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1. Introduction

In this paper we shall prove the following

Theorem. Let G be a 4-fold transitive group on Q={1,2, - ‘n}. If the
order of the stabilizer of four points in G is not divisible by three, then G is one of
the following groups: S,, S;, Ss As M, or M,

In the proof of this theorem we shall use the following two lemmas, which
will be proved in the section 3 and 4.

Lemma 1. Let G be a permutation group on Q={1,2, .- ,n} satisfying
the following two conditions.

(1) The order of the stabilizer of any four points in G is even and not divisible
by three.

(ii) Any involution fixing at least four points fixes exactly four or six points.
Then G=S; or M,

Lemma 2. Let G be a permutation group on Q={1,2, -+, n} satisfying
the following three conditions.

(1) The order of the stabilizer of any four points in G is even and not divisible
by three.

(i1) Any involution fixing at least four points fixes exactly four or twelve
points.

(iii) For any 2-subgroup X fixing exactly twelve points, N(X) < M,,.
Then G=S; or M ,.

We shall use the same notation as in [4].

2. Proof of the theorem

Let G be a group satisfying the assumption of the theorem. If the order



368 T. Oyama

of the stabilizer of four points in G is odd and not divisible by three, then G is
S,, S5 4, or M,, by a theorem of M. Hall ([1], Theorem 5.8.1). Hence we
may consider only the case in which the stabilizer of four points in G is of even
order.

Let P be a Sylow 2-subgroup of G,,;,. Then P=1. If Pis semiregular
on Q—I(P), then G is S, or M,, by Theorem of [3] and the assumption. Hence
from now on we assume that P is not semiregular on Q—I(P) and prove the
theorem by way of contradiction.

By Corollary of [5] and Theorem of [7], |I(P)|=4 or 5. We treat these
cases separately.

Case I. |I(P)|=4.

(1) There is a point t in Q— I(P) such that | I(P,)| =6 or 12 and N(P,)'®»
=S, or M,, respectively. In particular if t is a point of a minimal P-orbit, then
N(P,)®P is one of the groups listed above.

Proof. Since G has no element of order three fixing at least four points,
this follows from Corollary of [6].

(2) Any element of order three fixes no point or exactly three points.

Proof. By (1), there is a point ¢ in Q—I(P) such that N(P,)F°=.S; or
M,,. Then N(P;) has a 3-element whose restriction on I(P,) has exactly three
fixed points. Since any element of order three fixes at most three points, |Q| =0
(mod 3) and any element of order three fixes no point or exactly three points.

(3) If G has a 2-subgroup Q such that |1(Q)| =6 and N(Q)'C=S,, then
there is no 2-subgroup R such that | I(R)| =12 and N(R)'"®=M,,.

Proof. Suppose by way of contradiction that there are 2-subgroups QO
and R such that [I(Q)| =6, N(Q)'?®=S,, | I(R)}| =12 and N(R)'®=M,,. Let
Q be a Sylow 2-subgroup of Gyq, Then |[(Q)|=6 and N(Q)'@=S,.
Similarly let R be a Sylow 2-subgroup of Gy, Then |I(R)|=12 and
N(RY®>M,,. If N(RY®%M,, then N(RY®>A4,,. Hence N(R)'® has
an element which is of order three and fixes nine points, contrary to (2). Thus
N(R)®=M,,. Hence we may assume that Q and R are Sylow 2-subgroups
of G and Gy, respectively.

Since G is 4-fold transitive on (), we may assume that P contains Q and R.
Then set I(Q)={1,2,3,4,4,7,} and I(R)={1,2,3,4,71, ], = »Js}. Since
N(Q)@=S,, for any point 7 of {i;,7,} P;=Q and Q is a Sylow 2-subgroup of
G,,s.:;- Similarly since N(R)'®=M,,, for any point j of {j,,J,, **,Js} P;=R
and R is a Sylow 2-subgroup of G,,,,;. Hence the G,,,,-orbit A containing
¢ is different from the G, ,,-orbit T’ containing j. Since N(Q)'“®=S, and
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N(R)I(R)=Mlz’ {iu zz} CAand {jl’jz’ :ja} cr.
Since N(Q)'@=.S,, there is an element

x=(123)4) @) @) --.

Then xN(G,,,,). Hence x induces a permutation on the set of G, , ,,-orbits.
Since {,,7,} €A and {i, 3,}*={i,, 7,,} A*=A". Since the order of G,,,, is
not divisible by three, the lengts of G,,,,-orbits in Q—{1, 2, 3,4} are not
divisible by three. By (2), I(x)={4,1,,4,} and so x has no fixed point in
0—({1,2,3,4 UA). Thus I'*+TI. On the other hand since N(R)®=M,,,

there is an element
y=0123) 4 () () Us Ji Jo) s Jo Jo) =+ -

ThenyEN(Glz 34)’ ISinCe {jnjv ""js} CT and {j;ngy ""js}y': {jx’jz’ ’ja}’
I’=I. Hence I'* =I*"'#T. Thisisa contrdiction since yx'€G,,,, and
T'is a G,,,,-orbit. Thus we complete the proof.

(4) Suppose that P has a subgroup Q such that |I(Q)| =6 and N(Q)'®=S,
(11(Q)| =12 and N(Q)'®=M,,). Let Q be a subgroup of P such that the order
of Q is maximal among all subgroups of P fixing more than six (twelve) points.
Set N=N(Q)'®. Then M satisfies the following conditions.

(1) The order of the stabillzer of any four pointsin N is even and not divisi-

by three.
(ii) Amny involution of N fixing at least four points fixes exactly four or six
(twelve) points.

(iii) N has an involution fixing exactly six (twelve) points.

(iv) When P has a subgroup Q such that |1(Q)| =12 and N(Q)Y'®=M,,,
Sfor any 2-subgroup X of N fixing exactly twelve points, N (X< M,,.

Proof. (i), (ii) and (iv) are obvious. (iii) follows immediatly from The-
orem 1 in [6].

(5) By Lemma 1 and 2, which will be proved in the section 4, there is
no such group N as in (4). Thus we complete the proof of Case I.

Case II. |I(P)|=5.

(1) Let t be a point of a minimal P-orbit in Q—I(P). Then |I(P,)|=7,9
or 13. In particular if |I(P,)|=9 or 13, then N(P)'*P<A, or N(P)®r=
S, X M, respectively.

Proof. This is Theorem of [6].
(2) | I(P)] 7.
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Proof. If |I(P,)|=7, then N(P,)’®? is one of the groups listed in (2) of
Case II in the section 3 of [6]. But these groups have an element of order three
fixing four points. Thus |I(P,)| 7.

(3) (P 9.

Proof. Suppose by way of contradiction that |I(P,)|=9. Then we may
assume that I(P,)={1, 2, ---,9}. Set N=N(P,)’®#?. Then for any four points
i, j, k and [ of I(P,), N; ; ., has an involution fixing exactly five points.

First assume that NV is primitive. Then since N is a subgroup of A4, and
has an involution fixing five points, N=4, (see [9]). But this is a contradiction
since IV has no element which is of order three and fixes six points.

Next assume that N is transitive but imprimitive. Then N has three
blocks {1, ,, .}, {Ji, Jo» Ju} and {k,, k,, k,} of length three. Let x be an inovlu-
tion fixing 7,, 7,, j; and j,. Then x fixes 7,, j, and one more point of {k,, k,, k;}.
Thus x is a transposition. This is a contradiction since N < 4,.

Finally assume that N is intransitive. Then one of the N-orbits is of
length less than five.

Suppose that N has an orbit of length one, say {1}. Then for any four
point 7, j, k and / of {2, 3, -+, 9}, there is an involution in N fixing exactly
five points 1, 7, j, k and I. Then by a lemma of D. Livingstone and A4.
Wagner [2], N, is 4-fold transitive on {2, 3, -:-,9}. Thus N=S,x4,. This
is a contradiction since N has no element which is of order three and fixes
six points.

Suppose that N has an orbit of length two, say {1, 2}. Then for any
three pointsz,jand kof {3, 4, ---, 9}, there is an involution in N fixing exactly five
points 1, 2, 7, jand k. Thus by a lemma of D. Livingstone and 4. Wagner
[2], N,, is 3-fold transitive on {3,4,---,9}. Hence by [9], N,,=4,. This
is a contradiction since N has no element which is of order three and fixes
six points.

Suppose that N has an orbit of length three, say {1,2,3}. Set A=
{4,5,+-,9}. Then for any four points of A, there is an involution in N* fixing
exactly these four points. Hence by a lemma of D. Livingstone and A.
Wagner [2], N* is 4-fold transitive on A and so N*=S,. Thus N has an
element

%= (4)(56)(789) .

Since N <A4,, x is an even permutation. Hence x has one more 2-cycle on
{1,2,3}. Thus «?is of order three and fixes six points, which is a contradiction.

Suppose that N has an orbit of length four, say {1, 2,3,4}. Set A=
{5, 6, -+, 9}. Then for any three points 7, j and k£ of A, N has an involution
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fixing 7, j, k and two more points of {1,2,3,4}. Thus by a lemma of D.
Livingstone and 4. Wagner [2], N2 is 3-fold transitive on A and so N*=S,.
Thus N has an element

x=(56)(789) .

Since N<4,, x is an even permutation. Hence x has one 2-cycle and two
fixed points, or one 4-cycle on {1, 2, 3,4}. Thus x* is of order three and fixes
six points, which is a contradiction.

Thus |I(P,)] #9.
(4) If |I(P,)|=13, then N(P,)’®°=S,x M, Hence N(P,)’*> has an

element of order three fixing four points, which is a contradiction.
Thus we complete the proof of Case II and so complete the proof of The-
orem.

3. Proof of Lemma 1

Let G be a permutation group satisfying the assumptions of Lemma 1.
If G has no involution fixing six points, then G=.S; or M,, by Theorem 1 in [6]
and the assumptions. Hence from now on we assume that G has an involution
fixing exactly six points and prove Lemma 1 by way of contradiction. Then
we may assume that G has an involution « fixing exactly six points 1,2, ---,6 and

a=(1)(2) (6 (78) .
Set T=C(a), ;.

(1) For any two points i and j of I(a), there is an involution in T; ;. Any
involution of T is not the identity on I(a).

Proof. Since a normalizes G,,; ; and G,,; ; is of even order, G,,;; has
an involution x commuting with a. Then x& T;;. Since |I(a)|=6 and
I(x)={7, 8}, any involution of T is not the identity on I(a) by (ii).

(2) Any element of order three of T has no fixed points in I(a).

Proof. If an element u of order three of T has fixed points in I(a), then
since |I(a)| =6, u fixes at least three points of I(a). This contradicts (i) since
I(u)2{7,8}. Thus any element of order three of T has no fixed point in I(a).

(3) We may assume that (T'®),,,,=1.

Proof. By (2), T"““=+S,. Hence there is four points in I(a) such that
the stabilizer of these four points in 77“ is the identity. Hence we may as-
sume that (77), ,,,=1.
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(4) T™® is one of the following groups.

(@) T is intransitive and one of the T'®-orbits s of length one, two or three.

(6) T™* is a transitive but imprimitive group with three blocks of length two
or two blocks of length three.

(¢) T"® s primitive.

Proof. This is clear.
(5) T*® has no orbit of length one.

Proof. Suppose by way of contradiction that 77¢® has an orbit of length
one.

First assume that a 7/®-orbit of length one is contained in {1, 2, 3, 4}.
Then we may assume that {1} is a T7“®-orbit of length one. By (1), T,; has
an involution x,. By (3), we may assume that

=12 G 6)@*06)-.

Similarly T,, has an involution x, of the form

%, = (1) (2) @) (5) (B 6) -+ or (1) (2) () (6) 3 5) -+~ .

If x, is of the first from, then x, x,=(1) (2) (5) (3 6 4) -++, contrary to (2). Thus
x, is of the second form. Similarly 7, has an invloution x; of the form

2=(1) (3) (*#) (5) (2 6) -+ or (1) 3) (4) (6) (2 5) -~
If x, is of the first form, then x, x,=(1) (3) (5) (2 6 4) ---, contrary to (2). - If x,
is of the second form, then «x, x,=(1) (4) (6) (2 5 3) -+, contrary to (2).

Let {f} be a T7“-orbit of length one. Then as is shown above, for any
three points j, k and / of I(a)— {i} (T7°); ;4,%+1. Hence by a lemma of D.
Livingstone and A. Wagner [2], (T7*®); is 3-fold transitive on I(a)— {i}.
Hence (T7®);=S,. Then T has an element which is of order three and has
fixed points in I(a), contrary to (2). Thus T7““ has no orbit of length one.

(6) T'® has neither orbit of length two nor block of length two.

Proof. Suppose by way of contradiction that 7/ has an orbit of length
two or three blocks of length two.

First assume that {1, 2, 3, 4} contains an orbit of length two or a block of
length two. Then we may assume that {1, 2} is an orbit or a block. By (1),
T,, has an involution x,. By (3), we may assume that

% =1)2)@) () (46) .

Let x, be an involution of T,,. Then similarly
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%= (1) (2) (4) 5) B 6)--or (1) (2) (4) (6) (3 5) - -

If x, is of the first form, then x, x,=(1) (2) (5) (3 6 4) -+, contrary to (2). Thus
%, is of the second form. Hence when T/ is imprimitive, {1, 2}, {3, 5} and
{4, 6} form a complete block system. Let x, be an involution of T,,. When
TI@ js imprimitive

% =(12)(3) (4) (5) (6) .

When 77 has an orbit {1, 2}, x, is of this form or x,=(1 2) (3) (4) (5 6) .
But if x,=(1 2) (3) (4) (5 6) -+, then (x, x,)’=(1) (2) (3) (4 6 5) --+, contrary to
(2). Thus in any case ¥, is of the same form on I(a).

Set A={1, 2, ---,8}. Let Q bea Sylow 2-subgroup of <a, x,, x,, x,>. Then
acZ(Q), 0*=<a,x,, %,, ¥;»* and Q,=1. Hence Q=<a,%,, %,, X;>, where
xt=x7 and ®%; is conjugate to x;, i=1,2,3. Thus we may assume that
{a, %,, %, %,> is a 2-group. Then <a, x,, x,, x,> is elementary abelian. Since
| I(ax,)] <6, <a,x, % * has at most one orbit of length two and the remaining
orbits are of length four.

Suppose that <{a, x,> has an orbit of length four. Then we may assume
that {9, 10, 11, 12} is an orbit of length four and

a= (1) (2) =~ (6) (7 8) (9 10) (11 12) -,
% = (1) (2) 3) (5) (4 6) (7) (8) (9 11) (10 12) ---.

Suppose that x, fixes {9, 10, 11, 12}. Then since |I(ax,)| <6 and |I(x,x,)| <6,
x,=(9 12)(10 11) on {9,10,11,12}. Hence <a, %,, X, 101, 1.=<ax,x,> and
Iax,x,)={1,2,9,10,11,12}. Thus<a, x,, x,> has exactly one orbit {9, 10, 11, 12}
of length four. Then since x, normalizes <a, x,, x,>, %, fixes {9, 10, 11, 12}.
Then by the same argument as is used for x,, x, is of the same form as x, on
{9, 10, 11, 12}. Hence I(x,x,)> {4, 6,7, 8, 9, 10, 11, 12}, contrary to (ii). Thus
x, does not fix any {a, x,>-orbit of length four. Hence <{a, x,, x,5%"2 has at
most one orbit of length two and the remaining orbits are of length eight.
Hence <a, x,, x,, x,>-orbits whose lengths are not two are of length eight or
sixteen. If <{a, x,, x,, x,> has an orbit of length eight, then {q, x,, x,, x,> has
an involution fixing at least eight points of this orbit, contrary to (ii). Thus
{a, %, %,, x,)%7* has at most one orbit of lenght two and is semiregular on the
set consisting of the remaining points. Since {a, x,> nomralizes G,,,,,,, and
G, 1,111, 18 of even order, there is an involution y in G, ,,,,,, commuting with a
and x,. Then y fixes {1,2,3,5}, {4,6} and {7,8}. Suppose that y*e
{a, x,, x,, x,>*. 'Then since <a, x,, x,, X3, y>» is of odd order, <a,x,, x,, x,>
is a Sylow 2-subgroup of <a, x,, x,, x,, y>. Hence {a, x,, x,, x,> has an element
which is conjugate to y in <a, x,, x,, x;, ). 'This is a contradiction since any
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involution of {a, x,, x,, x,> fixes at most two points of Q—A. Thus y*&
{a, x,, x,, x,>*. Hence {1,2}?={3,5}. On the other hand since y fixes {7, 8},
y or ya is contained in 7. Thus {1,2} is not a T-orbit. Then T7@ is
imprimitive and we may assume that y=(13) (25)on {1,2,3,5}. Then x,y
is of order 4m, where m is odd. Set z=(x,y)*”. Then

#=(12)(335)#) (6)(7)(8) -

and z centralizes <a, x,, x,, y>. Since |I(y)| <6, y fixes exactly four points 9,
10,11 and 12 in Q—A. Hence 2 fixes {9, 10, 11, 12}. Thus the <a, x,, x,, 2>~
orbit containing {9, 10,11, 12} is of length eight. Since <a,x,,x,, 2> is
abelian and of order sixteen, there is an involution fixing this {a, x,, x,, 2>-
orbit of length eight pointwise, contrary to (ii). Thus {a, x,> has no orbit
of length four. Since |I(ax,)] <6, |Q|=8 or 10.

Suppose that |Q|=8. Then by (i), there is an involution x in G fixing
1,3,4 and 7. If x fixes 8, then x=T. Hence x fixes 2. Then x'?@e
(T"®),,5, and x'@=1, contrary to (3). Hence x=(1) (3) (4) (7) 87%) -,
i€{2,5,6}. Then (ax)’=(7 81), contrary to (i).

Suppose that [Q]|=10. Then

a=(1)(2) - (6) (7 8) (9 10),
2 = (1) (2) (3) (5) (4 6) (7) (8) (9 10),
%= (1) (2 3 5) 4 (6) (1) (8) (910).

By (i), there is an involution x in G fixing 1, 3, 4 and 7. Assume that x fixes 8.
If ¥ commutes with a, then x&T. Hence x fixes 2. Then '@ e (T7®),,,,
and x'@®=1, contrary to (3). Thus x does not commute with a and so
{9, 10}*+{9,10}. If x fixes 9, then x=(9) (10 7) -, i€ {2,5,6}. Hence
(ax)’=(9 10 7), contrary to (i). Similarly x does not fix 10. Thus x=(9 i)
(105), {#,j} < {2,5,6}. Then (x, x, x)* is of order three and fixes at lesat four
points, contrary to (i). Thus x does not fix 8. Hence x=(1)(3)(4)(7)(82) -+,
i€{2,5,6,9,10}. If i={2,5,6}, then ax=(1) (3) (4) (8 7 ©):--. Since
|| =10, a suitable power of ax is of order three and fixes at least four points,
contrary to (i). If 7={9, 10}, then ax,x=(1) (3) (8 7¢):--. Then similarly
we have a contradiction. Hence {1, 2} is neither orbit nor block.

Let {z,j} be an orbit or a block of 7/®. Then by what we have proved
above, for any two points k and / of {1, 2, ---, 6} — {7, j} there is an involution
in (T7*);jx;. Hence by a lemma of D. Livingstone and 4. Wagner [2],
(T"®); ; is doubly transitive on I(a)— {i,j}. Hence (T7®);;=S,. Then
(T™®); ; has an element of order three, contrary to (2). Thus T7® has
neither orbit of length two nor block of length two.

(7) T™® has neither orbit of length three nor block of length three.
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Proof. Suppose by way of contradiction that 77 has an orbit of length
three or two blocks of length three. When 77 is intransitive, 77> has two
orbits of length three by (5) and (6). Let {7, 7,4} and {j,,j,,j;} be the two

orbits or the two blocks. Then T ;, has an involution

x = (i) (&) () (7:) (J23a) -

Since {j,,J, Js} is an orbit or a block and x€ T, ;, ;,, (T7®);,4,:,=S;. Thus
(T*®),,4,:, has an element of order three, contrary to (2). Hence T7 has
neither orbit of length three nor block of length three.

(8) We show that T'® is not primitive and complete the proof.

Proof. Suppose by way of contradiction that 77 is primitive. Then
since any element of order three in 7'/® has no fixed point, T/@=PSL(2, 5) or
PGL(2, 5) (see [9]). Let u be an element of order three of T. Since # commutes
with a, if # has a fixed point in Q—((a)U {7, 8}), then u fixes at least two
points of Q—(I(a)U {7, 8}), contrary to (i). Thus I(x)={7, 8} and so |Q|=2
(mod 3). Furthermore this shows that any element of order three fixes exactly
two points of . Hence N(Gi,))"® has no element consisting of exactly
one 3-cycle. Thus N(G;o) @2 A,. Then since T7*=PSL(2,5) or
PGL(2,5), N(Gyq)®=PSL(2,5) or PGL(2,5). Furthermore this shows
that for any involution v fixing exactly six points, N(G;,)”=PSL (2, 5) or
PGL(2,5).

Suppose that G has an involution x fixing exactly four points. Then x
is of the form

x = (1) (3,) (&) () (JuJn) - -

For any two points 7, and i of {7, 7, %, #,} x normalizes G, ;,; ;,. Hence by
(i), G}, j,4,+, has an involution y commuting with x. If y fixes I(x) pointwise,
then I(y)=I(x)U {j,,j,}. Thus |I(y)| =6 and x'”=(j, j,). This is a con-
tradiction since N(Gy(,,)'*”>=PSL (2,5) or PGL (2,5). Hence y fixes exactly
two points 7, and 7, in I(x). Hence by a lemma of D. Levingstone and 4.
Wagner [2], (C(x);,;,)"”=S,. Thus C(x);, ;, has a 3-element of the form
(¢,%,%) (4)(j.)(J.) ---- This is a contradiction since every element of order
treee fixes exactly two points. Thus G has no involution fixing exactly four
points.

Let x be an involution of 7,,. Then we may assume that

a=(1)(2) (6)(78)(910) -,
x = (1) (2) 34) (5 6) (7) (8) (9) (10) - .
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Let (j) be any 2-cycle of a. Then (C(a); ;)*®=PSL (2,5) or PGL(2,5).
Since N(Gy))"® is also PSL(2,5) or PGL (2,5), T"®=(C(a); ;)"® or one
of these two groups is a subgroup of the other. Hence there are 3-elements
u and «’ in T and C(a); ; respectively such that #/®=4'7®. Then u and «
normalize Gy, I(u)={7,8} and I(u')={i,j}. Let T' be the Gy, -orbit
containing {7, 8}. Then since {7, 8}*={7, 8}, I'*=T". Suppose that {7,j} is
contained in a Gyy-orbit different form I'. Since the order of Gy, is not
divisible by three, |I'| is not divisible by three. Hence T“=+T. Thus
I™’~'=T%7'%T. This is a contradiction since u’~*€ G;,,. Thus {t,j}cT.
Since (z j) is any 2-cycle of a, Gy, is transitive on Q—I(a). From the same
reason, G, is transitive on Q—1I(x). Then since I({Gjw, Grny)=1{1, 2},
G,, is transitive on Q— {1, 2}. Since N(Gy,) is doubly transitive on I(a), G
is 3-fold transitive on Q.

Let QO be a Sylow 2-subgroup of G, Since N(Q)®=N(Gi4)"®,
(N(Q)®),,,=1. Hence Q is a Sylow 2-subgroup of G,,,. Since |I(Q)|=6,
G is not 4-fold transitive by Theorem of [4]. On the other hand Gy, is transi-
tive on Q—1I(a). Hence there is a point 7, in {4, 5, 6} such that 7, does not
belong to the G,, ,-orbit containing Q—I(a). Since Q is a Sylow 2-subgroup
of G,,, the length of the G,,,-orbit containing 7, is not two. Moreover the
length of the G,, ,-orbit containing i, is not three since G|, , has no element of
order three. Thus G,,, fixes 7;. Since Q is a Sylow 2-subgroup of G,,,,
{4,5,6,} — {i,} isnota G, , ,-orbit. Similarly since | {4, 5, ---, n} — {z,} | is even,
{4,5, ---,n} — {i,} is not a G, ,,-orbit. Hence G,,,-orbits on Q—{1,2, 3} are
{4}, {5}, {6} and {7, 8, ---, n} or {z,}, {z,} and {3, 7, 8, -+, n}, where {,,7,, 7.} =
{4,5,6}. First assume that {4}, {5}, {6} and {7, 8, ---,n} are G,,,-orbits.
By (i), G,, s, has an involution y. Then yG,,,. Hence I(y)D{1,2, -, 7},
contraty to (ii). Next assume that {7}, {7,} and {7, 7, 8, ---, n} are G, , ,-orbits.
Since G is 3-fold transitive on Q, G,,,=G,,;,=G,,;, and G,,,%G,,;,. Thus
G, , , fixes exactly two points of Q— {1, 2, ---, 6}. This is a contradiction since
a=G,,;, and a has no fixed point in Q—{1, 2, .-, 6}.

Thus we complete the proof of Lemma 1.

4. Proof of Lemma 2

The proof of Lemma 2 is similar to the proof of Lemma 1. Let G be
a permutation group satisfying the assumptions of Lemma 2. If G has no
involution fixing twelve points, then G=S,; or M,, by Theorem 1 and the as-
sumptions. Hence from now on we assume that G has a involution fixing exactly
twelve points and prove Lemma 2 by way of contradiction. Then we may
assume that G has an involution « fixing exactly twelve points 1, 2, .-+, 12 and

a=(1)(2) - (12) (13 14) --- .
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Set T=C(a);s 1.

(1) For any two points i and j of I(a), there is an involution in T, ;

s ;. Any
involution of T is not the identity on I(a).

(2) Any element of order three in T has no fixed point on I(a).

The proofs of (1) and (2) are similar to the proofs of (3.1) and (3.2) re-
spectively.

(3) TI™@ 45 one of the following groups.

(@) T™® is intransitive and one of the T'-orbits is of length ome, two,
three, four, five or six.

(b) T¥® is a transitive but imprimitive group with six blocks of length two,
four blocks of length three, three blocks of length four or two blocks of
length six.

(c) T™® s primitive.

Proof. This is clear.
(4) TT@ is not primitive.

Proof. If T7® is primitive, then by (iii) 77 is PSL (2, 11), M,, or M,
which are of degree twelve (see [9]). But since T7® has an involution fixing
at least two points by (1), T7®3=PSL (2,11). Furthermore since any element
of order three of T has no fixed point by (2), T7®=+M,,, M,,. Thus T!@
is not primitive.

(5) T™® has no orbit of length one.

Proof. If T7® has an orbit {i} of length one, then T7®~U} is one of the
groups of (4) of Lemma 4 in [5]. But all these groups have an element of order
three which has fixed points, contrary to (2). Thus 77 has no orbit of length
one.

(6) T™@ has neither orbit of length three nor block of length three.

Proof. Suppose by way of contradiction that 77 has an orbit of length
three or a block of length three, say {1,2,3}. Let x, be an involution of
T,,. Then we may assume that

x,=(1)2)3)4)(56)(78)(910)(1112) .-- .

When T7@ is transitive but imprimitive, we may assume that the block
containing 4 is {4, 5, 6}. Assume that 77 is intransitive. If the length of
the orbit containing 4 is not divisible by three, then (77°), has an element of
order three, contrary to (2). If the length of the orbit containing 4 is nine,
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then (77®), has an element of order three, contrary to (2). Thus the length
of the orbit containing 4 is three or six. On the other hand x, fixes exactly one
point 4 in the orbit containing 4. Hence the length of the orbit containing 4
is three. Thus we may assume that {4, 5, 6} is an orbit.

Let x, be an involution of T,,. Then x, fixes {1, 2,3} and {4,5,6}. If
x,=(1) (5) (4 6) -+, then x,x,=(1) (4 6 5) --+, contrary to (2). Hence x, fixes
{4, 5, 6} pointwise. Since |[(x,’®)|=4,

%= (1) (23) (4) () (6) --- .

Let x, be an involution of T,,. Then by the same argument as is used for x,,

2= (2) (13) (4 () (6) .
Then x, x,=(1 3 2) (4) (5) (6) +++, contrary to (2). Thus 77 has neither orbit
of length three nor block of length three.

(7) T™® has no subgroup which is isomorphic to the following group {x,,
X,y X,> as a permutation group.
% =(1) () 3) 4 (5 6) (7 8) 9 10) (11 12),
x,=(1) (2) 3 4) (5) (6) (7 8 (9 11) (10 12),
x=(12) (34 (5 (6) () ®) (9 10) (11 12).

Proof. This follows from the same argument as in the proof of (3.3) in [8].
(8) TT™® has neither orbit of length four mor block of length four.

Proof. Suppose by way of contradiction that 77 has an orbit of length
four or a block of length four, say {1, 2, 3, 4}.

First assume that T has an involution x, fixing {1, 2, 3, 4} pointwise. Then
we may assume that

%, = (1)(2) () (4) (56) (78) (910) (11 12) -~ .

Let x, be an involution of T,,. Then x, fixes {1, 2, 3, 4} and so x,”® commutes
with »,/®. Hence we may assume that

%= (1)(2)(349)(5)(6)(78)(911)(1012) --- .

Let x, be an involution of T;,. Then similarly x,/® commutes with x,/@.
Hence x,/@ fixes 3, 5 and 6. Since |I(x,/®)| =4, x,/® fixes one more point
of {1,2,4}. If «x, fixes 1 or 2, then x, x,=(1) (2 4 3) (5) (6) --- or (2) (1 4 3)
(5) (6) -+ respectively, contrary to (2). Thus x, fixes 4. Then x,/® commutes
with x,7® and so

% = (12)(3) (4) (5) (6) (78) (9112) (10 11) -+ .
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This is a contradiction since 77 has no such subgroup as <x,, x,, x,>"® by (7).
Next assume that T' has no involution fixing {1, 2, 3,4} pointwise. Let
x, be an involution of T ,. Then

% =(1)(2)3B4)-.

Let x, be an involution of T,,. Then

%= (1) (3) 24) .

Then x», x,=(1) (2 4 3) -+, contrary to (2). Thus T/ has neither orbit of
length four nor block of length four.

(9) T** has no orbit of length five.

Proof. If TV has an orbit A of length five, then T has an involution
fixing exactly three points of A. Thus T=S; (see [9]). Then T has an
element of order three fixing two points, contrary to (2). Thus 77’ has no
orbit of length five.

(10) T*® has no orbit of length two. If T is a transitive but imprimi-
tive group with six blocks of length two, then T'® is also a transitive but imprimi-
tive group with two blocks of length six.

Proof. Suppose that T/ has an orbit of length two or a block of length
two, say {1, 2}, Since (T7**),, is a subgroup of M,, and has no element of
order three, the order of (77®),, is 2" 5°, where 4>r>1 and s=0 or 1.

Assume that s=0. Then the subgroup H of T fixing {1, 2} as a set is a
2-group on I(a). Since (T7“°),, is a normal subgroup of H’®, T, has an
involution x, whose restriction on I(a) is a central involution of H/“. Then
we may assume that

x, = (1)(2)(3)(4)(56)(78)(910) (1112) ---.

When T7“ is imprimitive, {3, 4} is a block of T/ since I(x,/®)={1, 2, 3, 4}.
Let x, be an involution of 7,,. Then x,&T,,. Hence x,”® commutes
with »7“. Hence we may assume that

x, = (1)(2)(34)(5)(6)(78)(911)(1012) ---.

Let x, be an involution of T,,. When {1, 2} is a T-orbit, x,/” commutes
with x,7°. Hence x,=(1 2) (3) (4) (5) (6) --~. Hence x,/° commutes with
%7, When T7 is imprimitive, {5, 6} is a block of T since I(x,’®)=
{1,2,5,6}. Hence x, fixes {3, 4,5, 6} pointwise. Hence x,’” commutes with
1@ and x’®. Thus in any case
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x, = (12)(3)(4)(5)(6) (7 8)(912) (10 11) ---.

Then since T has no such subgroup as <{x,, x,, x,> by (7), we have a contradic-
tion.

Thus s=1. Since the order of (T7®),, is 2" 5, (T*®),, is solvable. Let
N be a minimal normal subgroup of (77°),,. Then N is elementary abelian.
Let u be an element of T, such that the order of #’* is five. Suppose that
N is a 2-group. Since N is an elementary abelian subgroup of M, ,, the order
of N is two or four. Hence #/° centralizes N. This is a contradiction since
u'® consists of two 5-cycles on I(a)— {1, 2} and any involution of N has exactly
two fixed points in I(a)—{1,2}. Thus N is a 5-group. Hence <u)'® is
normal in (77“°),, and so the unique Sylow 5-subgroup of (7'7®),,.

Suppose that {1, 2} is a T-orbit. Then (7T7**),, is normal in 7'/, Since
{uy! is the unique Sylow 5-subgroup of (77“),,, <u>' is normal in 77,
Let A be a <ud'®-orbit of length five. Then for any two points 7 and j of
A, T, ; has an involution x, which fixes A. Since |I(x’°)]=4 and |A|=S5,
|I{x)N A|=3. Thus the subgroup of T fixing A as a setis S; on A. Hence
T has an element of order three fixing two points of A, contrary to (2). Thus
T has no orbit of length two.

Suppose that 7'/ is imprimitive. Let x, be an involution of 7T,. Then
we may assume that

2 =(1)(2)(3)(#)(56)(78)(910)(1112) --- .

Since ((up"1)!=(u>’® and x, is of order two, (u*1)!=u’® or (u ')'®.
Since x, fixes exactly two points of I(@)— {1, 2} and % has no fixed point in
I(a)—{1,2}, (w")'“+u’®, Thus (u*1)'°=(u"")"*. Hence we may assume that

u=(1)(2)(35786)(49111210) - .

Since T/ is an imprimitive group with blocks of length two and x, fixes a
block containing 3, {3,4} is a block. Then {3, 4}*, 0<i<4, is also a block.
Thus {1, 2}, {3,4} {5,9}, {7, 11}, {8, 12} and {6, 10} are a complete block
system of T/,

Since uT,,, (T'®),, is transitive or has two orbits of length five on [
(@)—1{1,2}. Suppose that (T7”),, is transitive on I(a)—{1,2}. Then since
{up™® is a normal subgroup of (77®),,, T,, has a 2-element x such that
{3,5,7,8,6}"={4,9,11,12,10}. Then |I(x)N I(a)] =2 and so 2’ is of order
eight. Then (x)'® is of order two and fixes exactly two points of I(a)— {1, 2}.
Hence (#*)“=(u"")"®. Hence &' induces an automorphism of order eight
of <u)’® by conjugation. This is a contradiction since the order of <{u)>!®
is five. Hence (T7“°),, has two orbits of length five on I(a)—{1,2}. Then
since (T7),=(T7*),,, (T?*), has three orbits {2}, {3,5,6,7,8} and
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{4,9, 10, 11, 12} on I(a)— {1}.

Let x, be an involution of T, Since {5, 9} and {6, 10} are blocks of T7®,
x, fixes 5, 9, 6 and 10. Hence x,” commutes with x,/®. Then x, fixes
{1,2,3,4}. If x,=(1 2) (3 4) (5)(6) (9) (10) ---, then x, normalizes T,, and
(Ku)*2)!@={uy’®,  This is a contradiction since <#>’® is the unique Sylow
5-subgroup of (77“°),,. Hence we may assume that

x, = (13)(24)(5)(6)(9)(10)(7 8) (1112) ---.

Then (T, x,>"* has two orbits {1, 3,5, 6,7, 8} and {2,4,9, 10,11, 12}. Thus
TT® is also an imprimitive group with blocks of length six.

(11) We show that T'® has neither orbit of length six nor block of length six
and complete the proof.

Proof. Suppose by way of contradiction that 77 has an orbit of length
six or a block of length six, say {1,2,--,6}. Set A={l,2,..-,6}.

Assume that T has an involution fixing exactly four points of A. Then
we may assume that 7' has an involution

% = (1)(2) (3) (4) (56) (78) (9 10) (11 12) ---.

Let x, be an involution of T,,. Then «, fixes A. If x,=(1) (5) (6 7)---,i€
{2, 3, 4}, then x, x,—(1) (57 6) --+, contrary to (2). Hence «x, fixes 6. Then x,
fixes {1, 2, 3, 4} and so x,”” commutes with x,7°, Hence we may assume that

x, = (1)(2) (34) (5)(6) (78) (911) (10 12) -+ .

Let x, be an involution of T;,. Then by the same argument as is used for x,,
%, commutes with x,/ and x,=(1 2) (3) (4) (5) (6) -~ Hence x,/° com-
mutes with x,”. Hence

%2, = (12)(3)(4)(5)(6)(78)(912) (10 11) ---.

Then since T has no such subgroup as <x,, x,, ;> by (7), we have a contradi-
ction.

Thus T has no involution fixing four points of A. Then we may assume
that 7" has an involution

5= ()2 (349 (56)(7)(8)(910)(1112) -
Since I(x,)D>{1,2,7,8, 13, 14}, |I(x,)| =12 by (i). Hence we may assume that

a = (1) (2) - (12) (13 14) (15 16) (17 18) (19 20) --- ,
%, = (1) (2) (34) (5 6) (7) (8) (9 10) (11 12) (13) (14) --- (20) --- .
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Let x, be an involution of 7,,. Then x, fixes A and I(x,)NA={1,3}. If
x,=(1) 3) (2 4) -++, then x, x,=(1) (2 43) -, contrary to (2). Hence we may
assume that x,=(1) (3) (2 5) (4 6) ---. Then x, x,=(1) (254 3 6)---. Thus
(%, x,)* is of order five and so (x, x,)" has one more fixed points in I(a)— A.
Hence we may assume that

x,= (1) (3) (2 5) (4 6) (7) (8 11) (10 12) ---.
Hence

%, x,=(1)(25436)(7) (811109 12) - .

Thus the subgroup of T fixing A as a set is doubly transitive on A and on [
(a)—A.

Since the order T is divisible by three, 7' has an element u of order
three. Then by (2), » has no fixed point in I(¢). Thus u fixes exactly two points
13 and 14 in I(a)U {13, 14}. Since u commutes with a, if u has fixed points
in Q—(I(a) U {13, 14}), then u fixes at least two points of Q—(I(a)U {13, 14}),
contrary to (ii). Thus % has no fixed point in Q—(I(a) U {13, 14}) and so I(u)=
{13, 14}. This shows that |Q|=2 (mod 3). Hence any element of order
three has exactly two fixed points.

Now we consider N(Gr,). Let H be the subgroup of N(Gy) fixing A
as a set and H the subgroup of T fixing A as a set. Since H is doubly tran-
sitive on A, H is doubly transitive on A. Hence H*=S,, 4,, PGL (2,5) or
PSL (2,5) (see [9]). Since any element of order three fixes exactly two points
and |I(a)| =12, any element of order three of N(Gy,) has no fixed point in
I(a). Hence H*=PGL (2,5) or PSL(2,5). Thus H'®=H® or the index
of H' in H'® is two. If N(Gy,) is transitive on I(a), then by the same
argument as is used in the proof of (4) N(Gi))'® is imprimitive. Then
(N(Gr»)'®), is not transitive on I(a)— {1}. Moreover since any element of
order three of N(G},) has no fixed point in I(a), (N(Gy>)'”), has no orbit of
length six. Hence (N(G(,,)"®),-orbits are {7}, A— {1} and I(a)—(AU{7})
on I(a)— {1}, which are (T7“),-orbits. Thus when N(G,,)’*® is imprimitive,
N(Gr»»)™® has two blocks of length six, which are orbits or blocks of 77,
This implies that for any involution x fixing exactly twelve points N(Gy,,)'™
satisfies the same condition as N(Gy,,)'®.

Let (i j) be any 2-cycle of a. Then 77 and (C(a); ;)’® are subgroups of
N(Gr)™. Hence there are 3-elements v and ¢’ in T and C(a); ; respectively
such that 9®=¢'7®, Then v and 9" normalizes G, I(v)={13, 14} and
I(v)={i,j}. Let T' be the Gy -orbit containing {13,14}. Then since
{13, 14}*={13, 14}, T°=T". Suppose that {z,j} is contained in a Gy,-orbit
different from T".  Since the order of G, is not divisible by three, |T'| is not
divisible by three. Hence T”+T. Thus T"' ' =TY""+T. Thisis a contra-
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diction since v’ '€Gy,,. Thus {7,j}cT. Since (ij) is any 2-cycle of a,
Gi» is transitive on Q—I(a). From the same reason, Gy, is transitive on
Q—1I(x,). Then since I({Gyyy Grapy)=11,2,7,8}, G,,,, is transitive on
Q—-1{1,2,7,8}.

Let Q be a Sylow 2-subgroup of Gy, Since N(Q)'“=N(G;.,,)',
(N(O)“®),,,4:=1. Hence Q is a Sylow 2-subgroup of G,,,s;. Then since
G, ;15 is transitive on Q— {1, 2, 7, 8}, (N(Q)*®), , ,, is transitive on I(a)— {1, 2,
7,8} by a lemma of E. Witt [10]. This is a contradiction since N(Q)/“®@=
N(Gry))"® and (N(G1>)"*®), ;15 1s intransitive on I(a)— {1, 2, 7, 8}.

Thus we complete the proof of Lemma 2.

Appendix

In Theorem of [8] we assumed that Q was a Sylow 2-subgroup of Gj,).
But this assumption is not necessary since if there is a 2-subgroup R satisfying
|I(R)| =t and N(R)'®=4, or S, then a Sylow 2-subgroup of Gy, satsifies
the assumption of Theorem of [8]. Hence we have the following

Theorem. Let G be a 4-fold transitive group on Q={1,2, ---,n} and t
be the maximal number of fixed points of involutions of G. Assume that G has
a 2-subgroup Q such that |1(Q)| =t and N(Q)'©®=S, or A,, then G is one of the
following groups: S, (n>4), 4, (n>6) or M, (n=11, 12, 23, 24).
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