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1. Introduction

This paper is devoted to an investigation of Borel structures and measures
on locally convex spaces, especially infinite measures. Infinite Borel measure
with smoothness was studied in [1]. In Section 2, we refer to some results of
[1] (Theorem (A), (B) and (C)) which are used in Section 5.

In Section 3, we examine the relations among the cylindrical o-algebra
C(X, X'), the Baire field B,(X) and the Borel field B(X). For a weakly Lindelof
locally convex space X, we shall show C(X, X’) coincides with the weak Baire
field B,(X,x,x») (Lemma 3.3). Moreover the same result is valid even if X
is the strict inductive limit of weakly Lindelof locally convex spaces (Proposition
3.4). If X is a hereditarily Lindelof locally convex space, then C(X, X’) is
identical to B(X) (Theorem 3.6).

In Section 4, we investigate C(X, X’)-measurability of continuous semi-
norms. We show if X is a projective limit of separable locally convex spaces,
then every continuous seminorm is C(X, X’)-measurable (Theorem 4.4).

In Section 5, we examine the conditions for a cylinder set measure to be
extensible to a pre-Radon or Radon measure. We give a sufficient condition
using the results in Section 3 (Proposition 5.1). As an corollary, every totally
finite cylindrical measure on X is uniquely extended to a pre-Radon measure on
X,(x,xn in case X,y /) has the Lindelof property. Furthermore if a cylindrical
measure p on X is essentially supported by a o(X, X’)-Lindelof subset, then p
is uniquely extensible to a pre-Radon measure on X,y x (Proposition 5.3). In
the latter half, we study the Radon extensibility of a cylinder set measure. We
present sufficient conditions for the Radon extension of a cylinder set measure
(Theorem 5.6). As a corollary of Theorem 5.6, we give another form of Prok-
horov’s theorem (Corollary 5.7).

The authors would like to thank Professor H. Sato for his constant en-
couragement. And also the authors wish to thank Professor A.W. Hager for
his useful information.

2. Preliminaries

Let X be a set. A family U of subsets of X is said to be a paving if it
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satisfies the following conditions:

1) ¢€U;
2y U U=X;
UeU

3y U, U,eU,then UyNU,eU and U,u U,eU .

We denote by A[U] (resp. o[1J) the algebra (resp. o-algebra) generated by <U.

Let X be a topological space. By the Borel field B(X), we mean the
minimal o-algebra generated by all open subsets of X. By C(X), we denote the
algebra of all real continuous functions on X. The Baire fiield B,(X) is the
minimal o-algebra generated by the family of zero sets

Z(X) = {f70); fEC(X)} .

A cozero set is the complement of a zero set.
Now we define pre-Radon measures and Radon measures.

DrrFiNITION 2.1. Let X be a topological space. A pre-Radon measure y is
a Borel measure on B(X) such that

1) For every x in X, there exists an open neighborhood U of x such that
w(U)<oo;

2) For every net {U,} of open sets increasing to an open subset
U, tim u(Uay=p(U);

3) For every A in B(X) such that p(A4)<<co,
w(A) = sup {u(F): FC 4 and F is closed} ;
4) For every A in B(X),
w(A) = inf {u(U); UD A and U is open}.

We say a Borel measure satisfying 1) a locally bounded measure. And a Borel
measure is called a regular Borel measure if it satisfies 3), 4).

DeriNITION 2.2, Let X be a topological space. A Radon measure u is a
Borel measure on B(X) such that

1) p is locally bounded;
2) For every open set U,

u(U) = sup {u(K); Kc U and K is compact} ;
3) For every 4 in B(X),
w(A4) = inf {u(U); UD A4 and U is open}.
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Let X be a locally convex Hausdorff space and X’ be the topological dual
space of X. For every subset F of X’, we put

Fit= {xeX;<x, =0 for all e F} .

We denote by FD(X’) the set of all finite-dimensional subspaces of X’ and by
Z(X, X') the algebra
-1 L
FeFLIJch')”F B(X/F ) ’

where 7, is the quotient map of X onto the finite-dimensional space X/F+. A
non-negative, extended real valued, finitely additive set function m on Z(X, X’)
is called a cylinder set measure on X if m is countably additive on z7'B(X/F*)
for each F in FD(X'). We denote by C(X, X’) the o-algebra generated by
Z(X, X’). A non-negative extended real valued, countably additive set function
on C(X, X’) is called a cylindrical measure.

The following results are fundamental tools in Section 5 (Amemiya, Okada
and Okazaki [1]).

(A) Let X be a topological space, U be a paving generated by an open base
containing X and m be a non-negative, totally finite real valued finitely additive
set function on A[U] such that

1) For any net {U,} of subsets in U increasing to X,

lim m(U,) = m(X);

2) For every U in U,
m(U) = sup {m(F); UDFe&A[U] and F is closed} .
Then we have for any net {U,} of subsets in U increasing to a set U in U,
ligx m(U,) = m(U) .
(B) Let X be a topological space, U be a paving generated by an open base
of X and m be a non-negative, extended real valued, countably additive set function

on the algebra A[U] generated by U. If m satisfies the following conditions:
1) There exists an increasing sequence {U,} in U such that m(U,) is finite,

and X= D U,;
n=1

2) For any net {U,} of subsets in U increasing to a set U in ‘U such that
m(U) is finite,

lizn m(U,) = m(U);
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3) For every U in U such that m(U) is finite,
m(U) = sup {m(F); UDF&A[U] and F is closed} ,
then m is uniquely extended to a pre-Radon measure on X.

(C) In(B),if mis totally finite, finitely additive set function on A[U] satisfying
the conditions 2) and 3), then m is uniquely extended to a pre- Radon measure.

3. Cylindrical o-algebra

Let {(X,, B)); AEA} be a family of measurable spaces. We denote by

& B, the minimal o-algebra of subsets of [] X, which makes every projection
AEAN AEN

7, measurable, which we call the product o-algebra of {B,}.

Lemma 3.1. Let X= [] X, be the product of locally convex spaces
AEAN
{Xx; nEA}. Then we have

X, X') = @ C(Xy, Xy) .
Proof. For every &,  in X}, {x,,€X,; <{x,,, £x,>=7} X II X, belongs to
N ATEX,
C(X, X’). Then it is clear that '

® C(X,, X\)CC(X, X') .

AEA
Conversely for every £=(§,) in X'= 3 X,’” we can write
AEAN

£E= 21 EA,-°7TA,~ .
Since &, o7y, 1s Q C(X,, X,')-measurable, so is £. Thus we have
AEAN
CX, X QCX, X)).
AEA

This completes the proof.

Corollary 3.2. Let X =lir§1 X, be the projective limit of locally convex spaces.
e

Then we have

C(X, X') = XN @C(X, X/).
=3

Now we give sufficient conditions under which the cylindrical o-algebra
equals the Baire field.

Lemma 3.3. Let X be a weakly Lindelof locally convex space. Then the
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cylindrical o-algebra C(X, X") is equal to the Baire field B (X ;x x") for the weak
topology o (X, X').
Proof. For every x in X, we define the translation T, as follows:
T(y) = x+y

forallyin X. Then thealgebra ./ generated by the family {£-T,; f€ X', x= X}
generates the topology o(X, X’) of X. By Frolik [5, Theorem 2] .1 is dense in
C(X,x,x») in the pointwise sequential topology. Since £o7', is measurable
with respect to C(X, X”), so is every continuous function in C(X 4 ). There-
fore we have

C(Xv X/) = Ba(Xo'(X,X/)) .
The proof is complete.

Proposition 3.4. Let X= U X, be the strict inductive limit of an increas-
ing sequence of weakly Lindelof locally convex spaces {X,; n=1, 2, ---}. Then the
cylindrical o-algebra C(X, X') is identical to the Baire field B(X ,x x) for the
weak topology o(X, X'),

Proof. For every n, we have
{E1X,; 6€eX} =X,
where £| X, is therestriction of £ to X,. Hence we have
X,NnCX, X)=CX,, X,)).
On the other hand by Lemma 3.3 we have
C(X,, X,)) = B(X,)sx,,x,0) -

Since the algebra {f|X,; f€C(X,x x))} generates the topology o(X,, X,) of
X,, we have

B (X)otxnx,0) = Xu N Bo(Xoix,xn) -

Thus for every n it follows
X, NCOX, X') = X, NB(Xo(x,x") -

For each B in B,(X,x x»), there exists C, in C(X, X’) such that
BnXx,=C,NnX,.

Since {X,;n=1, 2, --:} is an increasing sequence, B coincides with U N C,

which belongs to C(X, X’). Thus we have
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C(X, X') = B(Xox,x7) -
This proves the proposition.
Theorem 3.5. Let X= 11 X, be the product of locally convex spaces
AEN

{X\; NEA} such that every countable subproduct of 11 X, is a Lindelof space.
AEAN
Then the cylindrical o-algebra C(X, X’) coincides with the Baire field B (X ;x x")-

Proof. By Lemma 3.3 we have
C(Xy X\) = Ba(Xxo-(x,\,x,\’)) .
for every A in A. Hence we obtain
X, X)) = ® C(X,, Xy)
AEA
= ® Ba(XA¢(XA,XA/))
AEA

by Lemma 3.1. Since @l B (Xistxpxyy) €quals the Baire field B, (X, x)) by
AE
Hager [6, Theorem 2.2], we have

C(X) X,) = Bn(Xo‘(X,X')) »
which completes the proof.

We conclude this section with the following theorem giving a sufficient
condition under which the cylindrical o-algebra is equal to the Borel field. We
recall that a topological space X is a hereditarily Lindelof space if every open
subset of X is Lindelof.

Theorem 3.6. Let X be a hereditarily Lindelof locally convex Hausdorff
space. Then the cylindrical o-algebra C(X, X') is identical to the Borel field B(X).

Proof. Every closed convex set A is represented as follows:

A= ﬂD,,

where {D,; c:=1} is the class of closed half spaces containing A (for example see
Schaefer [10, Ch. II, 9.2.]). Since A°is Lindelof, there is a countable subset
I, of I such that
A°= U D:.
er,
Thus A belongs to C(X, X’). In particular every continuous seminorm is

measurable with respect to C(X, X’). Hence there exists an open base
{Uy; y<T} of X such that each U, belongs to C(X, X’). Let G be any open
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subset of X. Then there exists a subclass I'; of T" such that

G:'- U U-y.

YET,

Since G is Lindelsf, G is represented as follows:

where T, is a countable subclass of T',. Therefore G belongs to C(X, X’),
which shows B(X) is contained in C(X, X’).

4. (C(X, X')-measurability of seminorm

In this section, we investigate C(X, X’)-measurability of continuous semi-
norms on a locally convex space X.

Lemma 4.1. Let X be a separable locally convex Hausdorff space. Then
every continuous seminorm p on X is measurable with respect to C(X, X").

Proof. It suffices to show that U= {xE X; p(x)<1} belongs to C(X, X").
Since X is separable, the polar U'={t=X’; |{x, £>| < 1 for every x in U} is
a compact metric space for the weak* topology o(X’, X) (for example see
Schaefer [10, Ch. II1, 4.5]). Hence there exists a countable dense subset {£,}
in U°. By the bipolar theorem we have

U= {xeX; [<x, £>| =1 for every £ in U%}
= {xeXy [/\x: ‘fn>| ély n:"ly 2’ }
~ N {veX; [<x £DI <1}

It follows that U/ belongs to C(X, X”), which proves the Lemma.

REMARK 4.2. Let X be a locally convex space which is separable for the
weak topology (X, X”). Then every continuous seminorm on X, (x x/) is meas-
urable with respect to C(X, X’), where 7(X, X’) is the Mackey topology. This
is derived from Lemma 4.1 if we remark that “o(X, X'’)-separable” is equivalent
to “7(X, X’)- separable”.

Let p be a continuous seminorm on X. By X, we denote the normed space
X/Ker p with the quotient norm p of p.

Lemma 4.3. Let p be a continuous seminorm on a locally convex space X.
If X, is separable, then p is measurable with respect to C(X, X’).

Proof. We denote by = the natural map of X to X,, then we have
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{xeX; p(x)<1}
= n~Y({x+Ker p; p(x+Ker p)<1}).

By Lemma 4.1, {x+Ker p; p(x+Ker p)<1} belongs to C(X,, X,). If we
remark that % C(X,, X)) is contained in C(X, X’), the Lemma is proved.

Theorem 4.4. Let X=Ilim X, be the projective limit of the projective system

Ier
{(X., fus fub)} of separable locally convex spaces. Then every continuous seminorm
p on X is measurable with respect to C(X, X').

Proof. By f, we denote the natural projection of X to X,. Let {p,; €4}
be the class of all continuous seminorms on X,. Remark the normed space
X /Ker p¢ is separable, since X, is separable. If we put gy=pjcf,, the calss
{¢.; t€1, a= A} defines the topology of X by Bourbaki [2, Ch. 1, §4, Proposi-
tion 9]. Since p is continuous, there exist ¢, and a constant number C such
that p<Cq,. Then X/Ker ¢, is isomorphic to a subspace of the separable
normed space X,/Ker p;. Therefore X/Ker g, is separable and so is X,. By
Lemma 4.3 p is measurable with respect to C(X, X").

5. Pre-Radon extension

According to Moran [8] we call a topological space X measure-compact if
every countably additive totally finite Baire measure is a 7-smooth Baire measure.

Proposition 5.1.  Let X be a locally convex Hausdorff space such that X ,x x/)
is Lindelof, hence measure-compact. Assume that a cylindrical measure p satisfies
the following condition:

(*) There exists an increasing sequence {U,; n=1, 2, -+-} of o(X, X')-open
sets in Z(X, X) such that u(U,) s finite and X= G U,.
Then p is uniquely extended to a pre-Radon measure on X ,ix x/).

Proof. By Lemma 3.3 the cylindrical o-algebra C(X, X’) equals the Baire
field B, (X, x.x»). If we put

i A) = (AN U,)
for every 4 in B,(X,x ), then we have

m(d) = sup p,(4).

Since X,(x x/) is measure-compact, u, is totally finite T-smooth Baire measure.
We put

U= {UeZ(X, X'); Uis o(X, X')-open} .
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By » we denote the restriction of y to the algebra A[‘U] generated by U. Let
{U,} beanetin U increasing to U in U such that »(U) is finite. Then we have
sup »(U,) = sup u(U)
) = sgp sup ,(Ua)
= sup sup p,(Ud)
= sup u,(U)
— w(U) = (U) .
Since » is countably additive on Z(X, X’), it is clear that
v(U) = sup {v(F); UDF€A[U] and F is o(X, X’)-closed}

for every U in U. By (B) in Section 2, v is uniquely extended to a pre-Radon
measure ¥ on X,y x). Since A[U] generates C(X, X’) and p is o-finite, ¥ is
equal to p on C(X, X’). This completes the proof.

Corollary 5.2. Let X be a locally convex Hausdorff space such that X ,x x/)
ts a Lindelof space. If u is locally bounded, then u is uniquely extended to a pre-
Radon measure on X ,x x.

Proposition 5.3. Let X be a locally convex Hausdorff space, U be a paving
generated by a o(X, X')-open base in Z(X, X") and p be a countably additive set
function on o[U]. If u satisfies the following conditions:

1) For every x in X, there exists U in U containing x such that u(U) is
finite;

2) For every U in U such that p(U) is finite, u(U)= sup {u(F);
UDFeA[U] and F is closed} ;

3) There exists closed Lindelof subset W of X ,(x x) such that

ws(X—W) = sup {p(B); X—W>oDBes[U]} =0,
then y is extended to a unique pre-Radon measure on X,y x).

Proof. According to Halmos [7, §17, Theorem A], we define a countably
additive set function » on A[W NU]=W N A[U] as follows:

w(W N B) = u(B)

for every B in A[U]. We show that v satisfies the conditions of (B) in Section
2. For any net {V,} in W N U increasing to V in W N U, there exists an in-

creasing sequence {V,} in {V,} such that Lijﬂ:V since V' is Lindelof.

Thus we have
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v(V)=limu(V,).

For every V in W N €U such that »(V) is finite, there exists U in U satisfying

V=W NU. For each positive number &, there exists a closed set FCU in
A[U] such that

w(U—-F)<e.
Therefore we obtain
V(V-Fﬂ W) = ;1,(U—-F)<€ .

Since W is Lindelsf, 1) implies the condition 1) of (B) in Section 2 which shows
that v is uniquely extended to a pre-Radon measure . By Amemiya, Okada and
Okazaki [1, Theorem 7.1, Lemma 7.3], there exists a pre-Radon measure 7 on
X ,x,x» such that #0)=>(0 N W) for every open subset O of X (x x/ and the
restriction of % to W is equal to §. Particularly it follows Z(W*)=0. Then /
is identical to z on A[U]. In fact we have

AB) = HBNW)
— WBAW) = u(B)

for every B in A[U]. Since fiand y are countably additive, % equals x on o[U].
Proposition 5.3 is proved.

We give a necessary and sufficient condition under which every totally finite
cylindrical measure is extensible to a pre-Radon measure on X, (x x». Thisis
essentially due to Varadarajan [11, Part I, Corollary (4) of Theorem 25].

Proposition 5.4. Let X be a locally convex Hausdorff space and p be a
totally finite cylindrical measure on C(X, X’). Then p is uniquely extensible to a
pre-Radon measure on X,y if and only if for every net {U,} in U increasing to
X, there exists a sequence {U,} in {U,} such that

wX— 0 U)=0,
where A denotes the class of all o(X, X')-open subset in Z(X, X').

Proof. It follows from (A) and (C) in Section 2.

Finally we shall deal with “Radon extension” of cylindrical measures. In
the totally finite case, the following result is the same as Corollary 1.1 of Dudley,
Feldman and LeCam [4].

Proposition 5.5. Let X be a locally convex Hausdorff space and p be a
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cylindrical measure on C(X, X') satisfying that for every x in X, there exists a
(X, X’) open subset U in Z(X, X') such that w(U) is finite. If X is o-compact
topological space,for some topology p stronger than the weak topology o(X, X'), then
w is uniquely extensible to a Radon measure on (X, p).

Proof. By proposition 5.1 p is uniquely extended to a pre-Radon measure
/& oon X yxn. Since X,k x,) is also o-compact, % is a Radon measure on
Xsx,x». Remark that B(X,x x»)=B(X, p)). Forevery Bin B(X, p)), we have
A(B) = sup {#F); BOF and F is o(X, X’)-closed}
= sup sup A(F NK,)
sup {#K); BOK and K is p-compact}
XB) ,

A A

where K, is p-compact set such that X= U K,. Therefore /& is a Radon mea-
n=1

sure on (X, p). This proves the proposition.

Theorem 5.6. Let X be a locally convex Hausdorff space and U be a pav-
ing generated by a o(X, X')-open base in Z(X, X). A totally finite, finitely
additive set function u on A[U) is uniquely extensible to a Radon measure on (X, p)
for some topology p stronger than the weak topology o(X, X') if n satisfies the
following conditions:

1) For each U in U,
w(U) = sup {u(F); UDF €A[U] and F is closed} ,

2) For every positive number &, there exists a compact subset K of (X, p)
such that

WK = inf {u(B); K CBEA[UN} >u(X)—¢.

Proof. By (C) in Section 2, p is uniquely extended to a pre-Radon measure
Zon X ,xx,. Nextweshow Z(K) is equal to p%(K). For every £>0, there
exists a o(X, X’)-open set GO K such that

HG—K)<e€.

Since ‘U is an open base of X,y x/), there exists a net {U,} in U satisfying
G= U U,. Hence there exists such that U,D K, which implies

0= w(U)—A(K) = HU,—K)
= HG—K)<e.

us we have
Th h
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W(K) = HEK).
Hence there exists a o-compact subset L for p such that
ML) = HX),

which shows / is a Radon measure on X, y/). Since L is o-compact for p,
the identity map ¢ of X, x, onto (X, p) is fZ-Lusin-measurable. By n we
denote the image measure of /& by «. 4 is the desired Radon measure. In fact,
for every B in A[U], we have

u(B) = HB) = u(B) .
This completes the proof.

The following corollary is another form of the result of Prokhorov [9], of
which a variant is given by Dudley, Feldman and LeCam [4, Theorem 1].

Corollary 5.7. Let X be a locally convex Hausdorff space, p be a totally
finite cylinder set measure on Z(X, X') and ‘U be the class of all o(X, X')-open
subsets in Z(X, X’). Then p is uniquely extended to a Radon measure on (X, p)
for some topology p finer than o(X, X’) if and only if for every positive number &,
there exists a compact subset K of (X, p) such that

(K> u(X)—€ .

ReEMARK 5.8. In the above corollary, it holds that u%(K)=inf {x(U);
KcUeU=inf {u(B); KCBeZ(X, X')}.

KyusHu UNIVERSITY
AUSTRALIAN NATIONAL UNIVERSITY
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