Harada, M. Osaka J. Math. 13 (1976), 431-438

A NOTE ON RELATIVE T-NILPOTENCY

MANABU HARADA

(Received June 23, 1975)

This note gives some supplementary results of [6]. The first one shows an application of the idea in the proof of [6], Lemma 7 and gives a characterization of artinian rings. The second one gives a refinement of [6], Corollary 2 to Theorem A.2 and the final one is a special type of the exchange property.

Throughout we shall assume that R is a ring with identity and modules are unitary right R-modules. First, we shall recall definitions in [6].

Let $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ be two infinite sets of *R*-modules. We take a countable set $\{M_{i}\}_{1}^{\infty}$ such that $M_{2i-1} = P_{\alpha(2i-1)} \in \{P_{\alpha}\}_{I}$ and $M_{2j} = Q_{\beta(2j)} \in \{Q_{\beta}\}_{J}$. Further we take a set of non-isomorphisms $f_{i}: M_{i} \rightarrow M_{i+1}$. If for any element *m* in M_{1} there exists *n* such that $f_{n}f_{n-1}\cdots f_{1}(m)=0$, we say $\{f_{i}\}_{1}^{\infty}$ is *locally T-nilpotent*. If for any countable sets $\{M_{i}\}_{1}^{\infty}$ above such that $\alpha(2i-1) \neq \alpha(2i'-1)$ ($\beta(2j) \neq \beta(2j')$) if $i \neq i'$ $(j \neq j')$ any sets $\{f_{i}\}$ of non-isomorphisms are always locally T-nilpotent, then we say $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ are relatively and locally sami-*T*nilpotent. If we omit the assumptions $\alpha(2i-1) \neq \alpha(2i')$ ($\beta(2j) \neq \beta(2j')$) in the above, we say $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ are relatively and locally *T*-nilpotent. If $\{P_{\alpha}\}_{I} = \{Q_{\beta}\}_{J}$, we say $\{P_{\alpha}\}_{I}$ is locally semi-*T*-nilpotent or *T*-nilpotent, corresponding to the above cases. We shall assume that the definition of relatively semi-*T*-nilpotency contains a case of either *I* or *J* being finite. If $K = \sum_{I} \bigoplus P_{\alpha} = \sum_{J} \bigoplus Q_{\beta}$ and $\{P_{\alpha}\}_{I}, \{Q_{\beta}\}_{J}$ are locally and relatively *T*-nilpotent, then we say $\sum_{T} \oplus P_{\alpha}$ and $\sum_{T} \oplus Q_{\beta}$ are relatively *T*-nilpotent decompositions of *K*.

Finally, let $M=N\oplus P$ be *R*-modules and κ a cardinal number. If for any decomposition $M=\Sigma\oplus L_{\sigma}$ with κ -components there exist submodules L_{σ} of L_{σ} such that $M=N\oplus\Sigma\oplus L_{\sigma}$, then we say *N* has the κ -exchange property in *M*. In case κ is any cardinal, we say *N* has the exchange property in *M*.

1. T-nilpotent decompositions

First, we study a property of relative T-nilpotency. If the endomorphism ring of a module M is a local ring, then we call M completely indecomposable.

Lemma 1. Let M be an R-module and f,g in $\operatorname{End}_{R}(M)$. If fg is isomorphic, $M = \operatorname{Im} g \oplus \operatorname{Ker} f$.

Lemma 2. Let P be an R-module. If P is itself locally T-nilpotent, P is a completely indecomposable module.

Proof. Put $S=\operatorname{End}_{R}(P)$. If $e \in S$ and $e^{2}=e$, then e=1 or 0 by the assumption. Let x, y be elements in S with x non-unit. Then neither xy nor yx is unit in S from the above and Lemma 1. Furthermore, consider a sequence $\{x^{n}\}_{1}^{\infty}$ of non-units in S. For any element p in P, there exists n=n(p) such that $x^{n(p)}(p)=0$ from the assumption. Therefore, $X=1+\sum_{1}^{\infty}x^{i}$ is an element in S and $((1-x)X)(p)=(1-x)(1+x+\cdots+x^{n(p)-1})(p)=(1-x^{n(p)})(p)=p$. Hence, 1-x is unit in S from Lemma 1. Let x, y be non-unit in S. We assume that x+y is unit in S. Then we may assume x+y=1, which is a contradiction to the above. Therefore, S is a local ring.

Theorem 1. Let M be an R-module and $M = \sum_{T} \oplus P_{\sigma} = \sum_{T} \oplus Q_{\beta}$ two relatively T-nilpotent decompositions of M. Then all P_{σ} and Q_{β} are completely indecomposable modules and hence, those decompositions are unique up to isomorphism and every direct summand of M has the exchange property in M.

Proof. We put $I_1 = \{\alpha \in I | P_{\alpha} \approx Q_{\beta} \text{ for some } \beta \in J\}$ and $J_1 = \{\beta \in J | Q_{\beta} \approx P_{\alpha} \text{ for some } \alpha \in I\}$. We first show $I_1 \pm \phi$ and so $J_1 \pm \phi$. We assume the contrary. Let p_{α} , q_{β} be projections of M to P_{α} and Q_{β} , respectively. Let $x_1 \pm 0 \in P_{\alpha_1}$. Then there exists $\beta_2 \in J$ such that $q_{\beta_2}(x_1) = x_2 \pm 0$. Again there exists $\alpha_3 \in I$ such that $p_{\alpha_3}(x_2) = x_3 \pm 0$. Repeating those arguments, we obtain a contradiction to the T-nilpotency, since $I_1 = J_1 = \phi$ (cf. [6], Lemma 7). Hence, $I_1 \pm \phi$ and so $J_1 \pm \phi$. Furthermore, $\{P_{\alpha}\}_{I_1}, \{Q_{\beta}\}_{J_1}$ are sets of completely indecomposable modules and locally T-nilpotent by Lemma 2 and the assumption. We put $M = \sum_{I_1} \oplus P_{\alpha} \oplus \sum_{I_1'} \oplus P_{\alpha'} = \sum_{I_1} \oplus Q_{\beta} \oplus \sum_{J_1'} \oplus Q_{\beta'}$, where $I_1' = I - I_1$ and $J_1' = J - J_1$. Let $\{P_{\alpha_i}\}_{I_1}^n$ be any finite subset of $\{P_{\alpha}\}_{I_1}$. Since $\sum_{I_1}^n \oplus P_{\alpha_i}$ has the exchange property by [2], Lemma 3.11 and [9], Proposition 1,

$$M = \sum_{1}^{n} \oplus P_{a_{j}} \oplus \sum_{J_{1}} \oplus Q_{\beta'} \oplus \sum_{J_{1}'} \oplus Q_{\beta'}' \cdots (*),$$

where $Q_{\beta} = Q_{\beta}' \oplus Q_{\beta}''$. Then $\sum_{J_{1}'} \oplus Q_{\beta}''$ is isomorphic to a direct summand of $\sum_{1}^{n} \oplus P_{\alpha_{i}}$. If $Q_{\beta'}'' \neq (0)$, $Q_{\beta'}''$ contains a direct summand isomorphic to some $P_{\alpha_{j}}$ by Krull-Remak-Schmidt's theorem, say $Q_{\beta'}'' = X \oplus Y$; $X \stackrel{\varphi}{\approx} P_{\alpha_{j}}$. Since $\beta' \in J_{1}', Y \neq (0)$. Let p be a projection of $Q_{\beta'}''$ to X and i the inclusion of X to $Q_{\beta'}''$, then p and i are not isomorphic. However, $\varphi p_{i} \varphi^{-1} = 1P_{\alpha_{j}}$ and neither φp nor $i \varphi^{-1}$ is isomorphic. Which contradicts the relative T-nilpotency. Accordingly, $Q_{\beta'}'' = (0)$ and $(\sum_{1}^{n} \oplus P_{\alpha_{i}}) \cap (\sum_{J_{1}'} \oplus Q_{\beta'}) = (0)$. Therefore, $(\sum_{I_{1}} \oplus P_{\alpha}) \cap$

Relative T-NILPOTENCY

 $(\sum_{I_1'} \oplus Q_{\beta}) = (0). \text{ Let } \overline{M} = M/(\sum_{I_1'} \oplus Q_{\beta'}) \text{ and } \psi \text{ the natural epimorphism of } M \text{ to } \overline{M}. \text{ Then } \overline{M} = \sum_{I_1} \oplus \psi(Q_{\beta}) \supseteq \sum_{I_1} \oplus \psi P_{\alpha}) \text{ (note } \psi(Q_{\beta}) \approx Q_{\beta} \text{ and } \psi(P_{\alpha}) \approx P_{\alpha}).$ On the other hand, $\sum_{I_1} \oplus \psi(P_{\alpha})$ is locally direct summand of \overline{M} from (*) and $\{\psi(P_{\alpha})\}_{I_1}$ is locally T-nilpotent. Hence, $\sum_{I_1} \oplus \psi(P_{\alpha})$ is a direct summand of \overline{M} by [3], Theorem 9 and [7], Corollary 2 to Lemma 2 and Lemma 3, since $\{\psi(Q_{\beta})\}_{I_1}$ is a set of completely indecomposable modules. Furthermore, $\sum_{I_1} \oplus \psi(P_{\alpha})$ has the exchange property in \overline{M} by [4], Theorem 4 and so $\overline{M} = \sum_{I_1} \oplus \psi(P_{\alpha}) \oplus \sum_{I_1''} \oplus \psi(Q_{\beta}), \text{ where } J_1'' \subseteq J_1. \text{ Therefore, } M = \sum_{I_1} \oplus P_{\alpha} \oplus \sum_{I_1''} \oplus Q_{\beta'} \oplus \sum_{I_1''} \oplus P_{\alpha''}. \text{ Hence, } \sum_{I_1'''} \oplus Q_{\beta'} \oplus \sum_{I_1''} \oplus Q_{\beta'} \oplus \sum_{I_1''} \oplus P_{\alpha''}. \text{ However, } \{P_{\alpha'}\}_{I_1'} \text{ and } \{Q_{\beta'}\}_{I_1'\cup I_1''} \text{ are locally and relatively T-nilpotent and so some } P_{\alpha'} \text{ is isomorphic to some } Q_{\beta'} \text{ by the first part, provided } P_{\alpha_{1'}} \pm (0). \text{ Therefore, } I_1' = J_1'' = J_1'' = \phi. \text{ The remaining parts are clear from [1] and [4], \text{ Theorem 4.}$

REMARK. Theorem 1 does not remain valid if we replace the T-nilpotency by the semi-T-nilpotency in the assumption.

Corollary 1. Let P be R-projective. Then P has two relatively T-nilpotent decompositions if and only if P is a perfect module.

Proof. It is clear from Theorem 1 and [4], Theorem 6.

Corollary 2. R is right artinian if and only if every projective modules and every injective modules have relatively T-nilpotent decompositions.

Proof. It is clear from Corollary 1, [3], Corollary 1 to Proposition 1 and [8].

2. Exchange property

Let $\{M_{\alpha}\}_{I}$ be a set completely indecomposable modules and $M = \sum_{I} \bigoplus M_{\alpha}$. We consider a relation between the concept of the exchange property in M and that of the 2-exchange property in M for a direct summand N of M. If N is also a direct sum of indecomposable modules, those concepts are equivalent by [6], Theorem A.2. We do not know whether this fact is true without any assumptions.

Lemma 3. Let $A=B\oplus C\oplus D$ be R-modules. If $B\oplus C$ has the 2-exchange property in A, then C has the same property in $C\oplus D$.

Proof. We assume $C \oplus D = K \oplus L$. Then $A = B \oplus C \oplus D = B \oplus K \oplus L$. Hence, $A = B \oplus C \oplus K' \oplus L'$ for some $K' \subseteq K$ and $L' \subseteq L$ from [6], Lemma A.4. Since $C \oplus D \supseteq C \oplus K' \oplus L'$, $C \oplus D = C \oplus K' \oplus L'$.

Let M be as above and $M=S_1\oplus S_2$. Let $\{M_{\alpha}\}_J$ be the isomorphic representative classes of $\{M_{\alpha}\}_J$ and we shall denote it by [M]. We put $J'=\{\alpha \in J \mid M_{\alpha} \text{ is isomorphic to a direct summand of both } S_1 \text{ and } S_2\}$ and $J''=\{\alpha \in J' \mid \text{direct sums of any finite copies of } M_{\alpha} \text{ are isomorphic to direct}$ summands of both S_1 and $S_2\}$.

Theorem 2. Let M, S_i , etc. be as above. Then S_1 has the exchange property in M if and only if S_1 has the 2-echange property in M, $\{M_{\alpha}\}_{J'}$ is locally semi-T-nilpotent and $\{M_{\alpha}\}_{J''}$ is locally T-nilpotent.

Proof. Let N_i be a dense submodule of S_i and $N_i = \sum_{j \in I_i} \sum_{\beta \in I_{ij}} \bigoplus N_{ij\beta}$, where i=1,2 and $N_{ij\beta}$'s are isomorphic to some M_{α} in $\{M_{\alpha}\}_I$ and $N_{ij\beta} \approx N_{i'j\beta} \approx N_{i'j\beta} \approx N_{i'j\beta} \approx N_{i'j\beta} \approx N_{ij'\beta}$ if $J \neq I'$ (see [4]). We put

 $J_{1} = \{j \in J \mid I_{1j} \text{ and } I_{2j} \text{ are infinite} \}$ $J_{2} = \{j \in J \mid I_{1j} \neq \phi \text{ and } I_{2j} \text{ is finite} \}$ $J_{3} = \{j \in J \mid I_{1j} \text{ is finite and } I_{2j} \text{ is infinite} \}$ $J_{3} = \{j \in J \mid I_{1j} = \phi\} \text{ and}$ $J_{5} = \{j \in J \mid I_{2j} = \phi\}.$

Then $J_1 = J''$ and $J_1 \cup J_2 \cup J_3 = J'$. Furthermore, we put $N_i(k) = \sum_{j \in J_k} \sum_{I_{ij}} \bigoplus N_{ij\beta}$. Then $N_1 = \sum_{k \neq 4} \bigoplus N_1(k)$ and $N_2 = \sum_{1}^{4} \bigoplus N_2(k)$. We shall show "if" part. $N_1(1)$, $N_1(3)$ and $N_2(2)$ are direct summands of M from the assumption and [4], Proposition 2. Since $N_1(1) \oplus N_1(3) \subseteq S_1$ and $N_2(2) \subseteq S_2$, $M = N_1(1) \oplus N_1(3) \oplus N_2(2) \subseteq S_2$ $S_1' \oplus N_2(2) \oplus S_2'$, where $S_i' \subseteq S_i$. Furthermore, a dense submodule of S_1' (resp. S_2) is isomorphic to $N_i(2) \oplus N_1(5)$ (resp. $N_2(1) \oplus N_2(3) \oplus N_2(4)$). Since $S_1 = N_1(1) \oplus N_1(3) \oplus S_1'$, $S_2 = N_2(2) \oplus S_2'$ and S_1 has the 2-exchange property in M, S_1' has the same property in $S_1' \oplus N_2(2) \oplus S_2'$ (=C) from Lemma 3. We assume $S_1' \oplus S_2' = A \oplus B$. Then $C = A \oplus B \oplus N_2(2)$. Hence, $C = S_1' \oplus A' \oplus B \oplus N_2(2)$. $B' \oplus N_2(2)'$ from [6], Lemma A.4, where $A' \subseteq A$, etc. Therefore, $S_1' \oplus A' \oplus A'$ $B'=S_1'\oplus S_2'$, which means S_1' has the 2-exchange property in $S_1'\oplus S_2'$. Accordingly, S_1' has the exchange property in $S_1' \oplus S_2'$ by [6], Corollary 2 to Theorem A.2, since $N_1(1) \oplus N_1(3) \oplus N_2(2)$ has the exchange property in M by [5], Theorem 2 and so $S_1 \oplus S_2$ is a direct sum of completely indecomposable modules. Therefore, S_i' is also a direct sum of completely indecomposable modules and hence, S_1 has the exchange property in M by [6], Theorem A.2. The converse is clear from [6], Theorem A.2.

Finally, we shall study some special properties concerning with the exchange property in M of a direct summand of M. We are interested in a relation between the exchange property in M and the relative semi-T-nilpotency. We assume $M=N_1\oplus N_2$ and $N_i=\sum_{k=1}^{n}\oplus N_i(k)$ as in the proof of Theorem 2.

We know from the proof above that N_1 has the exchange property in M if and only if $N_1(2) \oplus N_1(5)$ has the same property in $N_1(2) \oplus N_1(5) \oplus N_2(3) \oplus N_2(4)$ and $\{N_{1ij}\}, \{N_{2ij}\}$ are locally and relatively semi-T-nilpotent (cf. [6], the proof of Corollary 1 to Theorem). Hence, we may restrict ourselves to a case of $[N_1] \cap [N_2] = \phi$.

In the following we shall use the category <u>A</u> induced from a set of completely indecomposable modules and its factor category $\underline{A} = \underline{A}/J'$ studied in [3]. We refer to [3] for the notations and results on <u>A</u>.

Lemma 4. Let M be in <u>A</u> and A, B two locally direct summands of M. If $[A] \cap [B] = \phi$, $A \cap B = (0)$ and $A \oplus B$ is a locally direct summand of M.

Proof. Let i_A , i_B be the inclusions of A and B into M, respectively. Since $[A] \cap [B] = \phi$, Im $i_A \cap$ Im $i_B = (0)$ from [3], Theorem 7 and [7], Lemma 3. Let $A \oplus B$ be the external direct sum and $i = (i_A, i_B): A \oplus B \to M$. Then it is clear from the above that i is monomorphic in \overline{A} . Hence, Im i = A + B is a locally direct summand of M and $A \cap B = (0)$.

Lemma 5. Let $M = S \oplus T$ and M in \underline{A} . For any element x in S there exists a finite set of indecomposable modules S_i such that $S = \sum_{i=1}^{t} \oplus S_i \oplus S'$, $x \in \sum_{i=1}^{t} \oplus S_i$ and S_i 's are isomorphic to some in [M].

Proof. See [4], the proof of Proposition 3.

Let $M=N_1\oplus N_2=\Sigma\oplus S_\gamma$ and $N_i\in \underline{A}$ with $[N_1]\cap [N_2]=\phi$. We put $S_{\gamma}(i)=\Sigma S_{\sigma}$, where S_{σ} runs through all indecomposable direct summands of S_{γ} which are isomorphic to some in $[N_i]$. By $[S_{\gamma}(i)]$ we denote the representative classes of such S_{σ} 's. Then $S_{\gamma}(i)$ is also the union of all locally direct summands A of S_{γ} with $[A]\subseteq [N_i]$. It is clear, from Lemma 5, $S_{\gamma}=S_{\gamma}(1)+S_{\gamma}(2)$. If $N_1(\text{ or } N_2)$ has the exchange property in M, $S_{\gamma}=S_{\gamma_1}\oplus S_{\gamma_2}$ where $S_{\gamma_i}\subseteq S_{\gamma}(i)$ and every indecomposable direct summand of S_{γ_i} is isomorphic to some in $[N_i]$. In the following, we shall study a case of $S_{\gamma_1}=S_{\gamma}(1)$.

The following lemma is a slight generalization of [6], Lemma 7.

Lemma 6. Let $M=N_1\oplus N_2=\sum_{K}\oplus S_{\gamma}$ and $N_i=\sum_{\sigma\in I_i}\oplus N_{i\sigma}$; $N_{i\sigma}$'s are completely indecomposable modules. We assume $\{N_{1\sigma}\}_{I_1}$ and $\{N_{2\sigma}\}_{I_2}$ are locally and relatively semi-T-nilpotent and $[N_1]\cap [N_2]=\phi$. Then $M=\sum_{K}\oplus S_{\gamma}(1)+N_2=N_1+\sum_{K}\oplus S_{\gamma}(2)$.

Proof. We shall give a sketch of the proof (cf. [6], Lemma 7). We assume I_1 and I_2 are infinite. Put $M^* = \sum_{\kappa} \oplus S_{\gamma}(1) + N_2$. We assume $M \neq M^*$. Then there exists $N_{1\sigma}$ not contained in M^* . Let $x_1 \in N_{1\sigma} - M^*$ and $x_{1\sigma} = \sum x_{\gamma_i}; x_{\gamma_i} \in S_{\gamma_i}$.

We may assume $x_{\gamma_1} \notin M^*$. Then from Lemma 5 we have $x_{\gamma_1} = \sum_{\beta} y_{i\beta}$; $y_{i\beta} \in A_{\beta} \langle \oplus S_{\gamma_1} \text{ and } A_{\beta} \rangle$'s are indesompoosable. Since $x_{\gamma_1} \notin M^*$, there exists $y_{2\beta} \in A_{\beta} - M^*$ and so $[A_{\beta}] \in [N_2]$. Now, we can find $S_{\gamma_1'}$ which contains a direct summand $S_{\gamma_1'\alpha'}$ isomorphic to $N_{1\alpha}$. Since $S_{\gamma_1'\alpha'}$ has the exchange property by [9], Proposition 1,

$$M = S_{\gamma_1' a'} \oplus N_1' \oplus N_2; N_1' \subseteq N_1$$
 ,

since $[N_1] \cap [N_2] = \phi$. Let $y_{2\beta} = a + b + c$; $a \in S_{\gamma_1' a'}$, $b \in N_1'$ and $c \in N_2$. Then $b \in N_1' - M^*$. Hence, we can find an indecomposable direct summand $N_{1\delta}$ of N_1' such that $b = x_{1\delta} + \cdots$, $x_{1\delta} \in N_{1\delta} - M^*$. On the other hand, since $[A_\beta] \in [N_2]$. there exists $N_{2\varepsilon}$ isomorphic to A_β and

$$M = N_{_{2^{\mathfrak{g}}}} \oplus \sum_{\kappa} \oplus S_{\gamma}'; \ S_{\gamma}' \subseteq S_{\gamma} \,.$$

Let $x_{1\delta} = d + \sum f_{\gamma}$; $d \in N_{22}$, $f_{\gamma} \in S_{\gamma'}$. Again there exists $f_{\gamma_2} \in S_{\gamma_2'} - M^*$. Similarly to the above, we can find a direct summand A_{η} of $S_{\gamma_2'}$ such that $[A_{\eta}] \in [N_2]$, $f_{\gamma_2} = \sum y_{i\eta'}$ and $y_{2\eta} \in A_{\eta} - M^*$. Furthermore, since $N_{1\delta}$ is a direct summand of N_1' , there exists $S_{\gamma_2'}$ which contains a direct summand $S_{\gamma_2'\delta'}$ isomorphic to $N_{1\delta}$ such that

$$M = S_{\gamma_1'' \mathfrak{a}''} \oplus S_{\gamma_2' \mathfrak{b}'} \oplus N_1'' \oplus N_2; N_1 \subseteq N_1'$$

and $S_{\gamma_1''\alpha''} \approx S_{\gamma_1'\alpha'}$. Repeating those arguments we obtain a sequence $\{x_{1\alpha}, y_{2\beta}, x_{1\delta}, y_{2\gamma}\cdots\}$, which contradicts the assumption of relative semi-T-nilpotency.

Theorem 3. Let M be a direct sum of completely indecomposable modules and $M=N_1\oplus N_2=\sum_{\kappa}\oplus S_{\gamma}$. We assume N_i is a direct sum of indecomposable modules $\{N_{i\alpha}\}_{I_i}$ such that $N_{1\alpha} \approx N_{2\beta}$ for any $\alpha \in I_1$, $\beta \in I_2$ and $\{N_{1\alpha}\}_{I_1}$, $\{N_{2\beta}\}_{I_2}$ are locally and relatively semi-T-nilpotent. Then the following conditions are equivalent.

- 1) $M = \sum \bigoplus S_{\gamma}(1) \bigoplus N_2$
- 2) $\operatorname{Hom}_{R}([S_{\gamma}(1)], [S_{\gamma}(2)]) = (0)$ for every γ

3) $S_{\gamma}(1)$ is a direct summand of S_{γ} and $[A] \in [N_1]$ for every indecomposable direct summands A of $S_{\gamma}(1)$, where $\operatorname{Hom}_{R}([S_{\gamma}(1)], [S_{\gamma}(2)]) = (0)$ means $\operatorname{Hom}_{R}(B, C) = (0)$ for all $B \in [S_{\gamma}(1)]$ and all $C \in [S_{\gamma}(2)]$.

Proof. $1 \rightarrow 2$ and 3). 1) implies $S_{\gamma} = S_{\gamma}(1) \oplus S_{\gamma'}$ and $\sum_{K} \oplus_{\gamma} S(1) \approx N_1$, $\sum_{K} \oplus S_{\gamma'} \approx N_2$. Hence, we obtain 3). Furthermore, every C in $[S_{\gamma}(2)]$ is isomorphic to a direct summand C' of $S_{\gamma'}$. Let B be in $[S_{\gamma}(1)]$ and $f' \in \operatorname{Hom}_{R}(B, C) \approx$ $\operatorname{Hom}_{R}(B, C')$. Then $f = \varphi(f')$ is not isomorphic from the assumption. Put $B' = \{x + f(x) | x \in B\}$. Then $B' \approx B$ and B' is a direct summand of S_{γ} from [7],

436

Lemma 3. Hence, $B' \subseteq S_{\gamma}(1)$. Therefore, $\operatorname{Im} f \subseteq (B + B') \cap S_{\gamma'} \subseteq S_{\gamma}(1) \cap S_{\gamma'} = (0)$. 2) \rightarrow 1). Let x be in $S_{\gamma}(1)$ and $x = \sum x_i$; $x_i \in A_i \langle \oplus S_{\gamma} \text{ with } [A_i] \in [N_1]$. On the other hand, there exists, from Lemma 5, a direct summand $B = \sum_{j=1}^{t} \oplus B_j$ of S_{γ} such that $x \in B$ and $[B_j] \in [M]$. Let p_j be the projection of S_{γ} onto B_j . If $0 \neq p_j(x) = \sum p_j(x_i), [B_j] \in [N_1]$ from 2). Hence, $x \in \sum_s \oplus B_{js}$ with $[B_{js}] \in [N_1]$. Now, let y be in $(\sum \oplus S_{\gamma}(1)) \cap N_2$ and $y = \sum y_i; y_i \in S_{\gamma_i}(1)$. Then there exists a direct summand $\sum_{\gamma_i} \sum \oplus B_{js}$ containing y as above. Hence, $y \in (\sum \sum \oplus B_{js}) \cap$ $N_2 = (0)$ by Lemma 4. Therefore, $M = \sum \oplus S_{\gamma}(1) \oplus N_2$ from Lemma 6. 3) \rightarrow 1). Let $S_{\gamma} = S_{\gamma}(1) \oplus S_{\gamma'}$ and C an indecomposable direct summand of $S_{\gamma'}$. Then $C \in [N_2]$ otherwise $C \subseteq S_{\gamma}(1)$. Hence, for dense submodules B_{γ_1} , B_{γ_2} in $S_{\gamma}(1)$ and $S_{\gamma'}$, respectively, we have $[B_{\gamma_i}] \subseteq [N_i]$. Since $\sum \oplus B_{\gamma_1}$ and $\sum_{\pi} \oplus B_{\gamma_2}$ are dense submodules of $\sum_{\pi} \oplus S_{\gamma}(1)$ and $\sum_{\pi} \oplus S_{\gamma'}$, respectively by [4],

Corollary 1. Let M be as above and $M=N_1\oplus N_2$. If either $\operatorname{Hom}_{\mathbb{R}}(N_1, N_2)=0$ or $\operatorname{Hom}_{\mathbb{R}}(N_1, N_2)=(0)$, then N_1 and N_2 have the exchange property in M, (cf. [6], Corollary 5 to Theorem).

Proof. N_i is in <u>A</u> by [6], Corollary 5 to Theorem. The condition 2) in the theorem is satisfied for any decompositions $M = \sum_{\mathcal{K}} \bigoplus S_{\gamma}$. Hence, N_1 and N_2 have the exchange property in M from Theorem 3 and [6], Theorem A.2.

Corollary 2. Let M, N_i and S_γ be as in Theorem 3. Then the following conditions are equivalent.

1) $M = (\sum_{\mathbf{r}} \oplus S_{\gamma}(1)) \oplus N_2 = N_1 \oplus (\sum_{\mathbf{r}} \oplus S_{\gamma}(2))$

Theorem 1, $M = \sum \bigoplus S_{\gamma}(1) \bigoplus N_2$ by [6], Lemma 7.

- 2) $\operatorname{Hom}_{\mathcal{R}}([S_{\gamma}(1)], [S_{\gamma}(2)])=(0)=\operatorname{Hom}_{\mathcal{R}}([S_{\gamma}(2)], [S_{\gamma}(1)])$
- 3) $S_{\gamma} = S_{\gamma}(1) \oplus S_{\gamma}(2)$.

Proof. 1) \rightarrow 3). 1) implies $S_{\gamma}=S_{\gamma}(1)\oplus S_{\gamma}'=S_{\gamma}(2)\oplus S_{\gamma}''$. Hence, $S_{\gamma}(2)=S_{\gamma}'\oplus S_{\gamma}(1)\cap S_{\gamma}(2)$, since $S_{\gamma}'\subseteq S_{\gamma}(2)$. If $S_{\gamma}(1)\cap S_{\gamma}(2)=T \pm (0)$, *T* contains an indecomposable direct summand *A* of S_{γ} from Lemma 5. Then $[A] \in [N_1] \cap [N_2]$ from the first decompositions and 1). Therefore, $S_{\gamma}(1)\cap S_{\gamma}(2)=(0)$ and $S_{\gamma}=S_{\gamma}(1)\oplus S_{\gamma}(2)$. Other implications are clear from Theorem 3.

OSAKA CITY UNIVERSITY

References

- G. Azumaya: Correction and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117–124.
- [2] P. Crawely and B. Jónnson: Refinements for infinite direct decomposition of algebraic systems, Pacific J. Math. 14 (1964), 797-855.
- [3] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [4] M. Harada: On categories of indecomposable modules II, ibid. 8 (1971), 309-321.

- [7] T. Ishii: On locally direct summands of modules, Osaka J. Math. (1975), 473-482.
- [8] Z. Papp: On algebraically closed modules, Publ. Math. Debrecen 6 (1959), 311-323.
- [9] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.