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1. Introduction

The present paper is devoted to developing an eigenfunction expansion

theory for the Schrϋdinger operator

(1.1) S=

with a long-range potential Q(y)=O(\y \ ~ε), £>0, as | ; y |— >°o. This work is

a direct continuation of [12] and we shall make use of the results of [12] as main

tools throughout this work. Thus, as in [12], in place of the Schrϋdinger
operator S we shall consider the differential operator L with operator- valued

coefficients

(1.2) L = -ξ-+B(r)+C(r) (re/=(0, <-))

with

C(r)=ρ(rω)X (

SN~1 being the (N— l)-sphere and AN denoting the Laplace-Beltrami operator

on SN~1. L can be considered as an operator in L2(J, X), where X=L2(SN~1)

and L2(Iy X) is the Hubert space of all Jf -valued functions f(r) on / such that

I f(r) I x is square integrable over I ( \ \ x is the norm of X). Since L is repre-
sented as

(1.4) L = USU-1

by the use of a unitary operator U

(1.5) U: L2(RN)^F(y)^r(N-v'2F(rω)tΞL2(I, X)

(r= \y\,co=y/rϊΞSN-i)

from L2(RN) onto L2(Iy X), L and S are unitarily equivalent, and hence all the
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results obtained for L can be applied to 5 with the aid of the unitary operator U.
The investigation of the operator (1.2) with a self-adjoint operator B(r) and

a symmetric operator C(r) in a Hubert space X has been originated by W. Jager.
His paper [6] develops an eigenfunction expansion theory for L which can be
applied to the Schrόdniger operator S with Q(y)=O( \ y \ -<3/2>-ε). Saitό [8]̂ [11]
have extended the results of [6] to apply the Schrϋdinger operator. In [10] an
eigenfunction expansion formula for S in RN (N^3) with Q(y)=O(\y\ ~w~*)

is given. On the other hand Ikebe [4], [5] have treated the Schrόdinger
operator S directly and given a spectral representation formula for S with

Q(y)=O( I y I -W-*) by using essentially the same idea as the above works.
Now let us state the conditions imposed on the potential Q(y)

Assumption 1.1.

(Q) Q(y) can be decomposed as Q(y)= Q0(y)+Qι(y) such that QQ and
Ql are real-valued functions on RN ', N being an integer such that N^2.

(Q0) There exist constants C>0 and 0<£^l/2 such that Q0(=Cm(RN)
and

(1.6) |

where DJ denotes an arbitrary derivative of ̂ -th order and

_ f [2/£] (if 2/£ is an integer) ,
(1.7) m= ,V ' ' (otherwise),

[a] denoting the greatest integer n such that n^a. Further, we have

(1-8)

(1.9)

with the same C, £ as in (Q0).

Let Q(y) satisfy all the conditions of Assumption 1.1 except for (1.8).
Then, by replacing Q0 and Qλ by aQ0 and (1— a)QQ-\-Qι, respectively, where

a(y) is a real-valued C°° function such that α(j)=0 ( \ y \ ^1), =1 ( \y\ ̂ 2),
Q(y) with the new Q0 and Q± is considered to satisfy all the conditions of
Assumption 1.1. Hence (1.8) is a trivial condition.

In §2 we shall introduce the Green kernel G(ry s, k) which will be useful
in constructing the eigenoperator τ?(r, ft) in §3. In §3 and §4, in addition to

Assumption 1.1, Qι(y) will be assumed to satisfy a stronger condition

(1.10)
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Under these conditions an expansion theorem will be shown in §4. In §5 we
shall discuss the general case where we assume Assumption 1.1 only.

As to the notations we shall follow [12]. The list of the notations is given
at the beginning of [12], §2.

2. The Green kernel

Let L be as in (1.2). We shall define the Green kernel G(r, s, k) (r, s^ϊ=
[0, °°), k^C+) and investigate some properties of it. Let s^I, x^X=L2(SN~l)
and let φ, x] be an anti-linear functional on H\ B(I, X^UH^R^ defined by

(2.1) <% *], φ> = (x, φ(s))x (φ€ΞH& *(I, X)) ,

( , )x denoting the inner product of X. Then it follows from Lemma 5.1 of
[12] that we have

(2.2)

and hence J[s, x]^Fy(I, X) for any positive number γ and the estimate

(2.3)

is valid.2). Denote by v=v( , k, s, x) the radiative function for {L, k, l\s, #]},
whose existence is guaranteed by the limiting absorption principle (Theorems
2.2 and 5.3 of [12]). Then, by the use of (2.2), (2.3), the interior estimate
(Lemma 3.1 of [9] and Lemma 5.2 of [12]) and the limiting absorption principle
((2.4) and (5.12) of [12]), we can easily show

(2.4) v(r)\x^C(l+s)'\x\x (C=C(R), re[0, JR], *€=/, xeX),

δ being a fixed constant such that l/2<δ<l/2+£/4, whence follows that a
bounded linear operator G(r, s, k) on X is well-defined by

(2.5) G(r, s, k)x = v(r, s, k, x) .

DEFINITION 2.1 (the Green kernel). The bounded linear operator G(r, s, k)
(r, sGΞ/, &E:C+) will be called the Green kernel for L.

The linearity of the operator G(r, s, k) directly follows from the linearity
of /[ί, x] with respect to x. Roughly speaking, G(r, s, k) satisfies

(2.6) (L-V)G(r, s, k) = 8(r~s) ,

1) For u = Uγ, v = UΦeHi.B(I, X} ( ,̂ 0eHι(J?^)) the inner product (u, v)B of Hl>B(I, X)

is defind by (u, V)B = ( , φ)lt ( , )j being the inner product of Hι(Rjy'). If N^3y then

(u, V)B is equal to (u', v')0 + (u, v)0 + (Bl/2u, Bl/2)Q, where ( , )0 denotes the inner product

of L2(/, -X").

2) For the definition of F γ(I, X) and ||| |||γ see the list of the notations of [12], §2.
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the right-hand side denoting the δ-f unction. The following properties of the
Green kernel G(r, s, k) will be made use of further on.

Proposition 2.2. Let Assumption 1. 1 be satisfied.
( i ) Then G( , s, k)x is an L2t-8(I, X)-valued continuous function on

I X C+ X X. Further, G( , s, k)x is an X-valued continuous function on
IxIxC+xX, too.

(ii) G(0, r, k)=G(r, 0, k)=Qfor any pair (r, k)(ΞΪxC+.
(iii) Let (s, ky x)€ΞΪχC+xX and let J be an arbitrary compact interval in

I— {s} . Then v(r)=G(r, s, k)x is an X-valued C1 function on J with its derivative
v'. v'(r) is a strongly absolutely continuous X-valued function on J and is differen-
tiate almost everywhere on J with its derivative vh '^L2(J r

y X). We have v(r)^D
and (L-k2)v(r)=Q for almost all r<GΞ/3).

(iv) Let R>0 and let K be a compact set o4 C+. Then there exists
C=C(R, K) such that

(2.7) ||G(r, s, k)\\^C (O^r, s£R,

where \\ \\ means the operator norm.

( v ) We have for any triple (r, s, k) e 7x Ix C+

(2.8) G(r, s, k)* = G(ί, r, -k) ,

G(r, ί, £)* denoting the adjoint of G(r, s, k).

Proof, (i), (ii), (iv) and (v) can be directly obtained by proceeding as in
the proof of Proposition 1.3 of [10]. Next let us show (iii). Let p(r) be a
real-valued smooth function on / such that the support of ρ(r) is compact in
/— {s} and p(r)=\ on/. Set u(r)=p(r)v(r)—p(r)G(ry s, k)x. Then u satisfies
the equation («, (L-k2)φ)0=(f, φ\(φ<=ΞUCZ(RN)) with f=-2p'v'-p"v£Ξ
L2(I, X)loc. Thus (iii) follows from Lemma 2.3 of [12]. Q.E.D.

3. The eigenoperator

The main purpose of this section is to construct the eigenoperator η(r, k)
(re/, k^R— {0}) by the use of the Green kernel G(r, sy k) which was defined
in §2. In this and the following sections Q(y) will be assumed to satisfy both
Assumption 1.1 and (1.10) which enable us to apply the results of [12]. Using
Theorems 2.5 and 5.4 of [12], we shall first show some more properties of the
Green kernel in addition to Proposition 2.2.

Proposition 3.1. Let Assumption 1.1 and (1.10) be satisfied. Then we have

3) D is the domain of the Laplace-Beltrami operator AN as in [12].
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,,„
(3.1)

- O , r ,

CΊ(ft) (C2(ft)) w bounded when k moves in a compact set in {fteC+/Im ft>0}

(Λ-{0>). Flatter,

(3.2) ι;(r, ft, /[/]) - j G(r, j, ft)/(ί)Λ m X (re/)

/or fl/ry radiative function v( , ft, ̂ [/]) /or {L, ft, ^[/]}, wtere ft e C+,
,δ(/, -X) αwrf Zfttf definition of i\f\ is given in (2.6) o/ [12].

Proof. Let us assume that fteC+ with Imft>0. Then it follows from
Lemma 1.7 of [9]4) that 0=G( , ί, ft)^ (jceZ, ίe/) belongs to Hl>B(I,X). The
first estimate of (3.1) is obtained from (2.2), (2.3) with 7=0 and Lemma 1.7 of
[9]. Next let us show the second estimate of (3.1). Applying Theorems 2.5
and 5.4 of [12], and using (2.3) with γ = l-fδ— 6, we have | G(r, j, ft)* | x ̂
C(l+s)l+8~*\x\x (r, ί^7, xEΞX, fteβ-{0}) with C=C(ft), which implies that

(3.3) ||G(r,*,ft)||^C(l+*)1+δ-ε (r, je/, AeΛ~ {0}) .

The second estimate of (3.1) is obtained from (3.3) and the relation G(r, ί, ft)*=
G(ί, r, —ft) ((v) of Proposition 2.2). Finally let us show (3.2). If fteC+ with
Imft>0, then w=G( , r, k)x<^Hl

0'
B(I, X) satisfies

(3.4) bk(u, φ) - (11, φ)5+((C( )-l-ft>, φ)0 - (Λ, φ(r))z

for all φ<EΞ#J *(7, Jϊ). Set in (3.4) φ = «;(., ft, /[/]), where /e/^/, X) with
compact support in /. Then it follows that

(3.5) (*, v(r))x = ̂ , ιι) = (/, n)β = (11, /)0

Since ΛjeJί is arbitrary, we arrive at (3.2). If k^R— {0}, then we can appro-
ximate ft by {ftj (ftw^C+, ImftM>0) to obtain (3.2), where we have made use
of the continuity of the radiative function £>( ,ft n , ^[/]) with respect to ftw and
the estimate (2.7) in Proposition 2.2. Thus (3.2) has been established for fteC+

and/eL2(/, X) with compact support in /. Approximate /eL2,δ(/> -X") by {/„},

4) Note that in the case of N = 2 the result of Lemma 1.7 of [9] is valid by the following
modification: —v<> in HkB(I, X)ΠL2,y(I, X) and

with Φ=r C1/2)^0 and C = C(k0, r), where || Hz γcR2) means the norm of L2,y(R2)~
L2(R*,(l+\y\)*dy). ~.
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where fn^L2(I, X) with compact support in /, and take note of (3.1). Then
(3.2) will be proved completely. Q.E.D.

Let SGΞ/, x^X and let p(t)=ps(t) be a real-valued, smooth function on /
such that p(t)=Q (t^s+l), =1 (t^s+2). Let μ(y, k) be as in (2.12) of [12].
Then Theorems 2.4 and 5.5 of [12] can be applied to v=p(r)G(r, s, k)x (x<=X,
k^R— {0}) to show that there exists the strong limit

(3.6) a(r, k, x) = s-lim έr''μ<r"*>G(r, r, k)x in X .
r_,.cx>

Here it should be noted that v is the radiative function for {L, k, /[/]} with
f=—2p'v'—ρ"v. It can be easily shown that a(r, k, x) is linear with respect to

x. On the other hand the estimate | α(r, k, x) \ x :£ C(l +ί)1+δ~ε \x\x follows from
Proposition 3.1. Therefore the bounded linear operator η(r, k) is well-defined by

(3.7) η(r, k)x = s-lim *-'><'••*>£(*, r, k)x

DEFINITION 3.2. The bounded linear operator η(r, k) (re/, k^R— {0})

defined by (3.7) will be called the eίgenoperator associated with L.

The appropriateness of this naming will be justified in the remainder of this
section (especially in Theorem 3.5).

Proposition 3.3. Let Assumption 1.1 and (1.10) be satisfied. Then we have

(3.8) s-lim G(r, s, —k)eiμ>^k)x = ι?*(r, k)x in X
S^.00

for any triple (r, k, x) e / X (R— {0} ) X X, where η*(r, K) is the adjoint of η(r, k)
and μ(y, k) is given by (2.12) of [12].

Proof. Let us first note that G(r, s, —k)eili(s"k)x converges weakly to
??*(r, k)x as ί-»oo. Suppose that there exist r0>0, kQ^R— {0}, x0^X and a

sequence {sn} such that | vn(r0) — >?*(r0, — ̂ 0)jc0|z^80 holds for all w=l, 2, •••
with some S0>0, where we set vn(r)=G(r, sn, —k^)eilL(Sn"k^xQ. By using the
interior estimate (Lemma 4.1 of Jager [6] or Lemma 3.1 of [10]) and using (3.1)

it can be seen that the sequence HtfJU.co,*) is bounded for each /?>0. Since
the imbedding

(3.9) Hl>\I,X}loc-*L2(I,X}loc

is compact by the Rellich theorem, there exists a subsequence of {vn}, which
is denoted again by {vn} for the sake of simplicity, such that {vn} is a Cauchy
sequence in L2(/, X)ιoc. Make use of the interior estimate again. Then we can

show that {vn} is a Cauchy sequence in H\'B(I, X)ιoc. Therefore the estimate
(2.2) can be applied to see that {vn(r0)} is a Cauchy sequence in X. Thus vn(rϋ)
converges strongly to ^7*(r0, k0)xθJ which is a contradiction. Q.E.D.
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Let us summarize these results in the following

Theorem 3.4. Let Assumption 1.1 and (1.10) be satisfied.
(i) Then

(3.10) η(r, k)x = ί-lim *-*<'"*> G(ί, r, % m X
S^°°

and

(3.11) ι?*(r, k)x = s-lim G(r, s, -«)*•><".*>* m A"
$-><*>

/or any triple (r, k, x)^ϊx(R—{0})xX.
(ii) The relation

(3.12) 2Λθ7(*, A)*, η(r, k)x')x=({G(r, *, A)-G(r, j, -A)}*, *')*

holds for any x,x'^X and any r,s^ϊ. η(r, k)x is a strongly continuous X-valued
function onlx (R— {0}) X X.

(iii) ι;=i7*( ι k)x^Ho'B(Iy X)loc and v satisfies the condition (1)~(3) given
in Lemma 2.3 of [12] and

(3.13) (L-A>(r) = 0 a.e. r<EΞ/ ,

re/, k^R— {0}, Λ:e^Γ. 17* (r, A)# ίί α strongly continuous X-valued
function onlx (R— {0} ) x X.

(iv) We have the estimates

(3.14) H^r, k)\\ = ||^*(r, Λ)||^ C(l+r)<1+β-^ (re/) ,

where \\ \\ means the operator norm and C= C(k) is bounded when k moves in a
compact set in R— {0} .

Proof, (i) follows from (3.7) and Proposition 3.3. (ii) can be obtained in
quite the same way as in the proof of Theorem 2.9 of [10]. By proceeding as
in the proof of Lemma 2.8 of [10] and the proof of Theorem 2.9 of [10] we can
show (iii). Finally (iv) can be obtained from (3.12) and (3.1) with s=r, x'=x.

Q.E.D.

Theorems 2.4 and 5.5 of [12] can be also used to define one more important
operator from L2tS(I, X) into X. For any fixed k^R— {0} let us define a linear

operator £?(&) from L2>1+δ_ε(/, X) into X by

(3.15) 9W= s-lim *-'̂  >*χr, A, /[/]) in X,

where v=v( , k, /[/]) is the radiative function for {L, k, ^[/]} Let {rn} be a
sequence which satisfies v'(r^ — ikv(rn)-+Q in X. It follows from the Green
formula that
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(3.16) (/, v)0t(Qtrj—(v, jOo.co.r,) = (v(rn), *>'(rn)—ikυ(rn))x

-(v'(rn}-ikv(rn\ v(rn))x-2ik \ *-><'.>i,(r) \ 2

X

Letting n-^w, and taking note of Theorems 2.5 and 5.4 of [12], we arrive at

(3.17)

and hence ^F(k) can be uniquly extended to a bounded linear operator on

L2.s(I, X).

DEFINITION 3.5. We denote again by ^(k) the above bounded linear

extension of ^(k).

The operator norm ||£F(Λ)|| of ΞF(k) is bounded when k moves in a com-
pact set contained in R— {0}. The following formula, which will be used in

§4, can be easily obtained by starting with (3.16).

Proposition 3.6. Letf^L2>s(I, X) and let v( ,k, t[f\)=v be the radiative
function for {Ly k, /[/]} with k<=R— {0}. Then we have

(3.18) (^,/)o-(/, v\

The following Theorem gives a relation between ??*(r, k) and 3?(k).

Theorem 3.7. Let Assumption 1.1 and (1.10) be satisfied.

(i) Let k<=R- {0}. Then ??*(•, %eL2, _δ(/, X) for any x^X with the

estimate

(3.19) \\v*(;k)x\\.^C\x\x (x*=X),

where C= C(k) is bounded when k moves in a compact set in R — {0} .

(ii) The relation

(3.20)
holds for any triple (k, x, f)<=(R-{Q})xXxL2>8(I, X).

This theorem can be proved in the very same way as in the proof of Prop-

osition 4.3 of [10], and hence the proof will be omitted.
Finally we shall show a theorem which gives a relation between £?(&) and

η(r, k).

Theorem 3.8. Let Assumption 1.1 and (1.10) be satisfied. Then we have

(3.21)

for any /eL2.β(7, X) with /3>(2+δ-£)/2 and any k<=ΞR-{ϋ},%(k) being

given in Definition 3.5.
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Proof. Let us first assume that / belongs to UCo(RN). Then the change
of the order of integration in (3.20) enables us to obtain

(3.22) (*, J^((r, k)f(r)dr)χ = (*, 3(k)f)x ,

by which (3.21) is implied. Let us next consider the general case. Then,
noting that \\η(r, k)\\ ^C(l+r)<1+a-f>/2 ((3.14)), we can approximate / in L2,β(7, X)
(/3>(2+δ-£)/2) by a sequence {/„} c UC»(RN) to obtain (3.21). Q.E.D.

4. Expansion theorem

In this section we shall assume, as in the preceding section, that Q(y)
satisfies (1.10) in addition to Assumption 1.1. Now let us show an eigenfunc-
tion expansion theorem associated with a self-adjoint realization of the operator
L in L2(7, X).

As is well known, under Assumption 1.1, the Schrϋdinger operator S
restricted to Co(RN) is essentially self-adjoint in L2(RN)5\ Its unique self-
adjoint extension will be denoted by M. Then we have

V '

Now let us define a self-adjoint operator T in L2(I, X) by T= UMU'1, i.e.

(4.2) \TΦ = LΦ

V ; I 3)(T)= UH2(RN).

Set R(z; T)=(T— z)'1 and denote by £"(•; Γ) the spectral measure associated
with T. It can be easily shown that T is bounded below and the essential
spectrum σe(T) of T is equal to [0, oo). We can also show by the limiting
absorption principle that the spectrum of T is absolutely continuous on (0, oo)
(cf. Proposition 1.5 of [10]).

Lemma 4.1. Let A be a compact interval in (0, oo) and let f^L2t&(Iy X)
with β > (2+ δ - 8)12. Then

2

(4.3) _
Δ

r, K)f(r)dr dk
x

, -k)f(r)dr dk,

where χ/Δ= {^>0/Λ2eΔ} and η(r, k) is as in §3.

5) See, for example, Kato [7].
6) 3)(W) denotes the domain of W.
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Proof. Let us first note that R(z; T)g = v( , χ/sΓ, l[g\) for
and g^L2 >δ(7, X). Here \/~z is the square root of z with IniΛ/s^O and
v( , Λ/F, /[£]) is the radiative function for {L, \/"#, l[g]} In fact this follows
from the uniqueness of the radiative function and the fact that R(z;
UH2(RN). Moreover let us note that

(4.4) lim R(k \, l[g\) in L2, _δ(7, X)

which follows from the continuity of the radiative function. Then from the

well-known formula

(4.5) (£(Δ;Γ)/,/)0

= (2πi)-nim \ {(R(a+ib T)fJ\-(f, R(a+ib; T)f\}da
f t ψ o J Δ

= (2*0-' lim ( {(/, R(-a-ib T)f)0-(R(a-ib; T)fJ\}da
f t ψ o J Δ

we obtain, setting ?;(•, k, t[f])=v(k),

(4.6) (£(Δ;Γ)/,/)0

= (2πi)-1 \ {MV «)<>,/-(/, KV«))o}ώ
JΔ

= (2πi)-1 \ {(/, v(-^))0-(v(-v^), f\}da ,
J Δ

and hence by the use of Proposition 3.6 and Theorem 3.8 we arrive at

(4.7)

whence (4.3) easily follows.

da

da,

Q.E.D.

Starting with the Lemma 4.1, we can proceed quite similarly as in §3 of
[10] to show an eigenfunction expansion theorem (or to be more exact, an eige-

noperator expansion theorem). Set

(4.8) η±(r, k) = ± ikrι(r, ±k) (re/,

?7*(r, k) denote the adjoints of η±(r, k), respectively, i.e.,

(4.9) ?7*(r, k) = T V fon*(
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Using these operators we can define the "generalized Fourier transforms" £F±

from L2(I, X, dr) into L2(I, X, dk) by

(4.10) (3J)(k) = l.Lm. j\(r, k)f(r)dr in L2(I, X, dk) .

3 '± are bounded operators and their adjoint 9"? have the forms

(4.11) C&ΪFyr) = l.i.m. (* ιj*(r, k)F(k)dk in L2(I, X, dr)
Iζ-ϊ 09 v K

(see Lemma 3.3 of [10]). Thus we obtain

Theorem 4.2 (expansion theorem). Let Assumption 1. 1 be satisfied. Let
B be an arbitrary Borel srt in (0, °°). Then

(4.12)

where X^ is the characteristic function ofB, i.e., X,-β(k)=

Especially we have

(4.13)

Since the proof is quite the same as the proof of Theorem 3.4 of [10], it
will be omitted.

Now we shall show a key lemma to the proof of the orthogonality of £?±.

Lemma 4.3. Let k^R— {0}, x^D. Let ξ(r) be a real-valued, smooth
function on [0, oo) such that (r)=0 (r^l), =1 (r^2) and set f=(L-k2)(ξeiμ-χ).

Then &(k)f=x.

Proof. As is easily seen from (3.8) of [12], / belongs to L2,δ(Λ ^Q It can

be easily checked that vΌ=ξejμx is the radiative function for {L, Λ, /[/]}. For
each positive integer m vm and um denote theradiative functions for {L, k, /[/]}

and {L, ft, /kJ}, respectively, where /„=%„/, gm=(Xm-l)f and Xm(r) is the
characteristic function of the interval (0, m). Then, by the relation vm=v0-{-um

and the definition of 3ϊ(k)fm, we have

(4.14) 3(k)fm = s-ϊim {e'^^v^+e'^^u^r)} .
r^.<χ>

The first term of the right-hand side of (4.14) is equal to #, and hence the second
term has the limit xm, i.e., we obtain

(4.15) 3(k)fm = x+xm (m=l,2,-,) .

On the other hand, setting f=gn> v=um in (3.16), letting m to infinity and using

the limiting absorption principle, we arrive at
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(4-16) \*m\*£C(k)\\gu\\t,

which, together with (4.15), implies

(4.17) \&(k)fm-x\x£C(k)\\gm\\».

Since ΞF(k) is a bounded linear operator on L2>8(I, X), we let m to infinity to

arrive at EF(k)f=x, where we should note that/w and gm converge to/ and 0 in

L2>δ(7, X) as m->°°, respectively. Q.E.D.

Theorem 4.4 (the orthogonality of £F±). Let Assumption 1.1 and (1.10)

be satisfied. Then £F± transform L2(I, X, dr) onto L2(I, X, dk).

Proof. We can proceed as in the proof of Theorem 4.1 of [10]. It suf-

fices to show the following: If F<EΞL2(I, X, dk) and EF+F—O (EF-F= 0) in

L2(/, Xy dr), then F=Q. Let us assume that ^+F=0. Then there exists a
null set e such that 77*(r, k)F(k)=Q for (r, &)e/x((0, oo)— e) (see Lemma 4.5

of [10] and the proof of Theorem 4.1 of [10]). Therefore, taking account
of Theorem 3.7, (ii), we obtain

(4.18) (F(k), 3(k)f)x - 0 (Λe(0, -)_,)

for any /eL2>8(/, -Y). Take / as in Lemma 4.3. Then we obtain (F(k), ,x;)^=0

for any x^D and any k^Ξe It follows from the densness of D in X that

F(k)= 0 for almost all fee(0, oo), and hence F=0. The case of £F_ can be
treated quite similarly. Q.E.D.

5. The case that Qί(y)=O(\y\'1'9)

In §3^4 we have assumed that the potential Q(y)=Qo(y)+Qι(y) satisfies
not only Assumption 1.1 but also (1.10). In this section, however, we shall

construct the eigenoperators and show the expansion theorem under Assump-

tion 1.1 only. The fundamental idea is to approximate Q\(y) by a sequence

{Qin(y}} of short-range potentials, where Qln( y) satisfies the condition | Qnl(y) \
uniformly for n= 1, 2, •••. We may take, for example,

(5.1) QM=p.( I y I )Q1(y) (» = 1, 2, -) ,

where pπ(r)=p(r—n) and p(t) is a real-valued, smooth function on (— °°, °°)

such that p(t)=l (t^Q), =0 (ί^l) and 0^p(ί)^l. We set

Sn=-Δ+Q0(y)+Qln(y),

r) (C1.(r)=ρι.(rω)) .

The main tool in this section is Theorem 4.1 of [9] which gives a uniform
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estimate for the radiative function vn( , k, I) for {Ln, ft, /}7). Since all the
results of the preceding sections can be applied to Ln, we can define bounded
linear operators 3fn(k) (k^R— {0}) from L2ts(I, X) into X. The eigenoperators
ηn(ry k) ((r, ft)e/x (R— {0}) on X are also well-defined.

Proposition 5.1. Let Assumption 1.1 be satisfied and let ηn(r, k) as above.
Then the operator norm \\ηn(r, ft)|| (=\\η*(r, ft)||) is uniformly bounded when n=ly

2, •••, and r and k move in a bounded set in I and compact set in R— {0}, respecti-
vely. For each pair (r, k)^ϊχ(R— {0}) there exists a bounded linear operator
η(r, k) on X such that

(5.3) s— lim ηn(r, k)x — η(r, k)x in X
»_^<χ»

for any x^X, and (it) of Theorem 3.4 is satisfied.

Proof. Using the Green formula and proceeding as in the proof of Lemma
3.3 of [8], we have

(5.4) ({GΛ(r, ,, ft)-G.(r, f, -ft)}*, *')*

t)-Clm(t}{Gn(t, s, ft)*, Gm(t, r,

=2ik(ηn(s, k)xy rjm(r, k)x')x

(m, n = 1, 2, •••, k^R— {0}, rk,

where Gn(r, s, k) is the Green kernel for Ln. Since the left-hand side of (5.4)
tends to ({G(r, s, k)—G(r, s, —k)}x, x')x as m, w->oo by Theorem 4.1 of [9], it
can be easily shown by setting s= r and x'=x in (5.4) that {ηn(r, k)x} is a
Cauchy sequence in X and that \\ηn(r, k)\\ is uniformly bounded. By the
use of these facts we can prove the existence of ??(r, k) which satisfies (5.3). At
the same time the relation (3.12) is obtained, whence follows the continuity
of -η(r, k)x, too. Q.E.D.

Proposition 5.2. Let Assumption 1. 1 be satisfied and let ^Fn(k) be as above.
Then the operator norm \\3n(K)\\ is uniformly bounded when n=l, 2, ••• and k
moves in a compact set in R— {0} . For each k e R— {0} there exists a bounded

linear operator 2Γ(ft) from L2t&(I, X) into X such that

(5.5) s-lim %n(K)f = ζF(k)f in X«_>.<»

for any f^L2ί%(I, X) and (3.18) holds good.

Proof. Denote by vn the radiative function for {Ln, k, J[f]} with

7) In the case of N = 2 we have to modify the proof of Theorem 4.1 of [9], But we shall not
find any difficulty in the modification (cf. §5 of [12]).
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/eL2)1+δ_s(/, X) Then by the Green formula and the definition of 3n(k) we

have

(5.6) (»., /)„-(/, ^)0+((C1B-C1M) ,̂ vm)0 = 2ik(<=Fa(k)f, 3u(k)f)z .

From the boundedness of the operators 3"n(k), £Fm(k) and the continuity of the

radiative function it follows that (5.6) is valid for all /eL2,δ(/, X) As in the
proof of Proposition 5.1, by starting with (5.6) and making use of Theorem 4.1
of [9], {EFn(k)f} can be shown to be a Cauchy sequence in X and (3.18) is seen
to hold good. Q.E.D.

Proposition 5.3. Let Assumption 1.1 be satisfied and let η*(r, k) be as above.

Then, denoting by η*(r, k) the adjoint of η(r, k)y we have

(5.7) lh7Ϊ( ,A)*| |-δ^C(A)|*|j (Ae=Λ-{0},*e-Y,«=l,2, •••)>

C(k) being bounded when k moves in a compact set in /£— {0}. *>??(•, k)x converges

to ?*(-,*)* in L2>-8(I, X)^H1

0'
B(Iί X)loc for any pair (A, *)e(Λ-{0})x A".

?7*(r, k) satifies (Hi) of Theorem 3.4. Further, we have

(5.8) i7*( , k]x=η*( , A)*-ι>( , -A, ί[g]) (*€=*, A<ΞΛ-{0}),

d2

where rjQ(r, k) denotes the eigenoperator for L0= 4--β(r)+C0(r) and v( , —k,

l[g}) is the radiative function for {L, —k, t[g]} withg=Ctf$(*, k)x*\

Proof. Set wn=GQ( y sy —k)+x—Gn( , s, —k)x, G0(r, s9 k) being the
Green kernel for L0. Then wn is the radiative function for {LM, —A, /[A]},

λn=ClMG0( , s, -k)x, i.e., Gn(r, s, —k)x=G0( 9 s, —k)x—vn( , -k, /[AJ). If
we replace x by eiμ<(s"k)x and let s^>°°, then we obtain from Proposition 4.3
77*(r, k)x=η$(r, k)xn—v( , —k, J[gn]) withgn=C l nη*( , k)x. Further, let w->oo.

Then by Theorem 4.1 of [9] ι?*( , k)x converges to ι?*( , k)x in L2>δ(/, X)Π
Hl'B(I, X)loc and the relation (5.8) is valid. The rest of the statement can be
easily justified by using (5.8). Q.E.D.

Now that the eigenoperator τ?(r, k) has been constructed and the pro-

poerties of ^(r, k) have been investigated, the expansion theorem (Theorem 4.2)
and the orthogonality of the generalized Fourier transforms (Theorem 4.4) can
be easily shown.

Theorem 5.4. Let the potential Q(y) satisfy Assumption 1.1. Then all

8) If we denote the radiative function v( , k,f) by (L—k2) lf, then (5.8) can be represented

as

?*(•, ̂ ^{/-(L-ί-Λ)2)-1^}^', k)x ,

where / means the identity operator.
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the results of Theorems 4.2 nad 4.4 hold good, i.e., the generalized Fourier trans-
forms 3± can be well-defined by (4.10). (4.11) and (4.12) hold. 3± transforms
L2(I, X, dr) onto L2(/, X, dk).

Proof. Let /eL2(/, X) with compact support in /. Combine (3.18)
with

(5.9) %(k)f= ^(r, k)f(r)dr

which is obtained by letting n-+<χ> in (3.31) with ^(k) and η(r, k) replaced by
^Fn(k) and ηn(r, k), respectively. Then it is easy to see that (4.3) in Lemma 4.1
is valid for any/eL2(/, X) with compact support in /. Thus we can show the

expansion formula. Let us show the orthogonality of £F±. The essential point
of the proof is to show the following: if ^7*(r, k)x=0 for all re/, then x=Q. In

view of (5.8) it follows from the relation ??*(r, k)x— 0 (re/) that η$(r, k)x =
v(r, —k, J[g])> and hence ??£(•, k)x is the radiative function for {L0, — k, 0}.
Here we should note that ??*(•, k)x satisfies the equation (L0 — k2)v=0. Because
of the uniqueness of the radiative function we have η*(r, k)x==0 for all re/.

To η0(ry k) we can apply the same argument as in the proof of Theorem 4.4.
Thus we have x=0. Q.E.D.

6. Concluding remarks

1° The expansion theorem for the Schrϋdinger operator. The expansion
theorem (Theorems 4.2 and 5.4) for the operator T can be directly translated
into the case of the self-adjoint realization M of the Schrόdinger operator S as

follows (cf. Theorem 5.10 of [10]): Let us define the generalized Fourier trans-

£F± from L2(RN, dy) onto L2(RN, dξ) by ίF±= U^l$±U with the unitary operator
Uk = k<N-M from L2(RN,dξ) onto L2(/, X, dk) (k= \ ξ \ ) . If the bounded

operators η±(r, k) (r GΞ/, k> 0) on X=L2(SN~l) are defined by flf±(r, k) =

(&+F)(ξ) = l.i.m. \\ϊ)±(r, K)F(r.}}(a>')rN-*dr in L2(R\ dξ} ,
(6.1) " R^ *«

)= l.i.m. \ ι (flf*(r, k)G(k ))(ω)k»-*dk in L2(RN, dy) ,
-̂>~ JK l

where y=rω and ξ=kω'. Further the relations E(B, M)=3ΐ'X,^g3?± hold

good for an arbitrary Borel set B in (0, so), £(., M) being the spectral measure

associated with M and %^w being as in Theorem 4.2. As has been shown in

(5.52) of [10], £F± are essentially the usual Fourier transforms when Q(y)=Q.

2° Let us note that

(6.2) (Z(y)+ξ'(rMω)Y+φ(y, X) = (grad λ(j ))2 ,
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φ(y) and \(y) being as in (3,6) and (2.13) of [12], respectively. Hence the
second relation of [12], (3.17) can be rewritten as

(6.3)
d\y\

3° The modified wave operators. The time-dependent modified wave
operators WDt± for the Schrϋdinger operator with a long-range potential were
defined by Alsholm-Kato [2], Alsholm [1] and Buslaev-Matveev [3] as

(6.4) WD>± = s-lim eitMe-itM°-ixt,

where M0 is the closure of — Δ and Xt is a function of M0. On the other hand
from the viewponit of the stationary method the sattionary wave operators WDt±

should be defined by

(6 S} Wn — £?*£?{\J.JJ VY Dt± — ~L + -Z Q,± )

2ot± being the the generalized Fourier transforms for Λf0. From the orthogo-
nality of the generalized Fourier transforms (Theorems 4.4 and 5.4) we can easily
see that ffiDt± are complete. Recently the relation WDt±=WDt± is shown by
H. Kitada [13], [14] and T. Ikebe-H. Isozaki [15], whence follows the com-
pleteness of the time-dependent modified wave operators WDt±.

4° In this paper and [12] we have treated the Schrϋdinger operator S by
transforming S into the differntial operator

with operator-valued coefficients. Of course, as in Jager [6] and SaitO [8]~
[11], we can start with the operator (6.4) and apply the resuts obtained to the
Schrϋdinger operator. Then, however, the conditions imposed on B(r) become

rather complicated than in Jager [6] and SaitO [8]~[11].
5° The case that the potential Q(y) has singularities can be treated in

essentially the same way. For example, we may replace the condition (Q^ by
(Q) Qι^QaJoc with some α>0 and there exists R0>0 such that

(6.7) ..\Qι(y) [£C(l+\y\)-1-

Here QΛjog denotes the class of locally L2 functions p(y) such that

(6.8) Mp(y) = J^_ί |sι iy.2^

is locally bounded in RN.
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