COBORDISM OF REGULAR TORUS ACTIONS

Katsuhiro KOMIYA

(Received August 28, 1972)

1. Introduction and definitions

Let S^{1} be the unit sphere in the field of complex numbers \boldsymbol{C}. Let T^{k} be the k-dimensional torus, that is, $T^{k}=S^{1} \times \cdots \times S^{1}$ (k copies). We denote elements of T^{k} by coordinates ($\lambda_{1}, \cdots, \lambda_{k}$), $\lambda_{i} \in S^{1}$. For any sequence (i_{1}, \cdots, i_{n}) of integers with $0 \leqq i_{1}<i_{2}<\cdots<i_{n} \leqq k$, we define a subgroup $T_{\left(i_{1}, \cdots, i_{n}\right)}^{k}$ of T^{k} by

$$
T_{\left(i_{1}, \cdots, i_{n}\right)}^{k}=\left\{\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k} \mid \lambda_{j}=1 \text { for } j \notin\left\{i_{1}, \cdots, i_{n}\right\}\right\} .
$$

In particular, $T_{0}^{k}=1 \times \cdots \times 1, T_{i}^{k}=\underbrace{1 \times \cdots \times 1 \times S^{1}}_{i} \times 1 \times \cdots \times 1$ for $0<i \leqq k$ and $T_{(1,2, \ldots, k)}^{k}=T^{k}$.

Let $\varphi: T^{k} \times M \rightarrow M$ be a differentiable action of T^{k} on a compact oriented differentiable manifold M. We denote such an action by a pair (M, φ). (M, φ) is called regular, when for any point x in M the isotropy group $I(x)=$ $\left\{\lambda \in T^{k} \mid \varphi(\lambda, x)=x\right\}$ is of the form $T_{\left(i_{1}, \cdots, i_{n}\right)}^{k}$ for some sequence $\left(i_{1}, \cdots, i_{n}\right)$.

In particular, a regular T^{1}-action is called a semi-free S^{1}-action. If (M, φ) is a regular T^{k}-action, then the S^{1}-action $\left(M, \varphi \mid T_{i}^{k} \times M\right)$ is a semi-free S^{1}-action for $1 \leqq i \leqq k$. But the reverse, in general, is not true. For example, given a free S^{1}-action (M, φ), the T^{2}-action (M, Φ) defined by $\Phi\left(\left(\lambda_{1}, \lambda_{2}\right), x\right)=\varphi\left(\lambda_{1} \lambda_{2}, x\right)$ is not regular nevertheless the S^{1}-actions $\left(M, \Phi \mid T_{i}^{2} \times M\right)(i=1,2)$ are free.

In this paper, we study regular T^{k}-actions by the method of Stong [3]. In section 3, we obtain the result which asserts that a stationary point free regular
 action on a compact oriented differentiable manifold (Corollary 3-2). And in section 4, we also obtain the result which asserts that a cobordism class of a regular T^{k}-action (M, φ) on a closed oriented differentiable manifold M is determined by the normal bundle of the stationary point set in M (Theorem 4-1).

As a corollary to Theorem 4-1, we obtain that the cobordism group of regular T^{k}-actions on closed oriented manifolds is isomorphic to the tensor product of k copies of the cobordism group of semi-free S^{1}-actions on closed oriented manifolds (Corollary 4-3).

In the case of $k=1$, Corollary 3-2 and Theorem 4-1 have been obtained by Uchida [4].

2. Preliminaries

Let G be a compact Lie group. We consider a family \mathfrak{F} of subgroups of G satisfying that if $H \in \mathfrak{F}$ then $g H^{-1} \in \mathfrak{F}$ for all $g \in G$. All families considered will be assumed to satisfy this condition.

Given families $\mathfrak{F} \supset \mathfrak{F}^{\prime}$ of subgroups of G, an $\left(\mathfrak{F}, \mathfrak{F}^{\prime}\right)$-free G-action is a pair (M, φ) consisting of a compact oriented differentiable manifold M and a differentiable action $\varphi: G \times M \rightarrow M$ such that
(1) if $x \in M$, then the isotropy group $I(x) \in \mathfrak{F}$, and
(2) if $x \in \partial M$, then $I(x) \in \mathfrak{F}^{\prime}$.

If \mathfrak{F}^{\prime} is empty, then necessarily $\partial M=\phi$.
Given (M, φ), define $-(M, \varphi)=(-M, \varphi),-M$ the maniflod with the opposite orientation to M. Also define $\partial(M, \varphi)=(\partial M, \varphi \mid G \times \partial M), \partial M$ oriented by inward normal vectors.

Two $\left(\mathfrak{F}, \mathfrak{F}^{\prime}\right)$-free G-actions (M, φ) and $\left(M^{\prime}, \varphi^{\prime}\right)$ are cobordant, if there are an $\left(\mathfrak{F}^{\prime}, \mathfrak{F}^{\prime}\right)$-free G-action (V, ψ) and an $(\mathfrak{F}, \mathfrak{F})$-free G-action $\left(W, \psi^{\prime}\right)$ such that
(1) $\partial(V, \psi)=\partial(M, \varphi) \cup\left(-\partial\left(M^{\prime}, \varphi^{\prime}\right)\right) \quad$ (disjoint union)
(2) $\partial\left(W, \psi^{\prime}\right)=(M, \varphi) \cup(V, \psi) \cup\left(-\left(M^{\prime}, \varphi^{\prime}\right)\right) \quad$ (glueing the boundaries).

This cobordism relation is an equivalence relation. We denote by [M, φ] the cobordism class of (M, φ).

The set of cobordism classes of ($\mathfrak{F}^{(} \mathfrak{F}^{\prime}$)-free G-actions forms an abelian group with the operation induced by disjoint union, and this group will be denoted by $\Omega_{*}\left(G ; \mathfrak{F}, \mathfrak{F}^{\prime}\right)$. $\quad \Omega_{n}\left(G ; \mathfrak{F}, \mathfrak{F}^{\prime}\right)$ denotes the summand consisting of cobordism classes of ($\left.\mathfrak{F}, \mathfrak{F}^{\prime}\right)$-free G-actions (M, φ) with $\operatorname{dim} M=n$.

By the cartesian product, $\Omega_{*}\left(G: \mathfrak{F}, \mathfrak{F}^{\prime}\right)$ is an Ω_{*}-module, Ω_{*} the oriented cobordism ring.

The following two theorems are essentially the results of Conner and Floyd.

Theorem 2-1 (see [2; (5.3)]). Let G be a compact Lie group and $\mathfrak{F} \supset \mathfrak{F}^{\prime}$ $\supset \mathfrak{F}^{\prime \prime}$ families of subgroups of G. Then the sequence

$$
\cdots \rightarrow \Omega_{n}\left(G ; \mathfrak{F}^{\prime}, \mathfrak{F}^{\prime \prime}\right) \xrightarrow{i} \Omega_{n}\left(G ; \mathfrak{F}, \mathfrak{F}^{\prime \prime}\right) \xrightarrow{j} \Omega_{n}\left(G ; \mathfrak{F}, \mathfrak{F}^{\prime}\right) \xrightarrow{\partial} \Omega_{n-1}\left(G ; \mathfrak{F}^{\prime}, \mathfrak{F}^{\prime \prime}\right) \rightarrow \cdots
$$

is exact, where i and j are induced by considering $\left(\mathfrak{F}^{\prime}, \mathfrak{F}^{\prime \prime}\right)$-free or $\left(\mathfrak{F}, \mathfrak{F}^{\prime \prime}\right)$-free as being $\left(\mathfrak{F}, \mathfrak{F}^{\prime \prime}\right)$-free or $\left(\mathfrak{F}, \mathfrak{F}^{\prime}\right)$-free respectively, and ∂ is induced by sending $[M, \varphi]$ to $[\partial(M, \varphi)]$.

Turning to actions of T^{k}, non-trivial, non-isomorphic, and regular irreducible orthogonal representations of T^{k} on the 2-dimensional real vector space \boldsymbol{C} are given by the complex multiplication by i-th coordinate of T^{k} for $i=1,2, \cdots, k$. So we can express a translation of [1; Theorem 38.3] into regular T^{k}-actions in the following fashion:

Theorem 2-2. Suppose that ξ is an n-dimensional real vector bundle over a connected, locally connected, paracompact base, and that $\varphi: T^{k} \times \xi \rightarrow \xi$ is a regular T^{k}-action which carries each fibre orthogonally onto itself such that the stationary points are only zero vectors. There are then vector subbundles ξ_{i} of $\xi, i=1, \cdots, k$, with $\xi=\xi_{1} \oplus \cdots \oplus \xi_{k}$, and there exists a complex vector bundle structure on each ξ_{i} such that $\varphi\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right),\left(v_{1}, \cdots, v_{k}\right)\right)=\left(\lambda_{1} \cdot v_{1}, \cdots, \lambda_{k} \cdot v_{k}\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k}$ and $v_{i} \in \xi_{i}, i=1, \cdots, k$, where \cdot denotes the complex multiplication. In particular, each ξ_{i} is invariant under the action of T^{k}.

3. Cobordism of regular \boldsymbol{T}^{k}-actions

For $1 \leqq p \leqq k+1$ let \mathfrak{F}_{p} denote the family of subgroups $T^{k}{ }_{\left(i_{1}, \ldots, i_{n}\right)}$ of T^{k} such that $\left\{i_{1}, \cdots, i_{n}\right\}$ does not contain $\{1,2, \cdots, p\}$, and let $\mathfrak{F}_{0}=\phi$. Note that \mathfrak{F}_{k+1} is the family of all subgroups of the type $T^{k}{ }_{\left(i_{1}, \ldots, i_{n}\right)}$. We have inclusions

$$
\phi=\mathfrak{F}_{0} \subset \mathfrak{F}_{1} \subset \mathfrak{F}_{2} \subset \cdots \subset \mathfrak{F}_{k} \subset \mathfrak{F}_{k+1} .
$$

We note that if (M, φ) is a regular T^{k}-action, then the isotropy groups all belong to \mathfrak{F}_{p} if and only if $\left(M, \varphi \mid T^{k}{ }_{(1, \cdots, p)} \times M\right)$ is stationary point free.

Theorem 3-1. For $0 \leqq p<k$, the sequence of Theorem 2-1 for the families $\mathfrak{F}_{k+1} \supset \mathfrak{F}_{p+1} \supset \mathfrak{F}_{p}$ becomes a split exact sequence of Ω_{*}-modules:

$$
0 \rightarrow \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \Im_{p}\right) \xrightarrow{j} \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p+1}\right) \xrightarrow{\partial} \Omega_{*}\left(T^{k} ; \mathfrak{F}_{p+1}, \mathfrak{F}_{p}\right) \rightarrow 0
$$

Proof. It suffices to construct an Ω_{*}-module homomorphism $\gamma: \Omega_{*}\left(T^{k}\right.$; $\left.\mathfrak{F}_{p+1}, \mathfrak{F}_{p}\right) \rightarrow \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p^{++1}}\right)$ satisfying $\partial \gamma=1$.

Given $[M, \varphi] \in \Omega_{n}\left(T^{k} ; \mathfrak{F}_{p+1}, \mathfrak{F}_{p}\right)$, let N be the stationary point set of $T_{(1, \cdots, p)}^{k}$, i.e., $N=\left\{x \in M \mid \varphi(\lambda, x)=x\right.$ for all $\left.\lambda \in T^{k}{ }_{(1, \cdots, p)}\right\}$. Then N is a $T^{k}-$ invariant submanifold of M with $\partial N=N \cap \partial M$, and since all isotropy groups on ∂M belong to $\mathfrak{F}_{p}, N \cap \partial M=\phi$. Let ν be the normal bundle of N in M. The T^{k}-action φ induces a T^{k}-action $\bar{\varphi}: T^{k} \times \nu \rightarrow \nu$ by bundle maps covering φ. Since T_{p+1}^{k} freely acts on N by φ, T_{p+1}^{k} also freely acts on ν by $\bar{\rho}$. Let D be the unit disc in \boldsymbol{C}, and let T_{p+1}^{k} act on D by the complex multiplication by $(p+1)$ th coordinate of T_{p+1}^{k}. Then we obtain the orbit manifold $D(\nu) \times D / T_{p+1}^{k}$ by the diagonal action, where $D(\nu)$ is the disc bundle of ν. The submanifold $D(\nu) \times S^{1} / T_{p+1}^{k}$ of $D(\nu) \times D / T_{p+1}^{k}$ is equivariantly identified with $D(\nu)$ by an
identification $[v, z] \mapsto \overline{\mathcal{P}}\left(\left(1, \cdots, 1, z^{-1}, 1, \cdots, 1\right), v\right)$ where z^{-1} lies on $(p+1)$-th coordinate, and $D(\nu)$ is equivariantly identified with a tubular neighborhood $T(N)$ of N in M. So we can form an ($n+1$)-dimensional manifold W from $D(\nu) \times D / T_{p+1}^{k} \cup M \times[0,1]$ by identifying $D(\nu) \times S^{1} / T_{p+1}^{k}$ with $T(N) \times 1$. We may orient W such that the inclusion $M \rightarrow M \times 0 \subset W$ is orientation-preserving.

Define a T^{k}-action ψ on $D(\nu) \times D / T_{p+1}^{k}$ by $\psi(\lambda,[v, z])=[\overline{\mathcal{P}}(\lambda, v), z]$ for $\lambda \in T^{k}, v \in D(\nu)$ and $z \in D$. Then ψ is compatible with $\varphi \times 1$ on the identified part, so we obtain an $\left(\mathfrak{F}_{k+1}, \mathfrak{F}_{p+1}\right)$-free T^{k}-action (W, χ) where χ restricts to ψ on $D(\nu) \times D / T_{p+1}^{k}$ and to $\varphi \times 1$ on $M \times[0,1]$.

Performing the same construction on a cobordism shows that $\gamma([M, \varphi])$ $=[W, \chi]$ defines an Ω_{*}-module homomorphism. We have $\partial \gamma([M, \varphi])=$ $\left[\partial W, \chi \mid T^{k} \times \partial W\right]=[M, \varphi]$. The last equation follows by applying [2;(5.2)], in fact, $\left(\partial W, \chi \mid T^{k} \times \partial W\right)$ and (M, φ) are cobordant by a cobordism $(\partial W \times[0,1]$, $\left.\left(\chi \mid T^{k} \times \partial W\right) \times 1\right)$.
q.e.d.

Corollary 3-2. If (M, φ) is a stationary point free regular T^{k}-action on a closed oriented manifold M, then there is a regular T^{k}-action (\mathfrak{M}, Φ) on a compact oriented manifold \mathfrak{M} such that $\partial \mathfrak{M}=M$ and $\Phi \mid T^{k} \times \partial \mathfrak{M}=\varphi$.

Proof. We have the exact sequence

$$
\Omega_{*}\left(T^{k} ; \mathfrak{F}_{k}, \mathfrak{F}_{0}\right) \xrightarrow[\rightarrow]{i} \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right) \xrightarrow{j} \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{k}\right)
$$

for the families $\mathfrak{F}_{k+1} \supset \mathfrak{F}_{k} \supset \mathfrak{F}_{0}$. We note that $\Omega_{*}\left(T^{k} ; \mathfrak{F}_{k}, \mathfrak{F}_{0}\right)$ is the cobordism group of stationary point free regular T^{k}-actions on closed oriented manifolds and $\Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$ is the cobordism group of all regular T^{k}-actions on closed oriented manifolds. Thus it is sufficient to show that j is monic. Let $j_{p}: \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p}\right) \rightarrow \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p+1}\right)$ be the canonical homomorphism, then j_{p} is monic by Theorem 3-1 if $0 \leqq p<k$. So $j=j_{k-1} \circ \cdots \circ j_{1} \circ j_{0}$ is monic. q.e.d.

4. Cobordism of bundles with regular \boldsymbol{T}^{k}-actions

In this section, we show that a cobordism class of a regular T^{k}-action on a closed oriented manifold is determined by the normal bundle of the stationary point set.

Given $[M, \varphi] \in \Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$, let N be a connected component of the stationary point set of φ, and let $\nu \rightarrow N$ be the normal bundle of N in M. By Theorem 2-2, we have the decomposition

$$
(*) \quad \nu=\nu_{1} \oplus \nu_{2} \oplus \cdots \oplus \nu_{k}
$$

of complex vector bundles with the induced T^{k}-action $\overline{\mathcal{P}}$ satisfying
$\bar{\varphi}\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right),\left(v_{1}, \cdots, v_{k}\right)\right)=\left(\lambda_{1} \cdot v_{1}, \cdots, \lambda_{k} \cdot v_{k}\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k}$ and $\left(v_{1}, \cdots, v_{k}\right)$ $\in \nu\left(v_{i} \in \nu_{i}\right) . \quad N$ may be oriented compatibly with the canonical orientation of ν and the given orientation of $\tau(M)$. Let $f_{i}: N \rightarrow B U\left(n_{i}\right)$ be the classifying map of ν_{i}, then define a homomorphism

$$
\alpha: \Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right) \rightarrow \bigoplus_{m=r+2 \sum n_{i}} \Omega_{r}\left(B U\left(n_{1}\right) \times \cdots \times B U\left(n_{k}\right)\right)
$$

by sending $[M, \varphi]$ to $\oplus\left[N, f_{1} \times \cdots \times f_{k}\right]$ where the sum is taken over all connected components of the stationary point set.

Let $s: \oplus \Omega_{r}\left(B U\left(n_{1}\right) \times \cdots \times B U\left(n_{k}\right)\right) \rightarrow \oplus^{\prime} \Omega_{r}\left(B U\left(n_{1}\right) \times \cdots \times B U\left(n_{k}\right)\right)$ be the projection where the sum \oplus is taken over all $\left(r, n_{1}, \cdots, n_{k}\right)$ with $m=r+2 \sum_{i=1}^{k} n_{i}$, and \oplus^{\prime} is taken over all $\left(r, n_{1}, \cdots, n_{k}\right)$ with $m=r+2 \sum_{i=1}^{k} n_{i}$, and $n_{i} \neq 1$ for $i=1, \cdots, k$.

Then we have
Theorem 4-1. By the composition $s \alpha$

$$
\Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right) \cong \oplus \Omega_{r}\left(B U\left(n_{1}\right) \times \cdots \times B U\left(n_{k}\right)\right)
$$

where the sum is taken over all $\left(r, n_{1}, \cdots, n_{k}\right)$ with $m=r+2 \sum_{i=1}^{k} n_{i}$ and $n_{i} \neq 1$ for $i=1, \cdots, k$.

As immediate corollaries we have the following Corollaries 4-2 and 4-3. (Of course Corollary 3-2 can also be obtained as a corollary to Theorem 4-1.)

Corollary 4-2. Given a regular T^{k}-action (M, φ) on an m-dimensional closed oriented manifold, let ν be the normal bundle of a connected component of the stationary point set in M. If ν has at least one (complex) 1-dimensional summand in the decomposition $(*)$ for all connected components of the stationary point set, then $[M, \varphi]=0$ in $\Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$. In particular, if the stationary point set is 2-codimensional, then $[M, \varphi]=0$ in $\Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$.
$\Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right)$ is the cobordism group of semi-free S^{1}-actions on oriented closed manifolds. We consider the tensor product $\Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right) \otimes \cdots \otimes$ $\Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right)$, (over Ω_{*}), of k copies of $\Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right)$ and define a homomorphism $\beta: \Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right) \otimes \cdots \otimes \Omega_{*}\left(T^{1} ; \mathfrak{F}_{2}, \mathfrak{F}_{0}\right) \rightarrow \Omega_{*}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$ by sending $\left[M_{1}, \varphi_{1}\right] \otimes \cdots \otimes\left[M_{k}, \varphi_{k}\right]$ to $\left[M_{1} \times \cdots \times M_{k}, \varphi_{1} \times \cdots \times \varphi_{k}\right]$ where $\varphi_{1} \times \cdots \times \varphi_{k}$ is a regular T^{k}-action defined by $\varphi_{1} \times \cdots \times \varphi_{k}\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right),\left(x_{1} \cdots, x_{k}\right)\right)=$ $\left(\varphi_{1}\left(\lambda_{1}, x_{1}\right), \cdots, \varphi_{k}\left(\lambda_{k}, x_{k}\right)\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k}$ and $x_{i} \in M_{i}$. We then have

Corollary 4-3. β is an isomorphism of $\Omega_{*-\text { modules. }}$
Proof. By applying the Künneth formula to the spaces $B U\left(n_{1}\right) \times \cdots \times$ $B U\left(n_{k}\right)$, the Corollary follows from Theorem 4-1. q.e.d.

In order to prove Theorem 4-1, we introduce cobordism groups of complex vector bundles with regular T^{k}-actions.

We consider a $\left(T^{k}, p\right)$-manifold-bundle given by a collection $\left((M, \varphi),\left(\xi_{1}, \varphi_{1}\right)\right.$, $\left.\cdots,\left(\xi_{p}, \varphi_{p}\right)\right)$ where (M, φ) is a regular T^{k}-action on an oriented closed manifold, and ξ_{i} is a complex vector bundle over M with a regular T^{k}-action φ_{i} by complex vector bundle maps covering φ.

Let $\Omega_{m}\left(T^{k} ; n_{1}, \cdots, n_{p}\right)$ denote the group of cobordism classes of (T^{k}, p)-manifold-bundles with $\operatorname{dim} M=m$ and $\operatorname{dim}_{C} \xi_{i}=n_{i}$. Similarly, let $\hat{\Omega}_{m}\left(T^{k} ; n_{1}, \cdots, n_{p}\right)$ denote the group obtained under the assumption that T_{1}^{k} freely acts on M by φ (i.e. (M, φ) is $\left(\mathfrak{F}_{1}, \mathfrak{F}_{0}\right)$-free).

Lemma 4-4. $\quad \Omega_{n}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p}\right) \cong \underset{n=m+2 \Sigma n_{i}}{\oplus} \Omega_{m}\left(T^{k^{-p}} ; n_{1}, \cdots, n_{p}\right)$.
Proof. We define homomorphisms $\sigma: \Omega_{n}\left(T^{k} ; \mathfrak{F}_{k+1}, \Im_{p}\right) \rightarrow \underset{n=m+2 \Sigma n_{i}}{\oplus} \Omega_{m}\left(T^{k-p} ;\right.$
 $\sigma \rho=1$ and $\rho \sigma=1$ as follows:

Given $[M, \varphi] \in \Omega_{n}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{p}\right)$, let N be a connected component of the stationary point set of $T^{k}{ }_{(1, \ldots, p)}$. Then N is an oriented closed submanifold which is invariant under the action of T^{k}. Let ν be the normal bundle of N in M. The T^{k}-action φ induces the T^{k}-action $\bar{\rho}: T^{k} \times \nu \rightarrow \nu$ by bundle maps covering φ. Restrict $\bar{\rho}$ to the action of $T^{p}=T^{k}{ }_{(1, \ldots, p)}$, then the restricted T^{p} action on ν is satisfied with the hypothesis of Theorem 2-2, so we have the decomposition $\nu=\nu_{1} \oplus \cdots \oplus \nu_{p}$ of complex vector bundles with the $T^{p^{p}}$-action $\overline{\mathcal{P}}$ satisfying $\overline{\mathcal{P}}\left(\left(\lambda_{1}, \cdots, \lambda_{p}\right),\left(v_{1}, \cdots, v_{p}\right)\right)=\left(\lambda_{1} \cdot v_{1}, \cdots, \lambda_{p} \cdot v_{p}\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{p}\right) \in T^{p}$ and $\left(v_{1}, \cdots, v_{p}\right) \in \nu$. By the commutativity of the action of T^{k} and the nonequivalence of T^{p}-representations on fibres in disticnct summands of ν, we see that the decomposition of ν is compatible with the T^{k}-action $\overline{\mathscr{\rho}}$. Then we define σ by sending $[M, \varphi]$ to $\oplus\left[\left(N, \varphi^{\prime}\right),\left(\nu_{1}, \bar{\varphi}_{1}\right), \cdots,\left(\nu_{p}, \bar{\varphi}_{p}\right)\right]$ where, considering $T^{k-p}=T^{k}{ }_{(p+1, \cdots, k)}, \varphi^{\prime}=\varphi \mid T^{k-p} \times N$ and $\bar{\varphi}_{i}=\bar{\varphi} \mid T^{k-p} \times \nu_{i}$, and where the sum is taken over all connencted components of the stationary point set of $T^{k}{ }_{(1, \cdots, p)}$.

Next we define ρ by sending $\left[(M, \varphi),\left(\xi_{1}, \varphi_{1}\right), \cdots,\left(\xi_{p}, \varphi_{p}\right)\right] \in \oplus \Omega_{m}\left(T^{k-p} ;\right.$ $\left.n_{1} \cdots, n_{p}\right)$ to $[D(\xi), \mu]$, where $D(\xi)$ is the disc bundle of $\xi=\oplus_{i=1}^{p} \xi_{i}$ and is oriented by the complex structure and the orientation of M, and $\mu: T^{k} \times D(\xi) \rightarrow$ $D(\xi)$ is defined by $\mu\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right),\left(v_{1}, \cdots, v_{p}\right)\right)=\left(\varphi_{1}\left(\lambda^{\prime}, \lambda_{1} \cdot v_{1}\right), \varphi_{2}\left(\lambda^{\prime}, \lambda_{2} \cdot v_{2}\right), \cdots\right.$, $\left.\varphi_{p}\left(\lambda^{\prime}, \lambda_{p} \cdot v_{p}\right)\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k}, \lambda^{\prime}=\left(\lambda_{p+1}, \cdots, \lambda_{k}\right)$, and $\left(v_{1}, \cdots, v_{p}\right) \in D(\xi)$, $v_{i} \in \xi_{i}$.
$\sigma \rho=1$ is clear. $\quad \rho \sigma([M, \varphi])=[D(\nu), \overline{\mathcal{P}}]$ where $D(\nu)$ is identified equivariantly with a tubular neighborhood of the stationary point set of $T^{k}{ }_{(1, \cdots, p)}$ in M. From $[2 ;(5.2)]$ we have $[D(\nu), \bar{\varphi}]=[M, \varphi]$. q.e.d.

By the same way we have
Lemma 4-5. $\Omega_{n}\left(T^{k} ; \mathfrak{F}_{p+1}, \mathfrak{F}_{p}\right) \cong \underset{n=m+2 \Sigma n_{i}}{\oplus} \widehat{\Omega}_{m}\left(T^{k-p} ; n_{1}, \cdots, n_{p}\right)$.
Theorem 4-6. There is an exact sequence

$$
\begin{align*}
& 0 \rightarrow \Omega_{m}\left(T^{k} ; n_{1}, \cdots, n_{p}\right) \xrightarrow{F} \underset{m=r+2^{n_{p+1}}}{\oplus} \Omega_{r}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, n_{p+1}\right) \tag{*}\\
& \xrightarrow{S} \hat{\Omega}_{m-1}\left(T^{k} ; n_{1}, \cdots, n_{p}\right) \rightarrow 0 .
\end{align*}
$$

Proof. First we define the homomorphism F. Given $x=\left[(M, \varphi),\left(\xi_{1}, \varphi_{1}\right)\right.$, $\left.\cdots,\left(\xi_{p}, \varphi_{p}\right)\right] \in \Omega_{m}\left(T^{k} ; n_{1}, \cdots, n_{p}\right)$, let N be a connected component of the stationary point set of T_{1}^{k} in M. Let ν be the normal bundle of N in $M . \quad N$ may be oriented by the usual way. Then we define F by sending x to $\oplus\left[\left(N, \varphi^{\prime}\right)\right.$, $\left.\left(\xi_{1}^{\prime}, \varphi_{1}^{\prime}\right), \cdots,\left(\xi_{p}^{\prime}, \varphi_{p}^{\prime}\right),\left(\nu, \bar{\varphi}^{\prime}\right)\right]$, where, considering $T^{k-1}=T_{(2, \cdots, k),}^{k} \varphi^{\prime}=\varphi \mid T^{k-1} \times N$, $\xi_{i}^{\prime}=\xi_{i}\left|N, \varphi_{i}^{\prime}=\varphi_{i}\right| T^{k-1} \times \xi_{i}^{\prime}$ and $\bar{\varphi}^{\prime}=\bar{\rho} \mid T^{k-1} \times \nu$ with $\overline{\mathcal{\rho}}$ being the T^{k}-action by bundle maps covering φ, and where the sum is taken over all connected components of the stationary point set of T_{1}^{k}.

Next we define the homomorphism S. Given $y=\left[(M, \varphi),\left(\xi_{1}, \varphi_{1}\right), \cdots\right.$, $\left.\left(\xi_{p+1}, \varphi_{p+1}\right)\right] \in \Omega_{r}\left(T^{k-1} ; n_{1}, \cdots, n_{p+1}\right)\left(m=r+2 n_{p+1}\right)$, let $\pi: S\left(\xi_{p+1}\right) \rightarrow M$ be the sphere bundle of ξ_{p+1}, and let $S\left(\xi_{p+1}\right)$ be oriented as the boundary of $D\left(\xi_{p+1}\right)$, $D\left(\xi_{p+1}\right)$ oriented by the complex structure and the given orientation of M. Let $\pi^{*} \xi_{i}$ be the induced bundle on $S\left(\xi_{p+1}\right)$ from ξ_{i} by π for $i=1, \cdots, p$. Define $\mu: T^{k} \times S\left(\xi_{p+1}\right) \rightarrow S\left(\xi_{p+1}\right)$ by $\mu\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right), v\right)=\varphi_{p+1}\left(\left(\lambda_{2}, \cdots, \lambda_{k}\right), \lambda_{1} \cdot v\right)$ for $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in T^{k}$ and $v \in S\left(\xi_{p+1}\right)$, and $\mu_{i}: T^{k} \times \pi^{*} \xi_{i} \rightarrow \pi^{*} \xi_{i}$ by $\mu_{i}\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right),(u, v)\right)$ $=\left(\varphi_{i}\left(\left(\lambda_{2}, \cdots, \lambda_{k}\right), u\right), \mu\left(\left(\lambda_{1}, \cdots, \lambda_{k}\right), v\right)\right)$ for $u \in \xi_{i}$ and $v \in S\left(\xi_{p+1}\right)$. Then we define S by sending y to $\left[\left(S\left(\xi_{p+1}\right), \mu\right),\left(\pi^{*} \xi_{1}, \mu_{1}\right), \cdots,\left(\pi^{*} \xi_{p}, \mu_{p}\right)\right]$.

We take the direct sum of the sequences ($*$) over all (m, n_{1}, \cdots, n_{p}) with $n=m+2 \sum_{i=1}^{\mathscr{p}} n_{i}$, after which this becomes precisely the sequence

$$
\begin{gathered}
0 \rightarrow \Omega_{n}\left(T^{k+p} ; \mathfrak{F}_{k+p+1}, \mathfrak{F}_{p}\right) \xrightarrow{j} \Omega_{n}\left(T^{k+p} ; \mathfrak{F}_{k+p+1}, \mathfrak{F}_{p+1}\right) \\
\xrightarrow{\partial} \Omega_{n-1}\left(T^{k+p} ; \mathfrak{F}_{p+1}, \mathfrak{F}_{p}\right) \rightarrow 0
\end{gathered}
$$

of Theorem 3-1, using the identifications of Lemmas 4-4 and 4-5. Thus the exactness of the sequence ($*$) follows.
q.e.d.

Let $t: \oplus \Omega_{r}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, n_{p+1}\right) \rightarrow \oplus^{\prime} \Omega_{r}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, n_{p+1}\right)$ be the projection where the sum \oplus is taken over all $\left(r, n_{p+1}\right)$ with $m=r+2 n_{p+1}$, and \oplus^{\prime} is taken over all $\left(r, n_{p+1}\right)$ with $m=r+2 n_{p+1}$ and $n_{p+1} \neq 1$.

Then we have
Corollary 4-7. By the composition $t F$,

$$
\Omega_{m}\left(T^{k} ; n_{1}, \cdots, n_{p}\right) \cong \oplus \Omega_{r}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, n_{p+1}\right)
$$

where the sum is taken over all $\left(r, n_{p+1}\right)$ with $m=r+2 n_{p+1}$ and $n_{p+1} \neq 1$.
Proof. To prove this, it sufficess to show that the homomorphism S maps the summand $\Omega_{m-2}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, 1\right)$ isomorphically onto $\hat{\Omega}_{m-1}\left(T^{k} ; n_{1}, \cdots, n_{p}\right)$. We construct the inverse $R: \widehat{\Omega}_{m-1}\left(T^{k} ; n_{1}, \cdots, n_{p}\right) \rightarrow \Omega_{m-2}\left(T^{k-1} ; n_{1}, \cdots, n_{p}, 1\right)$ for S on this summand as follows.

Given $z=\left[(M, \varphi),\left(\xi_{1}, \varphi_{1}\right), \cdots,\left(\xi_{p}, \varphi_{p}\right)\right] \in \hat{\Omega}_{m-1}\left(T^{k} ; n_{1}, \cdots, n_{p}\right), T_{1}^{k}$ freely acts on M, so we obtain the n_{i}-dimensional complex vector bundles $\xi_{i}^{\prime} \rightarrow M^{\prime}$ by deviding out $\xi_{i} \rightarrow M$ by the actions of T_{1}^{k} for $i=1, \cdots, p$. Considering $T^{k-1}=T^{k}{ }_{(2, \cdots, p)}, \varphi$ and φ_{i} induce T^{k-1}-actions $\varphi^{\prime}: T^{k-1} \times M^{\prime} \rightarrow M^{\prime}$ and φ_{i}^{\prime} : $T^{k-1} \times \xi_{i}^{\prime} \rightarrow \xi_{i}^{\prime}$ with φ_{i}^{\prime} being actions by bundle maps covering φ^{\prime}. Let $L \rightarrow M^{\prime}$ be the complex line bundle associated to the principal S^{1}-bundle $M \rightarrow M^{\prime}$. We may give a T^{k-1}-action ψ on L by bundle maps which covers φ^{\prime} and restricts to $\varphi \mid T^{k-1} \times M$ on $S(L)=M$. Then we define R by sending z to $\left[\left(M^{\prime}, \varphi^{\prime}\right)\right.$, $\left.\left(\xi_{1}^{\prime}, \varphi_{1}^{\prime}\right), \cdots,\left(\xi_{p}^{\prime}, \varphi_{p}^{\prime}\right),(L, \psi)\right]$. It is easily checked that R is the required inverse for S on the summand.
q.e.d.

Proof of Theorem 4-1. $\quad \Omega_{m}\left(T^{k} ; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}\right)$ is identified with $\Omega_{m}\left(T^{k} ; 0\right)$ the group of cobordism classes of ($T^{k}, 1$)-manifold-bundles $((M, \varphi),(\xi, \psi))$ with $\operatorname{dim} M=m$ and $\operatorname{dim}_{C} \xi=0$ (i.e. $(M, \varphi)=(\xi, \psi)$). By repetition of Corollary 4-7, $\Omega_{m}\left(T^{k} ; 0\right)$ is isomorphic to $\oplus \Omega_{r}\left(T^{0} ; n_{1}, \cdots, n_{k}\right)$ where the sum is taken over all (r, n_{1}, \cdots, n_{k}) with $m=r+2 \sum_{t=1}^{k} n_{i}$ and $n_{i} \neq 1$ for $i=1, \cdots, k$. Corresponding bundles to their classifying maps, $\Omega_{r}\left(T^{0} ; n_{1}, \cdots, n_{k}\right)$ is isomorphic to $\Omega_{r}\left(B U\left(n_{1}\right) \times\right.$ $\left.\cdots \times B U\left(n_{k}\right)\right)$. Theorem 4-1 thus follows.
q.e.d.

Osaka University

References

[1] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
[2] P.E. Conner and E.E. Floyd: Maps of odd period, Ann. of Math. 84 (1966), 132-156.
[3] R.E. Stong: Equivariant bordism and ($\left.Z_{2}\right)^{k}$-actions, Duke Math. J. 37 (1970), 779 -785.
[4] F. Uchida: Cobordism groups of semi-free S^{1}-and S^{3}-actions, Osaka J. Math. 7 (1970), 345-351.

