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Introduction. Comparison theorem for solutions of stochastic differential
equations was discussed by A.V. Skorohod [9] and T. Yamada [10], In §1, we
will modify the main theorem of T. Yamada [10] so that it is more convenient for
applications. As an application, we discuss in §2 some stochastic optimal control
problem which was recently studied by V.E. Benes [1] using different methods.
In §3, we obtain some comparison theorem for one-dimensional projection of a
diffusion process. As an example of applications, we see that Hashiminsky's
test for explosion ([3], [7]) is obtained simply from a well known one-dimensional

result.

1. A comparison theorem for one-dimensional ltd processes

The following theorem is a modification of Theorem 1.1 in T. Yamada [10].

Theorem 1.1. Suppose we are given the following:

(i) a real continuous function σ(t, x) defined on [0, <*>)χR such that

(1.1) \σ(t, χ)-<r(t,y)\£p(\χ-y\), χ,y<ΞR, f^O,

where p(ξ) is an increasing function on [0, °o) such that p(Q)=Q and

(1.2)

(ii) real continuous functions b^t, x) and b2(t, x) defined on [0, <χ>)χ R such

that

(1.3) bfa x)<b2(t, x) , ί^O, x<ΞR.

Let (Ω, $, P; 3,) be a complete probability space with right continuous increas-
ing family (3,)ίg;0 of sub σ- fields of & each containing P-nullsets and suppose we are
given the following stochastic processes defined on it :
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(iii) two real &t-adapted continuous processes x^t, ω) and x2(t, ω),

(iv) a one-dimensional &t-Brownian motion B(t, ω) such that 5(0) =0, a.s.,

(v) two real &r adapted well measurable processes β^t, ω) and β2(t, ω).

We assume that they satisfy the following conditions with probability one:

(1.4) *,(f)-*«(0) = *(s> *,<s))dB(s)+ βfc)* , i = 1, 2 ,

(1.5) ^(0)<^2(0),

(1.6) /3ι(*)^*ι(*> *ι(*))> far all

(1.7) β2(t)>b2(t, x2(t)), for all t^Q ,

Then, with probability one, we have

(1.8) *ι(ί)£*#), /ore// ί^

If, furthermore, the pathwise uniqueness (cf. [11]) of solutions holds for at least

one of the following stochastic differential equations

(1.9) dX(t} = σ(t, X(t))dB(t)+bfa X(t))dt, i = 1, 2 ,

ίAew, zϋ^ AΛZ;^ ίA^ ί«m^ conclusion (1.8) fry weakening (1.3) to

(1.3)' b,(t, x)<b2(t, x) , *>0, ^ceΛ.

Proof. In the following proof, it is more convenient to assume that σ(t, x)

and bi(t, x), i=l, 2, may depend on ω and ωAΛΛ->σ(ί, #, ω) and ωΛAΛ-^i^ί, Λ", ω),

ί=l, 2, are 90-measurable for any fixed (t, x). Also, by a standard localization

argument, we may assume that they are all bounded. First, we prove

(1.10) P(3*>0; x^^x^s) for all *e[0, ί]) = 1 ,

under the above assumptions except that (1.5) is replaced by

(1.5)' xjft) = *2(0) .

For the proof, set

r = inf {s; b2(s, x2(s))<bl(s, x^s))} .

By (1.3) and (1.5)', it is clear that P{τ>0} = l. Let ?>0 be fixed and set

t=ϊ/\τ. Then

(1.11) - J? σ(s, x2(ή)dB(s)~
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Let φn(u)j (w=l, 2, •••), be a non-negative continuous function such that its

support is contained in (αw, 0M_ι), I " φn(u)du=l and φn(u)<ί(2/n)p(u)~2 where
J*n fβ»-ι

the sequence a0=l>al> •••&„> ---- ̂ 0 is defined by I ρ(u)~2du=n. Let
Jθn

.(*)Λ , »=1, 2, - .

Then, ψa<=C2(R), ψ.(*)tl*l when w-*co and |ψί(*)|^l. Using Ito's
eformula, we have

+ Γ ψ ί(«i(*)-*ιJo

+ T Jo ^ί/(^ί)-*>(*)) W'

= /1+/2+/3 , say.

Then, £(/,)=0 and

E(IS) <*^E[^ φn( I ̂ ί)-̂ *) I )P2( I «%(*)-*,(

as

Since f <τ, β2(s)-β1(s)>b2(s, x2(s))—bί(s9 ^(ί))>0 for all s<t by (1.6) and (1.7).
Then, letting n-*°° and noting |-ψ £(ίc)| <1, we have

x I - lim

Combining this with (1.11), we have

and this implies clearly that x2(t)^.Xι(t)9 a.s.. This is true for all t=ϊ/\r and,
by the continuity of #,-($), we have

This implies (1.10).
Now, we prove the first assertion of the theorem. Let 0=inf {$; #i(

In order to prove (1.8), it is sufficient to show that $—00, a.s.. Suppose, on
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the contrary, P(0<°o)>0. Set Ω={α>; 0(ω)<oo}, ®t=3t+l>\&, 3=3|β and

P(A)=P(A)/P(U), A&®. On the space (β, 3, ί5; 9,), we set σ (/, *)=
5;(ί, *) = *,(f+0, *), X,(t) = Xi(t + θ), /3,(0 = A(ΐ + 0), ί=l,2, and
B(t+θ)—B(θ). Then, it is clear that Xl(Q)=χ1(θ)=x2(θ)=it2(()) a.s. and also,

^*ι(f, *!(*)), Pz(t)>b2(t, X2(t)) a.s.. Further,

*,(*)- *f(0) = Γ *(ί, *,
Jo

Therefore, we can apply (1.10) and obtain

e[0, ί] =Φ

But this contradicts with the definition of θ. Therefore, θ— oo a.s. and hence
(1.8) is proved.

To prove the second assertion, we assume that one of the stochastic differ-
ential equations (1.9), say, for /=!, the pathwise uniqueness of solutions holds.
Let X(t) be the solution of the equation

( dX(i) = σ(t, X(t))dB(t)-\-bl(t, X(i)}dt,
(U2) 1 *(0) = *l(0).

Let, for 8>0, X±ζ(t) be the solutions of

f dX(f) = σ(t, XίtydBίή+ϊbJt, X(t))±e'ldt,
(1.13) •<

respectively. By what we have already proved,

X-*(t)<X(t)<X\t), for all *>0,

and, by the continuity of A^ί, x) and the pathwise uniqueness of solutions of
(1.12), we have

lim X~*(t) = lim X\f) = X(t), for all

Now, applying what we have already proved to x^t) and JiΓf, (note that
βJW^bfa x^t)) a.s. and bfa x^bfa x)+£), we have X!(t)<X*(t) and hence,
by letting 8 | 0, ̂ (ίJ^-X'^). Next, applying what we have already proved to
x2(t) and .AΓΓ5, (note that β2(f)>b2(t, x2(t)) a.s. and b2(t, xfebfa x)>bj(t9 x)—€),
we have X~\t)<x2(i) and letting £|0, ^T(/)<«2(i). Therefore, ^(ί)<^(ί)<Λ:2(ί).

q.e.d.

REMARK 1.1. For applications, the following modification of the theorem
1.1 will be useful. Suppose that there exists an <3>Γstopping time S(ω)>0 such
that xt(t, ω) is defined for ίe[0, S), (/=!, 2), and (1.4), (1.6), (1.7) are satisfied
for all f e[0, 5). Then the conclusion (1.8) holds for all f<Ξ[0, S).
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2. Application to some stochastic optimal control problem

Let k(r) be a non-decreasing non-negative function defined on [0, °o).
Let (Bt, ut) be a system of stochastic processes defined on a space (Ω, $, P\ <3*t)
such that

(i) Bt, (BQ= 0 a.s.), is an w-dimensional ^-Brownian motion,
(ii) ut is an w-dimensional <3 rwell measurable process such that | ut \ < 1

for any £>0, a.s..

Such a system (Bt, ut) is called an admissible system. Let us consider the
following optimization problem. Let x&R" be given and fixed. For a given
admissible system (Bt, ut), the response Xu

t is defined by

(2.1) X«t = x+Bt+ [usds.
Jo

Now the problem is to minimize the expectation E[k( \X*\)] among all possible
admissible systems (Bt, ut).

A solution is given as follows. Let U(y) be defined by

(2.2) vv ' v ' 0

Consider the following stochastic differential equation

f dXt = dBt+U(Xt)dt,
( } 1 *„=*.
By the well known transformation of measures, a solution (X?, B?) of (2.3)
exists uniquely in the law sense. Set

(2.4) tt? = U(X?) .

Then the admissible system (5?, w°) gives an optimal control: that is, for any
admissible system (Bt, ut), we have

(2.5) £[*( I *Π )]<#[*( I *ϊl)]

In [1], V.E. Benes obtained the above result using many techniques. Here

we show that it is obtained most simply by applying our theorem 1.1. In fact,
we can obtain the following theorem which asserts, in a sense, pathwίse optimality
of the response X?.

Theorem 2.1. Let (Bt, u{) be any given admissible system and, for a fixed
χ(ΞRn, the response {Xfi is defined by (2.1).

Then, on an appropriate probability space, we can construct Rn -valued stochastic
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processes {$%} and {X?} as follows:

( i ) {X?} has the same law as the solution {X?} of (2.3),
(ii) {&"} has the same law as the response {X"}9

(iii) with probability one, \ XQ

t\ < \ £? \ for all t>0.

Corollary. Let CM=C([0, oo )-»JΪ") be the space of all Revalued continuous

paths and F(w) be a non-negative Borel function defined on Cn which is non-
decreasing in the following sense:

(2.6) if wl9 w2£ΞCn and \w1(t)\<\w2(t)\ for all t>0 then F(w1)<F(w2) .

Then, for any admissible system (Bty ut), we have

(2.7)

That is, the solution {X°} of (2.3) is optimal in the problem of minimizing the ex-
pectation of F(X1:).

REMARK 2.1. The above problem is the case of F(w)=k(\w(l)\) which
clearly satisfies (2.6). Similarly, if k(ξly ξ2, ••*, ξm) is a non-negative function on

[0, <>° )w which is non-decreasing in each of variables, then, for 0<£1<£2< *"<£,«>

-, I«<<„)!)
or

F(w) = k(\ |(«;(ί)|ώ, I m$)|<fo, •••, l w \w(s)\ds\, etc.,

satisfy (2.6).
First we shall prepare a lemma which is useful to realize several adapted

processes on a same probability space without changing the law of processes.

Lemma. Let (Xt, Bt) be a pair of n-dimensional continuous adapted processes
defined on a probability space (Ω, 3, P\ 3,) such that {Bt} is an n-dimensional

&ΓBrownian motion (B0—Q a.s.). Let (Yt, B't) be a similar pair defined on

Then we can construct a probability space (Ώ, 3, p; &t) and a triple of n-
dimensional continuous adaped processes (Xt, Ϋt, Ot) such that

( Ί ) (Xt, Bt) has the same law as (Xt, £t),

(ii) (Yt, B't) has the same law as (Ϋt, Ot),

(iii) {Ot} is an n-dimensional &t-Brownian motion.

Proof. The probability law of {Bt} on Cn is the n-dimensional Wiener
measure starting at OejR* which we denote by R(dw). Let O(dw1dw2) be the
probability law of (Xt, Bt) on C" X C" and Q\dwldw2) be that oΓ( Yt, B't). Then

the marginal distributions of Q and Q' with respect to w2 coincide with R(dw2).
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Let Q^(dwl) = Q(dw1dw3)/R(dw3) and Of^(dw2) = O'(dw2dw3)IR(dw3) be the
regular conditional probability distributions (given w3). Set Δ=C*xCnxCM

(with compact uniform topology), U —the completion by P of topological Borel

field &(ό), P(dw1dw2dw3)==O^(dw1)O^(dw2)R(dw3\ 3L= Π (-$f+εV37) where &t is
8>0

the σ-field on O generated by Borel cylinder sets up to time t and Jl is the set of
all Anull sets, X(t, ω)=^wl(t), Ϋ(t, ω)=w2(t), β(t, ω)=w3(t) (ω=(wlyw2,w3)&&).
Then we can easily see that (i) (ii) (iii) are satisfied : a non-trivial point is only that

{βt} is O^-Brownian motion but it can be proved as in [8], pp. 73~74 or [11].
q.e.d.

Now we return to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let an admissible system (Bty ut) be given on some

S t
usds. Let (Xfy B?) be the solution of

0
(2.3) defined on some other probability space. Let p(x)= (/>,,(#)) be a Borel
function x^RHW^>p(x)^O(ri)9 where O(ri) is the set of all nxn orthogonal ma-
trices, such that

(2.8)

It is clear that we can choose one such p(x). Set

Bt = Γ p(X"s)dBs and B't = (' p(X°)dB° .
Jo Jo

Then we have

(2.9) XI - x+ Γ p-i(X»)dBs+ f usds ,
Jo Jo

(2.10) X°t = x+° =
Jo Jo

Now we apply the lemma to (Xu

t, Bt) and (X°,B't). Then, on a probability

space (ώ, 3, P; af), we have a triple of w-dimensional continuous adapted pro-

cesses (Jt*tJ X?,0t) such that 6t is 9iΓBrownian motion and (X*t, Bt)^(£u

t>βt),
f r

(X°iBt)f&(&?9Ot). (Here « denotes the coincidence of the law). Clearly

there exists 3 Γwell measurable w-dimensional process ύs such that |ώj<l,
, a.s. and

Applying Itδ's formula to x,(t)= \X°\2 and «2(i)= | ̂ "? | 2, we have

= 2Xt'p-1(X'})dBi+2X1!'Utdt+ndt
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and

- U(X?)dt+ndt

where Ot=(6], £?, -,£?). (Note that [*

δα I x \ . Set σί, f

and &(*) = 2#;.d,+Λ. Then, cleary, βl(s)=b1(sy Xl(s)) and

/92(ί) ̂ — 2 1 j£; I + * = — 2 \/Λ;2(5)+w = 62(^ ̂ W) Furthermore, it is known

(cf. [10], Example 1.2) that, for the stochastic differential equation

dX(s) = σ(sy X(s))dB(s)+b1(sJ X(ή)ds

= 2(X(s)VQ)l'2dB(s)+(-2(X(s)VQ)l'2+n)ds ,

the pathwise uniqueness of solutions holds. Therefore, we can apply the second
assertion of the theorem 1.1 and obtain

(0 , for all ί>0 , a.s..

This implies that

|^|<I^?U for all t>0 , a.s.. q.e.d.

REMARK 2.2. Slight generalizations of the above problem as are discussed
in [1] are also covered by our method.

3. Comparison theorem for one dimensional projection of diffusion
processes

In this section, we will apply Theorem 1.1 to obtain some comparison
theorem for one dimensional projection of multi-dimensional diffusion processes.
For simplicity, we consider the case of a diffusion process on the whole space Rn

but a similar result holds also for a minimal diffusion process on a domain D in Rn.
Let (o-i(x))l,k»i and (δf(#))?βl be sufficiently smooth real functions on Rn and

let X(t) be a diffusion process on Rn defined by the solutions of the following
stochastic differential equation

(3.1) dX\ = £ σί(Xt)dB't+b'(Xt)dt , ί = l , 2, .», n .
fc=l

The diffusion X(t) is defined up to the explosion time e:

(3.2) e = sup {*; sup \X(s)\ <oo} .
sefo.n

This is the diffusion process which corresponds to the differential operator
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(3.3, '«

where alj(x) = 2 <rk(x)<ri(x).

Let p(x) be a smooth real function on R*. and let I={ξ=p(x)\
Then / is an interval in R. Let 5 be the set (possibly empty) of all x^R" such

that p(x) is an end point of /. Let / be the maximal open interval contained in
/ and / be the minimal closed interval in [—oo, co] which contains/. We

assume that \Vp(x)\ = J Σ aij(x)^(x)^(x)>0 for all x<=R"\S. Set1 ^v " Y x Tίi v oXi oXj

(3.4) a(x) = £ a"

(3.5) b(x) = _Σ α^)

= (Lp)(x)ia(x),

(3.6) α+(f)- sup ψO, β-(f)= inf φ), ξe!,
3r:ί(*)-{ *:ί(*)-S

(3.7) δ+(f)= sup 6(*), 6-(f)= inf A(«), ξef.
* PM-t x .pw-t

We assume that a±(ξ) and ά*^) are finitely determined and define locally Lip-

schitz continuous functions on 7. On the interval I, we consider the following
four diffusion processes (ξ±±(t), P{)$e/ (for four possible combinations of ±rb)
corresponding to the local generators L±± respectively, where

(3.8) Z» = „*<

(3.9) L--S(

(3.10) I' = a-(ξ)(—~+b+(ξ)—}V ; V ' \ 2 d2 V }d/ »

(3.11) I," - β-(
v ; v

~
dξ2

-

Each of the diffusions is uniquely determined before the first leaving time r from

/ and we set, if r<cx> j ξ(t)=lim ξ(s), (this limit exists in /), for t^r where ξ(t)

is any sample path of each of the diffusions. Thus, the sample paths ξ±±(t) are

defined for all t >0 as /-valued continuous paths with /\/ as traps.
Let Xt be a sample path of the above diffusion starting at x0&R"\S and set
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inf {t<e\ Xt£ΞS} ,
(3-12) ,

e , if { } = φ .

We assume that, if t<°°> lim/>(^Q exists in / and set p(Xt)=^limp(Xs) for
*t? _ st£

£>£. Thus/>(^Γ,) is defined for all t >0 as a /-valued continuous path.

Theorem 3.1. Let x0^R"\S be fixed and ξ0=p(xQ)&I. Let Xt be the

above diffusion such that XQ=xG. On a probability space, we can construct I -valued

continuous stochastic processes ξt, ξϊ + , fί ~", ξ~*, ξj~ such that

( i ) {?*} has ^e same law as {p(Xt)} .
(ii) {£"} has the some law as {ξ±±(t)yPξG} for each of four combinations

(iii) Set ζt = max ξsy ξf= min ξs and %7~— max ξ f =*=, ξj ± — min ξj± for
0£s<,t O^sζt 0£s<.t 0^s<ί

each of four combinations of ± ± . T/^w, with probability one, we have

(3.13) ?Γ<?,<!Γ, /ore// ί>0,

and

(3.14) ξΓ<ίt<ίt\ for all t>Q .

REMARK 3.1. If a(x) depends only on p(x), i.e., if there exists a function

ά(ξ) defined on / such that a(x)=ά(p(x))y then a+(ξ )=a-(ξ)=ά(ξ) and therefore,

we may assume that ξ** ̂ ξ7+ and ξΐ~^ξ7~. In this case, we have

(3.15) £7-<£,<fΓ, for all *>0.

o

Proof. For simplicity, we assume that a+(ξ ) > a~(ξ)>0 for every ^e/,
o

ζ=oo a.s. and (£?*, P^0) are all conservative diffusion processes on /: general

case can be proved with a slight modification.

Set φ+(t) = Γ a(Xs)la+(p(Xs))ds and ^-(ί) =(' a(Xs)/a-(p(Xs))ds. Then
Jo Jo

clearly,

φ+(t)<t<φ~(t) , for all />0.

Let ι/r+(ί) and yjr~(t) be the inverse functions of t^/\/^>φ+(i) and

respectively and set -X? = JΪ(Λ/r+(ί)), J^7 = Jί(ψ~(φ. Then, by the general

theory of time change, we see that X* and Xf satisfy the following stochastic

differential equations with appropriate n-dimensional Wiener processes B* —

((Bϊ)\ (Btγ, .-., (Bΐ)»), (Bί=0) and B7 -=((£?)
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(3.16) + [a+(p(Xj))/a(Xj)]bi(X7)dt,

i = 1, 2, •••, n

+ [a+(p(Xt))la(X1)](Lp)(Xi)dt,

p(Xϊ) = f 0 ,

d(X7)' =

Then, by Itό's formula,

(3.18)

and

(3.19)

Hence, if we set

for each of + and — , then B* and J?7 are 1 -dimensional Wiener processes and
we have

dp(X7) = V^

+ (a-(p(X7))la(X7)](Lp)(X7)dt

r =^4 J[ x/TM^

dp(Xl) = Va

p(Xt) = ξ,,

dp(X7) = Va-(p(X7))dB7+a-(p(X7))b(X7)dt,

(3.20)

and

(3.21)

Let ξί =ρ(X'ί) and ξ7=ρ(X7). Then, by (3.20) and (3.21), we have

dξϊ = ^'a+(ξr)dBj+a+(ξj)b(XΊ)dt,
(3.22)

and

ζ o — ?o >
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(3 23) ί dξT = ̂ a~(^dSτ
I ?0~ = ζ() -

Consider the following stochastic differential equation

(3.24)

Since we assumed that a~(ξ) and b±(ξ) are locally Lipschitz continuous, the
pathwise uniquenss of solutions holds for the equation (3.24) and hence, by

Theorem 1.1, we have

(3.25) ξt<ξt* , for all ί>0, a.s. .

(Take, in Theorem 1.1, σ(t, ξ) = v^f), &(*) = b(X^}a-(ξl\ &(*) =

*+(£ΓK~(£++) and ^(ί, ξ)=b2(t, ξ) = b+(ξ)a+(ξ).) Similarly, if ??~ is the solu-
tion of the stochastic differential equation

(3 26) , κ+ ε
ςo = ς0 >

then we have

(3.27) ??~<£ί , for all ί>0, a.s. .

Also, if |7+ is the solution of the stochastic differential equation

(3.28)

then we have

(3.29) ξT<ξ7^ , for all ί>0, a.s. ,

and if ξτ~ is the solution of

(3.30) f dξ'_ ̂  ̂  (ξt
I bo — ςo >

then

(3.31) ξ~<ξ7y for all *>0, a.s. .

Finally, let ξt=p(Xt). Then, since

max ξl = max ξs, min ^J = min

and ^<Λ/τH(ί), we have
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(3.32) max ξ+ > max ξs and min ξ+ < mm ξs .
0 £s<t Q<s<t Q<s<t Ό<s<t

Similarly, using t<ψ~(t), we have

(3.33) max £7 < max ξs and min ξ j > min ξs .
0<s<t 0<s<t 0<s£t 0<s<t

Then, by (3.25) and (3.31), we have

and

t = max ξ~ < max ξ 7 < max ξs = t ,
0<s<t 0<s<,t 0<s<t

ζt — max ξs < max ξ^ < max ξs+ — ?Γ
0<5<ί 0<s<ί 0<s<ί

Similarly, by (3.27) and (3.29), we have

This proves the theorem.

EXAMPLE 3.1 (Hashiminsky's test for explosion, [3], [7]).

Let X(£) be the diffusion process defined by the solution of (3.1). We

e that det(alV(#))>0 for every x^Rn and n>l. Let p(x)= — 1 # | 2 —

x}. Then /=[0, oo) and S= {0} . Let the explosion time e be defined by
2 *'«=

(3.2). If ^Γ(0)ΦO, X(t) never visits the origin 0 and hence ζ=e a.s..

In this case

a(x) = Σ β"(*)*^ , ft(«) = a(xγ^\\ ± a"(x)+ ± V(x)x,} ,
ι,) = \ I Z ? ==1 i =1 J

= max a(x) , ^"(^) — min a(x) ,
!^!=v/2^ lx\ = V2Ϊ

= max O(Λ ) , έ (r) = min έ(Λί) ,

(ξ++(t), Pr}se[o,oβ] is the diffusion process on [0, oo] with the local generator

a+(r)(- d2- +b+(r)^λ and the boundaries 0 and oo are traps. {ξ"(t)9 Pr}r^ -]
\ 2 dr2 dr I

is the diffusion process on [0, oo] with the local generator a~(r)( — — +£r(r)— )
\ 2 dr* άri

and the boundaries 0 and oo are traps. It is easy to see that 0 is unattainable

for both diffusions. Let e+ = mf {t'y ξ++(t)^°o} and e~ = inf {ί; ξ"(t)= °°} .

By Theorem 3.1, for a given r>0, we can realize, on a same probability space,
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x(*)> £*+(0 and Γ"W such that ^-\X(Q)\2=ξ++(Q)=:ξ--(Q)=:r and

max ξ"(s) < max — | X(s) \ 2 < max ξ++(s) , for all t > 0 , a.s. .
Q£s£t o^s^t 2 o<:s<t

Then, clearly e+<e<e~ a.s.. Set

c+(r) = exp I 2b+(u)du and c~(r) = exp \ 2b~(u)du .
Jl Jl

By a well known result of Feller, (cf. [5]), if

[c+(u)/a-(u)]dudr = oo ,

then £+:=oo a.s. and a fortiori £—00 a.s.. On the otherhand, if

J"

then £~<oo a.s. and a fortiori e<oo a.s..

Similarly, we can prove Hashiminsky's test for regularity of boundary
points [4] by using Theorem 3.1. Also, we would like to remark that such a
comparison theorem is useful in the study of diffusion processes on a Riemannian
manifold which has some interesting applications to analysis and geometry. For

such topics, we refer to [6] and [2].

OSAKA UNIVERSITY
KYOTO UNIVERSITY

References

[1] V.E. Beneg: Composition and ίnvariance methods for solving some stochastic con-

trol problems, Advances Appl. Probability 7 (1975), 299-329.

[2] A. Debiard, B. Gaveau and E. Mazet: Theorernes de comparaison en geometric rίe-

mannienne, Publ. Res. Inst. Math. Sci. Kyoto Univ. 12 (1976), 391-425.

[3] R.Z. Hashiminsky: Ergodic properties of recurrent diffusion processes and stabi-

lization of solution of the Cauchy problem for parabolic equationsy Theor. Probability

Appl. 5 (1960), 179-196.

[4] R.Z. Hashiminsky: Diffusion processes and elliptic differential equations degene-

rating at the boundary of the domain, Theor. Probability Appl. 3 (1958), 400-419.

[5] K. Itό and H.P. McKean, Jr.: Diffusion processes and their sample paths,

Springer, 1965.

[6] P. Malliavin: Asymptotic of the Green's function of a Riemannian manifold and

Ito's stochastic integrals, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 381-383.

[7] H.P. McKean, Jr.: Stochastic integrals, Academic Press, 1969.



COMPARISON THEOREM FOR STOCHASTIC DIFFERENTIAL EQUATIONS 633

[81 P. Priouret: Processus de diffusion et equations differentielles stochastiques,
Ecole d'ete de probabilites de Saint-Flour III-1973, Lecture Notes in Math. Vol.
390(1974), 37-113.

[9] A.V. Skorohod: Studies in the theory of random process, Addison-Wesley, 1965.
[10] T. Yamada: On a comparison theorem for solutions of stochastic differential equations

and its applications, J. Math. Kyoto Univ. 13 (1973), 497-512.
[11] T. Yamada and S. Watanabe: On the uniqueness of solutions of stochastic differential

equations, J. Math. Kyoto Univ. 11 (1971), 155-167.






