SMALL SUBMODULES IN A PROJECTIVE MODULE AND SEMI-T-NILPOTENT SETS

Manabu HARADA

(Received September 10, 1975)

Let R be a ring with identity element and $(R)_{I}$ the ring of column-finite matrices over R with infinite degree I. N. Jacobson proposed to determine the Jacobson radical $J\left((R)_{I}\right)$ of $(R)_{I}$ in his book [5]. Many algebraists have been working on this problem. P.M. Patterson [8], N.E. Sexauer and J.E. Warnock [9] showed $J\left((R)_{I}\right)=(J(R))_{I}$ if and only if $J(R)$ is right T-nilpotent (cf. [4], Corollary 1 to Proposition 1). On the other hand, W. Liebert [6] gave an exact form of $J\left((R)_{I}\right)$ if R is domain and R. Slover [10,11] and R. Ware and J. Zelmanowitz [12] obtained an exact form of elements in $J\left((R)_{I}\right)$, which involved all results above.

In this note, we shall first give all types of small submodules in a free R module $M=\sum_{I} \oplus u_{\infty} R$. Since $J\left((R)_{I}\right)$ is determined by small submodules in M, we can obtain their results similarly to [12] and give another forms by means of locally, right semi- T-nilpotent sets of small submodules.

Finally, we shall give a characterization of right perfect module P by means of a structure of $(S)_{I} / J\left((S)_{I}\right)$, where $S=\operatorname{End}_{R}(P)$.

1 Jacobson radicals

Throughout we shall assume that R is a ring with identity element and every module is a unitary right R-module. Let A be an R-module and B a submodule of A. B is called small in A if a fact: $A=B+T$ for a submodule T of A implies $A=T$. Let $\left\{M_{\infty}\right\}_{I}$ be a set of R-modules and $M=\sum_{I} \oplus M_{\infty}$. We put $S_{M}=\operatorname{End}_{R}(M)$. We assume the elements in S_{M} operate on M from the left side. Furthermore, we can express them as the column-summable matrices with entries in $\operatorname{Hom}_{R}\left(M_{\sigma}, M_{\tau}\right)$. If $M_{\sigma}=R$ for all σ, S_{M} is the ring $(R)_{I}$ of column-finite matrices over R.

Let $M=\sum_{I} \oplus u_{\infty} R$ and S a small submodule in M. Then $S \subseteq \sum_{I} \oplus u_{\infty} J(R)$. In order to determine a type of S, we shall define a set of right semi- T nilpotent, right ideals. Let $\left\{A_{\alpha}\right\}_{K}$ be a set of right ideals in R and K an infinite set. If $\left\{A_{\alpha}\right\}_{K}$ satisfies the following condition, we call $\left\{A_{\alpha}\right\}_{K}$ a right
semi-T-nilpotent set, (see a vanishing set of ideals in [12]).
For any countable subset $\left\{A_{a_{i}}\right\}^{\infty}{ }_{i=1}^{\infty}$ of $\left\{A_{\omega}\right\}_{K}$ and $\left\{a_{i} \mid \in A_{a_{i}}\right\}_{i=1}^{\infty}$, there exists n, depending on $\left\{a_{i}\right\}$, such that $a_{n} a_{n-1} \cdots a_{1}=0$.

Let $\left\{b_{\sigma}\right\}_{K}$ be a set of elements in R. If $\left\{b_{\sigma} R\right\}_{K}$ is a right semi- T-nilpotent set, we call $\left\{b_{\sigma}\right\}_{K}$ a right semi-T-nilpotent set. If we allow $\alpha_{i}=\alpha_{j}$ for $i \neq j$, we call $\left\{A_{\alpha}\right\}$ or $\left\{b_{a}\right\}$ a right T-nilpotent set. If $A_{\infty}=A$ for all α, then the above concept coincides with one of the usual T-nilpotency.
If K is a finite set, we understand $A_{\infty}=0$ for almost all α, then $\left\{A_{\infty}\right\}_{K}$ is always a semi- T-nilpotent set, but not a T-nilpotent set. Now, we shall state the theorem which is substantially due to [12].

Theorem 1 ([12], Theorem 1). Let $M=\sum_{I} \oplus u_{\infty} R$ be a free R-module with infinite basis u_{∞} and S a submodule of M. Then the following statements are equivalent.

1) S is small in M.
2) Let $p_{\infty}: M \rightarrow u_{\infty} R$ be the projection of M onto $u_{\infty} R$ and $A_{\infty}=p_{\infty}(S)$. Then $A_{\infty} \subseteq J(R)$ and $\left\{A_{\alpha}\right\}_{I}$ is a right semi-T-nilpotent set.
3) There exists a right semi-T-nilpotent set $\left\{A_{\alpha}\right\}_{I}$ of right ideals in $J(R)$ such that $S \subseteq \Sigma \oplus u_{\omega} A_{\alpha}$.

We shall prove Theorem 1 in more general forms. First, we shall generalize the concept of right semi- T-nilpotent set of right ideals. Let $\left\{Q_{a}\right\}_{I}$ be an infinite set of R-modules and $\left\{S_{\beta} \mid \subseteq Q_{\beta}\right\}_{\beta \in K \subseteq I}$ an infinite set of R-submodules. We take a countable subset $\left\{Q_{\alpha_{i}}\right\}$ of $\left\{Q_{a}\right\}_{K}$ and a set of homomorphisms $f_{i}: Q_{\alpha_{i} \rightarrow} \rightarrow Q_{\alpha_{i+1}}$ such that $f_{i}\left(Q_{\alpha_{i}}\right) \subseteq S_{\alpha_{i+1}}$. If for any element t in $Q_{\alpha_{1}}$ there exists n, depending on t and $\left\{f_{i}\right\}$, such that $f_{n} f_{n-1} \cdots f_{1}(t)=0$, then we call $\left\{f_{i}\right\}$ a locally (semi)-T-nilpotent set of homomorphisms. If for any countable subset $\left\{Q_{\alpha_{i}}\right\}$ and any set of homomorphisms f_{i} as above, $\left\{f_{i}\right\}$ is always locally (semi-) T nilpotent, then we call $\left\{S_{\alpha}\right\}_{K}$ a locally (right) semi-T-nilpotent set of submodules.

The following lemma is obtained by [12].
Lemma 1. Let P be projective. Then $J\left(S_{P}\right)=\left\{f \in S_{P} \mid f(P)\right.$ is small in $\left.P\right\}$.
Lemma 2 ([4], Proposition 1). Let P be R-projective and S an R-submodule of P. If $\operatorname{Hom}_{R}(P, S) \subseteq J\left(S_{P}\right), S$ is small in P, where $S_{P}=\operatorname{End}_{R}(P)$.

Proof. We assume $P=S+T$ for some submodule T. Then we have a diagram:

$$
0 \rightarrow S \cap T \rightarrow S \xrightarrow{\stackrel{\nu}{\kappa}} S / S \cap T \rightarrow 0
$$

Since P is projective, we have $h: P \rightarrow S$ such that $\nu h=f \nu^{\prime}$. Hence, $S=h(P)+$ $S \cap T$ and so $P=h(P)+T$. On the other hand, $h(P)$ is small in P from the assumption and Lemma 1. Therefore, $P=T$.

The following proposition implies 1) $\rightarrow 2$) $\rightarrow 3$) in Theorem 1.
Proposition 1. Let $\left\{M_{\omega}\right\}_{I}$ be a set of finitely generated R-modules and S a small submodule of $M=\sum_{I} \oplus M_{a}$. Then $\left\{S_{\infty}=p_{o}(S)\right\}_{I}$ is a right semi-T-nilpotent set of submodules, where $p_{a}: M \rightarrow M_{a}$ is the projection.

Proof. We may assume I is a well ordered, infinite set. Let $\left\{S_{a_{i}}\right\}_{1}^{\infty}$ be any subset of $\left\{S_{\alpha}\right\}_{I}$ and $\left\{f_{i}: M_{\alpha_{i}} \rightarrow S_{\alpha_{i+1}}\right\}_{1}^{\infty}$ a given set. Let $\left\{m_{a b}^{(1)}, m_{a}^{(2)}, \cdots, m_{\infty}^{n_{\alpha}}\right\}$ be a generator of M_{a}. Then for $m_{a_{i}}^{(k)}$ there exists $s_{i}^{(k)}$ in S such that

$$
\begin{equation*}
s_{i}^{(k)}=s_{(\beta(i, k), 1)}+s_{(\beta(i, k), 2)} \cdots+f_{i}\left(m_{c_{i}}^{(k)}\right)+\cdots+s_{\left(\beta(i, k), n_{k}\right)}^{\alpha_{i}} \tag{*}
\end{equation*}
$$

where $s_{(\beta(i, k), j)} \in S_{(\beta(i, k), j)}$.
Hence, we may assume

$$
\begin{equation*}
s_{i}^{(k)} \in \sum_{j=1}^{m_{i}} \oplus S_{\beta(i, j)} \quad \text { for all } k=1,2, \cdots, n \tag{**}
\end{equation*}
$$

1 Special case. First, we assume that $\{\beta(i, j)\}_{i=1}^{\infty} \underset{\substack{m_{i} \\ j=1}}{ } \equiv\{1,2, \cdots, n, \cdots\}$ in $(* *)$ and $\alpha_{1}<\alpha_{2} \leqslant m_{1}<\alpha_{3} \leqslant m_{2}<\alpha_{4} \leqslant \cdots$. We put $M_{c_{i}}^{\prime}=\left\{m_{\alpha_{i}}+f_{i}\left(m_{\alpha_{i}}\right) \mid m_{\alpha_{i}} \in M_{\alpha_{i}}\right\} \subseteq$ $M_{\alpha_{i}} \oplus M_{\alpha_{i+1}}$ and $M^{\prime}=\sum_{\left\{\alpha \oplus \alpha_{i}\right\}} M_{a}+\sum_{1}^{\infty} M_{\alpha_{i}}^{\prime}+S$. We shall show $M=M^{\prime}$. For $m_{a_{1}}^{(k)}$ we have

$$
\begin{aligned}
& M^{\prime} \supset M_{a_{1}}^{\prime}+S \ni m_{\alpha_{1}}^{(k)}+f_{1}\left(m_{\alpha_{1}}^{(k)}\right)-s_{1}^{(k)} \\
= & -s_{1}^{(1, k)}-s_{2}^{(1, k)}-\cdots+\left(m_{a_{1}}^{(k)}-s_{\alpha_{1}}^{(1, k)}\right)-\cdots-0-\cdots-s_{m_{1}}^{(1, k)} .
\end{aligned}
$$

Hence, $m_{c_{1}}^{(k)} \equiv s_{a_{1}}^{(1, k)}\left(\bmod M^{\prime}\right)$ and $s_{a_{1}}^{(1, k)} \in S_{\omega_{1}}$. Therefore, $\left(M_{\omega_{1}}+M^{\prime}\right) / M^{\prime}=\left(S_{c_{1}}+\right.$ $\left.M^{\prime}\right) / M^{\prime}$. Since $S_{\omega_{1}}$ is small in $M_{\omega_{1}},\left(S_{w_{1}}+M^{\prime}\right) / M^{\prime}$ is small in $\left(M_{w_{1}}+M^{\prime}\right) / M^{\prime}$. Accordingly, $M_{\omega_{1}} \subseteq M^{\prime}$. Repeating those arguments we have $M=M^{\prime}$. Since S is small in $M, M=\sum_{\alpha \in\left\{\alpha_{i}\right\}} M_{a} \oplus \sum_{i=1}^{\infty} M_{\alpha_{i}}^{\prime}$. Hence, there exists n such that $f_{n} f_{n-1} \cdots f_{1}\left(m_{w_{1}}\right)=0$ for $m_{w_{1}} \in M_{\omega_{1}}$ (see [1], Lemma 9).
2 General case. Since $\beta(i, j)$'s in ($* *)$ are countable, we may assume $\{\alpha, \beta(i, j)\}=\left\{1=\alpha_{1}, 2, \cdots, n \cdots\right\}$ after rearranging the order of indices. We shall denote the new index of α_{i} by $\sigma\left(\alpha_{i}\right)$, namely $\sigma\left(\alpha_{1}\right)=1$. Then

$$
s_{1}^{(k)}\left(=s_{\alpha_{i_{2}}}^{(k)}\right)=s_{1}^{\left(\alpha_{i 2}, k\right)}+s_{2}^{\left(\alpha_{i_{2}}, k\right)}+\cdots+f_{1}\left(m_{\alpha_{1}}^{(k)}\right)+\cdots+s_{n\left(\alpha_{i 2}, k\right)}^{\left(\alpha_{i 2}, k\right)} .
$$

Since $\left\{f_{i}\right\}$ is infinite, there exists $i_{3}>i_{2}$ such that $n\left(\alpha_{i_{3}}, k^{\prime}\right) \geqslant \sigma\left(\alpha_{i_{3}}\right)>$ $\operatorname{Max}\left(n\left(\alpha_{i_{2}}, k\right)\right)$. Repeating those arguments, we obtain $\sigma\left(\alpha_{1}\right)=1<\sigma\left(\alpha_{i_{2}}\right) \leqslant$ $\operatorname{Max}_{k}\left(n\left(\alpha_{i_{2}}, k\right)\right)<\sigma\left(\alpha_{i_{3}}\right) \leqslant \operatorname{Max}_{k^{\prime}}\left(n\left(\alpha_{i_{3}}, k^{\prime}\right)\right)<\sigma\left(\alpha_{i_{4}}\right)<\cdots$ and $1=i_{1}<i_{2}<i_{3}<\cdots$. Put $g_{j-1}=f_{i_{j-1}} \cdots f_{i_{j-1}}: M_{\alpha_{i_{j-1}}} \rightarrow S_{\alpha_{i_{j}}},\left(g_{1}=f_{1}\right)$ and consider a countable $\underset{n\left(\alpha_{i} \cdot k^{\prime}\right)}{\text { subset }}$ $\left\{S_{\sigma\left(\alpha_{i j}\right)}\right\}_{j=1}^{\infty}$. Since $g_{j-1}\left(M_{\alpha_{j-1}}\right) \subseteq f_{i_{j-1}}\left(M_{\alpha_{i j-1}}\right), g_{j-1}\left(m_{\alpha_{i j-1}}^{(k)}\right) \in p_{\sigma\left(\alpha_{i j}\right)}\left(\left(\sum_{t=1} \oplus M_{t}\right)\right.$ $\cap S)$. Hence, $\left\{S_{\alpha\left(\alpha_{i j}\right)}\right\}$ and $\left\{g_{j-1}\right\}$ satisfy the conditions of Special case 1. Accordingly, $0=g_{n} g_{n-1} \cdots g_{1}\left(m_{\omega_{1}}\right)=f_{i_{n+1}-1} \cdots f_{1}\left(m_{a_{1}}\right)$ for some n.

From a special type of the above proof, we have
Corollary 1. Let $\left\{N_{\alpha}\right\}_{I}$ be a set of R-modules and $\left\{T_{\infty} \mid \subseteq N_{\infty}\right\}_{I} a$ set of submodules. If $\sum_{I} \oplus T_{a b}$ is a small submodule of $\sum_{I} \oplus N_{\infty}$, then $\left\{T_{a}\right\}_{I}$ is a locally right semi-T-nilpotent set of submodules.

Proposition 2. Let $\left\{N_{\omega}\right\}_{I}$ be a set of R-modules and $\left\{T_{\omega} \mid \subseteq N_{\omega}\right\}_{I}$. We put $N=\sum_{I} \oplus N_{\infty}, T=\sum_{I} \oplus T_{a}$ and $S_{N}=\operatorname{End}_{R}(N)$. Then $J\left(S_{N}\right) \supseteq \operatorname{Hom}_{R}(N, T)$ if and only if $\left\{T_{a}\right\}_{I}$ is a locally right semi-T-nilpotent set of submodules and $\operatorname{Hom}_{R}\left(N_{a}, T_{a}\right) \subseteq J\left(S_{N \alpha}\right)$.

Proof. We assume $J\left(S_{N}\right) \supseteq \operatorname{Hom}_{R}(N, T)$. Let $\left\{N_{a_{i}}\right\}$ and $\left\{f_{i}: N_{a_{i}} \rightarrow T_{a_{i+1}}\right\}$ be given sets. We may assume $\alpha_{j}=j$ for all j. Then

$$
\left(\begin{array}{cccccc}
0 & & & & 0 & \\
f_{1} & 0 & & & & \\
& f_{2} & 0 & & & \\
& & \ddots & \ddots & & \\
& & & f_{n} & 0 & \\
& 0 & & & \ddots & \ddots
\end{array}\right)
$$

is in $J\left(S_{N}\right)$ from the assumption. Hence, $\left\{f_{i}\right\}$ is locally right T-nilpotent. It is clear that $J\left(S_{N a}\right)=e_{\alpha} J\left(S_{N}\right) e_{\infty} \supseteq e_{\alpha} \operatorname{Hom}_{R}(N, T) e_{\alpha}=\operatorname{Hom}_{R}\left(N_{\infty}, T_{\alpha}\right)$, where e_{α} is the projection of N onto N_{α}. Conversely, we shall show that $C_{\sigma \tau}=$ $\operatorname{Hom}_{R}\left(N_{\tau}, T_{\sigma}\right)$'s satisfy the conditions 1)~3) in [4], Lemma 5.1) and 3) are clear from the assumptions and 2) is clear. We note that in the proof of [4], Lemma 5 we only used a fact that $C_{\sigma \tau} \operatorname{Hom}_{R}\left(N_{\varepsilon}, N_{\tau}\right) \subseteq C_{\sigma \varepsilon}$. Hence, $J\left(S_{N}\right) \supseteq$ $\operatorname{Hom}_{R}(N, T)$ from [4], Lemma 5.

The following corollary implies 3) $\rightarrow 1$) in Theorem 1 and is the converse of Corollary 1 above in a restricted case.

Corollary 1 ([4], Theorem 3). Let $\{P\}_{I}$ be a set of R-projectives and $\left\{S_{\infty} \mid \subseteq P_{\alpha}\right\}$ a set of R-submodules. Then $\sum_{I} \oplus S_{c}$ is small in $\sum_{I} \oplus P$ if and only if $\left\{S_{\alpha}\right\}_{I}$ is a locally, right semi-T-nilpotent set of small submodules S_{∞} in P_{α} (see Remark 2 below).

Corollary 2. Let $\left\{P_{\alpha}\right\}_{I}$ and $\left\{S_{\alpha}\right\}_{I}$ be as above. Then for any set $\left\{Q_{\beta}\right\}_{K}$ such that $Q_{\beta} \stackrel{\varphi_{\beta}}{\approx} P_{\alpha(\beta)} \in\left\{P_{\alpha}\right\}_{I} \sum_{K} \oplus \varphi_{\beta}^{-1}\left(S_{\alpha(\beta)}\right)$ is always small in $\sum_{K} \oplus Q_{\beta}$ if and only if $\left\{S_{a}\right\}_{I}$ is a locally right T-nilpotent set of submodules.

Proof. It is enough to show that S_{a} is small in P_{a} if $\left\{S_{\alpha}\right\}_{I}$ is locally right T-nilpotent. $\quad A_{\infty}=\operatorname{Hom}_{R}\left(P_{a}, S_{a}\right)$ is a right ideal in $S_{P_{\alpha}}$. Let $f \in A_{\alpha}$, then $f^{\prime}=\sum_{n=0}^{\infty} f^{n} \in S_{P_{\infty}}$ from the assumption. Hence, $(1-f) f^{\prime}=1$ and so $A_{\alpha} \subseteq J\left(S_{P_{\alpha}}\right)$. Therefore, S_{a} is small in P_{α} from Lemma 2.

Corollary 3 ($[4,8,9,12,13])$. Let $M=\sum_{I} \oplus u_{\infty} R$. Then $J(M)$ is small in M if and only if $J(R)$ is right T-nilpotent.

Corollary 4. Let M be an R-module. If $\left\{A_{m}\right\}_{m_{\in M_{0}}}$ is a right semi-Tnilpotent set of right ideals in $J(R)$, then $\sum_{M_{M_{0}}} m A_{m}$ is a small submodule in M. Conversely, if M is projective and S is a small submodule in M, then there exists a semi-T-nilpotent set $\left\{A_{m}\right\}_{M_{0}}$ of right ideals in $J(R)$ such that $S \subseteq \sum_{M_{0}} m A_{m}$, where M_{0} is any set of generators of M (see Remark 3).

Proof. Consider an epimorphism $\varphi: P=\sum_{\bar{M}_{0}} \oplus u_{m} R \rightarrow M ; \varphi\left(u_{m}\right)=m$. Since $\sum \oplus u_{m} A_{m}$ is small in P from Corollary 2, $\varphi\left(\sum \oplus u_{m} A_{m}\right)=\sum m A_{m}$ is small in M (see [4]). Conversely, we assume M is projective. M is a direct summand of P and so $\varphi i=1_{M}$ for monomorphism i. $i(S)$ is also small in P and hence, there exists a right semi- T-nilpotent set $\left\{A_{m}\right\}_{M_{0}}$ of right ideals in $J(R)$ such that $i(S) \subseteq \sum \oplus u_{m} A_{m}$ from Theorem 1. Therefore, $S=\varphi i(S) \subseteq \sum_{\Psi_{x_{0}}} m A_{m}$.

Corollary 5. Let P be a projective R-module. Then the following statements are equivalent.

1) $\{J(P)\}$ is itself a locally, right T-nilpotent set of submodules.
2) $J\left(S_{P}\right)$ is locally right T-nilpotent.
3) Any set of small submodules in P is a locally, right T-nilpotent set.

Proof. 1) $\rightarrow 2$). $\operatorname{Hom}_{R}(P, J(P)) \subseteq J\left(S_{P}\right)$ from the proof of Corollary 2. Hence, $\operatorname{Hom}_{R}(P, J(P))=J\left(S_{P}\right)$ is locally right T-nilpotent.
$2) \rightarrow 3$). Let $\left\{S_{i}\right\}_{1}^{\infty}$ be a set of small submodules in P. Then $\operatorname{Hom}_{R}\left(P, S_{i}\right) \subseteq$ $J\left(S_{P}\right)$ from Lemma 1. Hence, $\left\{S_{i}\right\}$ is a locally, right- T-nilpotent set.
$3) \rightarrow 1$). First, we shall show that the union of small submodules $\left\{S_{a}\right\}_{I}$ is also small in P. Consider the natural epimorphism: $\sum_{I} \oplus P_{a} \rightarrow P \rightarrow 0, P_{a}=P$. Then $\sum_{I} \oplus S_{\infty}$ is small in $\sum_{I} \oplus P_{c}$ from 3) and Corollary 1. Hence, $\cup_{I} S_{a}$ is small in P. It is easily seen that $p R$ is small in P, where $p \in J(P)$. Therefore, $J(P)$ is
small in P from the above.
The proof above shows that if $J(P)$ is not small in P, then there exists a locally, right non- T-nilpotent set of small submodules $\left\{S^{\prime}\right\}_{I}$.

Now, we shall give a general form of Theorem 1.
Theorem 1'. Let $\left\{P_{\alpha}\right\}_{I}$ be a set of R-projectives. Let $M=\sum_{I} \oplus P_{a}$ and S a submodule of M. Then the following statements are equivalent.

1) S is small in M.
2) Let $p_{\infty}: M \rightarrow P_{a}$ be the projection of M onto P_{∞} and $S_{a}=p_{a}(S)$. Then $\left\{S_{\alpha}\right\}_{I}$ is a locally, right semi-T-nilpotent set of small submodules.
3) There exists a locally, right semi-T-nilpotent set $\left\{S_{\alpha}\right\}_{I}$ of small submodules S_{a} in P_{a} such that $S \subseteq \sum_{I} \oplus S_{a}$.

Proof. 2) $\rightarrow 3) \rightarrow 1$). It is is clear from Corollary 1 to Proposition 2. $1) \rightarrow 2$). We shall prove it in a general form:

Lemma 3. In Proposition 1, we assume every M_{∞} is a summand of a direct sum Q_{\approx} of finitely generated R-modules $M_{\alpha \beta}$. Then the statement in Proposition 1 is valid.

Proof. Put $Q_{\alpha}=\sum_{\beta \in I_{\alpha}} \oplus M_{\alpha \beta}$ and $M^{*}=\sum_{I} \oplus Q_{\alpha}$. Then M is a summand of M^{*}. Let i be the injection of M into M^{*}. Then $i(S)$ is small in M^{*} and $\sum_{I} \sum_{I_{\alpha}} \oplus p_{\alpha \beta}(i(S)) \supset \sum_{I} \oplus i\left(S_{\alpha}\right)$ and $i\left(S_{\alpha}\right) \subset \sum_{I_{\alpha}} \oplus p_{\alpha \beta}(i(S))$. Now, $\left\{p_{\alpha \beta}(i(S))\right\}_{I, I \alpha}$ is a locally semi-T-nilpotent set from Proposition 1. Let $\left\{M_{\alpha_{i}}\right\}_{1}^{\infty}$ and $f_{i}: M_{\alpha_{i}} \rightarrow$ $\left.S_{\alpha_{i+1}}\right\}_{1}^{\infty}$ be given sets. Then we can extend f_{i} to $f_{i}^{\prime}: Q_{\alpha_{i}} \rightarrow i\left(S_{\alpha_{i+1}}\right)$ by sending a direct complement to zero. We shall denote f_{i}^{\prime} by a column-finite matrix ($a_{\sigma \tau}^{(i)}$), where $a_{\sigma \tau}^{(i)} \in \operatorname{Hom}_{R}\left(M_{\alpha_{i} \tau}, p_{\alpha_{i+i} \sigma}(i(S))\right.$. Let m be in $M_{\alpha_{1}}$ and $i(m)=\sum_{j=1}^{t} m_{\alpha_{1} \beta_{j}}$, $m_{\alpha_{1} \beta_{j}} \in M_{\alpha_{1} \beta_{j}} . \quad$ Then $f_{1}(m)=f_{1}^{\prime}(i(m))=\sum_{j=1}^{t} \sum_{k} a_{\sigma_{k} \beta_{j}}^{(1)}\left(m_{\alpha_{1} \beta_{j}}\right)$, where $a_{\sigma_{k} \beta_{j}}^{(1)}=0$ for almost all k.

$$
f_{2} f_{1}(m)=f_{2}^{\prime} f_{1}^{\prime}(i(m))=\sum_{j=1}^{t} \sum_{k^{\prime}} \sum_{k} a_{k^{\prime} \sigma_{k}}^{(2)} a_{\sigma_{k} \beta_{j}}^{(1)}\left(m_{\alpha_{1} \beta_{j}}\right)
$$

Since $p_{\alpha \beta}(i(S))$ is locally semi- T-nilpotent, we obtain n such that $f_{n} f_{n-1} \cdots f_{1}(m)$ $=0$ from Konig Graph Theorem.

Let M be an R-module. We can correspond (not necessarily unique) any element in $S_{M}=\operatorname{End}_{R}(M)$ to a column-finite matrix $\left(a_{\sigma \tau}\right)$ over R by making use of generators.

Theorem 2. Let P be R-projective. Then $f \in J\left(S_{P}\right)$ if and only if f corresponds to a matrix above such that $\left\{\sum_{\tau} a_{\sigma \tau} R\right\}_{\sigma}$ is a right semi-T-nilpotent set of right ideals in $J(R)$ (cf. [12]).

It is clear from Corollary 4 to Proposition 2.
Theorem 2^{\prime} Let $\left\{P_{a}\right\}_{I}$ be a set of R-projective modules, $P=\sum_{I} \oplus P_{a}$ and $S_{P}=\operatorname{End}_{R}(P)$. Then

$$
J\left(S_{P}\right)=\underset{\left\{S_{\sigma}\right\}}{\cup}\left(\begin{array}{c}
{\left[P_{1}, S_{1}\right]\left[P_{2}, S_{1}\right] \cdots\left[P_{\sigma}, S_{1}\right] \cdots} \\
{\left[P_{1}, S_{2}\right]\left[P_{2}, S_{2}\right] \cdots\left[P_{\sigma}, S_{2}\right] \cdots} \\
{\left[P_{1}, S_{\sigma}\right]\left[P_{2}, S_{\sigma}\right] \cdots\left[P_{\sigma}, S_{\sigma}\right] \cdots} \\
\cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right)
$$

where matrices are column-summable, $\left\{S_{x} \mid \subseteq P_{a}\right\}$ runs through all locally, right semi-T-niplotent sets of small submodules S_{∞} in P_{κ} and $\left[P_{\sigma}, S_{\tau}\right]=\operatorname{Hom}_{R}\left(P_{\sigma}, S_{\tau}\right)$.

Proof. It is clear $J\left(S_{P}\right) \supseteq\left(\left[P_{\sigma}, S_{\tau}\right]\right)$ from Lemma 1 and Corollary 1 to Proposition 2. Let $f \in J\left(S_{P}\right)$ and $f=\left(f_{\sigma \tau}\right), f_{\sigma \tau} \in\left[P_{\tau}, P_{\sigma}\right]$. Then $p_{\sigma}(f(P))=$ $\sum_{\tau} f_{\sigma \tau}\left(P_{\tau}\right)\left(=S_{\sigma}\right)$. Since $f(P)$ is small in $P,\left\{S_{\sigma}\right\}_{I}$ is a right semi- T-nilpotent set of submodules from Therom 1^{\prime}.

Corollary 1.

$$
J\left((R)_{I}\right)=\cup_{\left(A_{\sigma}\right\rangle}\left(\begin{array}{c}
A_{1}, A_{1}, \cdots \\
A_{2}, A_{2}, \cdots \\
\cdots \cdots \cdots \\
A_{\sigma}, A_{\sigma}, \cdots
\end{array}\right)
$$

where $\left\{A_{\sigma}\right\}_{I}$ runs through all the right semi-T-nilpotent sets of right ideals in $J(R)$ and all permutations $\left\{A_{\pi(\sigma)}\right\}$ of $\left\{A_{\sigma}\right\}$.

Corollary $2([10,11,12])$. Let $\left(a_{\sigma \tau}\right)$ be in $(R)_{I}$. Then the following statements are equivalent.

1) $\left(a_{\sigma \tau}\right) \in J\left((R)_{I}\right)$.
2) $\left\{\sum_{\tau} a_{\sigma T} R\right\}_{\sigma}$ is a right semi-T-nilpotent set.
3) Any set $\left\{a_{\sigma \tau}\right\}$ is a right semi-T-nilpotent set, where almost all σ 's are distinct.

Proof. 3) $\rightarrow 2$) We can prove it from Konig Graph Theorem. Other implications are clear from Corollary 1.

By $J_{f}\left((R)_{I}\right)$ we shall denote the set of matrices in $(J(R))_{I}$ almost all of whose rows are zero. On the other hand, we denote a small submodule $\sum_{i}^{n} \oplus u_{\alpha_{i}} J(R)$ in $M=\sum_{I} \oplus u_{\alpha} R$ by $J\left(\alpha_{1}, \alpha_{i}, \cdots, \alpha_{n}\right)(M)$. Then we have

Corollary 3. The following statements are equivalent.

1) $J\left((R)_{I}\right)=J_{f}\left((R)_{I}\right)$
2) Every small submodule in M is contained in some $J\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)(M)$.
3) There are no non-trivial, infinite right semi-T-nilpotent sets of elements in $J(R)$ (cf. [6], Theorem 1).

Proof. 1) $\rightarrow 2$). We assume 2) is not satisfied. Then there exists a small submodule S in M which is not contained in any $J\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots, \alpha_{n}^{\prime}\right)(M)$. Hence, for a suitable sequence $\left\{\alpha_{i}, \alpha_{i} \neq \alpha_{j}\right.$ for $\left.i \neq j\right\}$, there exist elements $s_{i}{ }^{*}$ in S such that

$$
s_{i}^{*}=\cdots+u_{\alpha_{i}} s_{\alpha_{i i}}+\cdots, s_{\alpha_{i i} i} \neq 0 \in J(R) .
$$

We define f in S_{M} by setting

$$
f\left(u_{i}\right)=s_{i}^{*} \text { and } f\left(u_{\alpha}\right)=0 \text { for } u_{\infty} \notin\left\{u_{i}\right\}_{1}^{\infty} .
$$

Since $f(M) \subseteq S, f \in J\left((R)_{I}\right)=J_{f}\left((R)_{I}\right)$ from lemma 1. Therefore, $f(M) \subseteq$ $J\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)(M)$, which is a contradiction. Other implications are clear.

Remarks 1. If $\left\{T_{\alpha}\right\}_{I}$ is locally, right T-nilpotent in Proposition 2, $J\left(S_{N}\right) \supseteq \operatorname{Hom}_{R}(N, T)$ (see the proof of Corollary 2 to Proposition 2).
2. Let Z be the ring of integers and p prime. Put $N_{\alpha}=Z_{p^{\infty}}$ for all α in Proposition 2. Then $\operatorname{End}_{z}\left(Z_{p \infty}\right)=\hat{Z}_{p}$; the ring of p-adic completions and S_{N} is the ring of column-summable matrices $\left(a_{\sigma \tau}\right)$ over \hat{Z}_{p}. Furthermore, $J\left(S_{N}\right)=$ $\left\{\left(a_{\sigma \tau}\right) \mid a_{\sigma \tau} \in p \hat{Z}_{p}\right\}$ from [1], Theorem 9 and Proposition 10. Let $A_{n}=\left\{a \in Z_{p \infty} \mid\right.$ $\left.a p^{n}=0\right\}$. Then $\left\{T_{a s}\right\}$ is a locally semi- T-nilpotent if and only if $T_{a}=A_{n(\alpha)}$ for almost all α. On the other hand, $\operatorname{Hom}_{z}\left(Z_{p^{\infty}}, A_{n}\right)=0$. Hence, $\operatorname{Hom}_{z}(N, T)=0$ if $T_{a}=A_{n(a)}$ for all α and so $J\left(S_{N}\right) \neq \cup_{r} \operatorname{Hom}_{z}(N, T)$ (cf. Theorem 2'). Furthermore, let $A=\sum_{1}^{\infty} \oplus A_{i}$ and $M=\sum_{i}^{\infty} \oplus Z_{p^{\infty}} \xrightarrow{\varphi} Z_{p^{\infty}}$ the natural epimorphism. Then $\varphi(A)=Z_{p^{\infty}}$ and so A is not small in M (cf. Corollary 1 to Proposition 2). Hence, every small submodule in M is of a type $A^{(n)}=\left\{m \in M \mid m p^{n}=0\right\}$ (use the similar argument above and the proof of Proposition 1).
3. Let Q be the rationals. Then Q is an injective and flat Z-module. It is clear that Z is a small submodule in Q. Put $A=\sum_{1}^{\infty} \oplus Q_{i}: Q_{i}=Q$ and $\varphi: A \rightarrow Q$ by setting $\varphi\left(q_{i}\right)=(1 / i) q_{i} ; q_{i} \in Q_{i}$. Since $\operatorname{Hom}_{z}(Q, Z)=0,\{Z\}$ is a locally T-nilpotent set of small submodules. However, $\varphi\left(\sum \oplus Z\right)=Q$ and so $\sum \oplus Z$ is not small in A (see Corollary 1 to Proposition 2). Furthermore, $J(Z)=0$ and so Z is not of a form in Corollary 4 to Proposition 2.
4. If R is a right perfect ring, $M J(R)=J(M)$ is a unique maximal one among small submodules in an R-module M. Hence, every set of small submodules is a locally, right semi-T-nilpotent set and so almost results above are trivially valid without any assumptions:finitely generated and projective.
5. It is clear that

$$
J\left((R)_{I}\right)=\left(\begin{array}{c}
A_{1}, A_{1} \cdots \\
A_{2}, A_{2} \cdots \\
\cdots \cdots \cdots \\
A_{\sigma}, A_{\sigma} \cdots \\
\cdots \cdots \cdots
\end{array}\right)
$$

for a right semi-T-nilpotent set of right ideals A_{σ} if and only if $A_{\sigma}=J(R)$ for all σ and $J(R)$ is right T-nilpotent.

2 Perfect modules

We shall add here a characterization for a finitely generated projective module to be perfect.

Theorem 3. Let P be a finitely generated projective module and $M=\sum_{1}^{\infty} \oplus P$. Then P is perfect if and only if $S_{M} / J\left(S_{M}\right)$ is a regular ring in the sense of Von Neumann and every idempotent in $S_{M} / J\left(S_{M}\right)$ is lifted to S_{M} (cf. [3], Theorem 1).

Proof. If P is perfect, the statements are obtained by [7]. Conversely, Let $S_{P}=\operatorname{End}_{R}(P)$. Then $S_{M}=\left(S_{P}\right)_{I}$. Let \bar{e} be an idempotent in $\left(J\left(S_{P}\right)\right)_{I} / J\left(S_{M}\right)$. We may assume e is idempotent in $\left(J\left(S_{P}\right)\right)_{I}$ from the assumtion. Since $J\left(S_{P}\right)=$ $\operatorname{Hom}_{R}(P, J(P))$ from Lemma 1, $e(M) \subseteq \Sigma \oplus J(P)=\Sigma \oplus P J(R)=M J(R)$. Hence, $e(M)=e(M) J(R)$. Therefore, $e=0$. On the other hand, $S_{M} / J\left(S_{M}\right)$ is regular and so $J\left(S_{M}\right)=\left(J\left(S_{P}\right)\right)_{I}$. Accordingly, $J\left(S_{P}\right)$ is right T-nilpotent and $S_{P} / J\left(S_{P}\right)$ is semi-simple artinian from [4], Corollary to Lemma 2. Thus, $P=\sum_{i}^{n} \oplus P_{i}$ and $\operatorname{End}_{R}\left(P_{i}\right)$ is a local ring, which implies P is perfect from [2], Theorem 6.

Corollary 1. Let R be a semi-simple artinian ring if and only if $J(R)$ contains no non-trivial right semi-T-nilpotent sets and $S_{M} / J\left(S_{M}\right)$ is a regular ring, where $M=\sum \oplus u_{i} R$.

Proof. If $J(R)$ contains no right semi- T-nilpotent sets, then $J\left(S_{M}\right)=J_{f}\left(S_{M}\right)$. For any elements $\left(a_{\sigma \tau}\right),\left(b_{\sigma \tau}\right)$ in $S_{M},\left(a_{\sigma \tau}\right) \equiv\left(b_{\sigma \tau}\right)\left(\bmod J\left(S_{M}\right)\right)$ implies $a_{\sigma \tau}=b_{\sigma \tau}$ for almost all σ. Let $a E$ be in S_{M} and $a \in R$, where E is the identity matrix in S_{M}. Then there exists $\left(b_{\sigma \tau}\right)$ in S_{M} such that $a E\left(b_{\sigma \tau}\right) a E \equiv a E\left(\bmod J\left(S_{M}\right)\right)$. Hence, there exists σ such that $a b_{\sigma \sigma} a=a$ from the above. Therefore, R is regular and $J(R)=0$. Since $(R)_{I}=(R)_{I} /(J(R))_{I}$ is regular, R is artinian from [4], Corollary to Lemma 2.

Osaka City University

References

[1] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
[2] M. Harada: Parfect categories I, ibid., 10 (1973), 329-341.
[3] M. Harada and T. Ishii: Perfect rings and the exchange property, Osaka J. Math. 12 (1975), 483-491.
[4] M. Harada and H. Kanbara: On categories of projective modules, Osaka J. Math. 8 (1971), 471-483.
[5] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. XXXVII, 1956.
[6] W. Liebert: Radical of some endomorphism rings, J. Reine Angew. Math. 261/263 (1973), 166-170.
[7] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
[8] E.M. Patterson: On radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Set A. 66 (1962), 24-46.
[9] N.E. Sexauer and J.E. Warnock: The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1965), 286-295.
[10] R. Solver: The Jacobson radical of row-finite matrices, J. Algebra 12 (1969), 345-359.
[11] -: A note on the radical of row-finite matrices, Glasgrow Math. J. 23 (1972), 80-81.
[12] R. Ware and J. Zelmanowitz: The radical of the endomorphitm ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.
[13] K. Motose: On Sexauer-Warnock theorem, J. Fac. Sci. Shinshu Univ. 5 (1970), 33-34.

