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1. . Introduction

The known 4-fold transitive groups are 4, (n>6), S, (n>4), M,;, M,
M, and M,,. Let G be one of these and assume G is a (4, p)-group on Q with
w=>4. Here we say that G is a (k, u)-group on Q if G is k-transitive on Q and
 is the maximal number of fixed points of involutionsin G. Let ¢ be an involu-
tion in G with |F(¢)| =y, then GFO=G(F(t))/Gr(, is also a 4-fold transitive
group. Here we set F(f)= {i€Q|i#'=i} and denote by G(F(t)), G, the global,
pointwise stabilizer of F(t) in G, respectively.

In this paper we shall prove the following

Theorem 1. Let G be a 4-fold transitive group on Q. Assume that there
extists an involution t in G satisfying the following conditions.

(1) Gisa (4, p)-group on Q where p=|F(t)|.

(i) GF® g5 a known 4-fold tranmsitive group; A, (n>6), S, (n>4) or M,
(n=11, 12, 23 or 24).

Then G is also one of the known 4-fold transitive groups.

This theorem is a generalization of the Theorem of T. Oyama of [10]: the
case that GF® =4, (n>6), S, (n>4) or M, has been proved by T. Oyama and
the case that GF®=M,,, M,, or M,, by the author.

To consider the case that GF®—=M,, or M,,, we shall prove the following
theorem in §3 and §4.

Theorem 2. Let G be a (1, 23)-group on Q. If there exists an tnvolution t
such that | F(t)| =23 and GFO=M,. Then we have
(1) If P is a Sylow 2-subgroup of G, then P is cyclic of order 2 and
Ne(P)YN g 'Pg<P for any g€G.
(i1) |Q| =69 and G is imprimitive on ().
(1) O(G)=1 and is an elementary abelian 3-group. If we denote by r the
set of O(G)-orbits on Q, then |vr| =23 and G¥—=M,,.

It follows from this theorem that there is no (3, 24)-group such that for an
involution ¢ fixing exactly twenty-four points GF®"==M,,.



454 Y. HiRAMINE

In the remainder of this section we introduce some notations: Let G be a
permutation group on Q. For X< G and ACQ, we define F(X)={ieQ|i*=I
for all e X}, X(A)={xeX|A*=A}, X ,={xe X |i*=i for every i€ A} and
X2=X(A)/X,. If p is a prime, we denote by O?(X), the subgroup of X
generated by all p’-elements in X and by O (X), the subtroup of X generated
by all p-elements in .X. I(X) is the set of involutions in X.

Other notations are standard (cf. [6], [13]).

2. Preliminaries

First we describe the various properties of M,,.

(1) M, is a 4-fold transitive group on twenty-three points {1, 2-.+, 23} and
a Sylow 2-subgroup of the stabilizer of four points in M,; is of order 2%. It has
a seven fixed points and acts regularly on the remaining points.

(ii) M, is a (4, 7)-group and has a unique conjugate class of involutions.

(1ii) M,; is a simple group and the outer automorphism group of it is
trivial.

(iv) The centralizer of an involution @ in M,, is a split extention of an
clementary abelian normal subgroup E of order 2* by a group M which is
isomorphic to GL(3, 2).

(v) The center of a Sylow 2-subgroup of M,; is cyclic of order 2.

Set C=C(w) and F(w)=A=1{1, 2, 3,4, 5, 6, 7}. Then we have

(vi) E*=1 and Eis regular on {8, 9, ---, 23}.

(vii) M is doubly transitive on A.

(viii) M,*=A, and M,,(A)=N(E).

(ix) O(C)=1, 0¥C)=C and O"(C)=C

We now prove the following lemmas.

Lemma 1. Let P be a 2-group and ¢ an automorphism of P of order 2. If
|C )| <2°, then |Q,(PIP")| <4°

Proof. Set |Q(P/P’)|=2" and Q/P'=Q,(P/P)NC(¢). Then |Q/P’| >
2127 (cf. (2.7) of [8]). Since [¢, Q] <P, (K >Q) <P, whence |[<{¢p>0Q: ({$>O) |
>22r+1 On the other hand | Ce(d)| = [<{p>Co(¢p)| < 2°'! and so [{p>Q:
Kp>0) | <2971 (cf. (2.8) of [8]). Thus r<2a.

Lemma 2. Let (G, Q)bea(l,23)-group. Suppose there exists an involution
t such that |F(t)| =23 and GT"~=M,,. If P is a Sylow 2-subgroup of G (), then
one of the following holds.

(1) Cg(PYf®=M,; and there is an involution u in N (P)—P satisfying
uS Pk ¢.

(1) N PY P =My, and Ny (P)N g 'Pg<P for every g=G.

Proof. Since G(F(2))==Ny(P)G), we have Ny(P) ")=M,;. Suppose that
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Ng(P)N g7 'Pg<L P for some g in G. Since F(P)=#=F(g~'Pg), there is an involu-
tion u in g~'Pg satisfying (i). As |F(uf®)|=7 (cf. (ii) of §2) and | F(u)|=23,
[(Q—F(P))NF(u)|=16 and so |Cp(u)| <16 by the semi-regularity of P on
Q—F(P). By Lemma 1, |Q,(P/P’)| <2%. Since |GL(n, 2)| is not divisible by
the prime 23 when 1<n<8, O®'(N(P)) is a normal subgroup of N(P) contained
in Cy(P) by Theorem 5.1.4 and 5.2.4 of [6]. Thus we obtain Cy(P)F"=M,,.
According as the lemma, the proof of Theorem 2 is divided into two cases.

3. Case (i)

In this section, we prove that the case (i) does not occur.

(3.1) The following hold.

(i) P is cyclic of order 2 and so we can choose P such that P={t).

(i) No(P)=Cy(t)={t> X O(Cy(t)).

(i) Set O(Cy(t))=L(t). Then L(£)/O(L(t))=M,;, O(L(2))F=1, te {g*|
g€ G} and L(t) has a unique conjugate class of involutions.

(iv) Let s be an involution of L(t), then s& {g?| g=G}, I(Cy(t))StC U,
t~vs and s is a central involution.

Proof. Since P is a Sylow 2-subgroup of Ny(P)sp), Z(P) is a unique Sylow
2-subgroup of Cy(P)py and so we have Cy(P)pp=Z(P)x O(Cx(P)). Set
Co(P)=Cy(P)|O(C,(P)). Considering the normal series of C4(P), Z(C¢(P))=
Z(P) and C,(P)/Z(P)==M,,. As the Schur multiplier of M,, is trivial ([7]),
there exists a subgroup L of C4(P) such that C(P)=Z(P)x L and L=M,,. Let
L be the inverse image of L in C,(P). Then Cy(P)=Z(P)O(C4P))L, hence
Cy(P)=Z(P)x L because O(C4(P))<L. Since L=0%CP)), Px L is a normal
subgroup of N (P) and so O?(Ny(P))<PxL. Hence if « is an involution
satisfying (i) of Lemma 2 there are an element v in I[(P)U {1} and w in I(L) with
u=vw. Clearly C~= Cy(w)=C(w)== C(w)/O(C(w)) where O(C,(w))=O(L)N
C(w) (cf. (ix) of §2). We denote O(C(w))=H. Then C,(w)/H is isomorphic
to C and Cy(w)/H=E/H-MJ/H such that E/H=EF®» —=E, EF®MF0 =1,
C(w)f I F@ = pF@INFe = M[H ~ GL(3, 2), E is a normal subgroup of C,(w)
and EF®O N\ MFP=1. By the fact that u is conjugate to some element of P,
GF®=M,, and it follows that either y*®=1 or y*® is an involution for y in
I(E). If yF®=1, then F(y)2F(u). If y¥® is an involution, |F(y*®)|=7 and
so F(y) N F(u)=F(u) N\ F(P) because Flu)NF(P)SF(y)NF(u) and | Fu"®)| =
| F(w™™)| =7.

We argue F(y) N F(u)=F(u) N F(P) for any y in I(E). Suppose F(y)2F(u).
Since |F(y)| <23, F(y)=F(u) and hence <y, u) is contained in a Sylow 2-sub-
group of Gy, and so y*NP=+¢. Since GFO=M,, [P, y]=1, F(P)N F(y)=
F(PYyNF(u) and P is semi-regular on Q— F(P), we have P==PF® and Pis an
elementary abelian 2-group of order at most 16. Hence any element which is
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conjugate to some element of P— {1} is not a square of any element in G. But
the element y in L is a square of some element in L because L/O(L)=M,, and
(i1) of §2, which is a contradiction. This shows that F(u) N F(y)=F(u) N F(P)
for any y in I(E).

Set A= F(u)—F(P)= F(u)—F(y). Since |F(u)—F(P)|=|F(u)—(F(u)N
F(P)| =16 and a Sylow 2-subgroup T of E is isomorphic to Ey;, T acts regularly
on A.

We argue |P|=2. Suppose |P|>4. Then |Cyv)|>4. Since Cp(v)
is semi-regular on A and [Cp(v), Ci(w)]=1, we have O7(Cy(w))*=1. As
ED>O(Cy(w)), O(Cy(w))*=1 and so by (ix) of §2, C,(w)*=1, a contradiction.
Thus (i), (ii) and (iii) are proved.

Let s be an involution of L(#). Since ¢ is not a square of any element of G,
t is not conjugate to s and u is of the form fw where w is an element in I(L(%)).
On the other hand w is conjugate to s in L(¢) by (iii) and so u is conjugate to 7s.
Hence ¢ is conjugate to #s. The four-group <#, s> is the center of a Sylow
2-subgroup of C,(t) by (v) of §2. Hence to complete the proof of (iv), we may
assume 7 is not a central involution. Since <{#, s> contains a central involution
and ¢~ts, s must be a central involution. Thus (iv) is proved.

(3.2) Let notations be as in (3.1). Then

(1) If t,et®, u,I(G) and [¢,, u,]=1, then t,=u, or |F(¢,)NF(u)|=7.

(if) There exist an involution s in L(¢) and a four-group {u;|0<¢<3} of
L(t) satisfying the following.

u=1. [s, w]=1, F(tu)) N F(u,)=F(t) N F({u,, u,») if 0<7,j <3 and j=0.
Set F(t) N F(Kuy, u,»)=A. Then |A|=7and |F(s)NA|=3.

Proof. By (ii) and (iii) of (3.1), (i) is obvious.

Let w, E and M be as in the proof of (3.1) and s an involution in M. Let
T be a Sylow 2-subgroup of E normalized by s. Since T is isomorphic to Ej,
there is a subgroup {1, u, u,, u;} of T centralized by s (cf. Lemma 1). By (vi) of
§2, |F(T)NF(¢)| =7 and T is regular on F(#)—F(T) and so | F(t) N F({wy, u,))]
=|A|=7. Since F(tu;)NF(u,) contains A, F(tu;) N F(u;)=A follows from (i).
By (viii) of §2, | F(s) N (F(t) N F(T))| =3, hence [F(s)NA[=3.

(3.3) Let s, {u,, 1, 4y, u3} be as in (ii) of (3.2). For ¢, 1€ and s, € I(L(t,)),
we set L(¢,)) N C(s,)=L(¢, s,). Then we have

(i) Set T';=F(tu;)NF(s) and N,=L(tu;, s) (0<i<3), then |T;|=7, F(s)2
’C:JOP,., N P,ziri]ol‘i (k=1), lirion‘,~1=3 and N,JO(N,)=NTs~C.

(it) There exist subgroups E;, M; of N, for each i€ {0, 1, 2, 3} such that
Ni|O(N;)=E,JO(N;)- M;/O(N,)1>E;/O(N,), E,/O(N;)=E,;, M;/O(N;)=GL(3, 2),
Eli=1, NSi=MFi~GL(3, 2) and M;": is doubly transtive.

1

Proof. By the choice of s and u; (0<<i<3), (i) is clear. Since fu; is con-



MuLtipLy TRANSITIVE GROUPS 457

jugate to ¢ for each 7, we can define E; and M, in exactly the same way as E and M
mentioned in the proof of (3.1). From this, (ii) immediately follows.
(3.4) Let notations be as in (3.1), (3.2) and (3.3). Then

(i) There is a Cy(s)-orbit A on F(s) with F(s)2A2 UT,

(i) |A|=19, 21 or 23 and |F(s)|=19, 21 or 23. ‘~°

(iif) If k€A, then Cy(s), has an orbit on A— {&} of length at least 18.
(iv) If |A|=19, then Cy(s)* = A, or Sy,

Proof. Since N;<Cy(s) and N;"i is doubly transitive for 7 with 0<7 <3,
(i) follows immediately from (i) of (3.3). By assumption, |[F(s)| <23 and

obviously IlaJl",-|=19, hence 19 <|A|<23. On the other hand ADT,=
i=0
F((t, s»), so |A] is odd. Thus (ii) holds. To prove (iii), we may assume
ke (311",-. Since (N;), < C¢(s), and (IV,), is transitive on T';,— {k}, we have (iii).
i=0

Now suppose |A|=19. Then Cg(s)* is primitive and N;"i=GL(3, 2).
Hence Cg(s)* posseses an element of order 7. By Theorem 13.10 of [13],
C4(s)* =4, holds and (3.4) is proved.

(3.5) Let notations be asin (3.1)—(3.4). There exists a Sylow 2-subgroup
O of G, such that s€Z(Q) and t& Ny (Q). Let " be the G"*)-orbit containing
A. Then

(i) F(Q)=F(s), GFO=N4Q)"® and |T'|=19, 21 or 23.

(il If k€T, then N(Q), has an orbit on T'— {&} of elngth at least 18.

(i) If [T'|=19, then Ny(Q)" =4, or Sy,

(iv) If |T'|=21, then Ng(Q) =4, or S,,.

(v) If |T'|=23, then Ny(Q)" == Ay or Sy

Proof. Let T be a Sylow 2-subgroup of Cg(s) containing ¢. As s is a
central involution by (iv) of (3.1) and Cy(s) < G(F(s)), T is a Sylow 2-subgroup
of G(F(s)). Set Q=T NGry. Then Q satisfies the condition of (3.5). Now
we prove (i)—(v). (i), (ii) and (iii) follow immediately from (3.4).

To prove (iv), first we argue that N(Q)" is primitive. If |A|=19, Cg(s)"
posseses an clement of order 19 by (iv) of (3.4), hence N (Q)" is primitive.
Therefore we may assume |A|=|I'| =21 and we argue that C(s)" is primitive.
Suppose Cy(s)" is imprimitive. Let B, be a nontrivial block of Cg(s)*, then by
(iii) of (3.4) we have |B,|=3. Let [I={B,, B, ---, B;} be a complete system of
blocks. Since N; is transitive on ] and [V, tu;]=1, tu; fixes all blocks in IT.
Hence F(tu;) N\ B,# ¢ for every [ with 1<</<7. On the other hand |F(zu;)N A |
=7, hence |F(tu)NB,|=1. From this (tu; tu))*=(uu)*=1 for any i, j&
{0,1,2,3}. If F(Q)=*A, then |[F(Q)—A|=2 and so (tw;iu)™ =(uu,)" =1
where A,=F(Q)—A. Hence F(u,, u,»)=F(Q)=F(s), whihc is contrary to (ii)
of (3.2). Thus Ny (Q)" is primitive.
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Next we shall show that we many assume Ef@=1. Since M,"o=GL(3, 2)
and M, < G(F(Q)), M,F@ posseses an element of order 7. We may assume this
element has no fixed point on I', for otherwise we obtain N Q)" >4, by
Theorem 13.10 of [13]. Hence an arbitrary M;-orbit on T has length 7 or 14
and so O(M,)"=1 holds because M,/O(M,)=M,"—=GL(3, 2). Hence O(M,)"@
=1. Set T'—F(t)=A,. Then Ay=T"—T, and |A,|=14. Since the element
of M@ of order 7 as above and the element ¢ have no fixed point on A,
{t>X N is transitive on A,. It follows from Ny[>E, that the orbits of <t) X E,
on A, form a complete system of blocks of {t)xXN,. We denote this [[=
{By, -+, B,}. Since O(My)=O0(N,), O(My)*@=1 and E,/O(N,)==E;, we have
{t)X Eyis a 2-group on A,  Hence |B,|=2 and r=7. By (i) of (3.2), F(s)N
F(tv)=F(s) N F(t) holds for every vEI(E,) and so A,NF(tv)=¢. Hence vfr=
tPrtovPe=1 for each B, with 1<k<7, which implies E,;"=1. If F(Q)=T, then
|F(Q)—T'|=2. Since (F(Q)—T)NF(tv)=(F(s) N F(tv))—T'=¢ for every v
I(E,), we get @~ T=4F@-T 1F@-T—=] Thus Ef@=1.

We denote L(t)*©=L(t). Since L(t)=L()/O(L()) and O(E,)=E, N O(L(t)),
we have (L(z) N N(E,))To== A, by (viii) of §2. Hence (L(t) N N(E,O(L(t)))) =4,
and so if T is a Sylow 2-subgroup of E,, we have N, )(T)To=A4,. We note
that F(T)=F(Q) because E;S@ =1 and L(f) has a unique conjugate class of
involutions. So we have N (,(T)<G(F(Q))NG(T,). Let y, be a 5-element of
N, »(T) such that the order of y,"o is 5. Since y,&G(F(Q))NG(T,), we get
Y, €G(T)NG(T,). Therefore |F(y,")| >6. As Ng(Q)' is primitive, it follows
from Theorem 13.10 of [13] atht N;(Q)">4,,. Thus (iv) is proved.

Finally we prove (v). If |T'|=23, F(Q)=T. Since G'>N, and N/
involves the group isomorphic to GL(3, 2), G" is not solvable. Hence by the
result of [11], we have G' =My, Ay or Sy If GT=Ng(Q)D=M,,, we can
apply (iil) of (3.1) to s and obtain s& {g?| g€ G}, which is contrary to (iv) of
(3.1). (Here we note that I(L(¢))<s® and hence (i) of Lemma 2 occurs with
respect to s.)

(3.6) Let notations be as in (3.5). We set N=C¢(Q) if F(Q)=T" and
N=C¢(Q)y where y=F(Q)—T if F(Q)=T. Then N">A4,,.

Proof. Since |I'NF()|=7, by (i) of (3.2) Cy(t) acts semi-regularly on
F@#)—T and so |Co(t)| <16. Hence |Q(Q/Q’)|<2% by Lemma 1. Since
GL(n, 2) is a 19-group when 1<n<8, 0¥(N4(Q)) is a normal subgroup of
Ng(Q) contained in Cg(Q) by Theorem 5.1.4 and 5.2.4 of [6]. Hence C,(Q)"
> A, by (iii), (iv) and (v) of (3.5), so that N* >4, because || <4.

(3.7) We have now a contradiction in the following way.

Let notations be as in (3.1)—(3.6). Set H=<{t>)N. We denote H'=H.
Since |F(f)|=7 and by (3.6) N>A4,r,, there exists in N an element v such that
the order of o is 5, [£, ]=1 and 9"®=1. We may assume v is a 5-element.
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Cleary v normalizes <tDNr. Since Z(Q) is a unique Sylow 2-subgroup of N,
t>Z(Q) is a Sylow 2-subgroup of <t>Ny. By the Frattini argument there is a
5-element w in N such that 2=% and w normalizes <{¢)Z(Q). It follows from
Z(Q)<Z(N) that w stabilizes a normal series <¢>Z(Q)>Z(Q)>1. By Theorem
5.3.2 of [6], w centralizes <{t>Z(Q) and hence we L(z,s). Since F(t)NF(s)=
F@)NT, w0 FEO=¢FOMT£]. Hence L(t, s)F O F=GL(3, 2) has a nontrivial
5-element, a contradiction.

4. Case (ii)

In this section we shall prove that if the case (ii) of Lemma 2 holds, then
(G, Q) is an imprimitive group of degree 69 and has properties listed in the
conclusion of Theorem 2. From now on we assume the involution ¢ is contained
in P because P is an arbitrary Sylow 2-subgroup of G,).

4.1) O(G)=1.

Proof. Let (G, Q) be a minimal counterexample to (4.1).

Since |G: Ng(P)| is odd, there is a Sylow 2-subgroup S of G such that S[>P.
Set H=G(F(t)). If teH? for some g€G, then t* '€H and ()€ S for
some A& H because S is a Sylow 2-subgroup of H. Since Ny(P)NP#¢ *<P,
F(t*"")=F(P)=F(t), hence g~*h€ H, which implies g H. Consequently & H*
if and only if g&H. If t,(==¢)is an involution in ¢ N C(2), then as above ¢, &
Hy) and so tt,eI(Hp)). Hence (tt,)*=H if and only if g H.

Thus we can apply Theorem 3.3 of [1] to ¢, H and G. Set {t>=L. Since
O(G)=0,G)=1, the 2-rank of any nontrivial characteristic subgroup of L is at
least 2 by the Theorem of Brauer-Suzuki ([3]) and Theorem 7.6.1 of [6]. Hence
H N L is strongly embedded in L’. By the Theorem of Bender ([2]), L~ is a
simple group isomorphic to PSL(2, g), Sz(g) or PSU(3, g) for g=2"> 4. Here
L~ is the last term of the derived series of L. Set L*=N. We note that N is
a normal subgroup of G and |[N: N NH | >5.

Since GFOP>NF® and GF® = M,;,, we have NF®==M,, or 1. Suppose
NF®O =M, Since Nz M,;, we have NLG(F(t)). If | Nyl is odd, G={DON
and P={t¢> by the minimality of G. By the Glauberman’s Z*-theorem ([5]),
GP><{t)0(G)=(t), a contradiction. If | Ny | is even, by the minimality of G,
G=N. Since N has a unique conjugate class of involution, I(Ny(P))< I(P) by
the assumption (ii) of Lemma 2. Hence S/P is an elementary abelian 2-group
(cf. section 3 of [2]), which is contrary to N(P)"") = M,

Now we suppose N*®W=1. Since N NP=+1 and NC,(N)=N x C4N), the
assumption (i) of Lemma 2 forces |Cy(INV)p(y| is odd. Hence if |Cy(N)| is
even, Co(N)F =1 and so Cy(N) =M, because M,;— G*® > Cy(N)*®.
Obviously C4(N)<G(F((N NP)?))=G(F(t?)) for any g&G. Therefore {F(2)*|
gEG} forms a complete system of blocks of G on Q and an involution of Cy(N)
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has exactly seven fixed points on each block. But (G, Q) is a (1, 23)-group and
hence |{F(¢)*|g=G}|=3, which implies |[N: NN H| =3, a contradiction.
Thus we have C4(N)=1. From this G/N is isomorphic to a subgroup of outer
automorphism group of N. Hence G/N is solvable ([12]) and so G*=N. Thus
NFO >(GF®)> = M,,, a contradiction.

(4.2) P is cyclic or generalized quaternion.

Proof. Suppose that P contains a four-group Q. Then O(G)={Cy)(¥)|1
+x€0Q> by Theorem 5.3.16 of [6] and O(G) <G (F(P))=G(F(t)). Since
O(G)FO QG M= M,;,, O(G)F®=1. Hence O(G)< Gy, so that O(G)=1, which
is contrary to (4.1). Thus P is cyclic or generalized quaternion.

Let us note that the automorphism group of Pis a {2, 3}-group. Hence
N(P)YFP=CyP)® = M,;. By the similar argument as in the first paragraph
of the proof of (3.1), we have

(4.3) Co(PYFP=M,. Cg(P)=Z(P)xO*(Cy(P)). Set L=O0*(Cy(P)).
Then LFP=L|O(L)= M.

By the Feit-Thompson theorem ([4]), O(G) is solvable. Hence we have

(4.4) Let N be a minimal normal subgroup of G contained in O(G). Then
N is an elementary abelian p-group for some odd prime p.

(4.5) Set K={x&N |x'=x"'}. Then

(i) L normalizes K and K<< G(F(2)).

(it) Set X=({t>XL)K and I'=a* where a € F(¢). Then T2F(2), |T'|>
23 and |T'| is odd.

Proof. Since NFOIJIGFO=M,, NF"=1. Hence N£LG(F(t)). By
Lemma 2.1 of [2], N=Cy\(#)K and so KL G(F(t)). If xeKandyesL, x’&N.
It follows from (4.2) that teZ(P). Hence [L, t]=1 and (&?)'=a""=x"=(x"")’
=(x’)"1. So we have ¥’ K. Thus (i) holds.

Since L*®" == M,; and K<L G(F (1)), 'Da*=F(t) and '+ F(t). Let T bea
Sylow 2-subgroup of L. Then F(T)NF(¢#)*¢ and {¢>X T is a Sylow 2-sub-
group of X. Therefore |T'| is odd. Thus (ii) holds.

(4.6) Let [I={A,,A, -+, A,} be the set of K-orbits on I". Then the fol-
lowing hold.

(1) =23, K'="=0(L)"=1, X"=L" = M,, and X;=<{t>O(L)K.

(i) If yel(Ke>x L) and y=+¢t. Then |F(y™)|=7 and for A, A, EF(y"),
1A NF(3)| = A,NF()|.

(iii) For yeI(Kt)x L)— {t} and A,€F(y") we set |A;NF(y)|=m(y).
Then m(y)=1or 3 and |F(y)NT|=7xXm(y).

Proof. If r=1, then K" is regular, so that | F(#")|=|K"NC(¢")|. On the
other hand |F(t")| =23 and by the definition of K, |[K"NC(t")|=1, a con-
tradiction. Thus r=1.

We consider the action of X on the set JI. Since K®=1, [¢, L]=1 and X
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is transitive on J], we have =1 and L is transitive on []. Hence for A;, A JE
II, there is an element xE L such that (A;)*=A,. Then [F(t)NA;|=|(F()N
A) |=IF(@)NA4,l, so that [F(¢)|=|A;NF(t)| Xr for any A,€]]. Hence
|A;NF(t)|=1and r=23. Since F(O(L))2F(t), O(L)*=1 and Xy=<{t)O(L)K.
Thus (i) holds.

Let yeI({t>x L) and y=¢. Then y®=#1 and by (ii) of §2,| F(y")|=7.
Since Xp=<{>O(L)K, L*NC(y™)=(Cy(¥))*. By (vii) of §2, LENC(y") is
transitive on F(y®). Therefore as above we obtain (ii).

Since 23> |F(y)NT|=|F(y™®)| Xxm(y)=7xXm(y), we have m(y)<3. By
(ii) of (4.5), |T'| is odd and so m(y) is odd. Thus (iii) holds.

(4.7) Lets€lI(L). Then the following hold.

(i) m(s)=3 and |F(s)NT|=21.

(ii) If A€ F(s"), then F(s)2A. Moreover | A|=3 and N is an elementary
abelian 3-group.

(iii) F(s)<T and |F(s)|=21.

Proof. Suppose m(s)==3. Then by (iii) of (4.6) m(s)=1. Since K* is
regular for any A€ ], if A€ F(sT), s* inverts K*. Hence (#5)* centralizes K*
and so F(ts)2A and m(ts)=|A|. Since |A|=1, by (iii) of (4.6) we have
| A| =m(ts)=3. Therefore by (iii) of (4.6) | F(¢s) N T'|=21. Since L/O(L)=M,,,
s is an even permutation. Furthermore |F(s)NT'|=7 because m(s)=1. On
the other hand |T'|=|A|x 23=69 and s" is an odd permutation, a contra-
diction. Thus (i) holds.

Since |F(s)NT'|=21 and s" is an even permutation, #" is an odd permuta-
tion because | F(f)NT'|=23. Hence (t5)" is an odd permutation and so m(ts)=1
and (#5)* inverts K* for A€ F(s®)=F((¢5)"). Therefore s*=(#*)(¢s)* centralizes
K> and F(s)2A, so that m(s)=|A|=3. Hence K and N are elementary abelian
3-groups, so (ii) holds.

Since LF®=L|O(L)=M,,, by (vi) of §2, there exists a four-group <s,, s,>
of L such that F(s) N F(t)=F(s,) N F(t). Since L has a unique conjugate class of
involutions (cf. (ii) of §2), m(s,)=m(s,)=m(s,s,)=3. Hence F(s)NT=F(s,)NT
=F(s;)NT and |F(s;)NT|=21. To prove (iii) it will suffice to show that
| F(s,)|=21. Assume |F(s;)| #21. Then |F(s;)|=23and |F(s;)N(Q—T)|=2.
Since L/O(L)==M,, we have C,(s5,)/O(C,(s,))=C by the property of M,,.
Cy(s) acts on F(s)N(Q—T) and O(C)=C by (ix) of §2, hence C(s,) acts
trivialy on F(s;) N(Q—T). Therefore F(s,)=F(s;)=F(s,5;) and |F(s;)| =23. By
Theorem 5.3.16 of [6], N={Cy(s)|1s=s&<s,, 5,»)> and hence N acts on F(s,).
From this 3{ | F(s,)|, a contradiction. Thus (iii) holds.

(4.8) The following hold.

(i) O(G) is an elementary abelian 3-group.

(i) Gisimprimitive on  and the length of an O(G)-orbit is three. |P|=2.
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(i) [Q[=69. Let  be the set of O(G)-orbits on Q. Then |r|=23
and G = M,;,.

Proof. Since Lf"=L[O(L)==M,;,, there exist two subgroups sy, $,>, {3, 5,
of L satisfying the following (cf. §2). <s, $,>=<s;, s o=E,, F(s) N F(t)=
F(s)) N F(#)=F(s,5) N F(t), F(s)) N F(e)=F(s) 1 F()=F(s,5) N F(®), |(F(s)) N F(2)
N(F(ss) N F(2))|=3. By (ii) and (iii) of (4.7), we have T'DF(s))=F(s,)=F(s,5,),
| F(s,)| =21, T2 F(s)=F(s)=F(ss), |F(sy)| =21 and | F(s)) 1 F(sy)| =9.

On the other hand O(G)={Cy)(s) |1 Fs= sy, $00=CCl)($) | L FEsE 83, 50>
by Theorem 5.3.16 of [6]. Hence O(G) acts on F(s)) and F(s;), so that also on
F(s;))NF(s;). Therefore the length of an O(G)-orbit is three because it is a
common divisor of 9 and 21. From this O(G) is an elementary abelian 3-sub-
group and by (4.2) P is cyclic of order 2. Thus (i) and (ii) hold.

Let 4 be the set of O(G)-orbits on Q. Since 21, [I=F(#¥) and X" =
M,,, we have GE>M,;. If GU==M,,;, then G™>4,, by the result of [11]. But
if S is as in (4.1), the order of S/P is equal to that of a Sylow 2-sulgroup of M,;,
a contradiction. Hence G™ == M,,.

Now we suppose Yr==]]. Then #¥+1 and G satisfies (ii) of Lemma 2.
On the other hand O(G*)=1, which is contrary to (4.1), so (iii) holds.

5. Proof of Theorem 1

The proof of Theorem 1 is obtained in the following way: By the Theorem
of Oyama and his lemma of [10], it will suffice to consider the case that G*®) is
isomorphic to M,,, My; or M,,. Since G is 4-fold transitive on Q, GF® 3£ M,,
and M,, by Theorem 2. Hence we consider the case that G =M.

Suppose that GF®@=M,,. Let P be a Sylow 2-subgroup of Gy and S
a Sylow 2-subgroup of a stabilizer of four points of Q in G such that S>P.
Then Ny(P)< G(F(P)), hence Ny(P)*®=1 by the structure of M,,, so F(N(P))
=F(#). Since P is a Sylow 2-subgroup of Gy, Ns(P)=P, which forces S=P,
hence |F(S)|=11. By the Theorem of [9], G®=M,;, a contradiction.
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