Nagura, M.
Osaka J. Math.
14 (1977), 207-223

ON THE LENGTHS OF THE SECOND FUNDAMENTAL
FORMS OF R-SPACES
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Introduction

The aim of this paper is to study the lengths of the second fundamental
forms of a certain class of homogeneous submanifolds, called R-spaces, minimally
imbedded into a unit sphere S. Among these submanifolds, we find Veronese
surfaces and generalized Clifford surfaces. These have been characterized as
minimal submanifolds with second fundamental form of minimal positive constant
length by Chern-Do Carmo-Kobayashi [2]. Also Simons [9] discusses the leng-
ths of the second fundamental forms of submanifolds in S.

Our main results are as follows. Let ||4|]2 be the square of the length of the
second fundamental form of an R-space N minimally imbedded into S. Then
if N is regular (See section 2), ||4|[? is a certain multiple of dim N. If N is
symmetric (See section 4), then ||4||? is a rational number. These results are
independent of the choice of an invariant Riemannian metric on NN.

I wish to express my sincere gratitude to Professor M. Takeuchi for his
kind guidance and encouragements.

1. Preliminaries

1.1. Let (g, 6) be an orthogonal symmetric Lie algebra of compact type.
Put g=1+D, where ¥ (resp. p) is the eigenspace of o corresponding to the eigen-
value 1 (resp. —1). Let Aut(g) be the group of automorphisms of g. Identify-
ing the Lie algebra of Aut(g) with g, let K be the connected Lie subgroup of
Aut(g) corresponding to the Lie subalgebra £ of g. Then K leaves the subspace
p invariant. Let ( , ) be an inner product on g invariant under Aut(g). Then
K acts as an isometry group on the Euclidean space p with the inner product
(', ), the restriction of the inner product ( , ) on g to p. Let S be the unit
sphere of b, and H an element of S. Let N be the orbit of K through H.
Denoting by L the stabilizer of H in K, the space N may be identified with the
quotient space K/L, which is called an R-space.

1.2. Let a be a maximal abelian subspace in p. We shall identify a with



208 T. NAGURA

the dual space a* of a by the map ¢: a—a*, (X)(Y)=(Y, X) for X, Ya.
For A€ aq, we define the subspace f, and b, of g as follows:

I, = {Xet; ad HPX = —(\, H)*X, for any HEa} ,
p,= {Xep; ad H?X = —(\, H)*X, for any HEa} .

Then f—)(:f)\, p—)\=p)‘ and po':a. If we put
t= {A€a; A0, p,+={0}},

T is a root system in a (Satake [7]). The root system 1 is called the restricted root
system of (g, o). We choose a linear order in a and fix it once for all. We denote
by t* the set of positive roots in T with respect to this linear order in a. Then
we have the following orthogonal decomposition of ¥ and p with respect to the
inner product ( , ) (cf. Helgason [3]):

(1.1) E=1tt+ 2t p=a+ 2 p.

aer* aert
1.3. Let (M, k) and (M’, g) be Riemannian manifolds, and f: M—M’ an
isometric immersion. Let T,(M) be the tangent space of M at a point x&€M,
and T'#(M) the orthogonal complement of T,(M) in T ,,(M’). Let A: THM)
X T (M)—T (M) be the Weingarten form at x&M. Let {e, ---, e,} (resp. {f,,
*+, fm}) be an orthonormal basis of T,(M) (resp. T+(M)). Then the square of
the length of the second fundamental form ||A4[|%(x) at x is given by

141 = 33 3% 18,17,

where | X |?=g(X, X) for X& T, (M’). Let p(x) be the scalar curvature of M
at x.

Lemma 1. If the immersion f: M—M' is minimal and M’ is a space form
with the sectional curvature c, then we have

(1.2) p(#) = n(n—T)e— | A1),
where n=dim M.

Proof. If ¢>0, Simons [9] proves the formula. In the general case, we
can prove the formula in the same way as in Simons [9].

2. Second fundamental forms of R-spaces

2.1. Asin section 1, we assume that the point H is contained in the unit
sphere S. Moreover we may assume that H €S Na and (A, H)>0 for any AE1*,
by virtue of the following lemma.

Lemma 2 (Helgason [3]). For any X €, there exists an element k€ K such
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that kX €a and (A, kX)>0 for any A1+,

We identify the tangent space Ty(N) of N at H with a subspace of p in a
canonical manner. Then we have T'y(N)=[f, H]. Put

= {rert; (A, H) =0}, 13 = {Lext; (A, H)>0} .

The tangent space T(N) and the orthogonal complement T#(N) in Ty(S) are
given by

(2-1) TH(N) =A§ Pas
(22) TH(N)= ay+ 3 b1,

where a,={X<a; (X, H)=0}.
We shall call the submanifold N regular, if 13 =t*.

2.2. Let A be the fundamental root system of t with respect to the order
in a:. Put

A= {peEA;rext}.

Let §) be a Cartan subalgebra of g containing a. Let § be the complexification of
g, and b the subspace of § spanned by §. 'The inner product ( , ) on g can be
extended uniquely to a complex symmetric bilinear form, denoted also by ( , )
ong. Let T be the root system of § relative to §. An element o=} belongs to
T, if a=0 and there exists a non-zero vector X €§ such that [H, X]=(a, H)X
for any H eh. Let 9, be the real part of b, i.e. the real subspace of b spanned
by ¥. Note that then §=+/—15. We denote by the same letter & the con-
jugation of § with respect to -1/ —1 p. We choose a o-order in §, in the sense
of Satake [7] which has the following property. Let A be the fundamental system
with respect to this order in ¥, and denote by p the projecion of §, onto v/ —1 a.
Then /—1 A=p(A)— {0}. We denote the Satake diagram of A also by A.
Put &,=p~'(v/—1 A,). Itisknown (Takeuchi [11]) that isomorphic pairs (&, &,)
of Satake diagrams gives rise to isomorphic pairs (K, L): We say that the pair
(A, A4,) is isomorphic to the pair (A’, A/) if there exists an isomorphism @ of A
onto A’ such that @ maps A, onto A/, and that the pair (K, L) is isomorphic to
the pair (K’, L’) if there exists an isomorphism f of K onto K’ such that f maps
L onto L’.

2.3. Let A, be a subsystem of A. Put

A, H) =0, f rETT,
A(A) = {Heams;( )>0, for any }
{reA; (N H)=0} = A,
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Then there exists an element H € A(A,) such that the orbit of K through H is
minimal in S. This follows easily from Hsiang-Lawson [4] (Corollary 1.8). If
(g, o) is irreducible and the pair (K, L) is symmetric, then for the subsystem A,
of A obtained from N=K]/L as in 2.2 the set A(A,) consists of only one element
(cf. Takeuchi [11]). Therefore in this case the submanifold N is minimal.

24. Let A: TE(N)X Ty(N)—Tg(N) be the Weingarten form of the sub-
manifold V of S at H. The following proposition is due to Takagi-Takahashi
[10].

Proposition 3. For X,€p,, NE1}, the Weingarten form A is given by
s Z,
4,X, = Eh, I;;X if Zysay,

A, Xy = — o~ H)Z[[H X, Zu], if ZuEpy, perf .

There exists an orthonormal basis {X,.;, «+, Xa.p,} (resp. {Yap, =+, Yarp,}) of
p, (resp. £,) such that
{[H, Xy =—0, H)Y,.,,

(2.3)
[H, Yy\,]= (O H)X,., for any Hea,
where m, is the multiplicity of A1+, i.e. my=dim p,.

Proposition 4. The square of the length of the second fundamental form ||A|[?
at H is given by

(2.4) [|AIf = —n+ A§2 O, H) (maI N2
+ Z;E 2 [ Xapewed [?) -

Here n=dim N, X y:u-=[Y r p» X ] and | X |*=(X, X) for X €g. In particular
when N is regular, we have

- K
2.5) Al = =t 35, P

Proof. Let {H, H,, ---, H} be an orthonormal basis of a. Applying Pro-
position 3 and (2.3), we have

41 =32, 33 (3 14, Xy |2+ P} 3 4y, Xooyl)

)\Et

=2 B0 H
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+2 2 2 l[Y)\p’XM-q]lz)

=1 per;

—amemmmeﬁ

+2 Z 2 [X(App-q)|)

=1 ey

" R

+ZZ 2|X(Uuq)|),

r=1 uet

which proves the first formula of the proposition. The second formula (2.5)
is the immediate consequence of (2.4).

2.5. Let a: Ty(N)X Ty(N)—T#(N) be the second fundamental form at
H. Then we have (cf. Kobayashi-Nomizu [5])

(26) (X, Y), Z)=(4,X,Y) for X, YET,N)and Z€T4(N).

Proposition 5. The submanifold N of S is minimal if and only if the following
condition is satisfied:

2.7) A=nH.

rery (7\ f )
Proof. By definition, N is minimal if and only if
2] Ea(XA o Xap) =0.
aer) 2=

By (2.6) and Proposition 3, we have
I
a(X)\'p) Xa-p) = 2 (AH,,X}\-p) Xx-p)Hk

+ 2 Z(AX!‘-GXA P XA p)Xl-L q

P«Etl

=—szmmw
1
W

Therefore we have

== nH— ,v_1'_l)‘_,.. x N
*ezf; (», H)
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which proves the proposition. .

2.6. Assume that the algebra g decomposes into the direct sum g=g,+ g,
of two ideals g, and g, invariant under . For i=1, 2, let g,=¥,+p;, where ;=
g;Nt and p,=g; N, and put S;=SNP;,, a,=anNyp;. Assume that an element
H;ca;NS; satisfies (A, H;)>0 for any A€t*. Let N; be the orbit of K through
H;,, and suppose that the submanifold NNV; of S; is minimal. Let ||4,]|> be the

square of the second fundamental form of the submanifold N; of S;. Then we
have

Proposition 6. Assume that the submanifold N is the orbit of K through
H= V u 1—{—1/ H,, where n,=dim N,;. Then N is a minimal submanifold of

the unit sphere S and we have

(28) 141 = (141 141 14412).
n n,

Proof. Put (v,)i=t NP, i, s=1,2. By (2.7) we have

A=mnH,.
Aeg})z + (N, H)
Hence
m)\ m}‘ m)
A= A+ _
xzr]; (A, H) Ae%z* (A, H) xe%:z); (\, H)
= /nn, H-+\/nn, H,
=nH,

which proves the minimality of N. By (2.4) we have

2 1 2
Al = =t 3 o 77 (maln]

""‘E E 2|X(Apibq)|)

=1 pec);t

1
ae%; (, HY

+Z 2 ZlXu,,uq)l)

=lpeayf 1=

= —nt 2 (1AP+m)+ 7 (114l P+n,)
n ,

(ma| N

—n(1+ L 4o Lyage),
n, n,

which proves (2.8).



LENGTHS OF THE SECOND FUNDAMENTAL FORMS 213

2.7. ExampLE. Let (g, 0) be the orthogonal symmetric Lie algebra
corresponding to a symmetric pair (SU(3), SO(3)). Then if N is not regular, the
pair (K, L) s either (SO(3), S(O(1) x 0(2))) or (SO(3), S(O(2)x O(1))). In these
cases the submanifolds N are minimal, and they are isometric. They are the
so-called Veronese surfaces. Applying (2.4) and (2.7), we get

6, if N is regular and minimal,

lAl]? =

3 if N is the Veronese surface.

3. The case where the submanififold N is regular
3.1. In this section we assume that the submanifold N is regular. Put
8= {ret; 2nét} and 8 = {Les; ATt .
Then 8 is a reduced root system. For AE8*, put ky=m,+m,s,, where m,;,=0

unless %—Er. Then by Proposition 4, we get

(3.1) AP = —n+ 3y ik

(x Hy’
and the submanifold N is minimal if and only if
k
3.2 2 N =nH,
(3.2) AEEf (n, H) n

by Proposition 5.
Theorem 1. If the submanifold N is regular and minimal, then
(3.3) 14|* == (18| —1).

Proof. By (3.1) it is sufficient to show that

M2 et
B gy = IE

On the other hand, we have

(%}ﬁ’”’ nH)=n.|e+| .

Therefore by (3.2) it is sufficient to prove

BNk
(3.4) Bk -(z

R
& (, H) & (u, H) )

To prove the formula, we prepare two lemmas. Let ' be an k-dimensional real
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vector space. Let ® be a reduced root system in V, and W the Weyl group of
®. Let(, ) bean inner product on V invariant under W. We choose a linear
order in V. Let @+ be the set of positive roots with respect to this order. For
AE DT, put

O} = {f=d*; £ = s\ for some se€W}.

We can take a subset A of @+ such that the union ®*= U &; is disjoint. For

AEA

AE A and H €V such that (, H)=0 for any n=®, put

_ 1
Koo B

L 7. |KO HY 2= 3 JEE
emma | K( ) sg{ & HY

Proof. Since

K, H)|? = |E|2 4*_@7)___
| K\, H)|? = g}\ + (&, H)2+ ggqa,f(f, H) (», H)

it suffices to prove

3.5 N ) I
43 et (& H) (o, )
£<n
Assume that £, n€®; and £<%. Then |E|=|n|=|N]|. If (& 7)>0 (resp.<0),

we have (& n)=ﬂ<resp e )(cf Serre [8]). Suppose (£, 7)<0. Then
’ 2 K .

(&, E4+n)=|E|4-(E, n)= |7t2

, and similarly (», E—I—‘)?):L)\g. It follows easily

(3.6) EGn . EGEM L (Etm)
(&, H)Y(n, H) (&, H) (5+m, H) (n, H) (+n, H)

Put
A+ = {(&; n)eDF X DPy; (E,7)>0, E<7},
A- = {(&; 1)EDI XD} (€, 1) <0, E<n} .

We define a mapping f of A+ to A~ by

(&;n—¢&), if E<n—§,
(n—§; 8), if n—§<E.
Let S; be the symmetry with respect to £&. Then, if (¢, 7)>0, (&, 17)-— 2 and

fiesmy = {

so Sg(n)=n—E&. Therefore the above mapping is well-defined. If (£, 7)<0,
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IZ

then (&, n)=~—!%— and so S¢(n)=E+7%. Therefore we have esaily

3.7) FYEs ) = (& E+m), (n; E+m)}

This, together with (3.6), implies (3.5). The proof of Lemma 7 is completed.
Lemma 8. (K(\, H), K(u, H))=0 for \, pEA, AFp.
Proof. We have

_ (& )
o 1 K ) = 5 B e my o )

If A and p are contained in the different irreducible components of @, the
formula is trivially true, and so we may assume that the root system & is
irreducible. Then if o, BE® are such that || = ||, there exists an element
s€W such that B=sa. Therefore we have |A|Z+|u|. We may assume
A <|w|. Since the root system @ is reduced, we have |u|?=2|\|2 or 3|1 |?
(cf. Serre [8]).

In the case of | |?*=3|N\|% @ is of type G, and we may assume that A is

a fundamental root system of ®. Then we have (A, u)=—%|7&|2, D=

N A, 20+p} and D= {u, I+, Ix+2,}. In this case the proof is
straightforward.

In the case of |u|?=2|\|?% assume that {€®] and »ed;. If (£ 7)>0
(resp. <0), then we have (£, 7)= |\ |? (resp. — [\ ]?) (cf. Serre [8]). If (&, 7) <0,
it follows easily

(3.8) E&mn . (Etmm) . (Etn, 2%+47)
(& H)(n, H) (§+n, H)(n, H) (E+n, H) (26+n, H)
(&, 28+7m)

(& H) (2&+n, H)
Put
A+ = {(&; n)EeD X Di; (£, n)>0},
A~ = {(& ) EDI X D5 (&, 1) <0} .

We define a mappihgfof A* to A- by

(E, 77'_'25)) lf 77_256¢+ ’
f(E;n) = {(E—n; m), if 26—nEd* and E—ned+,
(n—E&; 26—7), if 26—ne®* and n—Ec€D+.

If (&, 7)>0, then (§,7)=|)|? and so Sg(n)=1—2¢, S,(§)=E—n. Therefore
the above mapping f is well-defined. If (&, ) <0, then (&, »)=— |1 |?and so
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Se(n)=n+2&, S,(§)=E+n. Therefore we have easily
3.9) f7YEs ) = {(E; 2E+), (E+n; m), (E+n; 26+71)} .

This, together with (3.8), implies the assertion, thus completing the proof of
the lemma.

We return to the proof of Theorem 1. Taking 38, 8+ for ®, ®*, let AC8*+
be as above. Since k;=k, for AEA, £€8], we have

<x§§ “(n, H) ’2+(,L H) )"_‘(@AK(N H), 3 kK (p, H))
= DRl KO H) P4 3 k(KN H), K(p, H))
Afm

Applying Lemma 7 and Lemma 8, we get (3.4), and this proves Theorem 1.

4. The case where the pair (K, L) is symmetric

4.1. Let g be the complexification of g. For a subspace b of g, we denote
by © the subspace of § spanned by b. Let ) be a Cartan subalgebra of g invariant
under o. Put h=hH*+bh~, where h*=EtNHh and h~=pNYH. We denote also by
(, ) the symmetric C-bilinear form on § which is the extension of the inner
product ( , )on g. Let T be the root system of § relative to §. An element
a €l belongs to T, if @0 and there exists a non-zero vector X €§ such that
[H, X]=(a, H)X for any HE). We have the root space decomposition

§= 6"‘ 2~§m ’
acsy
where §, is the eigenspace belonging to a=%. Let 7 be the conjugation of §
with respect to g. We can choose a Weyl canonical basis {E,; a =%} such that
TE,=E_, for each a €T (cf. Serre [8]). We denote also by the same letter o

the conjugation of § with respect to v/ —1 p. Then we have o(f)=% and
0(§a)=08s0- Put cE,=p,E,, for each aE¥, and define ¥;= {a E%; ca=—a}.
Then we have easily |p,|=1 for any ¢ €% and p,=p_,=-1 for a€%, Put

= {a€ty; pa = 1}, To = {aE%; po= —1} .

Then we have the following decompositions

(41) f + Z Q'v+ 2 C(Em_*_O'E—w)
acty aeT-To

(42) + ng+ Z C(E —ak- w)
a1y asT-To

where the last summations in (4.1) and (4.2) run over all unordered pairs (a, o)
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such that ¢€¥—%,. Put
i, = {aEf; 0a=a} .
The following lemma is an easy consequence of (4.1).

Lemma 9. Y9t is maximal abelian subspace of ¥, if and only if the set ¥, is
empty.

In the following, let H* be a maximal abelian subspace of f. By Lemma 9
we obtain the following lemma.

Lemma 10 (Murakami [6]).
atoa&k®  forany act.
Since the group K is compact, we can consider the root system of ¥ relative
to b+, say i} Put d’:%(a——aa) for each ¢=%. By (4.1) and Lemma 9 we

have

Lemma 11 (Murakami [6]).

~

(4.3) M= {a;act} .
Lemma 12. For o €%, we have

1, if oo = —a,
(4.4) %% =42, if ca ¥ —a,(ca,a)=0,
’ 4, if oo += —a, (o, @) £ 0.

Proof. Since (ca, ca)=(a, a) and @=0, we have

(4.5) (o{, C{) — 4‘(6{, a) — 4 )

(@,a) (a—oa,a—ca) o_ 2(ca, a)

(a, @)
Since (ca, ca)=(a, &) and ca=+a, we have z—gaLo-Ta)=~2, +1 or 0, and
a, o
g?‘(’—O-;")=—~2 if and only if ca=—a (cf. Serre [8]). Suppose ca*—a.
a, a

Since a-+ca&t by Lemma 10, we must have 2(7% @) >0 (cf. Serre [8]).

o, a)
Therefore for each ¢ €% we have

2(ca, ) _
(4.6) ————(a, ) 2,10r0.
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This, together with (4.5), completes the proof.

4.2. We define two K-invariant Riemann metrics g and g’ on the quotient
space K/L as follows: The metric g is induced from the imbedding @: K/L—.S,
@(kL)=FkH for ke K. The other metric g’isinduced from the K-invariant inner
product ( , ) on ¥, the restriction of the inner product ( , ) on g to f.

Lemma 13 (Takeuchi-Kobayashi [12]). If the orthogonal symmetric Lie
algebra (g, o) is irreducible and the pair (K, L) is symmetric, then we have

(4.7) g=M0 H)¢,
where A— A= {\}.

ReEMARK. Under the assumptions of Lemma 13, we have (¢, H)*=(n, H)?
for any &, nETt;.

Let p (resp. p’) be the scalar curvature with respect to the metric g (resp.
g’). Under the assumptions of Lemma 13, (4.7) implies

1,

(4‘.8) P=(mp .

Suppose that (g, o) is irreducible and the pair (K, L) is symmetric. Let 6
be the involutive automorphism of K defining the symmetric pair (K, L). Then
t=I[+m, where [ (resp. m) is the eigenspace of 6 corresponding to the eigenvalue
1 (resp. —1), and [ is the Lie algebra of L. We have the following decomposi-
tion (cf. Helgason [3]):

= to+£1+"'+ff )

where each t; is an ideal of  invariant under 6, (f,, 6) is of Euclidean type, and
(%, 0),i=1, +--, r, is irreducible of compact type. Put [,=f;Nland m;=f,Nm,
j=0,1, --,,7. Then f;=I,+m; Let b, be a maximal abelian subspace of m;,,
and 2); the restricted root system of (%;, ) (j=0, 1, ---,7). For each b,, we
choose a linear order in b;. Let >}/ be the set of positive roots in >3, with
respect to this order.

Lemma 14. We have

r h
4.9 f=312 z,
(4.9) P gb’_wezf‘.?mm
where hj=dim m;, b,=dim b; (j=O0, 1, ---, 7), and m,, is the multiplicity of 0 E=>}.

Proof. Put b=b,+b+---+b,. For wecd}, i=1, .--,r, we define the
subspace m,, as follows:
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m, = {Xem; ad H’X = —(w, H?*X for any HEb} .
Then we have the decomposition
j=0 isleep}
Let S( , ) be the Ricci tensor of (K/L, g’). Since (%,, 6) is of Euclidean type and
(£, 6), i=1, .-+, 7, is irreducible, there exist constants c;, j=0, 1, ---, 7, such that

(4.10) S(X, Y)=1¢;(X, Y) forany X, Yem,,

where we identify the tangent space T((K/L) at the origin with m. Let {H;.,,
vy Hyp } (resp. {Xo, -+, Xumo}) e an orthonormal basis of b; (resp. m,) with
respect to ( , ). By (4.10) we have

(4.11) o= z: (; SH,.,, Hj.,)+m622+12:",1S(Xw.q, X,.)
= 2 c:h;

because ¢,=0. Let R be the curvature tensor of (K/L,g’). Then we have,
(cf. Helgason [3])

R(X, V) Z = —[[X, Y], Z]forany X, Y, Zem.
Therefore for 1<7<r, we have

;= S(H.'-pa Hi-p)
b,

— z} () (R(H,.., H.)H,.,, H,.))

9=1
+ 2 B R Xy He )y Xory)
= 3 mo(w, H,,) .

"’EZ‘-

So we get
bi

(4.12) bie; = 23 S(H;.,, H;. )
b=1

= 23 m|el|*.
welt

The formulas (4.11) and (4.12) imply (4.9) in the lemma.

Theorem 2. If the orthogonal symmetric Lie algebra (g, o) is irreducible and
the pair (K, L) is symmetric, then the square of the length of the second fundamental
form ||A|? is a rational number.
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Proof. By (1.2) it is sufficient to show that p is rational. By (4.8) and (4.9)
we have

1 Ly
4.13 = ka3 z,
(4.13) P= o PR 40!

Let b; be a Cartan subalgebra of f; containing b;, and f}j the root system of fj
relative to §,(j=0, 1, ---,7). Put h*=py-+b,-+---+p,. Let § be a Cartan sub-
algebra of g containing §* and % the root system of § relative to §. For i=1,
---, 1, let B; be the Killing form of ¥,. Note that the restriction of the inner
product ( , ) to f; is a positive multiple of —B;, because >7; is irreducible and
( , )is invariant under Aut(f;). By the relation between ii and >}, given by
Araki [1] (the proof of Proposition 2.1), for w&>); there exists a root Beii
such that

-——_('8"8)=1,20r4.

(0, ©

By (4.3) there exists a root « €% such that 3=a, and we have by (4.4)

(b)) _q 504,

(8, B)

Since t is irreducible and the inner product ( , ) on g is invariant under Aut(g),

is rational.

— 2
7—@"—(1) is rational by the same reason as above. Therefore lo]
(M) d B
b
2
By (4.13) it is now sufficient to show that (Kﬂl—z is rational. Let A= {\, \,,

)

-+, A=A} and put
aij = (Xi, A’J)’ i,j: 1, ey l_l_l R
Ay=1, 4, = |a;|; j=1,...0 s=1, =, I4-1.

Then by induction on j, we have easily 4,>0, j=0, 1, ---, [4-1. Put

......

Then we have CaSilY (7\'{’ E)ZO (Zz 1) ) l)) (7\'l+1) E)ZAH'I and (57 8)2(7\‘1*‘1: E)AI

Since H is a multiple of £, we have (A4, H )Z=%. Since 1 is irreducible, we
!

a;; (A 2))

A2 O Ared) and these are rational numbers. Hence we have
1+1y I+1

have
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a, Gy ... Gy
(DY LI P Y L P

............

1 4 an  ap .. 4y
A ME T
o HyY 1 N

4y G4y .. Gun
IM2IN2 2

IA] 2(1+1)A’+‘

an  4p .. %un
IM2INE 2

Q+11 Qi+12 ,, Qi1+

ISP L P

and this is a rational number. This completes the proof of Theorem 2.

Corollary. If the submanifold N is minimal and the pair (K, L) is symmetric,
then ||A|? is a rational number.

Proof. Suppose that g decomposes into the direct sum g=g,+---+g, of
ideals g; invariant under o and (g;, o) is irreducible. Put g,=¥f,+p;, S;=SnNp,,
a,=any; and (1)) =15 NP; ((=1, -+, r, s=1, 2), where {,=¥Ng; and p,=pNg;.
Let H=a,H,++--+a,H,, where H;€S;Na; and (A, H;)>0 for any A&1*. Let
N; be the orbit of K through H;. Then by Takeuchi [11] and the remark in
2.3, the submanifold NV; of S; is a symmetric space and minimal is S;. Put n,=
dim N;. By (2.7) we have

nH = __"a
"Z‘—;; (7\" H)

my
'Z_“' reap; (N, a;H,))

-4y,

i=1 q;

Therefore we have a,-:«/ % Applying Theorem 2 and (2.8), the corollary follows

by induction on 7.

4.3. We give the table of ||4][? in the following cases:

(1) The orthogonal symmetric Lie algebra (g, o) is irreducible.

(2) 'The pair (K, L) is symmetric.
Here S’(O(p—1)xO(g—1)) is the subgroup of SO(p)x SO(q) consisting of
matrices of the form



[1] S. Araki:

222 T. NAGURA
g0
04 | e=+1, 4e0(p-1), BeOE-1).
OB
(g. 0) N dim N 142
{\ e fgy(l’ +@)/S(U(p) x U(g) 2pq 2pq(pg—1)
B SO@n+1)/SO2)x SO2n—1) | 22n—1) | 4@n—1)2n—1)
c Sp(n)|U(n) n(n+1) $n(n+1)(n—1)(n+2)
b (1) SO@2n)|SOQ2)x SO2n—2) | 4n—1) | 4(n—1)2n—3)
(2) SO2n)|U(n) n(n—1) n(n—1)(n+1)(n—2)
E¢ symmetric space of type EIII 32 32x15
E; symmetric space of type EVII 54 5426
SO 1 q(rep+a+2)
AL | SO(p+9)lS(O(p) % Ola) iz g pa(PEETLER )
S 4 2pq(p+g—1) _
AII (0 +4)/Sp(p) X Sp(g) 14 4pg(~PLL A=) 1)
Alll U(n) n? in*(n—1)(n+1)
(1) SO(p) x SO(q)/S(O(p—1) p+q—2 2(p—1)(g—1)
BDI x0(g—1))
- (2) SO(p) _51’(1’_97 ip(p—1)(p—2)(p+2)
DIII U(2n)/Sp(n) n(2n—1) n(n—1)22n+1)
CI U(n)/O(n) in(n+1) dn(n—1)(n+2)2
CII Sp(n) n(2n+1) n(n—1)(n+1)(2n+1)
EI T.is of type C, 16 16 X 25
I is of type Cp <X C, 3
EIV F,/Spin (9) - 16 16x3
BV t %s of type A, 27 27 %14
Lis of type Cy
EVII li-s of type RXEg 27 26%9
L is of type F,
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