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The purpose of this paper is the investigation of modules over Dedekind
prime rings. In Section 1, we shall prove that the double centralizer of a
P-primary module over a Dedekind prime ring R is isomorphic to Ry or Rp/ P,
where P is a nonzero prime ideal of R and Rp is the P-adic completion of R with
unique maximal ideal P. Using this result we shall determine the structure of
the double centralizer of primary modules over bounded Dedekind prime rings.
In Section 2, we shall give a characterization of quasi-injective modules over
bounded Dedekind prime rings. This paper is a continuation of [7] and [8]. A
number of concepts and results are needed from [7] and [8].

1. The double centralizer of torsion modules

Throughout this paper, R will denote a Dedekind prime ring with the two-
sided quotient ring O, we denote the completion of R with respect to P by Rpand
its maximal ideal by P. By Theorem 1.1 of [6], Rpisa complete, g-discrete
valuation ring in the sense of [8] and R =(L)s, where L is a complete, discrete
valuation ring with unique maximal ideal 150. Further, pzpoﬁp=ﬁppo, where
po= L with P(,:pof,:f,po. Since the proper ideals of Rp are only the powers
of P, we obtain P*=RpP"Rp for n=0, 1, 2, --- (cf. the proof of Theorem 4.5 of
[4]). In this section we denote the complete set of the martix units of Rp= (L),
by e;; (¢, j=1, 2, -+, k).

Let M be a P-primary module. Then, by the same way as in Lemma 3.14
of [7], M is an Rp-module by a natural way. Itis evident that Homg(M, M)=
Homg (M, M) and that M is torsion as an kp-module. If M is indecomposable,
P-primary and divisible, then M is isomorphic to lim e Rp/e,, P, and we denote
it by R(P~). If M is indecomposable, P—prima1?> with O(M)=P", then M is
isomorphic to eukp/euls”, and we denote it by R(P").

Lemma 1.1. Let R be a Dedekind prime ring. Then the double centralizer
D, of the module R(P™) is isomorphic to Rp|P™.

Proof. By Lemma 3.20 of [7], L,=Homg(R(P"), R(P")), where L,=
L/ISZ,'. Hence we have
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R(P™) = L,(e,+e, L")+ +L,(e,s+e, L) .
From this the assertion is evident.

Lemma 1.2, Let R be a Dedekind prime ring. Then the double centralizer
D of the module R(P*) is isomorphic to Re.

Proof. It is clear that R(P>) is faithful as an Rp-module. Hence D2 Rp.
Let d be any nonzero element of D. Then pi[(e,,Rp/e,L")d]=0, because
Hompg(R(P~), R(P""))=eulépeu (cf. Theorem 3.21 of [7]). Therefore we may
assume that d,=d | eulép/euls"=r,, (r,e kp) by Lemma 1.1, where | means the
restriction and 7, is unique up to mod P*. Since R(P~) is injective, the natural
homomorphism eu]?p/enls"“ — euﬁp/euls" can be extended to a map
@n: R(P~) — R(P~). Because

(eHRP/eup”)rn = [¢n(enkl’/euﬁ”+l)]d = <p,,[(euﬁp/euls”+l)d]
= (euRP/eup”)rnH ’

we have r,,—r,,HEIS". Therefore #=(---, rn+15”, e Rp and it is easily seen
that d=7.

Lemma 1.3. Let S be a g-discrete valuation ring with unique maximal
ideal P (cf. [8]). Assume that B is a submodule of the torsion S-module M and
that B=3%", ®B,, where B, is a direct sum of cocyclic modules of order P". Then
B is a basic submodule of M if and only if

M = B,®---PB,D(B¥+MP")  for every n,
where BY¥=B, . DB, ,D-- (cf. Theorem 32.4 of [2]).

In the case of indecomposable, injective and P-primary modules the following
theorem was proved by Kuzmanovich [6].

Theorem 1.4. Let R be a Dedekind prime ring, let M be a P-primary module
and let D be the double centralizer of M. Then

(a) If O(M)=P", then D=Rp|P".

(b) If M is faithful, then D= Rp.

Proof. We may assume without loss of generality that R is a complete,
g-discrete valuation ring with unique maximal ideal P. Let H=Homg(M, M)
and D=Homgx(M, M).

(a) It is evident that D2R/P". By Theorems 3.7 and 3.38 of [7],
M=3" Pe;M, where e,M==R(P™) and e; is an idempotent in Homg(M, M).
Since O(M)=P", there is e; € H such that O(e; M)=P". Let d be any element
of D. Then (e;;M)d=e;(Md)<e; M. Thus, by Lemma 1.1, d; =d|e; M=r,
where rER and it is unique up to mod P”. Now, for any direct summand
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e;M, there exists @, H such that ¢,(e; M)=e;M. Letube any element of e;M.
Then ud=g@(v)d=@,(vd)=e,(vr)=ur, and thus we obtain d=r, as desired.

(b) It is evident that D2R. To prove the converse inclusion, let d be
any nonzero element of D.

Case I. If M is divisible, then M=>) PM;, where M;=R(P~). Let=;
be the projection map from M to M,. Then Md=(z;M)d=r,(Md)SM,.
Therefore, by Lemma 1.2, d;=d | M,=r,, where r,R. For any i, j, there is
an element @; ;&€ H such that ¢, ;(M,;)=M,. Let y be any element of M ; and
let @; (x)=y(x€ M;). Then yr,=yd=[pij(x)]|d=p;,(xd)=yr;. Thus we have
r;=7;. and so d=r for some rER.

Case. II. If M is reduced, then, it is evident that B¥30 for every natural
integer n, where B is defined in Lemma 1.3. Hence we have submodules
{M;} with the following properties:

(1) M,=R(P™), where n,<n,< -,

(2) M;=e;M, where e¢; is an idempotent element of H. Then
(e;M)d=e;(Md)<e;M and H=22Hom(e;M, e;M). Hence d;=d|M;=r; by
Lemma 1.2, where ;&R and r; is unique up to mod P"%. For any ¢, j (j>1),
there is an element ¢;;& H such that e;;(M;)=M,. Now let x be any element
of e,M. Then we have

(e;ix)1; = (€;:x)d = e;i(xd) = e;i(xr;) = (e;ix)r; .

Hence 7,—r,;€P", and so #=(--,7,+P’, --)ER, where r,=7; (n,_,<I=n,).
It is evident that d,=7 for every 7. Let u be any uniform element of M. Then
uR==R(P*) for some I by Lemma 3.37 of [7]. So there is §;&H such that 6;
maps e;M onto uR. Let 6,(e;y)=u, where y M. Then we obtain

ud = [0,(e;y)]d = 0.[(e;y)d] = 0:[(e:y)7] = ui .

Let m be any element of M. Then, by Theorem 3.38 of [7], mR is a direct sum
of a finite number of reduced cocyclic modules, and so md=mr, as desired.

Case ITII. If M is not reduced, then there are idempotent elements e,, e, H
such that M=e, M@e,M, where e,M is divisible and e,M is reduced. First we
assume that e,M is not bounded, then, by Cases I, II, there exist r,, 7,& R such
that d;=r;, where d;=d|e;M (i=1, 2). Let u be any uniform element in e, M.
Then there is = H such that @(e,M)=uR, because e,M contains a reduced,
cocyclic direct summand U such that O(U)SO(uR). Let @(x)=u, where
x<e,M. Then we have

ur, = ud = [p(x)]d = p(xd) = p(xr,) = ur, .

Therefore r,=r,. Second assume that ¢,M is of bounded order. By Case I,
there is r,& R such that d,=d|e,M=r, and e,M=3) @N; by Theorem 3.7 of
[7], where N;=R(P"). For each i, there is ;& H such that it induces a mono-
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morphism from N; to e,M. Letube any element of N; and let §,(v)=xE e, M.
Then we obtain

0:(ur,) = xd = [0,(u)]d = 0,(ud) .

Hence ur,—=ud, and thus we have r,=d. This completes the proof of Theorem
1.4.

Corollary 1.5. Let R be a bounded Dedekind prime ring, let M be a torsion
module and let M=) P Mp be the primary decomposition of M (cf. Theorem 3.2
of [7]). Then the double centralizer D of M is isomorphic to T1 .kp/p”p, where
O(Mp)=P"s, n, is a natural integer or o and P==0.

Proof. Let a=(r1,—}—13"») be any element of IT Rp/R", where 7,E Rp and
let m==31m,; be any element of M, where m,;& Mp,. Define ma=23]m, ;.
By Theorem 1.4, it is easily seen that a=D. Conversely let d be any element
of D. Since Mpd<Mp, we have d,,:rp—}—p"ﬁ, where d,=d|Mp. Then itis
evident that d=(rp—f—15"ﬂ).

2. Quasi-injective modules

Let R be a bounded Dedekind prime ring and let Q be the quotient ring of
R. In [7], the author proved that any injective module is a direct sum of minimal
right ideals of Q and modules of type P~ for various prime ideals P.

In this section, we shall characterize quasi-injective modules. By virtue of
Goldie’s theorem, Q=(F),, where F is a division ring. Throughout this section
we denote a complete martix units of Q=(F), by e;;.

Lemma 2.1. If a module M=>) ®M, and if N is a fully invariant sub-
module of M, then N=%} (M, N N) (cf. Lemma 9.3 of [3]).

Theorem 2.2 Let R be a bounded Dedekind prime ring and let M be a
module. Then M is quasi-injective if and only if it is;

(1) injective, or

(it) a torsion module such that every P-primary component Mp is a direct sum
of isomorphic cocyclic modules.

Proof. The sufficiency easily follows from Theorem 1.1 of [5] and Proposi-
tion 1.1 of [8].

Conversely assume that M is quasi-injective. Then the injective envelope
E(M) of M is isomorphic to 3 @M, where M, is a minimal right ideal of Q or
a module of type P. By Lemma 2.1 and Theorem 1.1 of [5], we have
M=>PM,, where M,=M,N M.

Case I. If M is torsion-free then we may assume that M,=e,,Q for all a.
Assume that M is not injective, then there is M, such that M,EM,=e,,Q. By
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virtue of Faith-Utumi’s Theorem (cf. Theorem 6 of [1], p. 91] there is an Ore
domain D such that

S =2%.5-1De;; SRS Q = (F),

and F is the quotient division ring of D. Now let

o)

Since U is a uniform right ideal of .S and Q is a quotient ring of S, we have
0=M,U. Hence there exists an element u,& M, such that 0zu,U=U as an
S-module. Let g be any element of M,(=e,,Q). Then there is an element d€ D
such that dg=ve& U, because D is an Ore domain. It is clear that O(v)=0(g).
Since u,U==U, there exists an element u€ U such that O(uu)=0(v). The
map 6:u,uR—>qR defined by wu,ur—>gqr, for rER, can be extended to the
map 8: M,—~>M,. Since §(M)S M and 8(u,u)=q< M, we have M,=M,, which
is a contradiction. Therefore M is injective.

Case II. If M is torsion, then M=>) @ Mp, where Mp is the P-primary
part of M and Mp is also quasi-injective. Hence we may assume that M is P-
primary, quasi-injective and that M=>PM,, where M ,= R(P")(n,=1, 2, --+,
or ). If M,=R(P") and Mg=R(P™) for a+[3, where co =n>m, then there
exists a monomorphism @: M ,—Ms (=R(P~)), and it can be extended to an
isomorphism @: M,—>M,. It is clear that @(M,)SMsNM=M,. This is a
contradiction, and thus m=n.

Case III. If M is mixed, then since E(M)=C&® T, where C is torsion-free
and T is the torsion part of E(M), we obtain M=C&®T, where C=CNM and
T=TNM. By Case I, C=3) @e,,Q and, by Case II, T=3 DT, Tp=
>3 DR(P™) for fixed n,, where T'p is the P-primary part of T and 7, is a natural
integer or co. Now assume that M is not injective, then there exists a prime
ideal P such that T'p is not injective, i.e., 7, is a natural integer. Consider the
module e,,R/e,,P™ for a fixed m (>n,). By Theorem 3.7 of [7], e,,R/e,;,P™ con-

dl,.eD}

. . 7
tains R(P™) as a direct summand. Hence there exists a map » such that e;, R—
R(P™)—0 is exact. It can be extended to a map 7:e,,Q—R(P~). Thus we
have R(P™)<7(e,;Q)S M, which is a contradiction.
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