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1. Introduction and definitions

Let S1 be the unit sphere in the field of complex numbers C. Let Tk

be the ^-dimensional torus, that is, Tk=S1X--xS1 (k copies). We denote
elements of Tk by coordinates (Xv •••, Xk), Xf-e S1. For any sequence (iu •••,!„)
of integers with 0^/ !</ 2 < ••• <in^k, we define a subgroup T\iu...tin) of Tk by

In particular, r j = l x — x l , T J = l x — X lXiS'X 1 X — X 1 for 0<i<:k and

(1,2,.-,A:)—-*• •

Let 9?: TkxM^>M be a differentiable action of T* on a compact oriented
differentiable manifold M. We denote such an action by a pair (M, cp).
(My <p) is called regular, when for any point x in M the isotropy group 7(x)=
{X^Tk\<p(\, x)=x} is of the form T\ilr..tin^ for some sequence (/1} ••-,/„).

In particular, a regular 711-action is called a semi-free Sx-action. If (M, >̂)
is a regular T^-action, then the ^-action (M, 9? | T\xM) is a semi-free S^action
for 1 ^ / ^ A. But the reverse, in general, is not true. For example, given a free
^-action (M, 99), the T2-action (M, O) defined by O((XX, X2), x) = ^>(\1X29x)
is not regular nevertheless the ^-actions (M, O| T^xM) (f=l, 2) are free.

In this paper, we study regular T^-actions by the method of Stong [3]. In
section 3, we obtain the result which asserts that a stationary point free regular
T^-action on a closed oriented differentiable manifold bounds as a regular Tr-
action on a compact oriented differentiable manifold (Corollary 3-2). And in
section 4, we also obtain the result which asserts that a cobordism class of a
regular T^-action (M, <p) on a closed oriented differentiable manifold M is de-
termined by the normal bundle of the stationary point set in M (Theorem 4-1).

As a corollary to Theorem 4-1, we obtain that the cobordism group of
regular T^-actions on closed oriented manifolds is isomorphic to the tensor
product of k copies of the cobordism group of semi-free S ^actions on closed
oriented manifolds (Corollary 4-3).
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In the case of k=l> Corollary 3-2 and Theorem 4-1 have been obtained by
Uchida [4].

2. Preliminaries

Let G be a compact Lie group. We consider a family § of subgroups of
G satisfying that if H^% then gHg'1^^ for all j e G . All families con-
sidered will be assumed to satisfy this condition.

Given families §ID§' of subgroups of G, an (§, %')-free G-action is a pair
(My cp) consisting of a compact oriented differentiate manifold M and a differ-
entiable action cp: GxM-+M such that

(1) if # e M , then the isotropy group I(x)^%, and
(2) iix<=dM, thenl(x)<=:%'.

If § ' is empty, then necessarily dM=cj).
Given (M, ?>), define — (M, cp)=(—M, <p)y —M the maniflod with the

opposite orientation to M. Also define d(M, <p)=(dM, <p\Gx 3M), dM oriented
by inward normal vectors.

Two (%, §')-free G-actions (M, <p) and (M^ <p') are cobordant, if there are
an (g7, S0" f r e e G-action (V, yfr) and an (g, g)-free G-action (W, yjr') such that

(1) d(Vt ty)=d(M, cp)^(-d(M'y cp')) (disjoint union)
(2) d(W9 ^ 0 = W 9 ) u ( ^ ^ ^ ( - ( M 7 , ^ ) ) (glueing the boundaries).

This cobordism relation is an equivalence relation. We denote by
[My cp\ the cobordism class of (M, cp).

The set of cobordism classes of (g, g')-free G-actions forms an abelian
group with the operation induced by disjoint union, and this group will be
denoted by £2*(G; %, %'). Hrt(G; g, W) denotes the summand consisting of
cobordism classes of ($, gr)-free G-actions (M, cp) with dim M=n.

By the cartesian product, £1*(G: %, gr) is an H^-module, £1* the oriented
cobordism ring.

The following two theorems are essentially the results of Conner and
Floyd.

Theorem 2-1 (see [2; (5.3)]). Let G be a compact Lie group and %ZD%'
D??" families of subgroups of G. Then the sequence

• - - OJiG; %', 3") - C1JLG; %, %") I Cln{G; %, %') t an_x{G; %', g " ) - -

is exact, where i and j are induced by considering (%'y %")-free or (S, %")-free as
being (%, %")-free or (%, 7§')-free respectively, and 3 is induced by sending [M, cp]
to [d(M, <p)l
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Turning to actions of T*> non-trivial, non-isomorphic, and regular irre-
ducible orthogonal representations of Tk on the 2-dimensional real vector
space C are given by the complex multiplication by z-th coordinate of Tk for
t = l , 2, •••, k. So we can express a translation of [1; Theorem 38.3] into regular
T^-actions in the following fashion:

Theorem 2-2. Suppose that % is an n-dimensional real vector bundle over
a connected, locally connected,paracompact base, and that <p: Tkx%-*% is a regular
Tk-action which carries each fibre orthogonally onto itself such that the stationary
points are only zero vectors. There are then vector subbundles £,- of%,i=l, •••, k,
with £=?!©•• *©£AJJ and there exists a complex vector bundle structure on each f,-
such that cp((\ly ", Xk), (vlt •••, «>*))=(V»i> —, Xk-vk)for (Xly ~, \ * ) e Tk and
v^^, i=l, "'yky where • denotes the complex multiplication. In particular, each
%i is invariant under the action of Tk.

3. Cobordism of regular reactions

For l^p^k + 1 let %p denote the family of subgroups !T*«lf...iV of Tk

such that {i13 •••,!„} does not contain {1, 2, ~',p}, and let So=<£. Note that
%k+i is the family of all subgroups of the type Tk

Cil...iny We have inclusions

We note that if (M, (p) is a regular Traction, then the isotropy groups
all belong to ?$p if and only if (M, <p\Tk

Clt...tP-)xM) is stationary point free.

Theorem 3-1. For 0^p<k> the sequence of Theorem 2-1 for the
families S A J + I ^ S ^ + I ^ S ^ becomes a split exact sequence of £l*-modules:

0 -> £l*(Tk; %k+1, %p) L n*(T*; %k+1, %p+1) -> n # (r*; %p+1, %p)^0.

Proof. It suffices to construct an n*-module homomorphism y:Ql^(Tk;
%P+i, %P)^n*(Tk; %k+1, %p+1) satisfying 9 r = l .

Given [ M ^ j G ^ T ^ g ^ , ^ ) , let N be the stationary point set of
Tk

Clr..tP» i.e., N={x<=M \<p(X, x)=x for all XGT^.. ,^)}. Then AT is a 71*-
invariant submanifold of M with dN=N fl 3M, and since all isotropy groups on
dM belong to %p, N fl dM=<j>. Let v be the normal bundle of N in M. The
Traction <p induces a T^-action <p: TkXv-*v by bundle maps covering <p.
Since T *+1 freely acts on N by <py T *+1 also freely acts on z; by ^. Let Z) be the
unit disc in C, and let r*+1 act on D by the complex multiplication by (p+1)-
th coordinate of T$+1. Then we obtain the orbit manifold D(v)xD/Tp+1 by
the diagonal action, where D(v) is the disc bundle of v. The submanifold
D(v)xSl\Tk

p+x of D(v)xDjTk
p+1 is equivariantly identified with D{v) by an
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identification [v, #]f->^((l, •••, 1, z~~\ I, •••, 1), v) where z'1 lies on (p+l)-th.
coordinate, and D{v) is equivariantly identified with a tubular neighborhood
T(N) of N in M. So we can form an (/z+l)-dimensional manifold W from
Z)(i/)xZ)/rj+1UMx[O, 1] by identifying D(v) X S1 / T k

p+1 with T(iV)xl. We
may orient W such that the inclusion M-^Mx Oc W is orientation-preserving.

Define a reaction ^ on D{v)xDjTk
p+1 by i|r(X, |>, s ] )=[^ ( \ , »), s] for

\ G 71*, v^D{v) and z^D. Then i/r is compatible with <px 1 on the identified
part, so we obtain an (SA?+1> 2^+i)-free T^-action (JF, %) where % restricts to yjr
on D{v)xDjTk

p+1 a n d t o ^ x l o n M x [0, 1].
Performing the same construction on a cobordism shows that <Y{\M, <p\)

= [W,X] defines an fl*-module homomorphism. We have dfy([My<p])=
[dW,X\TkXdW] = [M, <p]. The last equation follows by applying [2; (5.2)],
in fact, (dW, X \ TkxdW) and (M, cp) are cobordant by a cobordism (9PFx [0, 1],
(X\Tkx3W)xl). q.e.d.

Corollary 3-2. 7/ (M, 9)) w a stationary point free regular Tk-action on
a closed oriented manifold M, then there is a regular Tk-action (3Ji, <3>) on a compact
oriented manifold 9Ji such that dWl=M and <£|

Proof. We have the exact sequence

9

for the families S ^ + 1 3 ^ 3 g 0 . We note that n*(7"*; %k, g0) is the cobordism
group of stationary point free regular T ̂ -actions on closed oriented manifolds
and n^(Tfe; %k+u So) is t n e cobordism group of all regular T^-actions on closed
oriented manifolds. Thus it is sufficient to show that j is monic. Let
j p : £l*(Tk; %k+1, $sp)^£l*(Tk; %k+1, %p+1) be the canonical homomorphism,
then j p is monic by Theorem 3-1 if 0^p<^k. So j=jk_1o"-oj1oj0 is monic.

q.e.d.

4. Cobordism of bundles with regular T^-actions

In this section, we show that a cobordism class of a regular T^-action on
a closed oriented manifold is determined by the normal bundle of the stationary
point set.

Given [M, ^]G(]w(Tfe; S*+i> So)> ^et N be a connected component of the
stationary point set of 93, and let v->N be the normal bundle of iV in M. By
Theorem 2-2, we have the decomposition

(*) *> = ^ 0 ^ 0

of complex vector bundles with the induced T^-action ^ satisfying
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19 • •• , \ k ) , (v19 ••*, » * ) ) = ( X i - ^ i , — , \k*vk) for (Xi, . - , \ * ) e Tk a n d (v19 ••• , *;*)

G^ ( C , . G 4 N may be oriented compatibly with the canonical orientation of
v and the given orientation of r(M). Let f{\ N^BU(nt) be the classifying
map of viy then define a homomorphism

a: Clm(Tk; &+1, g0) — © n,(5£/«)x -xBU(nk))

by sending [M, 93] to ©[iV, fxx ••• x / J where the sum is taken over all con-
nected components of the stationary point set.

Let s: ®ar{BU{n^x — X-BE/(w*))-*0'".-(•£ ^(wi)>< — xBU(nk)) be the
projection where the sum © is taken over all (r, nly --,nk) with m = r + 2 2 j i i ^ ,
and © r is taken over all (r, nly "',nk) with /w = r + 2 X l ^ i ^ > a n d ^ ^ l for
f = l , - , A.

Then we have

Theorem 4-1. By the composition sa

where the sum is taken over all (r, nv •••, nk) with m=r + 2 2 « * 1 wi a n ^ ,̂-4= 1 / ^

As immediate corollaries we have the following Corollaries 4-2 and 4-3. (Of
course Corollary 3-2 can also be obtained as a corollary to Theorem 4-1.)

Corollary 4-2. Given a regular Tk-action (M, <p) on an m-dimensional

closed oriented manifold, let v be the normal bundle of a connected component of the

stationary point set in M. If v has at least one {complex) l-dimensional summand

in the decomposition (*)/or all connected components of the stationary point set, then

[M, £>]=0 in Clm{Tk'$sk+v §0). In particular, if the stationary point set is

2-codimensional, then [M, £>]=() in

^ ( T 1 ; %2, So) is t n e cobordism group of semi-free ^-actions on oriented
closed manifolds. We consider the tensor product {"^(T1; %2y %0)® ••• ®
^(T1; $2 , So), (over fl*), of k copies of fl^T1; g2, So) and define a homomor-
phism /3: n*(Tx; S2, So)® - ®^(T1; S2, S 0 ) - ^ ( r ^ ; %k+i, So) by sending
[M19 ^ > J ® ••• ® [ M k y cpk\ t o [ M X X ••• x M k y <px X ••• Xcpk] w h e r e cpxx ••• Xcpk

is a regular T^-action defined by cpxx^-Xcpk ((X^ • • •, X^), (x1 • • •, ̂ ) ) =
*i), •••,?>*(>*> **)) f«r (^i» - » ^* )e T^ and x , e M , . We then have

Corollary 4-3. (3 is an isomorphism of Cl*-modules.

Proof. By applying the Kunneth formula to the spaces BU{n^)X ••• X
BU(nM), the Corollary follows from Theorem 4-1 . q.e.d.
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In order to prove Theorem 4—1, we introduce cobordism groups of com-
plex vector bundles with regular Tractions.

We consider a {Tk,p)-manifold-bundle given by a collection ((M, <p), (£„ 9^),
•••, (%p, <pp)) where (M, cp) is a regular Traction on an oriented closed manifold,
and %{ is a complex vector bundle over M with a regular T^-action <p£ by com-
plex vector bundle maps covering cp.

Let £lm(Tk\ nly ••• , np) denote the group of cobordism classes of
(Tk, ^>)-manifold-bundles with dimM=m and dimc^i = ni. Similarly, let
&m{Tk\ nlf '~,np) denote the group obtained under the assumption that T{
freely acts on M by cp (i.e. (M, cp) is (%v go)-free).

Lemma 4-4. fl^r*; &+1, g,)« 0 n^T*-*; nw - , »,).
2E

Proof. We define homomorphisms a: nn(T*;%k+19 %p) -> 0 £lm(T k-p;

i

« , , - , » , ) and p: © aJT»-p;nl, - , np)-+n,tt(T»; %k+1, g,) satisfying
<rp=l and po-=l as follows:

Given [M, <p]^fL,s(T
k; f$A+1, g^), let iV be a connected component of the

stationary point set of Tk
Ci... p> Then N is an oriented closed submanifold

which is invariant under the action of Tk. Let v be the normal bundle of N in
M. The T^-action cp induces the Traction cp:TkXv->v by bundle maps
covering cp. Restrict <p to the action of Tp= Tk

Cl... ̂ , then the restricted Tr-
action on v is satisfied with the hypothesis of Theorem 2-2, so we have the
decomposition v=vx®*-@vp of complex vector bundles with the T^-action
^ satisfying &((\ly —, \p), (v19 —, ̂ ))=(X1-»1, —, X^-^) for (X^ •••, Xp)^Tp

and (^j, • • • , ^ ) G I / . By the commutativity of the action of Tk and the non-
equivalence of ^^-representations on fibres in disticnct summands of v> we see
that the decomposition of v is compatible with the T^-action <p. Then we define
a by sending [M, cp] to 0[(iV, ?/)> (i/^ ^)y ••-, (z;̂ , ̂ ) ] where, considering
Tk-P^T^^...^ cp'=cp\Tk-pxN and ^ = ^ | T * " * X ^ , and where the sum
is taken over all connencted components of the stationary point set of Tk

Cl...p>

Next we define p by sending [(M, <p), (&, cp,\ ..., (^ , ^ ] G e O , ( r w ;
ni'"jnp) t 0 [^(?)> /̂ ]> where D(£) is the disc bundle of ?=0«-if l- and is
oriented by the complex structure and the orientation of M, and ^: T* X D(|)->
D(f) is defined by fi((\19 •••, X*), (^, •••, ̂ ))=(^1(X /, X^^)

X,.*v» for (Xt, •-, X*)GT* Xr=(X^+1, - , XA), and

o-p= 1 is clear. po-([M, ̂ >])= [i)(^), <p] where D(v) is identified equivariantly
with a tubular neighborhood of the stationary point set of Tk

Cl...^ in M. From
[2; (5.2)] we have [Z)(i;), ^]=[M, 91]. ' ' q.e.d.
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By the same way we have

Lemma 4-5. nn(Tk; g,+1, %p)^ © &m(T*-p; nly-y np).

Theorem 4-6. There is an exact sequence

(*) 0 -* nm(Tk; niy - , np) - 0 ft^T*"1; n» •-, »,, «,+1)

S
-+&m-i{T*;nu-,n,)-*0.

Proof. First we define the homomorphism F. Given x= [(M, <p), (f ly cp^)y

•••, (£^, <pp)]^flm(Tk; nly •••, n^), let iV be a connected component of the station-
ary point set of T* in M. Let z> be the normal bundle of N in M. N may be
oriented by the usual way. Then • we define F by sending x to 0 [(iV, <pf)y

(?{, <p'i), - , (fi, ^ ) , (i', ^ ) ] , where, considering T ' - ^ T V . . ^ , ^=9) | T'^xN,
^=z^.\N9 <p't=<pi\T*-1x!;'t and ̂ ^ ^ I T ^ X i ; with cp being the Traction
by bundle maps covering cpy and where the sum is taken over all connected
components of the stationary point set of T{.

Next we define the homomorphism S. Given y= [(My <p)y (f;ly <p1)y ••• ,
(far, Vp+M^nriT*-1; n19 -,np+1) (m = r+2np+1)y let n: 5(^+ 1 ) ->M be the
sphere bundle of %p+1, and let S(%p+i) be oriented as the boundary of D(%p+1)y

D(^p+1) oriented by the complex structure and the given orientation of M. Let
n^i be the induced bundle on S(f;p+1) from £,- by it for z' = l, -~,p. Define
lii TkxS(Zp+1)-+S(£p+1) by M ( \ 1 , - , X * ) , v ) = ^+ i ((X2 , - ,X*),X1-v) for
(Xw - , XA)e Tkand^e S(^+1), and /*,: T*X 2r*f,->2r*f, by ^((X^ - , X*), (uy v))
= (<Pi((\2, —,X*), «), M(Xi, — ,X*),»)) for MGf, and »GS(^+ 1) . Then we
define 5 by sending^ to [(5(^+1), ^), (?!*%„ fi,)y —, (TT*^, /A^)].

We take the direct sum of the sequences (*) over all (my nly •••, ŵ ) with
n=tn+2 2 i - i «••> after which this becomes precisely the sequence

0 - n r̂*"; g^^, ay i

of Theorem 3-1, using the identifications of Lemmas 4-4 and 4-5. Thus the
exactness of the sequence (*) follows. q.e.d.

Let t: ®nr(T
k-1;n19»-,np,n^1)^@'Clr(T*-1',n19-'-,np,np+1) be the

projection where the sum 0 is taken over all (r, np+1) with tn=r-\-2np+1, and
0 ' is taken over all (r, np+1) with m=r-\-2np+1 and np+14" 1.

Then we have

Corollary 4-7. #y ̂ Â  composition tFy
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r*-1; nly - , n p , np+1)

where the sum is taken over all (r, np+1) with m=r-\-2np+i and np+1^pl.

Proof. To prove this, it sufficess to show that the homomorphism S maps
the summand Qlfn.2(T

k~1; nly •••, npy 1) isomorphically onto &m-i{Tk\ nly •••, np).
We construct the inverse R: ^w_x(r^; n19 •••, n /,)->nw_2(T^"1; nv --,npy 1) for
S on this summand as follows.

Given * = [(M, <p), (f „ ^ ) , - , (f,, ^ ) ] e ^ ( T * ; n,, - , n,), T{ freely
acts on My so we obtain the rcrdimensional complex vector bundles %%-*Mf

by deviding out g,->M by the actions of T{ for i=ly •••,̂ >. Considering

Tk-i=Tkc2^}(p a n d ^_ induce ^ - a c t i o n s ^ : T ^ x M U M 7 and ^ :
Tk~lx%'i->%i with 9?J being actions by bundle maps covering q>'. Let L^>Mr

be the complex line bundle associated to the principal ^-bundle M->M\ We
may give a T^-act ion \]r on L by bundle maps which covers <p' and restricts
to q>\Tk~1xM on S(L) = M. Then we define i? by sending * to [(M', ?/)>
(?i> ^>i), ••*> (?i, ^ ) , (/-, ^ ) ] . It is easily checked that R is the required inverse
for S on the summand. q.e.d.

Proof of Theorem 4-1. CLm{Tk\ g ^ , §f0) is identified with nw(T*; 0) the
group of cobordism classes of (Tk, l)-manifold-bundles ((M, <p), (^, ty)) with
dimikf=m and d im c g=0 (i.e. (M, 9?)=(g, ^) ) . By repetition of Corollary 4-7,
£lm{Tk\ 0) is isomorphic to (B£lr(T°; nly ••-, w*) where the sum is taken over all
(r, »„ -~,nk) with w = r + 2 2 i i i % and ^-#=1 for i = l , •••,^. Corresponding
bundles to their classifying maps, n r(T°; «1} •••, nk) is isomorphic to Ilr(5U(n^) X
••• xBU{nk)). Theorem 4-1 thus follows. q.e.d.
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