SMALL SUBMODULES IN A PROJECTIVE MODULE AND SEMI-T-NILPOTENT SETS

Manabu HARADA

(Received September 10, 1975)

Let R be a ring with identity element and $(R)_I$ the ring of column-finite matrices over R with infinite degree I. N. Jacobson proposed to determine the Jacobson radical $J((R)_I)$ of $(R)_I$ in his book [5]. Many algebraists have been working on this problem. P.M. Patterson [8], N.E. Sexauer and J.E. Warnock [9] showed $J((R)_I)=(J(R))_I$ if and only if J(R) is right T-nilpotent (cf. [4], Corollary 1 to Proposition 1). On the other hand, W. Liebert [6] gave an exact form of $J((R)_I)$ if R is domain and R. Slover [10,11] and R. Ware and J. Zelmanowitz [12] obtained an exact form of elements in $J((R)_I)$, which involved all results above.

In this note, we shall first give all types of small submodules in a free *R*-module $M = \sum_{I} \bigoplus u_{\alpha} R$. Since $J((R)_{I})$ is determined by small submodules in *M*, we can obtain their results similarly to [12] and give another forms by means of locally, right semi-*T*-nilpotent sets of small submodules.

Finally, we shall give a characterization of right perfect module P by means of a structure of $(S)_I/J((S)_I)$, where $S=\operatorname{End}_R(P)$.

1 Jacobson radicals

Throughout we shall assume that R is a ring with identity element and every module is a unitary right R-module. Let A be an R-module and B a submodule of A. B is called *small in* A if a fact: A=B+T for a submodule Tof A implies A=T. Let $\{M_{\alpha}\}_{I}$ be a set of R-modules and $M=\sum_{I} \oplus M_{\alpha}$. We put $S_{M}=\operatorname{End}_{R}(M)$. We assume the elements in S_{M} operate on M from the left side. Furthermore, we can express them as the column-summable matrices with entries in $\operatorname{Hom}_{R}(M_{\sigma}, M_{\tau})$. If $M_{\sigma}=R$ for all σ , S_{M} is the ring $(R)_{I}$ of column-finite matrices over R.

Let $M = \sum_{T} \bigoplus u_{\sigma}R$ and S a small submodule in M. Then $S \subseteq \sum_{T} \bigoplus u_{\sigma}J(R)$. In order to determine a type of S, we shall define a set of right semi-Tnilpotent, right ideals. Let $\{A_{\sigma}\}_{K}$ be a set of right ideals in R and K an infinite set. If $\{A_{\sigma}\}_{K}$ satisfies the following condition, we call $\{A_{\sigma}\}_{K}$ a right M. HARADA

semi-T-nilpotent set, (see a vanishing set of ideals in [12]).

For any countable subset $\{A_{\alpha_i}\}_{i=1}^{\infty}$ of $\{A_{\alpha}\}_{K}$ and $\{a_i | \in A_{\alpha_i}\}_{i=1}^{\infty}$, there exists n, depending on $\{a_i\}$, such that $a_n a_{n-1} \cdots a_1 = 0$.

Let $\{b_{\sigma}\}_{K}$ be a set of elements in R. If $\{b_{\sigma}R\}_{K}$ is a right semi-T-nilpotent set, we call $\{b_{\sigma}\}_{K}$ a right semi-T-nilpotent set. If we allow $\alpha_{i} = \alpha_{j}$ for $i \neq j$, we call $\{A_{\alpha}\}$ or $\{b_{\alpha}\}$ a right T-nilpotent set. If $A_{\alpha} = A$ for all α , then the above concept coincides with one of the usual T-nilpotency.

If K is a finite set, we understand $A_{\alpha}=0$ for almost all α , then $\{A_{\alpha}\}_{K}$ is always a semi-T-nilpotent set, but not a T-nilpotent set. Now, we shall state the theorem which is substantially due to [12].

Theorem 1 ([12], Theorem 1). Let $M = \sum_{I} \bigoplus u_{\sigma}R$ be a free R-module with infinite basis u_{σ} and S a submodule of M. Then the following statements are equivalent.

1) S is small in M.

2) Let $p_{\sigma}: M \to u_{\sigma}R$ be the projection of M onto $u_{\sigma}R$ and $A_{\sigma} = p_{\sigma}(S)$. Then $A_{\sigma} \subseteq J(R)$ and $\{A_{\sigma}\}_{I}$ is a right semi-T-nilpotent set.

3) There exists a right semi-T-nilpotent set $\{A_{\alpha}\}_{I}$ of right ideals in J(R) such that $S \subseteq \sum \bigoplus u_{\alpha}A_{\alpha}$.

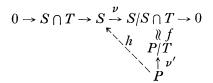
We shall prove Theorem 1 in more general forms. First, we shall generalize the concept of right semi-*T*-nilpotent set of right ideals. Let $\{Q_{\alpha}\}_{I}$ be an infinite set of *R*-modules and $\{S_{\beta} | \subseteq Q_{\beta}\}_{\beta \in K \subseteq I}$ an infinite set of *R*-submodules. We take a countable subset $\{Q_{\alpha_{i}}\}$ of $\{Q_{\alpha}\}_{K}$ and a set of homomorphisms $f_{i}: Q_{\alpha_{i}} \rightarrow Q_{\alpha_{i+1}}$ such that $f_{i}(Q_{\alpha_{i}}) \subseteq S_{\alpha_{i+1}}$. If for any element t in $Q_{\alpha_{1}}$ there exists n, depending on t and $\{f_{i}\}$, such that $f_{n}f_{n-1}\cdots f_{1}(t)=0$, then we call $\{f_{i}\}$ a locally (semi)-*T*-nilpotent set of homomorphisms. If for any countable subset $\{Q_{\alpha_{i}}\}$ and any set of homomorphisms f_{i} as above, $\{f_{i}\}$ is always locally (semi-)*T*nilpotent, then we call $\{S_{\alpha}\}_{K}$ a locally (right) semi-*T*-nilpotent set of submodules.

The following lemma is obtained by [12].

Lemma 1. Let P be projective. Then $J(S_P) = \{f \in S_P | f(P) \text{ is small in } P\}$.

Lemma 2 ([4], Proposition 1). Let P be R-projective and S an R-submodule of P. If $\operatorname{Hom}_{R}(P, S) \subseteq J(S_{P})$, S is small in P, where $S_{P} = \operatorname{End}_{R}(P)$.

Proof. We assume P=S+T for some submodule T. Then we have a diagram:



356

Since P is projective, we have $h: P \to S$ such that $\nu h = f\nu'$. Hence, $S = h(P) + S \cap T$ and so P = h(P) + T. On the other hand, h(P) is small in P from the assumption and Lemma 1. Therefore, P = T.

The following proposition implies $1 \rightarrow 2 \rightarrow 3$ in Theorem 1.

Proposition 1. Let $\{M_{\alpha}\}_{I}$ be a set of finitely generated R-modules and S a small submodule of $M = \sum_{I} \bigoplus M_{\alpha}$. Then $\{S_{\alpha} = p_{\alpha}(S)\}_{I}$ is a right semi-T-nilpotent set of submodules, where $p_{\alpha}: M \to M_{\alpha}$ is the projection.

Proof. We may assume *I* is a well ordered, infinite set. Let $\{S_{\alpha_i}\}_{1}^{\infty}$ be any subset of $\{S_{\alpha}\}_{I}$ and $\{f_i: M_{\alpha_i} \rightarrow S_{\alpha_{i+1}}\}_{1}^{\infty}$ a given set. Let $\{m_{\alpha}^{(1)}, m_{\alpha}^{(2)}, \dots, m_{\alpha}^{n_{\alpha}}\}$ be a generator of M_{α} . Then for $m_{\alpha_i}^{(k)}$ there exists $s_i^{(k)}$ in *S* such that

$$s_{i}^{(k)} = s_{(\beta(i,k),1)} + s_{(\beta(i,k),2)} \cdots + f_{i}(\widetilde{m}_{\omega_{i}}^{(k)}) + \cdots + s_{(\beta(i,k),n_{k})}$$
(*),

where $s_{(\beta(i,k),j)} \in S_{(\beta(i,k),j)}$. Hence, we may assume

$$s_i^{(k)} \in \sum_{j=1}^{m_i} \oplus S_{\beta(i,j)}$$
 for all $k=1, 2, \cdots, n$ (**).

1 Special case. First, we assume that $\{\beta(i, j)\}_{i=1}^{\infty} \stackrel{m_i}{=} \{1, 2, \dots, n, \dots\}$ in (**)and $\alpha_1 < \alpha_2 \leq m_1 < \alpha_3 \leq m_2 < \alpha_4 \leq \cdots$. We put $M'_{\sigma_i} = \{m_{\sigma_i} + f_i(m_{\sigma_i}) | m_{\sigma_i} \in M_{\sigma_i}\} \subseteq M_{\sigma_i} \oplus M_{\sigma_{i+1}}$ and $M' = \sum_{\{\alpha \notin \alpha_i\}} M_{\alpha} + \sum_{1}^{\infty} M'_{\sigma_i} + S$. We shall show M = M'. For $m_{\sigma_i}^{(k)}$ we have

$$M' \supset M'_{\omega_1} + S \ni m_{\omega_1}^{(k)} + f_1(m_{\omega_1}^{(k)}) - s_1^{(k)}$$

= $-s_1^{(1,k)} - s_2^{(1,k)} - \dots + (m_{\omega_1}^{(k)} - s_{\omega_1}^{(1,k)}) - \dots - \overset{\alpha_2}{0} - \dots - s_{m_1}^{(1,k)}.$

Hence, $m_{\alpha_1}^{(k)} \equiv s_{\alpha_1}^{(1,k)} \pmod{M'}$ and $s_{\alpha_1}^{(1,k)} \in S_{\alpha_1}$. Therefore, $(M_{\alpha_1} + M')/M' = (S_{\alpha_1} + M')/M'$. $M' = S_{\alpha_1} \equiv S_{\alpha_1}$ is small in $M_{\alpha_1}, (S_{\alpha_1} + M')/M'$ is small in $(M_{\alpha_1} + M')/M'$. Accordingly, $M_{\alpha_1} \subseteq M'$. Repeating those arguments we have M = M'. Since S is small in $M, M = \sum_{\alpha \in \{\alpha_i\}} \bigoplus_{i=1}^{\infty} M'_{\alpha_i}$. Hence, there exists n such that $f_n f_{n-1} \cdots f_1(m_{\alpha_1}) = 0$ for $m_{\alpha_1} \in M_{\alpha_1}$ (see [1], Lemma 9).

2 General case. Since $\beta(i, j)$'s in (**) are countable, we may assume $\{\alpha, \beta(i, j)\} = \{1 = \alpha_1, 2, \dots, n \dots\}$ after rearranging the order of indices. We shall denote the new index of α_i by $\sigma(\alpha_i)$, namely $\sigma(\alpha_1)=1$. Then

$$s_{1}^{(k)}(=s_{\alpha_{i_{2}}}^{(k)}) = s_{1}^{(\alpha_{i_{2}},k)} + s_{2}^{(\alpha_{i_{2}},k)} + \dots + f_{1}(m_{\alpha_{1}}^{(k)}) + \dots + s_{n(\alpha_{i_{2}},k)}^{(\alpha_{i_{2}},k)}$$

M. HARADA

Since $\{f_i\}$ is infinite, there exists $i_3 > i_2$ such that $n(\alpha_{i_3}, k') \ge \sigma(\alpha_{i_3}) > M_{ax}(n(\alpha_{i_2}, k))$. Repeating those arguments, we obtain $\sigma(\alpha_1) = 1 < \sigma(\alpha_{i_2}) \le M_{ax}(n(\alpha_{i_2}, k)) < \sigma(\alpha_{i_3}) \le M_{ax}(n(\alpha_{i_3}, k')) < \sigma(\alpha_{i_4}) < \cdots$ and $1 = i_1 < i_2 < i_3 < \cdots$. Put $g_{j-1} = f_{i_{j-1}} \cdots f_{i_{j-1}}$: $M_{\alpha_{i_{j-1}}} \to S_{\alpha_{i_j}}$, $(g_1 = f_1)$ and consider a countable subset $\{S_{\sigma(\alpha_{i_j})}\}_{j=1}^{\infty}$. Since $g_{j-1}(M_{\alpha_{i_{j-1}}}) \subseteq f_{i_{j-1}}(M_{\alpha_{i_{j-1}}})$, $g_{j-1}(m_{\alpha_{i_{j-1}}}^{(k)}) \in p_{\sigma(\alpha_{i_j})}((\sum_{i=1}^{n} \oplus M_i) \cap S)$. Hence, $\{S_{\alpha(\alpha_{i_j})}\}$ and $\{g_{j-1}\}$ satisfy the conditions of Special case 1. Accordingly, $0 = g_n g_{n-1} \cdots g_1(m_{\alpha_1}) = f_{i_{n+1}-1} \cdots f_n(m_{\alpha_1})$ for some n.

From a special type of the above proof, we have

Corollary 1. Let $\{N_{\alpha}\}_{I}$ be a set of R-modules and $\{T_{\alpha}|\subseteq N_{\alpha}\}_{I}$ a set of submodules. If $\sum_{T} \oplus T_{\alpha}$ is a small submodule of $\sum_{T} \oplus N_{\alpha}$, then $\{T_{\alpha}\}_{I}$ is a locally right semi-T-nilpotent set of submodules.

Proposition 2. Let $\{N_{\alpha}\}_{I}$ be a set of *R*-modules and $\{T_{\alpha} | \subseteq N_{\alpha}\}_{I}$. We put $N = \sum_{T} \bigoplus N_{\alpha}, T = \sum_{T} \bigoplus T_{\alpha}$ and $S_{N} = \operatorname{End}_{R}(N)$. Then $J(S_{N}) \supseteq \operatorname{Hom}_{R}(N, T)$ if and only if $\{T_{\alpha}\}_{I}$ is a locally right semi-T-nilpotent set of submodules and $\operatorname{Hom}_{R}(N_{\alpha}, T_{\alpha}) \subseteq J(S_{N_{\alpha}})$.

Proof. We assume $J(S_N) \supseteq \operatorname{Hom}_R(N, T)$. Let $\{N_{\alpha_i}\}$ and $\{f_i: N_{\alpha_i} \to T_{\alpha_{i+1}}\}$ be given sets. We may assume $\alpha_j = j$ for all j. Then

$$\begin{pmatrix} 0 & & 0 \\ f_1 & 0 & & \\ & f_2 & 0 & \\ & \ddots & \ddots & \\ & & f_n & 0 \\ & 0 & & \ddots & \ddots \end{pmatrix}$$

is in $J(S_N)$ from the assumption. Hence, $\{f_i\}$ is locally right T-nilpotent. It is clear that $J(S_{N_{\alpha}}) = e_{\alpha}J(S_N)e_{\alpha} \supseteq e_{\alpha} \operatorname{Hom}_R(N, T)e_{\alpha} = \operatorname{Hom}_R(N_{\alpha}, T_{\alpha})$, where e_{α} is the projection of N onto N_{α} . Conversely, we shall show that $C_{\sigma\tau} = \operatorname{Hom}_R(N_{\tau}, T_{\sigma})$'s satisfy the conditions $1)\sim 3$ in [4], Lemma 5. 1) and 3) are clear from the assumptions and 2) is clear. We note that in the proof of [4], Lemma 5 we only used a fact that $C_{\sigma\tau} \operatorname{Hom}_R(N_{\varepsilon}, N_{\tau}) \subseteq C_{\sigma\varepsilon}$. Hence, $J(S_N) \supseteq \operatorname{Hom}_R(N, T)$ from [4], Lemma 5.

The following corollary implies $3 \rightarrow 1$ in Theorem 1 and is the converse of Corollary 1 above in a restricted case.

Corollary 1 ([4], Theorem 3). Let $\{P\}_I$ be a set of R-projectives and $\{S_{\alpha} | \subseteq P_{\alpha}\}$ a set of R-submodules. Then $\sum_{T} \oplus S_{\alpha}$ is small in $\sum_{T} \oplus P$ if and only if $\{S_{\alpha}\}_I$ is a locally, right semi-T-nilpotent set of small submodules S_{α} in P_{α} (see Remark 2 below).

358

Corollary 2. Let $\{P_{\alpha}\}_{I}$ and $\{S_{\alpha}\}_{I}$ be as above. Then for any set $\{Q_{\beta}\}_{K}$ such that $Q_{\beta} \stackrel{\varphi_{\beta}}{\approx} P_{\alpha(\beta)} \in \{P_{\alpha}\}_{I} \sum_{K} \oplus \varphi_{\beta}^{-1}(S_{\alpha(\beta)})$ is always small in $\sum_{K} \oplus Q_{\beta}$ if and only if $\{S_{\alpha}\}_{I}$ is a locally right T-nilpotent set of submodules.

Proof. It is enough to show that S_{α} is small in P_{α} if $\{S_{\alpha}\}_{I}$ is locally right *T*-nilpotent. $A_{\alpha} = \operatorname{Hom}_{R}(P_{\alpha}, S_{\alpha})$ is a right ideal in $S_{P_{\alpha}}$. Let $f \in A_{\alpha}$, then $f' = \sum_{n=0}^{\infty} f^{n} \in S_{P_{\alpha}}$ from the assumption. Hence, (1-f)f' = 1 and so $A_{\alpha} \subseteq J(S_{P_{\alpha}})$. Therefore, S_{α} is small in P_{α} from Lemma 2.

Corollary 3 ([4, 8, 9, 12, 13]). Let $M = \sum_{T} \bigoplus u_{\alpha} R$. Then J(M) is small in M if and only if J(R) is right T-nilpotent.

Corollary 4. Let M be an R-module. If $\{A_m\}_{m \in M_0}$ is a right semi-T-nilpotent set of right ideals in J(R), then $\sum_{\mathfrak{M}_0} mA_m$ is a small submodule in M. Conversely, if M is projective and S is a small submodule in M, then there exists a semi-T-nilpotent set $\{A_m\}_{M_0}$ of right ideals in J(R) such that $S \subseteq \sum_{\mathfrak{M}_0} mA_m$, where M_0 is any set of generators of M (see Remark 3).

Proof. Consider an epimorphism $\varphi: P = \sum_{M_0} \oplus u_m R \to M; \varphi(u_m) = m$. Since $\sum \oplus u_m A_m$ is small in P from Corollary 2, $\varphi(\sum \oplus u_m A_m) = \sum m A_m$ is small in M (see [4]). Conversely, we assume M is projective. M is a direct summand of P and so $\varphi i = 1_M$ for monomorphism i. i(S) is also small in P and hence, there exists a right semi-T-nilpotent set $\{A_m\}_{M_0}$ of right ideals in J(R) such that $i(S) \subseteq \sum \oplus u_m A_m$ from Theorem 1. Therefore, $S = \varphi i(S) \subseteq \sum_{M_0} m A_m$.

Corollary 5. Let P be a projective R-module. Then the following statements are equivalent.

- 1) $\{J(P)\}$ is itself a locally, right T-nilpotent set of submodules.
- 2) $J(S_P)$ is locally right T-nilpotent.
- 3) Any set of small submodules in P is a locally, right T-nilpotent set.

Proof. 1) \rightarrow 2). Hom_R(P, J(P)) $\subseteq J(S_P)$ from the proof of Corollary 2. Hence, Hom_R(P, J(P))= $J(S_P)$ is locally right T-nilpotent. 2) \rightarrow 3). Let $\{S_i\}_1^{\infty}$ be a set of small submodules in P. Then Hom_R(P, S_i) $\subseteq J(S_P)$ from Lemma 1. Hence, $\{S_i\}$ is a locally, right-T-nilpotent set. 3) \rightarrow 1). First, we shall show that the union of small submodules $\{S_a\}_I$ is also small in P. Consider the natural epimorphism: $\sum_I \bigoplus P_a \rightarrow P \rightarrow 0, P_a = P$. Then

 $\sum_{I} \oplus S_{\sigma}$ is small in $\sum_{I} \oplus P_{\sigma}$ from 3) and Corollary 1. Hence, $\bigcup_{I} S_{\sigma}$ is small in *P*. It is easily seen that *pR* is small in *P*, where $p \in J(P)$. Therefore, J(P) is

small in P from the above.

The proof above shows that if J(P) is not small in P, then there exists a locally, right non-T-nilpotent set of small submodules $\{S'\}_I$.

Now, we shall give a general form of Theorem 1.

Theorem 1'. Let $\{P_{\alpha}\}_{I}$ be a set of R-projectives. Let $M = \sum_{I} \bigoplus P_{\alpha}$ and S a submodule of M. Then the following statements are equivalent.

1) S is small in M.

2) Let $p_{\alpha}: M \to P_{\alpha}$ be the projection of M onto P_{α} and $S_{\alpha} = p_{\alpha}(S)$. Then $\{S_{\alpha}\}_{I}$ is a locally, right semi-T-nilpotent set of small submodules.

3) There exists a locally, right semi-T-nilpotent set $\{S_{\alpha}\}_{I}$ of small submodules S_{α} in P_{α} such that $S \subseteq \Sigma \oplus S_{\alpha}$.

Proof. $(2) \rightarrow (3) \rightarrow (1)$. It is is clear from Corollary 1 to Proposition 2. (1) \rightarrow 2). We shall prove it in a general form:

Lemma 3. In Proposition 1, we assume every M_{α} is a summand of a direct sum Q_{α} of finitely generated R-modules $M_{\alpha\beta}$. Then the statement in Proposition 1 is valid.

Proof. Put $Q_{\alpha} = \sum_{\beta \in I_{\alpha}} M_{\alpha\beta}$ and $M^* = \sum_{I} \oplus Q_{\alpha}$. Then M is a summand of M^* . Let i be the injection of M into M^* . Then i(S) is small in M^* and $\sum_{I} \sum_{I_{\alpha}} \oplus p_{\alpha\beta}(i(S)) \supset \sum_{I} \oplus i(S_{\alpha})$ and $i(S_{\alpha}) \subset \sum_{I_{\alpha}} \oplus p_{\alpha\beta}(i(S))$. Now, $\{p_{\alpha\beta}(i(S))\}_{I,I_{\alpha}}$ is a locally semi-T-nilpotent set from Proposition 1. Let $\{M_{\alpha_i}\}_{\alpha}^{\circ}$ and $f_i: M_{\alpha_i} \rightarrow S_{\alpha_{i+1}}\}_{1}^{\circ}$ be given sets. Then we can extend f_i to $f_i': Q_{\alpha_i} \rightarrow i(S_{\alpha_{i+1}})$ by sending a direct complement to zero. We shall denote f_i' by a column-finite matrix $(a_{\sigma\tau}^{(i)})$, where $a_{\sigma\tau}^{(i)} \in \operatorname{Hom}_{R}(M_{\alpha_i\tau}, p_{\alpha_{i+i}\sigma}(i(S)))$. Let m be in M_{α_1} and $i(m) = \sum_{j=1}^{t} m_{\alpha_1\beta_j}$, $m_{\alpha_1\beta_j} \in M_{\alpha_1\beta_j}$. Then $f_1(m) = f_1'(i(m)) = \sum_{j=1}^{t} \sum_{k} a_{\sigma_k\beta_j}^{(1)}(m_{\alpha_1\beta_j})$, where $a_{\sigma_k\beta_j}^{(1)} = 0$ for almost all k.

$$f_2 f_1(m) = f_2' f_1'(i(m)) = \sum_{j=1}^t \sum_{k'} \sum_k a_{k'\sigma_k}^{(2)} a_{\sigma_k\beta_j}^{(1)}(m_{\alpha_1\beta_j})$$

Since $p_{\alpha\beta}(i(S))$ is locally semi-*T*-nilpotent, we obtain *n* such that $f_n f_{n-1} \cdots f_1(m) = 0$ from Konig Graph Theorem.

Let M be an R-module. We can correspond (not necessarily unique) any element in $S_M = \operatorname{End}_R(M)$ to a column-finite matrix $(a_{\sigma\tau})$ over R by making use of generators.

Theorem 2. Let P be R-projective. Then $f \in J(S_P)$ if and only if f corresponds to a matrix above such that $\{\sum_{\tau} a_{\sigma\tau}R\}_{\sigma}$ is a right semi-T-nilpotent set of right ideals in J(R) (cf. [12]).

360

It is clear from Corollary 4 to Proposition 2.

Theorem 2' Let $\{P_{\alpha}\}_{I}$ be a set of R-projective modules, $P = \sum_{I} \bigoplus P_{\alpha}$ and $S_{P} = \operatorname{End}_{R}(P)$. Then

where matrices are column-summable, $\{S_{\alpha} | \subseteq P_{\alpha}\}$ runs through all locally, right semi-T-niplotent sets of small submodules S_{α} in P_{α} and $[P_{\sigma}, S_{\tau}] = \operatorname{Hom}_{R}(P_{\sigma}, S_{\tau})$.

Proof. It is clear $J(S_P) \supseteq ([P_{\sigma}, S_{\tau}])$ from Lemma 1 and Corollary 1 to Proposition 2. Let $f \in J(S_P)$ and $f = (f_{\sigma\tau}), f_{\sigma\tau} \in [P_{\tau}, P_{\sigma}]$. Then $p_{\sigma}(f(P)) = \sum_{\tau} f_{\sigma\tau}(P_{\tau}) (=S_{\sigma})$. Since f(P) is small in P, $\{S_{\sigma}\}_{I}$ is a right semi-*T*-nilpotent set of submodules from Therom 1'.

Corollary 1.

$$J((R)_{I}) = \bigcup_{(A_{\sigma})} \begin{pmatrix} A_{1}, A_{1}, \cdots \\ A_{2}, A_{2}, \cdots \\ \cdots \\ A_{\sigma}, A_{\sigma}, \cdots \end{pmatrix}$$

where $\{A_{\sigma}\}_{I}$ runs through all the right semi-T-nilpotent sets of right ideals in J(R)and all permutations $\{A_{\pi(\sigma)}\}$ of $\{A_{\sigma}\}$.

Corollary 2 ([10, 11, 12]). Let $(a_{\sigma\tau})$ be in $(R)_I$. Then the following statements are equivalent.

1)
$$(a_{\sigma\tau}) \in J((R)_I).$$

2) $\{\sum_{\sigma} a_{\sigma\tau} R\}_{\sigma}$ is a right semi-T-nilpotent set.

3) Any set $\{a_{\sigma\tau}\}$ is a right semi-T-nilpotent set, where almost all σ 's are distinct.

Proof. 3) \rightarrow 2) We can prove it from Konig Graph Theorem. Other implications are clear from Corollary 1.

By $J_f((R)_I)$ we shall denote the set of matrices in $(J(R))_I$ almost all of whose rows are zero. On the other hand, we denote a small submodule $\sum_{i=1}^{n} \oplus u_{\alpha_i} J(R)$ in $M = \sum_{i=1}^{n} \oplus u_{\alpha}R$ by $J(\alpha_1, \alpha_i, \dots, \alpha_n)(M)$. Then we have

Corollary 3. The following statements are equivalent. 1) $J((R)_I)=J_f((R)_I)$ 2) Every small submodule in M is contained in some $J(\alpha_1, \alpha_2, \dots, \alpha_n)(M)$.

3) There are no non-trivial, infinite right semi-T-nilpotent sets of elements in J(R) (cf. [6], Theorem 1).

Proof. 1) \rightarrow 2). We assume 2) is not satisfied. Then there exists a small submodule S in M which is not contained in any $J(\alpha'_1, \alpha'_2, \dots, \alpha'_n)(M)$. Hence, for a suitable sequence $\{\alpha_i, \alpha_i \neq \alpha_j \text{ for } i \neq j\}$, there exist elements s_i^* in S such that

$$s_i^* = \cdots + u_{\alpha_i} s_{\alpha_i i} + \cdots, s_{\alpha_i i} \neq 0 \in J(R).$$

We define f in S_M by setting

$$f(u_i) = s_i^*$$
 and $f(u_\alpha) = 0$ for $u_\alpha \notin \{u_i\}_1^{\infty}$.

Since $f(M) \subseteq S$, $f \in J((R)_I) = J_f((R)_I)$ from lemma 1. Therefore, $f(M) \subseteq J(\beta_1, \beta_2, \dots, \beta_m)(M)$, which is a contradiction. Other implications are clear.

REMARKS 1. If $\{T_{\alpha}\}_{I}$ is locally, right T-nilpotent in Proposition 2, $J(S_{N}) \supseteq \operatorname{Hom}_{R}(N, T)$ (see the proof of Corollary 2 to Proposition 2).

2. Let Z be the ring of integers and p prime. Put $N_{\alpha} = Z_{p\infty}$ for all α in Proposition 2. Then $\operatorname{End}_{Z}(Z_{p\infty}) = \hat{Z}_{p}$; the ring of p-adic completions and S_{N} is the ring of column-summable matrices $(a_{\sigma\tau})$ over \hat{Z}_{p} . Furthermore, $J(S_{N}) =$ $\{(a_{\sigma\tau}) | a_{\sigma\tau} \in p\hat{Z}_{p}\}$ from [1], Theorem 9 and Proposition 10. Let $A_{n} = \{a \in Z_{p\infty} | ap^{n} = 0\}$. Then $\{T_{\alpha}\}$ is a locally semi-T-nilpotent if and only if $T_{\alpha} = A_{n(\alpha)}$ for almost all α . On the other hand, $\operatorname{Hom}_{Z}(Z_{p\infty}, A_{n}) = 0$. Hence, $\operatorname{Hom}_{Z}(N, T) = 0$ if $T_{\alpha} = A_{n(\alpha)}$ for all α and so $J(S_{N}) = \bigcup \operatorname{Hom}_{Z}(N, T)$ (cf. Theorem 2'). Furthermore, let $A = \sum_{1}^{\infty} \bigoplus A_{i}$ and $M = \sum_{1}^{\infty} \bigoplus Z_{p\infty} \bigoplus Z_{p\infty}$ the natural epimorphism. Then $\varphi(A) = Z_{p\infty}$ and so A is not small in M (cf. Corollary 1 to Proposition 2). Hence, every small submodule in M is of a type $A^{(n)} = \{m \in M | mp^{n} = 0\}$ (use the similar argument above and the proof of Proposition 1).

3. Let Q be the rationals. Then Q is an injective and flat Z-module. It is clear that Z is a small submodule in Q. Put $A = \sum_{i=1}^{\infty} \bigoplus Q_i$: $Q_i = Q$ and $\varphi: A \to Q$ by setting $\varphi(q_i) = (1/i)q_i$; $q_i \in Q_i$. Since $\operatorname{Hom}_Z(Q, Z) = 0$, $\{Z\}$ is a locally T-nilpotent set of small submodules. However, $\varphi(\Sigma \oplus Z) = Q$ and so $\Sigma \oplus Z$ is not small in A (see Corollary 1 to Proposition 2). Furthermore, J(Z) = 0 and so Z is not of a form in Corollary 4 to Proposition 2.

4. If R is a right perfect ring, MJ(R)=J(M) is a unique maximal one among small submodules in an R-module M. Hence, every set of small submodules is a locally, right semi-T-nilpotent set and so almost results above are trivially valid without any assumptions: finitely generated and projective.

5. It is clear that

$$J((R)_{I}) = \begin{pmatrix} A_{1}, A_{1} \cdots \\ A_{2}, A_{2} \cdots \\ \cdots \\ A_{\sigma}, A_{\sigma} \cdots \\ \cdots \end{pmatrix}$$

for a right semi-T-nilpotent set of right ideals A_{σ} if and only if $A_{\sigma}=J(R)$ for all σ and J(R) is right T-nilpotent.

2 Perfect modules

We shall add here a characterization for a finitely generated projective module to be perfect.

Theorem 3. Let P be a finitely generated projective module and $M = \sum_{1}^{\infty} \oplus P$. Then P is perfect if and only if $S_M/J(S_M)$ is a regular ring in the sense of Von Neumann and every idempotent in $S_M/J(S_M)$ is lifted to S_M (cf. [3], Theorem 1).

Proof. If P is perfect, the statements are obtained by [7]. Conversely, Let $S_P = \operatorname{End}_R(P)$. Then $S_M = (S_P)_I$. Let \bar{e} be an idempotent in $(J(S_P))_I/J(S_M)$. We may assume e is idempotent in $(J(S_P))_I$ from the assumtion. Since $J(S_P) =$ $\operatorname{Hom}_R(P, J(P))$ from Lemma 1, $e(M) \subseteq \Sigma \oplus J(P) = \Sigma \oplus PJ(R) = MJ(R)$. Hence, e(M) = e(M)J(R). Therefore, e=0. On the other hand, $S_M/J(S_M)$ is regular and so $J(S_M) = (J(S_P))_I$. Accordingly, $J(S_P)$ is right T-nilpotent and $S_P/J(S_P)$ is semi-simple artinian from [4], Corollary to Lemma 2. Thus, $P = \sum_{i=1}^{n} \oplus P_i$ and $\operatorname{End}_R(P_i)$ is a local ring, which implies P is perfect from [2], Theorem 6.

Corollary 1. Let R be a semi-simple artinian ring if and only if J(R) contains no non-trivial right semi-T-nilpotent sets and $S_M/J(S_M)$ is a regular ring, where $M = \sum \bigoplus u_i R$.

Proof. If J(R) contains no right semi-*T*-nilpotent sets, then $J(S_M)=J_f(S_M)$. For any elements $(a_{\sigma\tau})$, $(b_{\sigma\tau})$ in S_M , $(a_{\sigma\tau})\equiv(b_{\sigma\tau}) \pmod{J(S_M)}$ implies $a_{\sigma\tau}=b_{\sigma\tau}$ for almost all σ . Let aE be in S_M and $a\in R$, where E is the identity matrix in S_M . Then there exists $(b_{\sigma\tau})$ in S_M such that $aE(b_{\sigma\tau})aE\equiv aE \pmod{J(S_M)}$. Hence, there exists σ such that $ab_{\sigma\sigma}a=a$ from the above. Therefore, R is regular and J(R)=0. Since $(R)_I=(R)_I/(J(R))_I$ is regular, R is artinian from [4], Corollary to Lemma 2.

OSAKA CITY UNIVERSITY

M. HARADA

References

- M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [2] M. Harada: Parfect categories I, ibid., 10 (1973), 329-341.
- [3] M. Harada and T. Ishii: Perfect rings and the exchange property, Osaka J. Math. 12 (1975), 483-491.
- [4] M. Harada and H. Kanbara: On categories of projective modules, Osaka J. Math. 8 (1971), 471-483.
- [5] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. XXXVII, 1956.
- [6] W. Liebert: Radical of some endomorphism rings, J. Reine Angew. Math. 261/263 (1973), 166-170.
- [7] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
- [8] E.M. Patterson: On radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Set A. 66 (1962), 24-46.
- [9] N.E. Sexauer and J.E. Warnock: The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1965), 286-295.
- [10] R. Solver: The Jacobson radical of row-finite matrices, J. Algebra 12 (1969), 345-359.
- [11] ———: A note on the radical of row-finite matrices, Glasgrow Math. J. 23 (1972), 80–81.
- [12] R. Ware and J. Zelmanowitz: The radical of the endomorphism ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.
- [13] K. Motose: On Sexauer-Warnock theorem, J. Fac. Sci. Shinshu Univ. 5 (1970), 33-34.