta_s^R(A) = r(A)$. Similarly we have $\beta_s^{R^c}(A^c) = r(A^c)$, since R^c is a regular local ring by the standard assumption. Thus we conclude that $r(A^c) \leq r(A)$ by Lemma 2.

Now consider (2) and suppose that A is a complete intersection. Then $\beta_1^R(A) = s$ and hence $\beta_s^{R^G}(A^G) \leq s$ by Lemma 2. On the other hand, since R^G is a regular local ring and since $s = \dim R^G - \dim A^G$, we know that $\beta_1^{R^G}(A^G) \geq s$. Therefore $\beta_1^{R^G}(A^G) = s$ and this implies that A^G is again a complete intersection.

Acknowledgement. The author thanks Dr. S. Mori for his useful suggestions and discussions.

NIHON UNIVERSITY

S. Goto

References

- [1] Y. Aoyama and S. Goto: On the type of graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 15 (1975), 19-23.
- [2] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
- [3] J.-P. Serre: Groupes finis d'automorphismes d'anneaux locaux réguliers, Colloq. d'Alg. E. N. S., (1967).
- [4] K. Watanabe: Invariant subrings of a Gorenstein local ring by a finite group generated by pseudo-reflections, to appear.