COBORDISM OF REGULAR TORUS ACTIONS

KATSUHIRO KOMIYA

(Received August 28, 1972)

1. Introduction and definitions

Let S^1 be the unit sphere in the field of complex numbers C. Let T^k be the k-dimensional torus, that is, $T^k = S^1 \times \cdots \times S^1$ (k copies). We denote elements of T^k by coordinates $(\lambda_1, \dots, \lambda_k), \lambda_i \in S^1$. For any sequence (i_1, \dots, i_n) of integers with $0 \leq i_1 < i_2 < \cdots < i_n \leq k$, we define a subgroup $T^k_{(i_1,\dots,i_n)}$ of T^k by

$$T^{k}_{(i_{1},\cdots,i_{n})} = \{ (\lambda_{1},\cdots,\lambda_{k}) \in T^{k} | \lambda_{j} = 1 \text{ for } j \in \{i_{1},\cdots,i_{n}\} \}$$

In particular, $T_0^k = 1 \times \cdots \times 1$, $T_i^k = \underbrace{1 \times \cdots \times 1 \times S^1}_{i} \times 1 \times \cdots \times 1$ for $0 < i \le k$ and

 $T^{k}_{(1,2,\cdots,k)} = T^{k}.$

Let $\varphi: T^k \times M \to M$ be a differentiable action of T^k on a compact oriented differentiable manifold M. We denote such an action by a pair (M, φ) . (M, φ) is called *regular*, when for any point x in M the isotropy group I(x) = $\{\lambda \in T^k | \varphi(\lambda, x) = x\}$ is of the form $T^k_{(i_1, \dots, i_n)}$ for some sequence (i_1, \dots, i_n) .

In particular, a regular T^1 -action is called a *semi-free* S^1 -action. If (M, φ) is a regular T^k -action, then the S^1 -action $(M, \varphi | T^k \times M)$ is a semi-free S^1 -action for $1 \leq i \leq k$. But the reverse, in general, is not true. For example, given a free S^1 -action (M, φ) , the T^2 -action (M, Φ) defined by $\Phi((\lambda_1, \lambda_2), x) = \varphi(\lambda_1 \lambda_2, x)$ is not regular nevertheless the S^1 -actions $(M, \Phi | T^2_i \times M)$ (i=1, 2) are free.

In this paper, we study regular T^* -actions by the method of Stong [3]. In section 3, we obtain the result which asserts that a stationary point free regular T^* -action on a closed oriented differentiable manifold bounds as a regular T^* action on a compact oriented differentiable manifold (Corollary 3-2). And in section 4, we also obtain the result which asserts that a cobordism class of a regular T^* -action (M, φ) on a closed oriented differentiable manifold M is determined by the normal bundle of the stationary point set in M (Theorem 4-1).

As a corollary to Theorem 4-1, we obtain that the cobordism group of regular T^{k} -actions on closed oriented manifolds is isomorphic to the tensor product of k copies of the cobordism group of semi-free S^{1} -actions on closed oriented manifolds (Corollary 4-3).

К. Коміча

In the case of k=1, Corollary 3-2 and Theorem 4-1 have been obtained by Uchida [4].

2. Preliminaries

Let G be a compact Lie group. We consider a family \mathfrak{F} of subgroups of G satisfying that if $H \in \mathfrak{F}$ then $gHg^{-1} \in \mathfrak{F}$ for all $g \in G$. All families considered will be assumed to satisfy this condition.

Given families $\mathfrak{F} \supset \mathfrak{F}'$ of subgroups of G, an $(\mathfrak{F}, \mathfrak{F}')$ -free G-action is a pair (M, φ) consisting of a compact oriented differentiable manifold M and a differentiable action $\varphi: G \times M \to M$ such that

(1) if $x \in M$, then the isotropy group $I(x) \in \mathfrak{F}$, and

(2) if $x \in \partial M$, then $I(x) \in \mathfrak{F}'$.

If \mathfrak{F}' is empty, then necessarily $\partial M = \phi$.

Given (M, φ) , define $-(M, \varphi) = (-M, \varphi)$, -M the manifold with the opposite orientation to M. Also define $\partial(M, \varphi) = (\partial M, \varphi | G \times \partial M)$, ∂M oriented by inward normal vectors.

Two $(\mathfrak{F}, \mathfrak{F}')$ -free G-actions (M, φ) and (M', φ') are cobordant, if there are an $(\mathfrak{F}', \mathfrak{F}')$ -free G-action (V, ψ) and an $(\mathfrak{F}, \mathfrak{F})$ -free G-action (W, ψ') such that

(1) $\partial(V, \psi) = \partial(M, \varphi) \cup (-\partial(M', \varphi'))$ (disjoint union)

(2) $\partial(W, \psi') = (M, \varphi) \cup (V, \psi) \cup (-(M', \varphi'))$ (glueing the boundaries).

This cobordism relation is an equivalence relation. We denote by $[M, \varphi]$ the cobordism class of (M, φ) .

The set of cobordism classes of $(\mathfrak{F}, \mathfrak{F}')$ -free G-actions forms an abelian group with the operation induced by disjoint union, and this group will be denoted by $\Omega_*(G; \mathfrak{F}, \mathfrak{F}')$. $\Omega_n(G; \mathfrak{F}, \mathfrak{F}')$ denotes the summand consisting of cobordism classes of $(\mathfrak{F}, \mathfrak{F}')$ -free G-actions (M, φ) with dim M=n.

By the cartesian product, $\Omega_*(G: \mathfrak{F}, \mathfrak{F}')$ is an Ω_* -module, Ω_* the oriented cobordism ring.

The following two theorems are essentially the results of Conner and Floyd.

Theorem 2–1 (see [2; (5.3)]). Let G be a compact Lie group and $\mathfrak{F} \supset \mathfrak{F}'$ $\supset \mathfrak{F}''$ families of subgroups of G. Then the sequence

$$\cdots \to \Omega_n(G; \mathfrak{F}', \mathfrak{F}'') \xrightarrow{i} \Omega_n(G; \mathfrak{F}, \mathfrak{F}'') \xrightarrow{j} \Omega_n(G; \mathfrak{F}, \mathfrak{F}') \xrightarrow{\partial} \Omega_{n-1}(G; \mathfrak{F}', \mathfrak{F}') \to \cdots$$

is exact, where i and j are induced by considering $(\mathcal{F}', \mathcal{F}'')$ -free or $(\mathcal{F}, \mathcal{F}'')$ -free as being $(\mathcal{F}, \mathcal{F}'')$ -free or $(\mathcal{F}, \mathcal{F}')$ -free respectively, and ∂ is induced by sending $[M, \varphi]$ to $[\partial(M, \varphi)]$.

236

Turning to actions of T^{k} , non-trivial, non-isomorphic, and regular irreducible orthogonal representations of T^{k} on the 2-dimensional real vector space C are given by the complex multiplication by *i*-th coordinate of T^{k} for $i=1, 2, \dots, k$. So we can express a translation of [1; Theorem 38.3] into regular T^{k} -actions in the following fashion:

Theorem 2–2. Suppose that ξ is an n-dimensional real vector bundle over a connected, locally connected, paracompact base, and that $\varphi: T^k \times \xi \to \xi$ is a regular T^k -action which carries each fibre orthogonally onto itself such that the stationary points are only zero vectors. There are then vector subbundles ξ_i of ξ , $i=1, \dots, k$, with $\xi = \xi_1 \oplus \dots \oplus \xi_k$, and there exists a complex vector bundle structure on each ξ_i such that $\varphi((\lambda_1, \dots, \lambda_k), (v_1, \dots, v_k)) = (\lambda_1 \cdot v_1, \dots, \lambda_k \cdot v_k)$ for $(\lambda_1, \dots, \lambda_k) \in T^k$ and $v_i \in \xi_i$, $i=1, \dots, k$, where \cdot denotes the complex multiplication. In particular, each ξ_i is invariant under the action of T^k .

3. Cobordism of regular T^{k} -actions

For $1 \le p \le k+1$ let \mathfrak{F}_p denote the family of subgroups $T^{k}_{(i_1,\dots,i_n)}$ of T^{k} such that $\{i_1,\dots,i_n\}$ does not contain $\{1, 2, \dots, p\}$, and let $\mathfrak{F}_0 = \phi$. Note that \mathfrak{F}_{k+1} is the family of all subgroups of the type $T^{k}_{(i_1,\dots,i_n)}$. We have inclusions

$$\phi = \mathfrak{F}_0 \subset \mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \cdots \subset \mathfrak{F}_k \subset \mathfrak{F}_{k+1}$$
 .

We note that if (M, φ) is a regular T^{k} -action, then the isotropy groups all belong to \mathfrak{F}_{p} if and only if $(M, \varphi | T^{k}_{(1,\dots,p)} \times M)$ is stationary point free.

Theorem 3-1. For $0 \leq p < k$, the sequence of Theorem 2-1 for the families $\mathfrak{F}_{k+1} \supset \mathfrak{F}_{p+1} \supset \mathfrak{F}_p$ becomes a split exact sequence of Ω_* -modules:

$$0 \to \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_p) \xrightarrow{j} \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_{p+1}) \xrightarrow{\partial} \Omega_*(T^k; \mathfrak{F}_{p+1}, \mathfrak{F}_p) \to 0.$$

Proof. It suffices to construct an Ω_* -module homomorphism $\gamma: \Omega_*(T^k; \mathfrak{F}_{p+1}, \mathfrak{F}_p) \to \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_{p+1})$ satisfying $\partial \gamma = 1$.

Given $[M, \varphi] \in \Omega_n(T^k; \mathfrak{F}_{p+1}, \mathfrak{F}_p)$, let N be the stationary point set of $T^{*}_{(1,\dots,p)}$, i.e., $N = \{x \in M \mid \varphi(\lambda, x) = x \text{ for all } \lambda \in T^{*}_{(1,\dots,p)}\}$. Then N is a T^{*} -invariant submanifold of M with $\partial N = N \cap \partial M$, and since all isotropy groups on ∂M belong to \mathfrak{F}_p , $N \cap \partial M = \phi$. Let ν be the normal bundle of N in M. The T^* -action φ induces a T^* -action $\overline{\varphi}: T^* \times \nu \to \nu$ by bundle maps covering φ . Since T^*_{p+1} freely acts on N by φ , T^*_{p+1} also freely acts on ν by $\overline{\varphi}$. Let D be the unit disc in C, and let T^*_{p+1} act on D by the complex multiplication by (p+1)-th coordinate of T^*_{p+1} . Then we obtain the orbit manifold $D(\nu) \times D/T^*_{p+1}$ by the diagonal action, where $D(\nu)$ is the disc bundle of ν . The submanifold $D(\nu) \times S^1/T^*_{p+1}$ of $D(\nu) \times D/T^*_{p+1}$ is equivariantly identified with $D(\nu)$ by an

К. Коміча

identification $[v, z] \mapsto \overline{p}((1, \dots, 1, z^{-1}, 1, \dots, 1), v)$ where z^{-1} lies on (p+1)-th coordinate, and D(v) is equivariantly identified with a tubular neighborhood T(N) of N in M. So we can form an (n+1)-dimensional manifold W from $D(v) \times D/T_{p+1}^k \cup M \times [0, 1]$ by identifying $D(v) \times S^1/T_{p+1}^k$ with $T(N) \times 1$. We may orient W such that the inclusion $M \to M \times 0 \subset W$ is orientation-preserving.

Define a T^{k} -action ψ on $D(\nu) \times D/T^{k}_{p+1}$ by $\psi(\lambda, [\nu, z]) = [\overline{\varphi}(\lambda, \nu), z]$ for $\lambda \in T^{k}, \nu \in D(\nu)$ and $z \in D$. Then ψ is compatible with $\varphi \times 1$ on the identified part, so we obtain an $(\mathfrak{F}_{k+1}, \mathfrak{F}_{p+1})$ -free T^{k} -action (W, χ) where χ restricts to ψ on $D(\nu) \times D/T^{k}_{p+1}$ and to $\varphi \times 1$ on $M \times [0, 1]$.

Performing the same construction on a cobordism shows that $\gamma([M, \varphi]) = [W, \chi]$ defines an Ω_* -module homomorphism. We have $\partial \gamma([M, \varphi]) = [\partial W, \chi | T^k \times \partial W] = [M, \varphi]$. The last equation follows by applying [2; (5.2)], in fact, $(\partial W, \chi | T^k \times \partial W)$ and (M, φ) are cobordant by a cobordism $(\partial W \times [0, 1], (\chi | T^k \times \partial W) \times 1)$.

Corollary 3–2. If (M, φ) is a stationary point free regular T^* -action on a closed oriented manifold M, then there is a regular T^* -action (\mathfrak{M}, Φ) on a compact oriented manifold \mathfrak{M} such that $\partial \mathfrak{M} = M$ and $\Phi | T^* \times \partial \mathfrak{M} = \varphi$.

Proof. We have the exact sequence

$$\Omega_{*}(T^{k}; \mathfrak{F}_{k}, \mathfrak{F}_{0}) \xrightarrow{i} \Omega_{*}(T^{k}; \mathfrak{F}_{k+1}, \mathfrak{F}_{0}) \xrightarrow{j} \Omega_{*}(T^{k}; \mathfrak{F}_{k+1}, \mathfrak{F}_{k})}{\partial}$$

for the families $\mathfrak{F}_{k+1} \supset \mathfrak{F}_k \supset \mathfrak{F}_0$. We note that $\Omega_*(T^k; \mathfrak{F}_k, \mathfrak{F}_0)$ is the cobordism group of stationary point free regular T^k -actions on closed oriented manifolds and $\Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$ is the cobordism group of all regular T^k -actions on closed oriented manifolds. Thus it is sufficient to show that j is monic. Let $j_p: \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_p) \to \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_{p+1})$ be the canonical homomorphism, then j_p is monic by Theorem 3-1 if $0 \leq p < k$. So $j = j_{k-1} \circ \cdots \circ j_1 \circ j_0$ is monic. q.e.d.

4. Cobordism of bundles with regular T^{k} -actions

In this section, we show that a cobordism class of a regular T^{k} -action on a closed oriented manifold is determined by the normal bundle of the stationary point set.

Given $[M, \varphi] \in \Omega_m(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$, let N be a connected component of the stationary point set of φ , and let $\nu \to N$ be the normal bundle of N in M. By Theorem 2-2, we have the decomposition

$$(*) \quad \nu = \nu_1 \oplus \nu_2 \oplus \cdots \oplus \nu_k$$

of complex vector bundles with the induced T^{k} -action $\bar{\varphi}$ satisfying

238

 $\overline{\varphi}((\lambda_1, \dots, \lambda_k), (v_1, \dots, v_k)) = (\lambda_1 \cdot v_1, \dots, \lambda_k \cdot v_k)$ for $(\lambda_1, \dots, \lambda_k) \in T^k$ and $(v_1, \dots, v_k) \in \nu$ $(v_i \in \nu_i)$. N may be oriented compatibly with the canonical orientation of ν and the given orientation of $\tau(M)$. Let $f_i \colon N \to BU(n_i)$ be the classifying map of ν_i , then define a homomorphism

$$\alpha: \ \Omega_m(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0) \to \bigoplus_{m=r+2\sum n_i} \Omega_r(BU(n_1) \times \cdots \times BU(n_k))$$

by sending $[M, \varphi]$ to $\bigoplus [N, f_1 \times \cdots \times f_k]$ where the sum is taken over all connected components of the stationary point set.

Let $s: \oplus \Omega_r(BU(n_1) \times \cdots \times BU(n_k)) \to \oplus' \Omega_r(BU(n_1) \times \cdots \times BU(n_k))$ be the projection where the sum \oplus is taken over all (r, n_1, \dots, n_k) with $m = r + 2\sum_{i=1}^{k} n_i$, and \oplus' is taken over all (r, n_1, \dots, n_k) with $m = r + 2\sum_{i=1}^{k} n_i$, and $n_i \neq 1$ for $i = 1, \dots, k$.

Then we have

Theorem 4-1. By the composition $s\alpha$

 $\Omega_m(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0) \simeq \oplus \Omega_r(BU(n_1) \times \cdots \times BU(n_k)),$

where the sum is taken over all (r, n_1, \dots, n_k) with $m=r+2\sum_{i=1}^k n_i$ and $n_i \neq 1$ for $i=1, \dots, k$.

As immediate corollaries we have the following Corollaries 4-2 and 4-3. (Of course Corollary 3-2 can also be obtained as a corollary to Theorem 4-1.)

Corollary 4-2. Given a regular T^* -action (M, φ) on an m-dimensional closed oriented manifold, let ν be the normal bundle of a connected component of the stationary point set in M. If ν has at least one (complex) 1-dimensional summand in the decomposition (*) for all connected components of the stationary point set, then $[M, \varphi]=0$ in $\Omega_m(T^*; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$. In particular, if the stationary point set is 2-codimensional, then $[M, \varphi]=0$ in $\Omega_m(T^*; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$.

 $\Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0) \text{ is the cobordism group of semi-free } S^1\text{-actions on oriented} closed manifolds. We consider the tensor product <math>\Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0) \otimes \cdots \otimes \Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0)$, (over Ω_*), of k copies of $\Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0)$ and define a homomorphism $\beta \colon \Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0) \otimes \cdots \otimes \Omega_*(T^1; \mathfrak{F}_2, \mathfrak{F}_0) \to \Omega_*(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$ by sending $[M_1, \varphi_1] \otimes \cdots \otimes [M_k, \varphi_k]$ to $[M_1 \times \cdots \times M_k, \varphi_1 \times \cdots \times \varphi_k]$ where $\varphi_1 \times \cdots \times \varphi_k$ is a regular T^k -action defined by $\varphi_1 \times \cdots \times \varphi_k$ $((\lambda_1, \dots, \lambda_k), (x_1 \dots, x_k)) = (\varphi_1(\lambda_1, x_1), \dots, \varphi_k(\lambda_k, x_k))$ for $(\lambda_1, \dots, \lambda_k) \in T^k$ and $x_i \in M_i$. We then have

Corollary 4–3. β is an isomorphism of Ω_* -modules.

Proof. By applying the Künneth formula to the spaces $BU(n_1) \times \cdots \times BU(n_k)$, the Corollary follows from Theorem 4-1. q.e.d.

In order to prove Theorem 4–1, we introduce cobordism groups of complex vector bundles with regular T^{k} -actions.

We consider a (T^k, p) -manifold-bundle given by a collection $((M, \varphi), (\xi_1, \varphi_1), \dots, (\xi_p, \varphi_p))$ where (M, φ) is a regular T^k -action on an oriented closed manifold, and ξ_i is a complex vector bundle over M with a regular T^k -action φ_i by complex vector bundle maps covering φ .

Let $\Omega_m(T^k; n_1, \dots, n_p)$ denote the group of cobordism classes of (T^k, p) -manifold-bundles with dim M = m and dim $c \xi_i = n_i$. Similarly, let $\hat{\Omega}_m(T^k; n_1, \dots, n_p)$ denote the group obtained under the assumption that T_1^k freely acts on M by φ (i.e. (M, φ) is $(\mathfrak{F}_i, \mathfrak{F}_0)$ -free).

Lemma 4-4.
$$\Omega_n(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_p) \simeq \bigoplus_{n=m+2\sum n_i} \Omega_m(T^{k-p}; n_1, \cdots, n_p).$$

Proof. We define homomorphisms $\sigma: \Omega_n(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_p) \to \bigoplus_{\substack{n=m+2\sum n_i \\ n=m+2\sum n_i}} \Omega_m(T^{k-p}; n_1, \dots, n_p) \to \Omega_n(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_p)$ satisfying $\sigma \rho = 1$ and $\rho \sigma = 1$ as follows:

Given $[M, \varphi] \in \Omega_n(T^*; \mathfrak{F}_{k+1}, \mathfrak{F}_p)$, let N be a connected component of the stationary point set of $T^{k}_{(1,\dots,p)}$. Then N is an oriented closed submanifold which is invariant under the action of T^{k} . Let ν be the normal bundle of N in M. The T^{k} -action φ induces the T^{k} -action $\overline{\varphi}: T^{k} \times \nu \to \nu$ by bundle maps covering φ . Restrict $\overline{\varphi}$ to the action of $T^{p} = T^{k}_{(1,\dots,p)}$, then the restricted T^{p} -action on ν is satisfied with the hypothesis of Theorem 2–2, so we have the decomposition $\nu = \nu_1 \oplus \cdots \oplus \nu_p$ of complex vector bundles with the T^{p} -action $\overline{\varphi}$ satisfying $\overline{\varphi}((\lambda_1, \dots, \lambda_p), (v_1, \dots, v_p)) = (\lambda_1 \cdot v_1, \dots, \lambda_p \cdot v_p)$ for $(\lambda_1, \dots, \lambda_p) \in T^{p}$ and $(v_1, \dots, v_p) \in \nu$. By the commutativity of the action of T^{k} and the non-equivalence of T^{p} -representations on fibres in distinct summands of ν , we see that the decomposition of ν is compatible with the T^{k} -action $\overline{\varphi}$. Then we define σ by sending $[M, \varphi]$ to $\oplus [(N, \varphi'), (\nu_1, \overline{\varphi}_1), \dots, (\nu_p, \overline{\varphi}_p)]$ where, considering $T^{k-p} = T^{k}_{(p+1,\dots,k)}, \varphi' = \varphi | T^{k-p} \times N$ and $\overline{\varphi}_i = \overline{\varphi} | T^{k-p} \times \nu_i$, and where the sum is taken over all connencted components of the stationary point set of $T^{k}_{(1,\dots,p)}$.

Next we define ρ by sending $[(M, \varphi), (\xi_1, \varphi_1), \dots, (\xi_p, \varphi_p)] \in \bigoplus \Omega_m(T^{k-p};$ $n_1 \dots, n_p)$ to $[D(\xi), \mu]$, where $D(\xi)$ is the disc bundle of $\xi = \bigoplus_{i=1}^p \xi_i$ and is oriented by the complex structure and the orientation of M, and $\mu: T^k \times D(\xi) \rightarrow D(\xi)$ is defined by $\mu((\lambda_1, \dots, \lambda_k), (v_1, \dots, v_p)) = (\varphi_1(\lambda', \lambda_1 \cdot v_1), \varphi_2(\lambda', \lambda_2 \cdot v_2), \dots, \varphi_p(\lambda', \lambda_p \cdot v_p))$ for $(\lambda_1, \dots, \lambda_k) \in T^k, \lambda' = (\lambda_{p+1}, \dots, \lambda_k)$, and $(v_1, \dots, v_p) \in D(\xi)$, $v_i \in \xi_i$.

 $\sigma \rho = 1$ is clear. $\rho \sigma([M, \varphi]) = [D(\nu), \overline{\varphi}]$ where $D(\nu)$ is identified equivariantly with a tubular neighborhood of the stationary point set of $T^{k}_{(1,\dots,p)}$ in M. From [2; (5.2)] we have $[D(\nu), \overline{\varphi}] = [M, \varphi]$. q.e.d.

240

By the same way we have

Lemma 4-5. $\Omega_n(T^k; \mathfrak{F}_{p+1}, \mathfrak{F}_p) \simeq \bigoplus_{n=m+2\sum n_i} \hat{\Omega}_m(T^{k-p}; n_1, \cdots, n_p).$

Theorem 4–6. There is an exact sequence

$$(*) \qquad 0 \to \Omega_m(T^k; n_1, \dots, n_p) \xrightarrow{F} \bigoplus_{m=r+2n_{p+1}} \Omega_r(T^{k-1}; n_1, \dots, n_p, n_{p+1})$$
$$\xrightarrow{S} \hat{\Omega}_{m-1}(T^k; n_1, \dots, n_p) \to 0.$$

Proof. First we define the homomorphism F. Given $x=[(M, \varphi), (\xi_1, \varphi_1), \cdots, (\xi_p, \varphi_p)] \in \Omega_m(T^k; n_1, \cdots, n_p)$, let N be a connected component of the stationary point set of T_1^k in M. Let ν be the normal bundle of N in M. N may be oriented by the usual way. Then we define F by sending x to $\oplus [(N, \varphi'), (\xi'_1, \varphi'_1), \cdots, (\xi'_p, \varphi'_p), (\nu, \overline{\varphi}')]$, where, considering $T^{k-1}=T^k_{(2,\dots,k)}, \varphi'=\varphi|T^{k-1}\times N, \xi'_i=\xi_i|N, \varphi'_i=\varphi_i|T^{k-1}\times \xi'_i$ and $\overline{\varphi'}=\overline{\varphi}|T^{k-1}\times \nu$ with $\overline{\varphi}$ being the T^k -action by bundle maps covering φ , and where the sum is taken over all connected components of the stationary point set of T_1^k .

Next we define the homomorphism S. Given $y = [(M, \varphi), (\xi_1, \varphi_1), \cdots, (\xi_{p+1}, \varphi_{p+1})] \in \Omega_r(T^{k-1}; n_1, \cdots, n_{p+1}) \ (m = r + 2n_{p+1}), \text{ let } \pi : S(\xi_{p+1}) \to M \text{ be the sphere bundle of } \xi_{p+1}, \text{ and let } S(\xi_{p+1}) \text{ be oriented as the boundary of } D(\xi_{p+1}), D(\xi_{p+1}) \text{ oriented by the complex structure and the given orientation of } M. Let <math>\pi^*\xi_i$ be the induced bundle on $S(\xi_{p+1})$ from ξ_i by π for $i=1, \cdots, p$. Define $\mu: T^k \times S(\xi_{p+1}) \to S(\xi_{p+1})$, by $\mu((\lambda_1, \cdots, \lambda_k), v) = \varphi_{p+1}((\lambda_2, \cdots, \lambda_k), \lambda_1 \cdot v)$ for $(\lambda_1, \cdots, \lambda_k) \in T^k$ and $v \in S(\xi_{p+1}), \text{ and } \mu_i: T^k \times \pi^*\xi_i \to \pi^*\xi_i$ by $\mu_i((\lambda_1, \cdots, \lambda_k), (u, v)) = (\varphi_i((\lambda_2, \cdots, \lambda_k), u), \mu((\lambda_1, \cdots, \lambda_k), v))$ for $u \in \xi_i$ and $v \in S(\xi_{p+1})$. Then we define S by sending y to $[(S(\xi_{p+1}), \mu), (\pi^*\xi_1, \mu_1), \cdots, (\pi^*\xi_p, \mu_p)].$

We take the direct sum of the sequences (*) over all (m, n_1, \dots, n_p) with $n=m+2\sum_{i=1}^{p}n_i$, after which this becomes precisely the sequence

$$0 \to \Omega_n(T^{k+p}; \mathfrak{F}_{k+p+1}, \mathfrak{F}_p) \xrightarrow{j} \Omega_n(T^{k+p}; \mathfrak{F}_{k+p+1}, \mathfrak{F}_{p+1})$$
$$\xrightarrow{\partial}{\to} \Omega_{n-1}(T^{k+p}; \mathfrak{F}_{p+1}, \mathfrak{F}_p) \to 0$$

of Theorem 3-1, using the identifications of Lemmas 4-4 and 4-5. Thus the exactness of the sequence (*) follows.

Let $t: \oplus \Omega_r(T^{k-1}; n_1, \dots, n_p, n_{p+1}) \to \oplus' \Omega_r(T^{k-1}; n_1, \dots, n_p, n_{p+1})$ be the projection where the sum \oplus is taken over all (r, n_{p+1}) with $m=r+2n_{p+1}$, and \oplus' is taken over all (r, n_{p+1}) with $m=r+2n_{p+1}$, and $m_{p+1} \neq 1$.

Then we have

Corollary 4-7. By the composition tF,

К. Коміча

$$\Omega_m(T^k; n_1, \cdots, n_p) \simeq \bigoplus \Omega_r(T^{k-1}; n_1, \cdots, n_p, n_{p+1})$$

where the sum is taken over all (r, n_{p+1}) with $m=r+2n_{p+1}$ and $n_{p+1} \neq 1$.

Proof. To prove this, it sufficess to show that the homomorphism S maps the summand $\Omega_{m-2}(T^{k-1}; n_1, \dots, n_p, 1)$ isomorphically onto $\hat{\Omega}_{m-1}(T^k; n_1, \dots, n_p)$. We construct the inverse $R: \hat{\Omega}_{m-1}(T^k; n_1, \dots, n_p) \to \Omega_{m-2}(T^{k-1}; n_1, \dots, n_p, 1)$ for S on this summand as follows.

Given $z = [(M, \varphi), (\xi_1, \varphi_1), \dots, (\xi_p, \varphi_p)] \in \hat{\Omega}_{m-1}(T^k; n_1, \dots, n_p), T_1^k$ freely acts on M, so we obtain the n_i -dimensional complex vector bundles $\xi'_i \to M'$ by deviding out $\xi_i \to M$ by the actions of T_1^k for $i=1, \dots, p$. Considering $T^{k-1} = T^k_{(2,\dots,p)}, \varphi$ and φ_i induce T^{k-1} -actions $\varphi': T^{k-1} \times M' \to M'$ and $\varphi'_i:$ $T^{k-1} \times \xi'_i \to \xi'_i$ with φ'_i being actions by bundle maps covering φ' . Let $L \to M'$ be the complex line bundle associated to the principal S^1 -bundle $M \to M'$. We may give a T^{k-1} -action ψ on L by bundle maps which covers φ' and restricts to $\varphi \mid T^{k-1} \times M$ on S(L) = M. Then we define R by sending z to $[(M', \varphi'),$ $(\xi'_1, \varphi'_1), \dots, (\xi'_p, \varphi'_p), (L, \psi)]$. It is easily checked that R is the required inverse for S on the summand. q.e.d.

Proof of Theorem 4-1. $\Omega_m(T^k; \mathfrak{F}_{k+1}, \mathfrak{F}_0)$ is identified with $\Omega_m(T^k; 0)$ the group of cobordism classes of $(T^k, 1)$ -manifold-bundles $((M, \varphi), (\xi, \psi))$ with dim M=m and dim $_{\mathcal{C}} \xi=0$ (i.e. $(M, \varphi)=(\xi, \psi)$). By repetition of Corollary 4-7, $\Omega_m(T^k; 0)$ is isomorphic to $\oplus \Omega_r(T^0; n_1, \dots, n_k)$ where the sum is taken over all (r, n_1, \dots, n_k) with $m=r+2\sum_{i=1}^k n_i$ and $n_i \neq 1$ for $i=1, \dots, k$. Corresponding bundles to their classifying maps, $\Omega_r(T^0; n_1, \dots, n_k)$ is isomorphic to $\Omega_r(BU(n_1) \times \dots \times BU(n_k))$. Theorem 4-1 thus follows. q.e.d.

OSAKA UNIVERSITY

References

- [1] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
- [2] P.E. Conner and E.E. Floyd: Maps of odd period, Ann. of Math. 84 (1966), 132-156.
- [3] R.E. Stong: Equivariant bordism and $(Z_2)^k$ -actions, Duke Math. J. 37 (1970), 779 -785.
- [4] F. Uchida: Cobordism groups of semi-free S¹-and S³-actions, Osaka J. Math. 7 (1970), 345-351.