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1. Introduction and definitions

Let S* be the unit sphere in the field of complex numbers C. Let T*
be the k-dimensional torus, that is, T#=.S"Xx .- x S* (k copies). We denote
elements of T'* by coordinates (\,, ***, Az), ;€ S*. For any sequence (z,, -+, 1,)
of integers with 0=4, <7, <..- <7,<k, we define a subgroup T%;, ... ; , of T* by

T’(zil,"-,i,.) = {(7\'1’ ) 7\‘lﬂ)ETkp\'i =1 fOl'jEE {iv ) Z,,}} .

In particular, Tg=1X X1, Ti=1X-+X1x8S*'x1x--x1 for 0<i<k and
-
Z
T?1,z,.-.,k)= T*.

Let @: T#*X M — M be a differentiable action of 7% on a compact oriented
differentiable manifold M. We denote such an action by a pair (M, @).
(M, @) is called regular, when for any point x in M the isotropy group I(x)=
{reT*|p(N, x)=x} is of the form T, ... ; , for some sequence (7, -+, 7).

In particular, a regular T-action is called a semi-free S*-action. 1f (M, @)
is a regular T'*-action, then the S*-action (M, ¢ |T ;X M)is a semi-free S'-action
for 1<i<k. But the reverse, in general, is not true. For example, given a free
S*-action (M, @), the T*-action (M, @) defined by ®((r;, Ny), £) =@(A; Ny, x)
is not regular nevertheless the S*-actions (M, ®|T3XxX M) (i=1, 2) are free.

In this paper, we study regular T*-actions by the method of Stong [3]. In
section 3, we obtain the result which asserts that a stationary point free regular
T*-action on a closed oriented differentiable manifold bounds as a regular T*-
action on a compact oriented differentiable manifold (Corollary 3-2). And in
section 4, we also obtain the result which asserts that a cobordism class of a
regular T*-action (M, @) on a closed oriented differentiable manifold M is de-
termined by the normal bundle of the stationary point set in M (Theorem 4-1).

As a corollary to Theorem 4-1, we obtain that the cobordism group of
regular T*-actions on closed oriented manifolds is isomorphic to the tensor
product of k copies of the cobordism group of semi-free S*-actions on closed
oriented manifolds (Corollary 4-3).
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In the case of k=1, Corollary 3-2 and Theorem 4-1 have been obtained by
Uchida [4].

2. Preliminaries

Let G be a compact Lie group. We consider a family $ of subgroups of
G satisfying that if HEE then gHg'ed for all g&G. All families con-
sidered will be assumed to satisfy this condition.

Given families FDF’ of subgroups of G, an (F, §’)-free G-action is a pair
(M, @) consisting of a compact oriented differentiable manifold M and a differ-
entiable action @: G X M — M such that

(1) if x& M, then the isotropy group I(x)E g, and

(2) if x€0M, then I(x)eF .

If ¥ is empty, then necessarily 0M=¢.

Given (M, @), define —(M, ¢)=(—M, ), —M the maniflod with the
opposite orientation to M. Also define 9(M, p)=(0M, |G X 0M), 0M oriented
by inward normal vectors.

Two (F, §')-free G-actions (M, @) and (M’, ¢’) are cobordant, if there are
an (§, §')-free G-action (V, yr) and an (3, F)-free G-action (W, y') such that

1) oV, y)=0(M, @)V (—o(M’, ")) (disjoint union)

(2) oW, v )=(M, p)V(V, )Y (—(M’, ¢')) (glueing the boundaries).

This cobordism relation is an equivalence relation. We denote by
[M, @] the cobordism class of (M, ¢).

The set of cobordism classes of (F, &’)-free G-actions forms an abelian
group with the operation induced by disjoint union, and this group will be
denoted by Qu«(G; &, F). Q.(G; &, ¥’) denotes the summand consisting of
cobordism classes of (§, ¥’)-free G-actions (M, @) with dim M=n.

By the cartesian product, Qu(G: &, §’) is an Q4-module, Q4 the oriented
cobordism ring.

The following two theorems are essentially the results of Conner and
Floyd.

Theorem 2-1 (see [2; (5.3)]). Let G be a compact Lie group and FOF
D families of subgroups of G.  Then the sequence
) ] ]
> 0G5 F, ) > QG T, T D 0G5 B, F) > QG T, T -

is exact, where i and j are induced by considering (', F"')-free or (T, T')-free as
being (&, B'')-free or (T, &')-free respectively, and 9 is induced by sending [M, @]

to [0(M, @)].
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Turning to actions of T'%, non-trivial, non-isomorphic, and regular irre-
ducible orthogonal representations of 7% on the 2-dimensional real vector
space C are given by the complex multiplication by i-th coordinate of T'* for
i=1, 2, -, k. So we can express a translation of [1; Theorem 38.3] into regular
T*-actions in the following fashion:

Theorem 2-2. Suppose that £ is an n-dimensional real vector bundle over
a connected, locally connected, paracompact base, and that @: T* X E—E is a regular
T*-action which carries each fibre orthogonally onto itself such that the stationary
points are only zero vectors. There are then vector subbundles &; of £,1=1, .-+ k,
with E=E, D DE,, and there exists a complex vector bundle structure on each E;
such that (N, 5 Ag), (Vs 05 VE))=(Ny* 0y, ===, Ao 0g) for (N, -+, Np)ET* and
v, €E;, i=1, .-+, k, where - denotes the complex multiplication. In particular, each
&, is invariant under the action of T*.

3. Cobordism of regular T*-actions

For 1<p<k—+1 let %p denote the family of subgroups T”(,-L___,,-») of T*
such that {z,, ---,Z,} does not contain {1, 2, ---, p}, and let F,=¢. Note that
By, 1s the family of all subgroups of the type T#, .., ;. We have inclusions

b= %oc%1c%zc ...C%kC%k+1 .

We note that if (M, @) is a regular T*-action, then the isotropy groups
all belong to ¥, if and only if (M, @|T*,, .. ,X M) is stationary point free.

Theorem 3-1. For 0=<p <k, the sequence of Theorem 2-1 for the
families By OByt DT, becomes a split exact sequence of Qy-modules :

] 0
0— Q*(Tk, %k+v %p) _J_) ‘Q*(Tky %k+1; <"-}p+1) - ‘Q*(Tk; %Iﬁ-p %p) —-0.

Proof. It suffices to construct an Qy-module homomorphism : Qu(T*%;
B v Bp) = Qu(T#; Brvs» Tpea) satisfying dy=1.

Given [M, 9]€Q(T*; Fpir, 8,), let N be the stationary point set of
T*,... p» 1.6, N={x&M |p(\, x)=x for al \&T* .. »,}. Then N is a T*-
invariant submanifold of M with 9N=N N 0M, and since all isotropy groups on
OM belong to %p’ N NoM=¢. Letv be the normal bundle of N in M. The
T*-action @ induces a T*-action @: T*Xv—» by bundle maps covering .
Since T, freely acts on N by @, T, also freely acts on » by . Let D be the
unit disc in C, and let T, act on D by the complex multiplication by (p-+1)-
th coordinate of T'%,,. Then we obtain the orbit manifold D(v)xD|T ., by
the diagonal action, where D(v) is the disc bundle of ». The submanifold
D(v)x S'[T}k,, of D(w)xD|T,,, is equivariantly identified with D(v) by an
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identification [v, ]—®((1, ---, 1,27%, 1, ---, 1), ) where 27" lies on (p+1)-th
coordinate, and D(v) is equivariantly identified with a tubular neighborhood
T(N)of N in M. So we can form an (n-+1)-dimensional manifold W from
D(v)xD|T%,,UMX][0, 1] by identifying D(v) X S*/T,,, with T(N)x1. We
may orient W such that the inclusion M —M X 0C W is orientation-preserving.

Define a T*-action » on D(»)XD|T;., by ¥(\, [v, 2])=[P(\, v), 2] for
reT* veD(v) and zeD. Then «ris compatible with @ X 1 on the identified
part, so we obtain an (.., §,.,)-free T*-action (W, X) where X restricts to
on D(v)xXD/|T,,,and to ¢ X1 on M X0, 1].

Performing the same construction on a cobordism shows that ([M, ¢])
=[W, X] defines an Q4-module homomorphism. We have 0y([M, p])=
[0W,X | T*x0W]=[M, ¢]. The last equation follows by applying [2;(5.2)],
in fact, (0W, X | T*x 0W) and (M, @) are cobordant by a cobordism (6% [0, 1],
(X|T*xoW)x1). q.e.d.

Corollary 3-2. If (M, @) is a stationary point free regular T*-action on
a closed oriented manifold M, then there is a regular T *-action (IR, D) on a compact
oriented manifold M such that OM=M and @ |T*x 0OM=qp.

Proof. We have the exact sequence

Q*(Tk; %{n %o) i’ Q*(Tk; %k-{-l! <&)) L Q*(Tk; %|k+1) %k)
0

for the families Fr,, DT DB,- We note that Qu(T*; T, &) is the cobordism
group of stationary point free regular T%-actions on closed oriented manifolds
and Qu(T*; ey, B,) is the cobordism group of all regular T*-actions on closed
oriented manifolds. Thus it is sufficient to show that j is monic. Let
75t Qa(T#; Birrs Bp) = Qs(T*; Frirs Fpea) be the canonical homomorphism,
then j, is monic by Theorem 3-1 if 0=<p<<k. So j=j;_,o+--0j,oj, is monic.

g.e.d.

4. Cobordism of bundles with regular T*-actions

In this section, we show that a cobordism class of a regular T*-action on
a closed oriented manifold is determined by the normal bundle of the stationary
point set.

Given [M, ¢]€ Qu(T*; Bisrs Bo)s let N be a connected component of the
stationary point set of ¢, and let »— N be the normal bundle of N in M. By
Theorem 2-2, we have the decomposition

() v=0,Dv, D Dr,

of complex vector bundles with the induced T*-action ¢ satisfying
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P(Nrs =5 M)y (D1 =+0, V&) =(N1 Dy, =5 Ngo0g) fOr (Ayy =+, Ae) E T and (v, +++, vg)
€v (v;€v;). N may be oriented compatibly with the canonical orientation of
v and the given orientation of 7(M). Let f;: N—BU(n;) be the classifying
map of »;, then define a homomorphism

o QT Bosy B) = B O,(BUm)x % BU))

by sending [M, @] to D[N, f,X -+ X fz] where the sum is taken over all con-
nected components of the stationary point set.

Let s: @Q,(BU(n)X - X BU(nz)) — @' Q(BU(n) X +-- x BU(ng)) be the

projection where the sum & is taken over all (7, n,, -+, n,) with m=r+23>3%, n;,
and @’ is taken over all (7, n,, -, mz) with m=r+2>3,%,n;, and n,+1 for
=1, ., k.

Then we have
Theorem 4-1. By the composition sa
QT B B) = BQ,(BU(m) X -+ X BU(ms)) ,

where the sum is taken over all (r, n,, -+, ny) with m=r~+2> . n; and n;%=1 for

i=1, -, k.

As immediate corollaries we have the following Corollaries 4-2 and 4-3. (Of
course Corollary 3-2 can also be obtained as a corollary to Theorem 4-1.)

Corollary 4-2. Given a regular T*-action (M, @) on an m-dimensional
closed oriented manifold, let v be the normal bundle of a connected component of the
stationary point set in M. If v has at least one (complex) 1-dimensional summand
in the decomposition (x) for all connected components of the stationary point set, then
M, p]=0 in Q. (T*;Br, Bo). In particular, if the stationary point set is
2—codimensional, then [M, ]=0 in Qu(T*; Trisr Bo)-

Qu(T*; B, B,) is the cobordism group of semi-free S'-actions on oriented
closed manifolds. We consider the tensor product Qu(7"; & B @ - @
Qu(T*; By Bo), (over Qy), of k copies of Qu(T*; By, B,) and define a homomor-
phism B: Q(T*; B, TR - QQ(T; o %O)QQ*(TIZ; Bern Bo) by sending
[M,, 9,]® ++ Q[My, @] to [MX -+ XMy, @, X+ X @] where @,X - Xy
is a regular T*-action defined by ¢, X X @ ((Ny ***s Ng)y (%; o+, X)) =
(@s(Aps %0), =+ sPu( Mgy %)) fOr (A, +++, Np)ET* and x,&€ M;. We then have

Corollary 4-3. 3 is an isomorphism of Qy-modules.

Proof. By applying the Kunneth formula to the spaces BU(n,)X -+ X
BU(ng), the Corollary follows from Theorem 4-1. q.e.d.
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In order to prove Theorem 4-1, we introduce cobordism groups of com-
plex vector bundles with regular T *-actions.

We consider a (T*, p)-manifold-bundle given by a collection (M, @), (&,, ®4),
«+, (€, @,)) where (M, @) is a regular T*-action on an oriented closed manifold,
and &, is a complex vector bundle over M with a regular T*-action @; by com-
plex vector bundle maps covering .

Let Q,(T* n,--,n,) denote the group of cobordism classes of
(T*, p)-manifold-bundles with dim M=m and dim¢§&,=mn;. Similarly, let
Q,,,(Tk; n,, -+, n,) denote the group obtained under the assumption that T}
freely acts on M by o (i.e. (M, @) is (T, T,)-free).

Lemma 4-4. QO (T% @i Tp)= B Qu(T* 2 n, o, m,).

n=m+2%n;
Proof. We define homomorphisms o: Q,(T*; §yr, §,) > D Q(T5%;
n-m+22n‘.
n,,m,) and pr B QT ?5m,, -, n,) > Q(T#; Bpiry §,)  satisfying

n=m+2%n,
ap=1 and po=1 as follows:

Given [M, p]€ Q.(T*; i1, T,), let N be a connected component of the
stationary point set of T%, . ,. Then N is an oriented closed submanifold
which is invariant under the action of T%. Let v be the normal bundle of N in
M. The T*-action ¢ induces the T*-action @: T#Xv—p by bundle maps
covering @. Restrict @ to the action of T?=T*, .. ,,, then the restricted 7”-
action on v is satisfied with the hypothesis of Theorem 2-2, so we have the
decomposition v=1»,P---Bv, of complex vector bundles with the T'?-action
@ satisfying @((N,, =, N,), Uy ++*5 0,)) =Ny 0y =5 N pew,) for (A, =, A)ET?
and (v, -1, v,)Ev. By the commutativity of the action of 7% and the non-
equivalence of T?-representations on fibres in disticnct summands of », we see
that the decomposition of » is compatible with the T*-action . Then we define
o by sending [M, @] to D[(N, @'), (v, P1), =+, (v, §,)] Where, considering
T**=T*,,,..0 @ =@|T* ?XN and $;=H|T* ?Xv;, and where the sum
is taken over all connencted components of the stationary point set of T%, .. ,,.

Next we define p by sending [(M, @), (&1, @1) =, (Ep Pp]E DQW(T*%;
n, -+, n,) to [D(E), n], where D(£) is the disc bundle of ¢=@ 2, ; and is
oriented by the complex structure and the orientation of M, and u: T* X D(§)—
D() is defined by (A, ===, i)y (0 o=+, U,))=(@:(N) N10 1), @, (A, Ny 1)), -0,
PN Npev,)) for (N, o, M)E T N =X psry =+, M), and (2, -+, v,)ED (&),
v,€E;.

op=lisclear. po([M, p])=[D(v), ] where D(v)isidentified equivariantly
with a tubular neighborhood of the stationary point set of T'%, ... ,, in M. From
[2; (5.2)] we have [D(v), §]=[M, @]. q.e.d.
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By the same way we have
Lemma 45. 0,(T* B B)= & Q(TH 25 myee, 1),

Theorem 4-6. There is an exact sequence

F
(*) 0— ‘Qm(Tk; LTI np) - @ ‘Qr(Tk—l; (CURMSR (S np+1)

m=r42npiy
S
5@, (T*; nyy ymy) — 0.

Proof. First we define the homomorphism F. Given x=[(M, @), (§,, ¢,),
5 (£ PHIE Qu(T*; ny, -+, m,), let N be a connected component of the station-
ary point set of T'{ in M. Let » be the normal bundle of N in M. N may be
oriented by the usual way. Then - we define F by sending x to & [(V, ¢'),
(&1, @1), -+, (&}, @b), (v, P)], where, considering T*'=T*, . 1, @'=@|T* XN,
El=E;|N, pi=@;|TF*XE, and @'=@|T* X v with P being the T*-action
by bundle maps covering ¢, and where the sum is taken over all connected
components of the stationary point set of T'{.

Next we define the homomorphism S. Given y=[(M, @), (€, @.), ***
Eprv Por)]EQT* s 1y ooy myy) (m=1+42m,,,), let z: S(€,.,)—M be the
sphere bundle of £ ,,,, and let S(£,,,) be oriented as the boundary of D(£,.,),
D(&,,,) oriented by the complex structure and the given orientation of M. Let
7*£; be the induced bundle on S(£,,,) from £; by = for i=1, ---,p. Define
w: T*x S(gpﬂ)“’S(gpﬂ) by p((Ms e M), )= ‘Ppﬂ((xzv 5 Mg)y Nye0) for
Ay -, M)ET*and ve S(Eﬁﬂ)) and p;: T* X 7*E; —m*E; by I"i((xv ) 7\"2)’ (u, v))
= (@i((Ng =y Ne)y %), (N, +++5 ), ©)) for u€E; and v€S(E,,,). Then we
define S by sending y to [(S(€,+.), 1), (Z*Ess ), -++, (*E, el

We take the direct sum of the sequences (*) over all (m, n,, ---,n,) with
n=m-2 32, n;, after which this becomes precisely the sequence

J
0— Qn(Tk+p; %k+p+v %1)) - Qn(Tk+p; %k+p+l) S:(”5'1>+1)
0
g Qn—l(T’H—p; %p+1) %p) - O

of Theorem 3-1, using the identifications of Lemmas 4-4 and 4-5. Thus the
exactness of the sequence () follows. q.e.d.

Let t: @Q,(T*";n, -, 0, n,.,)—> D' Q. (T*; n,, -+, m,, m,,,) be the
projection where the sum @ is taken over all (r, n,.,) with m=r+2n,,,, and
@’ is taken over all (r, n,,,) with m=r+2n,,, and n,,,+1.

Then we have

Corollary 4-7. By the composition tF,
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Qm(Tk; Mgy ooy np)ggaﬂr(Tk—l; Ny, *o05 Ny, np+1)
where the sum is taken over all (r, n,.,,) with m=r+-2n,., and n,,,#+1.

Proof. To prove this, it sufficess to show that the homomorphism S maps
the summand Q,,_(T*"*; n,, ++-, n,, 1) isomorphically onto flm_l(Tk; Ty *o0y My).
We construct the inverse R: Qm_l(T"; gy oy M) —> Qo T* 5 1y, oy my, 1) for
S on this summand as follows.

Given z=[(M, @), (&, @), -, (Ep: ‘Pp)]EQm—l(Tk; Nyy oty np), T freely
acts on M, so we obtain the 7,-dimensional complex vector bundles &; — M’
by deviding out &,—M by the actions of T} for i=1, ---,p. Considering
T*'=T*, . , ¢ and @, induce T*'-actions @': T**xXM' —M’  and @;:
T*'x g, — &} with @} being actions by bundle maps covering ¢’. Let L>M’
be the complex line bundle associated to the principal S*-bundle M —-M’. We
may give a T* '-action y» on L by bundle maps which covers ¢’ and restricts
to @|T**xM on S(L)y=M. Then we define R by sending 2 to [(M’, &),
(&1, @), ++, (85, #3)s (L, ¥)]. It is easily checked that R is the required inverse
for S on the summand. ' q.e.d.

Proof of Theorem 4-1.  Q,,(T*; Fe.1, o) is identified with Q,,(T%; 0) the
group of cobordism classes of (7%, 1)-manifold-bundles (M, @), (&, ¥)) with
dim M=m and dim¢ £=0 (i.e. (M, @)=(§, V¥)). By repetition of Corollary 4-7,
Q, (T*; 0) is isomorphic to P Q,(T°; n,, -+-, ny) where the sum is taken over all
(r, ny -+, mp) with m=r+23 % n;, and n,%1 for i=1, .-, k. Corresponding
bundles to their classifying maps, Q,(7°; n,, --+, ;) is isomorphic to Q,(BU(n,) X
«-XBU(ng)). Theorem 4-1 thus follows. q.e.d.
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