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Let R be a ring with an identity and, for a left R-module M, pd(M) and
1d(M) denote the projective and injective dimension of pM, respectively. A
(left and right) noether ring R is called n-Gorenstein if id(rR)<n and id(Rz)<n
for n=0, and Gorenstein means n-Gorenstein for some n. This is slightly
different from the well known definition in the commutative case unless a ring
is local (see Bass [5]) and, as a generalization to the non-commutative case,
there is another one by Auslander [1]. However, when we want to consider
many interesting properties about a quasi-Frobenius ring and an hereditary
ring in more general situation, we cannot conclude yet which definition is best.
So, in this paper, we follow the above definition of a Gorenstein ring and try to
generalize some interesting properties for a quasi-Frobenius ring. On the
other hand, for a 1-Gorenstein ring, a few papers have appeared, for instance,
Jans [12], Bass [4] and recently Sumioka [18], Sato [17] and, for a Gorenstein
ring with squarezero radical, Zaks [19].

As the typical examples of 1-Gorenstein rings which are neither hereditary
nor quasi-Forbenius, we have

1) Gorenstein orders, especially the group ring Z[G] where Z the ring of
rational integers, G a finite group. (See Drozd-Kiricenko-Roiter [7], Roggenkamp
[16] and Eilenberg-Nakayama [8].)

2) Triangular matrix rings over non-semisimple quasi-Frobenius rings.
(See Sumioka [18] and Zaks [19].)

In §1, we shall show that for a 1-Gorenstein ring R, E(zR)PE(zR)/R is an
injective cogenerator (Theorem 1) and as this corollary, an artin 1-Gorenstein
ring which is OF —1 must be quasi-Frobenius (Corollary 3). 'This should com-
pare with that for a quasi-Frobenius ring R, R itself is an injective cogenerator.
Next, as a generalization of “projectivity=injectivity’’ for modules over a quasi-
Frobenius ring, we obtain that over a certain #n-Gorenstein ring, finiteness of the
projective dimension, projective dimension <#, finiteness of the injective dimen-
sion and injective dimension=<# for modules are all equivalent (Theorem 5).

In §2, first we attend to Nakayama’s theorem [15] that a ring R is uniserial
if and only if any homomorphic image of R is quasi-Frobenius, and replace
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“quasi-Frobenius” with “1-Gorenstein.” Then we have three classes of rings,
i.e. a uniserial ring, an hereditary ring with square-zero radical and a quasi-
Frobenius ring with square-zero radical (Theorem 10). Moreover, as an
application, we can classify a semiprimary ring whose proper homomorphic
images are artin 1-Gorenstein (Theorem 12) and generalize [11, Theorem 1].
Also, in prime noether case, it will be shown that a restricted Gorenstein ring
in the sense of Zaks [20] is equivalent to a restricted uniserial ring under certain
hypothesis which always holds for commutative rings (Proposition 11).

Finally, Kaplansky’s book [13] is suitable for looking at the recent develop-
ment of commutative Gorenstein rings. In the present study about non-
commutative Gorenstein rings, we should generalize the results described in
[13] to the non-commutative case in appropriate form.

Norarions. For a ring R and an R-module M, we denote

n(R)=the number of non-isomorphic simple left R-modules,

Rad R=the radical of R,

Soc(zR)=the left socle of R,

E(M)=the injective hull of .M,

| M | =the composition length of M.

A noether (artin) ring stands for left and right noetherian (artinian) and
an ideal means twosided. Further, we say a non-zero ideal twosided simple if it
contains no non-trivial ideal.

1. An injective cogenerator over a Gorenstein ring

In this section, first we consider which module is an injective cogenerator
over a 1-Gorenstein ring, and next show the equivalence of the finiteness of
projective dimension and injective dimension for modules over an n-Gorenstein
ring which has a cogenerator with projective dimension=<zn. These are well
known for quasi-Frobenius rings, i.e. #=0.

Theorem 1. Let R be a 1-Gorenstein ring, then E(xR)PE(xR)/R is an
injective cogenerator.

Proof. It is enough to show that any simple left R-module is monomor-
phic to E(xR)PE(R)/R. Otherwise, and suppose a simple left module .S is not
monomorphic to it, then

Hom, (S, R) = 0 = Exti(S, R) .
Now represent S as
0— M- ;R — S —0

where M is a maximal left ideal and 7 is an inclusion map. If we denote X *=
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Hom(X, R) for an R-module X, we obtain an exact sequence:

S%* — R% i M#¥ — Exti(S, R)
and so, by the assumption,
i*: R¥ — M¥ with i*(r*) = (m —>mr)  for reER,meM

is an isomorphism. Hence

¥¥: QM** — (R¥* = R with ¢**(f) = fi*(1) for feM**
is an isomorphism, too. On the other hand, by Jans [12],

o gM — RM** with o(m) = (f—f(m)) for meM, feM*
is also an isomorphism and therefore so is

**a: M — R.

However i**o is an inclusion which contradicts M ==R.

ReMARK. In the theorem above, the assumption for R noetherian is neces-
sary. For instance, let R=]I,K, be a direct product of infinitely many fields
K,, then R is self-injective but ;R is not a cogenerator.

Next, we shall examine when only E(zR) or E(,R)/R is an injective
cogenerator. A ring R is called a right S-ring if E(;R) is a cogenerator and
see Bass [3] or Morita [14] for details. In the latter case, we have the next
result.

Corollary 2. Let R be a 1-Gorenstein ring, then E(,R)|R is a cogenerator if
and only if Soc(xR)=0.

Proof. “Only if”: Suppose a simple left module S is monomorphic to
#R, then from the exact sequence

0—‘)RS'_)RR—>RC—>O’
we have an exact sequence
Extk(R, R) — Extk(S, R) — Ext%(C, R).

Here, Extk(R, R)=0 and Ext}(C, R)=0 since id(zR)=1, so Extx(S, R)=0
which contradicts that E(zR)/R is a cogenerator.

“If”: Since ER(R)PE(xR)/R is a cogenerator, for any simple left module
#S, S is either monomorphic to E(zR) or E(zR)/R. However, from Soc(zR)=0,
#S must be monomorphic to E(;R)/R.

As an example of a ring R such that E(zR)/R is a cogenerator, we obtain
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the following: Let R be an indecomposable semiprime 1-Gorenstein ring, then
E(zR)/R is a cogenerator unless R is artinian. More concretely, R=Z[G] is
an example satisfying above assumption. Therefore Theorem 1 and Corollary
2 generalize Sato [17, Corollaries 3.3, 3.4 and Proposition 3.5].

As a second corollary of Theorem 1, we obtain a result about QF —1 rings.
We recall a ring R is left OF —1 if every faithful R-module has the double
centralizer property.

Corollary 3. Let R be an artin 1-Gorenstein ring. If R is its own maximal
left quotient ring, R is quasi-Frobenius. Hence an artin 1-Gorenstein ring which
is left QF —1 is quasi-Frobenius.

Proof. Since R is its own maximal left quotient ring, E(,R)/R is monomor-
phic to a direct product of copies of E(rxR) and so E(,R) is a cogenerator and,
for any simple left module ;S, we have an exact sequence:

0 — xS — xR — ,C—0,

which induces Ext}(.S, R)=0 similarly to the proof of Corollary 2. Therefore
#R is injective, i.e. R is quasi-Frobenius.

If R is left QF —1, E(zR) has the double centralizer property and hence R
is its own maximal left quotient by Lambek’s result.

RemarRk. Now, we have a further investigation about QF —1 rings, that
is, we consider hereditary QF —1 rings. We have the following: “A left non-
singular left QF — 1 ring is semisimple (artinian).” In fact, if R is left non-singular,
its maximal left quotient ring Q is semiprimitive. Furthermore, if R is left
QF—1, Q=R by Lambek’s result and hence R is semisimple by Camillo [6,
Proposition 5].

As a consequence, for a ring R the following are equivalent :

(1) R s left hereditary left QF —1,

(2) R is right hereditary right OF —1,

(3) R is semisimple (artinian).

To investigate the latter problem in the beginning of this section, we
require the next lemma.

Lemma 4. For an exact sequence of modules over a ring R :
0—=z4d—iB—C—0,

(1) id(A), id(B)<n implies id(C)<n;
(2) pd(B), pd(C)<n implies pd(A)<n.

Proof. (1) For any R-module X, we have



RiINGs WITH SELF-INJECTIVE DIMENSION =1 37

Ext}*(X, B) — Ext3!(X, C) — Ext%(X, A) (exact).

Now, Ext%'(X, B)=Ext%'*(X, 4) by the assumption, so Ext}"(X, C)=0, i.e.
id(C)=n.
(2) is dualto (1)

Theorem 5. Let R be an artin n-Gorenstein ring and suppose there exists
a cogenerator W with pd(W)<mn. Then the following are equivalent for a left
R-module ;M:

(1) pd(M)<oo, (2) pdM)=n, (3) idM)<oo, (4) idM)=<mn.

Proof. (1)—(2): Say pd(M)=m < oo, there is a left module X such that
Ext®(M, X)=+0. Represent X as

0 — zK — F — z X — 0 (exact), pF free
then this induces
ExtR(M, F) — Ext3(M, X) — Ext3*' (M, K) (exact) .

Hence, Ext?*!(M, R)=0 implies Ext%(}, F)=0, from which we have id(F)=m.
Now, id(F)=1d(R)=n and hence pd(M)=m=n.
(2)—=>(3): Let

0—>P,,é’>P,,_1—>---—>P,£1>P0£’>M—>O

be a projective resolution of M and K;=Ker(f;) 0<i<n—1, K_;=M, then first
in an exact sequence:

0_)Pn_)Pn—l—_)Kn—2_)0’
id(P,), 1d(P,-,)<id(xR)<n implies id(K,_,)<n by Lemma 4 (1). For general 7,
in an exact sequence:

0>K,—>P,—>K,_ —0,

if 1d(K;)<mn, then id(K,_;)<n again by Lemma 4 (1). Therefore by the in-
duction, id(M)=id(K_,)<n.
(3)—>(4): Sayid(M)=m< oo, then there is a left module X such that
Ext®(X, M)=+0. Let
0 — x X — E — C — 0 with E injective

be an injective presentation of X, then we have Ext®(E, M)=0 from an exact
sequence;

Ext%(M, E) — Ext3(X, M) — Ext3*}(C, M)
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and so pd(E)=m. On the one hand, as E is isomorphic to a direct summand of
a direct product JIW of copies of W, pd(E)=< pd(IIW)=pd(W)=<n whence
idM)=m=n.
(4)—(1): Let
O—>M£)>E0£E1—+---—>E,,_1£';E,,—>O
be an injective resolution of zM and C;=Cok(f;) 0=i=n—1, C_,=M, then an
exact sequence:

Oﬁcn—z—_)En—l-)En—)O

and pd(E,_,), pd(E,)< pd(W)=<n imply pd(C,-,)<n by Lemma 4 (2). By the
same discussion as the proof (2)—(3), we obtain pd(M)=mn.

As a corollary of Theorems 1 and 5 we have the following where we recall
a ring R is left QF —3 if E(;R) is projective.

Corollary 6. Let R be a 1-Gorenstein ring which is left QF —3, then the
Sfollowing are equivalent for a left R-module M :
(1) pdM)<oo, (2) pdM)=1, (3) d(M)<oo, (4) d(M)=1.

Proof. By Theorem 1, W=E(;R)P E(zxR)/[R is a cogenerator with
pd(W)=1 because

0 - R 5> E(GRYDE(R) — W — 0

with j(x)=(0, x) for x€R is a projective resolution of W. Further, it is well
known a noetherian left QF —3 ring is artinian, so we may apply Theorem 5
in case n=1.

RemMARK. (1) For any #>0, there exists a non-quasi-Frobenius ring
satisfying the hypothesis in Theorem 5. For instance, let R be a serial (=gener-
alized uniserial) ring with admissible sequence: 1, 2, ::+, 2 (2 are # times), then
1d(zR)=1d(Rp)=gl.dim R=n and ;W=]I}.,E; is an injective cogenerator with
pd(W)=n where 0 — xR —> E,— E, —+--— E, —0 is the minimal injective resolu-
tion of RR. (See [10] for details of serial rings.)

More generally, an n-Gorenstein ring R with dom.dim R=n has an injective
cogeneartor ;W=][?_oE; with pd(W)=<n where 0— zR—{E;; 0=i=<n} is the
minimal injective resolution.

(2) We may construct an n-Gorenstein ring R, with gl-dim R,= o for any
n=0 in the following way. Let R, be a non-semisimple quasi-Frobenius ring,

and for any #>0, R, the triangular matrix ring over R,_,, i.e. R,,z(IRS”"1 % )
n=1 n—1
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2. Rings whose homomorphic images are Gorenstein

In [19, §2], Zaks showed that, for a semiprimary ring R with square-zero
radical, id(xR)=<1 if and only if R is a direct product of a quasi-Frobenius ring
and an hereditary ring, and hence id(;R)=<1 is equivalent to 7d(R;)<1. Such
a decomposition theorem no longer holds unless the square of its radical is zero.
For example, let Q be a local quasi-Frobenius ring with (Rad Q)’=0 and R
the triangular matrix ring over Q, then R is artin 1-Gorenstein and indecomposa-
ble but is neither quasi-Frobenius nor hereditary.

Now, for a serial ring, we have a decomposition theorem as above.

Proposition 7. Let R be a serial ring, then the following are equivalent :
(1) idR)=1,

(2) d(xR)=1,

(3) R is a direct product of a quasi-Frobenius ring and a hereditary ring.

Proof. Without loss of generality, we may assume that R is self-basic
(twosided) indecomposable, and decompose yR as R=Re,P-:-PRe, such that
{e1, +*+, ¢,} is the Kupisch series. If Ris not quasi-Frobenius, Re; is non-injec-
tive for some 7 (1=<i¢=<#) and then, from |Re,,,|<|Re;|+1 for 1=j<n, we
obtain that if <n, |Re;,,| = | Re;|+1, Re; is monomorphic to Re,,, and E(Re;)
= Re, for some j (1<j=mn) by [10,1.1]. Now, let the number ¢ be the smallest
one with Re; non-injective and Re;,, injective. Here, we may suppose i<n
because, in case of Ne,=0, Re, is monomorphic to Re, and if Ne,#+0, by permut-
ing {1, ---,n}, it is possible for Re, to be non-injective and Re, injective.
Therefore we have

E(Re) = Re;,; and |Re;|+1=|Re,;]|.
So, saying N=Rad R,
E(Re;)|Re;—=Re;.,|Ne; .,
is simple injective and from that Re,., is epimorphic to Ne,,, if i+1<n,
Re;.[Ne;,, = Ne; ,[N%;,,< Re,;,/N%;.,

induces Ne;,,=—0 since Re;,/N%,;,, is indecomposable. This contradicts
|Re;| =2 for j=2,--,n and so i+1=n and |Re;,|=|Re;|+1 for 1<i=n.
Hence Re,—=Ne,,, for 1=:=<n—1, i.e. Ne; (=2, -+, m) are projective and R
is hereditary.

Applying this proposition we classify the rings all of which homomorphic
images are artin 1-Gorenstein. Before proceeding, we need two lemmas.

Lemma 8 (Bass [3]). For a right perfect, right S-ring R, id (zR) is finite if
and only if ;R is injective.
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Proof. Say, id(R)=n< oo, then there exists a simple left module pS with
Ext%(S, R)#0. Now, since R is a right S-ring, we have an exact sequence:

O-éRS_)RR_)RC_)—)O
which induces
Extk(R, R) — Extk(S, R) — Ext%"'(C, R) (exact).

Here, Ext%"'(C, R)=0 from id(;R)=n, so Extk(R, R)#0 and n=0, i.e. xR is
injective.

Lemma9. Let I be a(twosided)ideal in any ring R and R[I" a left hereditary
ring for some n>1. Then I"=I"*'. Hence, if we assume yN—=Rad R is finitely
generated (or nilpotent) and R|N" is left hereditary for n>1, then N"*=0 and so R
itself left hereditary.

Proof. Since I"7!/I" is an ideal in R/I*, it is R/I"*-projective and the exact
sequence of R/I"-modules:

0 —> In/IiH-l — In—l/IrH—l —> ]n—l/In - O

splits, i.e.
In—l/]‘n—H ~ In—l/In@In/IrH—l

as R/I"-modules. However, I.(I"'/I"®I*[I**")=0, so I-(I*!/I"*")=0, i.e.
In:In+l'

Theorem 10. For an indecomposable semiprimary ring R, the following are
equivalent :

(1) For any homomorphic image T of R, id(;T)<1,

(2) For any homomorphic image T of R, id(T;)=1,

(3) R s one of the following ;

(1) R is uniserial,

(ii) R is hereditary with (Rad R)*=0,

(iii) R is quasi-Frobenius with (Rad Ry=0 and n(R)=2.

Proof. (3) is left-right symmetry, so we prove only the equivalence of
(1) and (3).

(1)—>(3): Say, N=Rad R, since R/N? is also indecomposable, R/N? is
either hereditary or quasi-Frobenius by Zaks [19]. In case of hereditary,
N?=0 by Lemma 9 and hence R is of type (ii). In another case, R/N?is a serial
ring, so R is artinian and serial, too whence R is either hereditary or quasi-
Frobenius by Proposition 7. If R is hereditary, gl.dim R/N?< oo by Eilenberg-
Nagao-Nakayama [9, Theorem 8] and hence by Bass [4, Proposition 4.3],
gl.dim RIN?=1d(z/y2RIN?) <1, i.e. R/N? is hereditary, so N?=0 and R is
hereditary again by Lemma 9.
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Thus, let R be serial quasi-Frobenius and n(R)=n(R/N?)=n. Further,
R=R/N? also satisfies (1) and since (1) is Morita-invariant, we may assume R
is self-basic and decompose R as R=Re,®---PRe, with {e,, -+, ¢,} Kupisch
series. If n>2, Je,=e, Je, (J=Rad R) is an ideal of R and the ring:

T = R|Je,= Te,®---PTe, where e = e+ JeeT
satisfies d(;T)<1. Hence, from Je,—~ Re,/]e,,
E(Te)|Te, = Te,|]e, (J=Rad T)

is T-injective. However, ¢, Jé;+0, i.e. Té,/Je,~ Je,% Te, which contradicts the
indecomposability of T'e;, so n<2. Then, since R is uniserial if n=1, let n=2,
i.e. we may represent R=Re,PRe, with {e,, e,} Kupisch series because R is
self-basic, too. Furthermore, if N?3=0, then N%,; and N?2%,=+0 as R is quasi-
Frobenius and the homomorphic image T=R/(N?% @ N?%,)=Te,PTe, where
é,=e;+ (N’ PN?%,) T satisfies id(;T)<1. Now, from E(Te,)=Te,

E(Te,)|Te, = Te[]e, (J=RadT)
is T-injective. However,
J%&, = N%,[N%),; == Re,[Ne, = Tée|[]e,

is T-injective which contradicts that ,7¢, is indecomposable. Hence N?=0.

(3)—(1): In any case of (i)—(iii), R may be assumed self-basic. It is
well known that a uniserial ring is characterized as a ring all of which homomor-
phic images are quasi-Frobenius.

Let R be of type (ii). For any ideal I contained in N, since (I is a direct
summand of RN, R/I is also hereditary by Eilenberg-Nagao-Nakayama [9,
Proposition 9]. If I is not contained in N, I contains a primitive idempotent e,
with I=Re,®(I N R(1—e,)) and further, if I NR(1—e,)<E N, choose a primitive
idempotent e, orthogonal to ¢, in 7 NR(1—e;). By repeating this method, we
have

I= Re,P---PRe,PI’

where ef=e¢, is primitive and I’=I NR(1—3., ¢,)SN. Then, let e=1—(e,+
++e,), from I’, eR(1—e)S N,

I'R = I'eRe+1'eR(1—e)SINRe=1,
i.e. I’ is an ideal. Hence T'=R/I’ is an hereditary ring with

Rad T" = NI’ = yNe® N(1—e)/I’
and so N(1—e)/I" is T'-projective. On the other hand,
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T = R/I = R(1—e)/I’

implies Rad T=N(1—e¢)/I’ and, as T’ is epimorphic to T, N(1—e)/I’ is T-
projective, i.e. T is hereditary.

Let R be of type (iii) and R=Re,PRe, where {e,, e,} Kupisch series. For
any ideal I contained in N, I is a direct summand and, as N=Ne,PNe, with
Ne, simple, I is isomorphic to Ne, or Ne, provided I +0, N. If I=Ne,

Il = gNe, = e,Ne, = e,1
implies I=e,I and so, saying N=1 DK,
el®Pe,K = e,(IPK) = e;,N = e,Ne, .
Hence
I = e,] = e,Ne; = e,N = Ne,
and
T = R|I = ,Re,/Ne,PRe,
which induces ;Re,/Ne, projective. Now, let /=Rad T,

rRe,[Ne, = ;Ne, = ; J(e,+1) =],

so ;J is projective and T is hereditary. In case of I= Ne,, we have the same
discussion. Next, let ¢, 1, then

2=|Re|=|l|=|zR|=4.

However, |l |=2 implies I=Re, and Ne,< Re,R< Re, which is a contradiction.
Therefore, we may take |.I/|=3 and then |zR/I|=1, i.e. R/ is a division
ring. ‘'This completes the proof.

Finally, we investigate a ring whose proper homomorphic images are artin
1-Gorenstein, and here consider in two cases of a prime noether ring and a
semiprimary ring.

For a prime noether case, we have a generalization of Zaks [20, Theorem
3]. Here an ideal I is said to have the Artin-Rees property if for every left ideal
L, there is an n with I*"N LS IL.

Proposition 11. Let R be a prime noether ring and assume every maximal
ideal in R has the Artin-Rees property. Then any proper homomorphic image of
R is artin Gorenstein if and only if R is restricted uniserial.

Proof. “Only if”: For any maximal ideal M in R, M=0 implies R a
simple ring, so we may suppose M=0. Then R/M? is primary Gorenstein
and hence quasi-Frobenius (in this case, uniserial) by Lemma 8. Thus let
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n>2, T=R/M" and J=Rad T, then T|/J?*~=R/M? is uniserial which implies
T=R/M?" (n>2) uniserial.

Next, for any nonzero ideal I in R, there exist maximal ideals M, ---, M, in
R with M,, ---, M,<1. Since M, ---, M, have the Artin-Rees property, there
are integers k,, -+, k, such that

MHn--AM2SM,---M,C1.

Hence, we may suppose all M, :--, M, are distinct and, by the Chinese
Remainder Theorem,

R/(Mlkln nM”kn) ~ R/M{%B---@R/Mjﬂ

is uniserial. On the other hand, R/(M,*1N -+ N M,*) is epimorphic to R/I, so
R/I is uniserial too.
Now, we state the last theorem which is of a semiprimary case.

Theorem 12. Let R be an indecomposable semiprimary ring and R, the
basic subring of R with N=Rad R,. Then any proper homomorphic image of R
is 1-Gorenstein if and only if R is one of the following :

(1) R s uniserial ;

(2) R is serial with admissible sequence 3, 2;

(3) R is hereditary with square-zero radical ;

4) n(R)<2, (RadR)*=0 and for any primitive idempotent e in R,
(a) eNe=0 provided e=1, (b) If Ne contains a nonzero ideal properly, it is a
maximal left and right subideal in Ne and N(1—e) is a simple left and right ideal
of Ro;

(5) n(R)=2, (Rad R)*=0 and R, has a primitive idempotent e such that (a)
eNe is simple left and right ideal of R,, (b) Either (1—e)Ne=0 or N(1—e)=0,
(¢) Each of (1—e)Ne and N(1—e) is twosided simple unless it is zero and N(1 —e)=
eN(1—e);

(6) R is triangular with n(R)=3, (Rad R)*=0 and Ne is twosided simple for
a primitive idempotent e in R, provided Ne=0.

Proof. Throughout the proof, we may assume R self-basic and then
N=Rad R.

“Only if.” If N3%0, R/N?3 is uniserial by Theorem 10 and so is R by [15].

Let N*=0 but N?%0, then R/N? is quasi-Frobenius with n(R/N?)=2
again by Theorem 10 and Lemma 9 and hence R is serial with #(R)=2. Thus,
let {e,, e,} be a Kupisch series, then Ne;#0. For, Ne,=0 implies N?=0 (con-
tradiction) because Re, is epimorphic to Ne,. So Ne,=0 and Re, is epimorphic
to Ne,. If both N?%, and N?%, are nonzero, R/N?%, is neither hereditary since
Ne,[N?, is not projective nor quasi-Frobenius since R/N?, has non-constant
admissible sequence 2, 3. Therefore
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N?%,£0, N?%,=0 or N?% =0, NZ%,=+0.

In either case, R has the admissible sequence 2, 3; i.e. R is of type (2).

In the following, we may assume N°=0, N =0 and R not hereditary because
otherwise R is of type (3). Here, we remark that for a semiprimary ring R with
square-zero radical N, R is hereditary if and only if any primitive idempotent e
in R satisfies either eN=0 or Ne=0. Now, if n(R)=1, i.e. R is local and N
contains a nonzero ideal /=N, R/I must be quasi-Frobenius. Hence yN/I, N|I
are simple and R is of type (4).

Therefore, now suppose n(R)=2, then there exists a primitive idempotent
e with eN 0, Ne=0and 1 —e is primitive too. In case of eNe==0, I=(1—e)NeD
N(1—¢)=0 since R is indecomposable and R/I=—=eRe®(1—e)R(1—e) as rings
implies that eRe is quasi-Frobenius, so eNe, eNe, are simple. Next, if both
(1—e)Ne and N(1—e) were nonzero, R/N(1—e) is indecomposable but neither
hereditary nor quasi-Frobenius. Hence either (1 —e)/Ne=0 or N(1—e)=0 and
each of them is twosided simple unless it is zero. Further, N(1 —e)=eN(1—e¢)
because R is indecomposable. These show that R is of type (5) in case of
eNe=+0. So we assume eNe=0, in which case eN(1 —e)=0 as e was chosen with
eN 0. Then R/eN(1—e) must be hereditary and (1 —e)N(1 —e)=0. Here, if
Ne contains properly a nonzero ideal I, R/I has to be quasi-Frobenius whence
both pN(1—e)=eN(1—e) and yNe/I are simple. These also hold for a right
side. On the one hand, if N(1—e) contains properly a nonzero ideal I, by
exchanging the idempotent e with 1—e, the same argument as above holds.
Hence R becomes of type (4).

Finally, suppose n(R)=3. As ;N is not projective, there are primitive
idempotents e, f with fNe==0 and Nf=0. Now, assume (1—e)Ne=0, then
eNe is a nonzero ideal, n(R/eNe)=n(R)=3 and R/eNe is indecomposable, so
R/eNe must be hereditary by Theorem 10. Therefore there exists a primitive
idempotent ¢’#e with eNe’=0 by an indecomposability of R and then I=
(1—e)Ne'+ N(1—e—¢') is a nonzero ideal since R is indecomposable and n(R)=3.
If we put R=R/I, e=e-+1I and &=e'+1I, ReP Re is a block of R and not any
of the ring stated in Theorem 10 (contradiction). Thus (1—e)Ne=0, i.e. f e
and, by setting e,=e, e,=f, R is expressible as R=Re,PRe,P---PRe, where
n=n(R)=3, e; (1=<i¢=<m) are primitive idempotents and either e¢,Ne;#0 or
e;Ne,#+=0. If an ideal I=(1——ez)Nel-{—(l—el—es)Nez—f—(l—ez)Ne3—|—Ej§3Rej is
nonzero, then R/I must be hereditary by Theorem 10 as R/I is indecomposable
and n(R/I)=3, and so we obtain that Ne,=e,Ne,+Ie,, e,Ne,=0=e;Ne, and
Nes=e,Ney+1e;+0. In this case R/3) >; Ne; has to be quasi-Frobenius, which
contradicts ¢,Ne,=0. Hence I=0 implies n=3, Ne,—e,Ne, %0, Ne,=e,Ne,+
e;Ne,#=0 and Ne;=e,Ne;. Moreover, if Ne,=0, e,Ne,—=0=e;Ne, for R/Ne, or
R|Nej, is indecomposable but neither hereditary nor quasi-Frobenius according
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to e,Ne,=£0 or e;Ne, &0, but it contradicts Ne,==0. Therefore Ne;=0 and
e;Ne,=0 induces e,Ne,=0 since gl. dim R/e,Ne,=2, i.e. R is of type (6).

“If.” Case (1): By Nakayama [15], R is uniserial if and only if any homo-
morphic image of R is quasi-Frobenius.

Case (2): Let R=Re,PRe, where e, e, are primitive idempotents and
|Re;| =3, |Re,|=2. Then, for any nonzero proper ideal I in R,

01 NSoc(zR) = I N (N%,®Ne,) = (I N Ne)D(I N Ney)

implies either I NN%,%=0 or I N Ne,#0. In either case, we obtain NZ%,&1.
Now, suppose N?%,=I, then R/l is quasi-Frobenius with the admissible
sequence 2,2. Next, if N%,=4=1, R/I is a proper homomorphic image of R/NZ,
and hence has the admissible sequence {1, 2}, {1, 1} or {1}. In all cases, R/]
is hereditary.

Case (3): Any homomorphic image of R is hereditary by [9, Proposi-
tion 9].

Case (4): For any nonzero ideal I of R, if IS N, I =Ie®I(1—e) with Ie,
I(1—e) ideals for a primitive idempotent e and R/I—=Re[Ie®R(1—e)/I(1—¢) is
either hereditary or quasi-Frobenius by the property (b). If I <N, I contains
a primitive idempotent e and so R/ is isomorphic to (1—e)R(1—e) or 0.

Case (5): For 'any nonzero ideal I of R, if IS N, I=eled®(1—e)led
I(1—e) and these summands are all ideals. By the property (b), in case of
(1—e)Ne=0, R/I=Re[elePR(1—e)/I(1—e) implies that R/I is hereditary or
quasi-Frobenius according to eles=0 or I(1—e)#0. In case of N(1—e)=0,
R/I—=Re[I DR(1—e) shows that R/I is quasi-Frobenius (resp. hereditary) pro-
vided (1—e)le==0 (resp. ele=+=0). Next, if I is not contained in N, e or 1—e
belongs to I and so I=Re®(I N R(1—e¢)) or I=(I N Re)PR(1—e) respectively.
In the former case, we may assume I NR(1—e)& N and hence R/I=
(1—e)R(1—e)/(1—e)N(1—e) is a division ring. Also, in the latter case, we have
the same conclusion.

Case (6): R has a complete set e, e;, e; of mutually orthogonal primitive
idempotents satisfying ¢;Ne,=0 if i<j. Hence, for any nonzero ideal I of R,
if IS N, I=1Ie,Ple, with Ie,, Ie, ideals and R/I = Re,|/Ie,PRe,|Ie, P Re, is here-
ditary since le;=Ne; or 0 (=1, 2). If I <N, some ¢; for i=1, 2, 3 is contained
in I and we may show similarly that R/I is hereditary.

Remark. In [20], Zaks showed that, for a commutative noether ring R,
any (proper) homomorphic image of R is Gorenstein if and only if any (proper)
homomorphic image of R is quasi-Frobenius. For a non-commutative case,
however, we see it no longer holds by Theorems 10 and 12. In prime noether
case (see Proposition 11), we don’t know whether the hypothesis of the Artin-
Ress property is superfluous or not.
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