Sugano, K. Osaka J. Math. 7 (1970), 291–299

SEPARABLE EXTENSIONS AND FROBENIUS EXTENSIONS

Kozo SUGANO

(Received February 23, 1970)

As in our previous paper [2] we say that a ring Λ with 1 is a separable extension of a subring Γ which contains the same 1 if the map $\pi: \Lambda \otimes_{\Gamma} \Lambda \to \Lambda$ such that $\pi(x \otimes y) = xy$ splits as two sided Λ -module. There has been a problem whether a separable extension is a Frobenius extension. Recently, K. Nakane has given an affirmative answer to this problem in [8] under the condition that Λ is centrally projective over Γ in the sense of K. Hirata [4] and $m\Gamma \neq \Gamma$ holds for every maximal ideal m of a central subring R of Γ such that $\Lambda = \Gamma \otimes_R \Omega$ with Ω finitely generated projective over R. He also proved that if Λ is Γ -centrally projective and separable over Γ , Λ is a quasi-Frobenius extension of Γ . In this paper we shall show that the last condition can be omitted (Theorem 2). Next we consider the opposite situatuon, that is, $\Lambda \otimes_{\Gamma} \Lambda$ is Λ -centrally projective and Γ is a Γ - Γ -direct summand of Λ . In this case we can also see that Λ is a Frobenius extension of Γ if we assume the finitely generated projectivity of Λ_{Γ} or $_{\Gamma}\Lambda$ (Theorem 4).

1. Separable extensions

Throughout this paper we assume that all rings have the identity elements and all subrings contain the same 1 as the over ring. Furthermore whenever we say that M is a Γ - Γ -module or a two sided Γ -module for a ring Γ , we assume that M is unitary and associative, that is, (xm)y=x(my) for all $x, y \in \Gamma$ and $m \in M$.

Let Γ be a ring and M a Γ - Γ -module. Then, according to K. Hirata [4] we say that M is centrally projective over Γ , if M is isomorphic to a direct summand of a finite direct sum of the copies of Γ as two sided Γ -module. The next lemma is due to K. Hirata. But since we need it in this paper so often, we shall state here.

Lemma 1 (Prop. 5.2 [4]). If a two sided Γ -module M is centrally projective over Γ , M^{Γ} is finitely generated projective over C and $M \cong \Gamma \otimes_{C} M^{\Gamma}$ by the map: $x \otimes m \to xm$ and Hom $(_{\Gamma}M_{\Gamma}, _{\Gamma}M_{\Gamma}) \cong Hom (_{C}M^{\Gamma}, _{C}M^{\Gamma})$, where M^{Γ} $= \{m \in M \mid xm = mx \text{ for every } x \in \Gamma\}$ and C is the center of Γ .

The next theorem is an immediate consequence of Lemam 1. But it attracts our interests to itself.

Theorem 1. Let M be an arbitrary centrally projective Γ - Γ -module. Then, $\Omega = Hom(_{\Gamma}M, _{\Gamma}M)$ is an H-separable extension of $\Gamma/\alpha\Gamma$, where α is the annihilator ideal of M^{Γ} in C.

Proof. Since M is isomorphic to a direct summand of $\Gamma \oplus \cdots \oplus \Gamma$ as Γ - Γ -module, Hom ($_{\Gamma}M, _{\Gamma}M$) is also a direct summand of a finite direct sum of the copies of Hom ($_{\Gamma}\Gamma, _{\Gamma}M$), which is isomorphic to M as Γ - Γ -module. Hence, Ω is centrally projective over Γ , as M is so. Then, $\Omega = \Omega^{\Gamma} \otimes_{C} \Gamma$, where $\Omega^{\Gamma} = \text{Hom}(_{\Gamma}M_{\Gamma}, _{\Gamma}M_{\Gamma}) \cong \text{Hom}(_{C}M^{\Gamma}, _{C}M^{\Gamma})$. But Hom ($_{C}M^{\Gamma}, _{C}M^{\Gamma}$) is central separable over C/\mathfrak{a} , since M^{Γ} is C-finitely generated projective. Thus Ω is H-separable over $C/\mathfrak{a} \otimes_{C} \Gamma$, as $\Omega = \Omega^{\Gamma} \otimes_{C/\mathfrak{a}} C/\mathfrak{a} \otimes_{C} \Gamma$.

Lemma 2. A two sided Γ -module M is centrally projective over Γ if and only if there exist $f_j \in Hom(_{\Gamma}M_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ and $m_j \in M^{\Gamma}$, j=1, 2, ..., n, such that $m=\Sigma f_j(m)m_j$ for every $m \in M$.

Proof. M is centrally projective over Γ if and only if there exist Γ - Γ -homomorphisms f of M to $\Gamma \oplus \cdots \oplus \Gamma$, the direct sum of n copies of Γ for some n, and g of $\Gamma \oplus \cdots \oplus \Gamma$ to M such that $gf=1_M$. Assume that such f and g exist, and let $f_j=\pi_j f$, where π_j is the jth projection of $\Gamma \oplus \cdots \oplus \Gamma$ to Γ , and g_j the restriction of g to the jth direct summand Γ of $\Gamma \oplus \cdots \oplus \Gamma$. Then, g_j is given by the multiplication of some m_j in M^{Γ} , since g_j is in Hom $(_{\Gamma}\Gamma_{\Gamma}, _{\Gamma}M_{\Gamma})$, which is isomorphic to M^{Γ} . Then $\Sigma f_j(m)m_j=\Sigma g_jf_j(m)=gf(m)=1_M(m)=m$. Conversely, assume that there exist such $f_j \in \text{Hom} (_{\Gamma}M_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ and $m_j \in M^{\Gamma}$. Then, if we define f and g as follows;

$$f(m) = (f_1(m), f_2(m), \dots, f_n(m)), \quad g((x_1, x_2, \dots, x_n)) = \sum x_j m_j$$

then f is a Γ - Γ -map of M to $\Gamma \oplus \cdots \oplus \Gamma$ and g is a Γ - Γ -map of $\Gamma \oplus \cdots \oplus \Gamma$ to M such that $gf=1_M$. Hence M is centrally projective over Γ .

Let R be a commutative ring, Γ an R-algebra and A a finitely generated projective R-module. Denote $M = \Gamma \otimes_R A$. Then M is a centrally projective Γ - Γ -module. Let $f_j \in \text{Hom}(_RA, _RR)$ and $a_j \in A$ be such that $a = \sum f_j(a)a_j$ for every $a \in A$. Then, clearly $f_j = 1_{\Gamma} \otimes f_j$ and $1 \otimes a_j$ satisfy the condition of Lemma 2. Let m be an arbitrary in M^{Γ} . Then for any $x \in \Gamma$ and every j, $xf_j(m) = f_j(xm)$ $= f_j(mx) = f_j(m)x$, and we see that $f_j(m) \in C$, the center of Γ . Thus we see that $M^{\Gamma} = C \otimes_R A$. By this remark, we get.

Lemma 3. Let R be a commutative ring. Then if A is a finitely generated projective R-module and Γ is an R-algebra with its center C, $\Gamma \otimes_R A$ is centrally projective over Γ and $(\Gamma \otimes_R A)^{\Gamma} = C \otimes_R A$.

Proposition 1. Let Λ be a ring and Γ a subring of Λ . Then Λ is an H-separable extension of Γ if and only if $1 \otimes 1 \in \Delta(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ in $\Lambda \otimes_{\Gamma} \Lambda$ where $\Delta = V_{\Lambda}(\Gamma)$, the commutor subring of Γ in Λ .

Proof. Λ is *H*-separable over Γ if and only if $\Lambda \otimes_{\Gamma} \Lambda$ is centrally projective over Λ . This is the case if and only if there exist

$$\varphi_j \in \operatorname{Hom}(\Lambda \otimes_{\Gamma} \Lambda_{\Lambda}, \Lambda_{\Lambda})$$
 and $\delta_j \in (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ $j = 1, 2, \dots, n$

such that $\Sigma \varphi_j(1 \otimes 1) \delta_j = 1 \otimes 1$, since $1 \otimes 1$ generates $\Lambda \otimes_{\Gamma} \Lambda$ as two sided Λ -module. On the other hand, since Hom $(_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda}, _{\Lambda} \Lambda_{\Lambda})$ is isomorphic to Δ by the map: $\varphi \rightarrow \varphi(1 \otimes 1)$, each Λ - Λ -map φ of $\Lambda \otimes_{\Gamma} \Lambda$ to Λ is given by the multiplication of some $d \in \Delta$. Hence the above φ_j and δ_j exist if and only if there exist $d_j \in \Delta$ and $\delta_j \in (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ such that $1 \otimes 1 = \Sigma d_j \delta_j$, i.e., $1 \otimes 1 \in \Delta(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$.

Now, let a ring Λ be left finitely generated projective over a subring Γ of it. Then there exist $f_j \in \text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)$ and $z_j \in \Lambda, j=1, 2, ..., n$, such that $x=\sum f_i(x)z_i$ for every $x \in \Lambda$. On the other hand, we have Λ - Λ -isomorphisms

$$\Lambda \otimes_{\Gamma} \Lambda \to \operatorname{Hom}(\Gamma_{\Gamma}, \Lambda_{\Gamma}) \otimes_{\Gamma} \Lambda \to \operatorname{Hom}(\operatorname{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, \Lambda_{\Gamma})$$

such that the composition σ of them is given by $\sigma(x \otimes y)(f) = xf(y)$ for every $f \in \text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)$. Then we have a commutative diagram of Λ - Λ -maps

$$\begin{array}{c} \Lambda \otimes_{\Gamma} \Gamma \xrightarrow{\sigma} \operatorname{Hom} (\operatorname{Hom} (_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, \Lambda_{\Gamma}) \\ \pi \swarrow & \checkmark & \Psi \\ \Lambda & & & & & \\ \end{array}$$

with $\Psi(\psi) = \Sigma \psi(f_j) z_j$, $\pi(x \otimes y) = xy$, for $\psi \in \text{Hom}(\text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, \Lambda_{\Gamma})$ and $x, y \in \Lambda$, because $\Psi \sigma(x \otimes y) = \Sigma \sigma(x \otimes y)(f_j) z_j = x \Sigma f_j(y) z_j = xy = \pi(x \otimes y)$. From this fact, we obtain

Proposition 2. Let a ring Λ be left finitely generated projective over a subring Γ , and f_j and z_j be as above. Then, Λ is a separable extension of Γ if and only if there exists a Λ - Γ -homomorphism h of Hom ($_{\Gamma}\Lambda$, $_{\Gamma}\Gamma$) to Λ such that $\Sigma h(f_j)z_j=1$.

Proof. Λ is separable over Γ if and only if there exists $\Sigma x_i \otimes y_i$ in $(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ such that $\pi(\Sigma x_i \otimes y_i) = 1$. But σ is an isomorphism and induces a one to one correspondence between $(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ and Hom $(_{\Lambda} \text{Hom} (_{\Gamma} \Lambda, _{\Gamma} \Gamma)_{\Gamma}, _{\Lambda} \Lambda_{\Gamma})$. Hence there exists $\Sigma x_i \otimes y_i \in (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ with $\pi(\Sigma x_i \otimes y_i) = 1$ if and only if there exists an $h \in \text{Hom} (_{\Lambda} \text{Hom} (_{\Gamma} \Lambda, _{\Gamma} \Gamma)_{\Gamma}, _{\Lambda} \Lambda_{\Gamma})$ with $\Psi(h) = 1$, i.e., $\Sigma h(f_j) z_j = 1$.

Let Λ be a separable extension of Γ such that Λ is centrally projective over Γ . Then, there exist $f_i \in \text{Hom}(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ and $d_i \in \Delta$ as Lemma 2 and

 $h \in \text{Hom}(_{\Lambda}\text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, _{\Lambda}\Lambda_{\Gamma})$ with $\Sigma h(f_{j})d_{j}=1$ by Proposition 2. Then we see that $h(\text{Hom}(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma}))\subset \Delta$. In fact, let f be an arbitrary in $\text{Hom}(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ and r in Γ . Since $(r \circ f)(x)=f(xr)=f(x)r=(fr)(x)$ for every $x \in \Lambda, r \circ f = fr$. Then, $rh(f)=h(r \circ f)=h(fr)=h(f)r$ for any $r \in \Gamma$, since h is a Λ - Γ -map. Therefore $h(f) \in \Delta$. Thus h induces a left Δ -map \bar{h} of $\text{Hom}(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ to Δ , if we restrict h to $\text{Hom}(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$. Clearly, $\Sigma \bar{h}(f_{j})d_{j}$ $= \Sigma h(f_{j})d_{j}=1$. On the other hand, $\Lambda = \Gamma \otimes_{C} \Delta$ by Lemma 1, where C is the center of Γ . Then, since

 $\operatorname{Hom}\left({}_{\Gamma}\Gamma \otimes_{\mathcal{C}} \Delta_{\Gamma}, {}_{\Gamma}\Gamma_{\Gamma}\right) \cong \operatorname{Hom}\left({}_{\mathcal{C}}\Delta, {}_{\mathcal{C}}\operatorname{Hom}\left({}_{\Gamma}\Gamma_{\Gamma}, {}_{\Gamma}\Gamma_{\Gamma}\right)\right) \cong \operatorname{Hom}\left({}_{\mathcal{C}}\Delta, {}_{\mathcal{C}}C\right)$

as Δ - Δ -map, we have a Δ - Δ -isomorphism ν of Hom $(_{C}\Delta, _{C}C)$ to Hom $(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Gamma_{\Gamma})$ such that $\nu(f)(rd) = rf(d)$ for $r \in \Gamma$ and $d \in \Delta$. Let $\overline{f}_{j} = \nu^{-1}(f_{j})$ for every j. Then, $\Sigma \overline{f}_{j}(d) d_{j} = d$ for any $d \in \Delta$. Let $h' = h\nu$. Then h' is a left Δ -map of Hom $(_{C}\Delta, _{C}C)$ to Δ , and $\Sigma h'(\overline{f}_{j})d_{j} = \Sigma h(\nu(\overline{f}_{j}))d_{j} = \Sigma h(f_{j})d_{j} = 1$. This implies that Δ is a separable C-algebra by virtue of Proposition 2.

From this remark we obtain

Theorem 2. Let Λ be a separable extension of Γ such that Λ is centrally projective over Γ . Then we have

1) Δ is a separable C-algebra where C is the center of Γ , and Λ is a Frobenius extension of Γ .

2) Λ is a centrally projective H-separable extension of Γ' and Γ' is a separable extension of Γ , where $\Gamma' = V_{\Lambda}(V_{\Lambda}(\Gamma))$.

Proof. 1). Δ is a separable *C*-algebra by the above remark. Hence, Δ is a Frobenius *C*-algebra by Theorem 4.2 [1]. Then, since $\Lambda \cong \Gamma \otimes_C \Delta$, Λ is a Frobenius extension of Γ (see Theorem 3 [9]). 2). Let *C'* be the center of Δ . Then, since $V_{\Lambda}(C') \cong \Gamma' \otimes_{C'} \Delta$, $V_{\Lambda}(C') = \Gamma' \Delta \supset \Gamma \Delta = \Lambda$, and $\Lambda = V_{\Lambda}(C')$. Then we see that *C'* is the center of Λ . Then $\Lambda \cong \Gamma' \otimes_{C'} \Delta$, Λ is centrally projective and *H*-separable over Γ' . Next, since $\Lambda = \Gamma' \otimes_{C'} \Delta$, Γ' is a $\Gamma' - \Gamma'$ direct summand, consequently, a Γ - Γ -direct summand of Λ , which is centrally projective over Γ . Thus Γ' is centrally projective over Γ , and $\Gamma' = V_{\Gamma'}(\Gamma) \otimes_C \Gamma$ by Lemma 1. But $V_{\Gamma'}(\Gamma) = \Gamma' \cap V_{\Lambda}(\Gamma) = V_{\Lambda}(\Delta) \cap \Delta = C'$, which is a separable *C*-algebra as Δ is a separable *C*-algebra. Hence Γ' is a separable extension of Γ .

Now, we can see that Nakane's theorem in [8] can be obtained under a weaker condition concerning separability.

Corollary 1. Let Γ and Ω be R-algebras with Ω finitely generated projective over R and C the center of Γ . Suppose $\mathfrak{m}C \neq C$ holds for every maximal ideal \mathfrak{m} of R. Then, $\Lambda = \Gamma \otimes_R \Omega$ is a separable extension of Γ if and only if Ω is a separable R-algebra.

Proof. The 'if' part is clear by Prop. 2.7 [2]. Suppose Λ is separable over Γ . Then, $C \otimes_R \Omega$ is separable over C by Lemma 3 and Theorem 2. Then, Ω is separable over R by Nakane's results (see Theorem [8]).

2. Strong Frobenius and symmetric extensions

In case Λ is an algebra over a commutative ring R, Λ is called a symmetric R-algebra if Λ is Λ - Λ -isomorphic to Hom ($_R\Lambda$, $_RR$). In case of ring extension it is impossible to introduce such a notion. But we can consider the case where $\Lambda | \Gamma$ has the next condition;

(s. F. 1) ${}_{\Lambda}\Lambda_{\Gamma-\Delta} \cong {}_{\Lambda}Hom ({}_{\Gamma}\Lambda, {}_{\Gamma}\Gamma)_{\Gamma-\Delta} and {}_{\Gamma}\Lambda$ is finitely generated projective.

In this case we shall call that Λ is a strong Frobenius extension of Γ . This condition is equivalent to

(s. F. r) $_{\Delta_{-\Gamma}}\Lambda_{\Lambda} = _{\Delta_{-\Gamma}}$ Hom $(\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Lambda}$ and Λ_{Γ} is finitely generated projective.

The above equivalence can be deduced if we take the dual modules again. In case Λ is an *R*-algebra, Λ is a strong Frobenius *R*-algebra if and only if Λ is a symmetric *R*-algebra. Moreover, if Λ is centrally projective over Γ , the condition (s.F.1) (resp. (s.F.r)) implies

$$_{\Lambda}\Lambda_{\Lambda} \cong _{\Lambda} \operatorname{Hom} (_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Lambda} (\operatorname{resp.} _{\Lambda}\Lambda_{\Lambda} \cong _{\Lambda} \operatorname{Hom} (\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Lambda})$$

where Hom $(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma\otimes\Delta}$ is given by $(f(r\otimes d))(x)=f(dx)r$ for $r\in\Gamma$, $d\in\Delta$, $x\in\Lambda$ and $f\in \text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)$. Hence in this case, we shall call that Λ is a symmetric extension of Γ .

Most parts of the next Lemma is well known (see Theorem 3 [9] and Theorem 35 [7] for example).

Lemma 4. If Ω is a symmetric (resp. Frobenius or quasi-Frobenius) algebra over a commutative ring R, then $\Lambda = \Gamma \otimes_R \Omega$ is a symmetric (resp. Frobenius or quasi-Frobenius) extension of Γ for any R-algebra Γ .

Proof. We shall prove in the case of symmetric algebra. Suppose Ω is Ω - Ω -isomorphic to Hom ($_{R}\Omega, _{R}R$). Then

$$\underset{\Gamma \otimes \Omega}{\operatorname{Hom}} \operatorname{Hom} (_{\Gamma} \Gamma \otimes_{R} \Omega, {}_{\Gamma} \Gamma)_{\Gamma_{-\Delta}} \cong_{\Gamma \otimes \Omega} \operatorname{Hom} (_{R} \Omega, {}_{R} \operatorname{Hom} (_{\Gamma} \Gamma, {}_{\Gamma} \Gamma))_{\Gamma_{-\Omega}}$$
$$\cong_{\Gamma \otimes \Omega} \operatorname{Hom} (_{R} \Omega, {}_{R} \Gamma)_{\Gamma_{-\Omega}} \cong_{\Gamma \otimes \Omega} \operatorname{Hom} (_{R} \operatorname{Hom} (_{R} \Omega, {}_{R} R), {}_{R} \Gamma)_{\Gamma_{-\Omega}}$$
$$\cong_{\Gamma \otimes \Omega} \operatorname{Hom} (_{R} R, {}_{R} \Gamma) \otimes_{R} \Omega_{\Gamma_{-\Omega}} \cong_{\Gamma \otimes \Omega} \Lambda_{\Gamma_{-\Omega}}$$

since Ω is *R*-finitely generated projective. Hence, we see $_{\Lambda}\text{Hom}(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Lambda} \simeq _{\Lambda}\Lambda_{\Lambda}, _{\Gamma}\Lambda$ is finitely generated projective. Thus Λ is a symmetric extension of Γ . By the same method we can prove in the case of Frobenius algebra.

REMARK. If we use Lemma 1.1 [11], we can prove that if Λ_i are *R*-algebras

and left quasi-Frobenius extensions of *R*-subalgebras Γ_i respectively, and if the natural map: $\Gamma_1 \otimes_R \Gamma_2 \to \Lambda_1 \otimes_R \Lambda_2$ is a monomorphism, then $\Lambda_1 \otimes_R \Lambda_2$ is also a left quasi-Frobenius extension of $\Gamma_1 \otimes_R \Gamma_2$.

The most parts of the next theorem are immediate consequences of Lemma 2 and Theorem 35 [5].

Theorem 3. Let a ring Λ be centrally projective over a subring Γ . Then, Λ is a symmetric (resp. Frobenius or left (or right) quasi-Frobenius) extension of Γ if and only if $\Delta = V_{\Lambda}(\Gamma)$ is a symmetric (resp. Frobenius or quasi-Frobenius) algebra over C, the center of Γ .

Proof. Since $\Lambda = \Gamma \otimes_C \Delta$, the 'if' parts have been proved in Lemma 4. Suppose Λ is a symmetric extension of Γ , and let *h* be a Λ - Λ -isomorphism

$$h: {}_{\Lambda}\mathrm{Hom} ({}_{\Gamma}\Lambda, {}_{\Gamma}\Gamma)_{\Gamma-\Delta} \rightarrow {}_{\Lambda}\Lambda_{\Gamma-\Delta}$$

Then, h induces a Δ - Δ -map \bar{h} of Hom $(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ to Δ as is shown in the previous section. Clearly h is a monomorphism since h is so. Let d be an arbitrary in Δ . Then there exists an f in Hom $(_{\Gamma}\Lambda, _{\Gamma}\Gamma)$ with h(f)=d. Then $r \circ f = fr$ for every $r \in \Gamma$, since h is a Λ - Γ -map and d is in Δ . Hence f is in Hom $(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$, and \bar{h} is an epimorphism. Thus we see that Hom $(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ is Δ - Δ -isomorphic to Δ . On the other hand, as is shown before Hom ($_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma}$) is Δ - Δ -isomorphic to Hom ($_{c}\Delta, _{c}C$). Thus we see that Hom ($_{c}\Delta, _{c}C$) is Δ - Δ -isomorphic to Δ , and Δ is a symmetric C-algebra. The same method as above proves in the case of Frobenius extension. Next, suppose that Λ is a left quasi-Frobenius extension of Γ . Then, by Satz 2 [5] there exist Λ - Γ maps φ_k of Hom $(_{\Gamma}\Lambda, _{\Gamma}\Gamma)$ to Λ and Γ - Γ -maps α_k of Λ to Γ with $\Sigma \varphi_k(\alpha_k) = 1$. But each map φ_k induces a left Δ -map φ_k' of Hom $(_{\Gamma}\Lambda_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ to Δ , and there exists a left Δ -isomorphism ν of Hom $({}_{c}\Delta, {}_{c}C)$ to Hom $({}_{\Gamma}\Lambda_{\Gamma}, {}_{\Gamma}\Gamma_{\Gamma})$. Let $\bar{\varphi}_{k}$ $= \varphi_k' \nu$ and $\overline{\alpha}_k = \nu^{-1}(\alpha_k)$. Then $\Sigma \overline{\varphi}_k(\overline{\alpha}_k) = \Sigma \varphi_k \nu(\nu^{-1}(\alpha_k)) = \Sigma \varphi_k(\alpha_k) = 1$. Therefore, Δ is a quasi-Frobenius C-algebra. (See Theorem 35 [5] and the Bemerkung under it).

3. Application of Morita's results

In sections 1 and 2 we considered the case where Λ is centrally projective over Γ , but in this section we shall consider the case where $\Lambda \otimes_{\Gamma} \Lambda$ is centrally projective over Λ , i.e., Λ is an *H*-separable extension of Γ . To do this we shall apply the results of Morita [7].

Lemma 5. Let Λ be an H-separable extension of Γ , $\Delta = V_{\Lambda}(\Gamma)$ and $\Omega = Hom(\Lambda_{\Gamma}, \Lambda_{\Gamma})$. Then, we have

1) Hom $(_{\Omega}\Lambda, _{\Omega}\Lambda) = V_{\Lambda}(\Delta)$, thus if $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$, Λ_{Γ} has the double centralizer property,

SEPARABLE EXTENSIONS AND FROBENIUS EXTENSIONS

2) If $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$, $\Gamma_{\Gamma-\Delta}Hom(_{\Omega}\Lambda, _{\Omega}\Omega)_{\Lambda} \cong \Gamma_{\Gamma-\Delta}Hom(\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Lambda}$

Proof. 1). By Prop. 3.3 [4], there exist a ring isomorphism η of $\Lambda \otimes_C \Delta^0$ to Hom $(\Lambda_{\Gamma}, \Lambda_{\Gamma})$ such that $\eta(x \otimes d^0)(y) = xyd$, where C is the center of Λ . Thus ${}_{\Omega}\Lambda$ is equivalent to ${}_{\Lambda}\Lambda_{\Delta}$. Hence, we see

Hom
$$(_{\Omega}\Lambda, _{\Omega}\Lambda) \cong$$
 Hom $(_{\Lambda}\Lambda_{\Delta}, _{\Lambda}\Lambda_{\Delta}) \cong V_{\Lambda}(\Delta)$.

2). By Theorem 1.1 [7] $_{\Gamma}$ Hom $(_{\Omega}\Lambda, _{\Omega}\Omega)_{\Omega} \simeq _{\Gamma}$ Hom $(\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Omega}$, and we have

 $_{\Gamma_{-\Delta}}\operatorname{Hom}(_{\Omega}\Lambda, _{\Omega}\Omega)_{\Lambda} \cong_{\Gamma_{-\Delta}}\operatorname{Hom}(\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Lambda}$

The next theorem is almost due to Theorem 6.1 [7].

Theorem 4. Let Λ be an H-separable extension of Γ with $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ and Ω , Δ and C be as in Lemma 5. Then, if Δ is a symmetric (resp. Frobenius or quasi-Frobenius) C-algebra, the following conditions are equivalent;

- 1) Λ is left Γ -finitely generated projective.
- 2) Λ is right Γ -finitely generated projective.
- 3) Λ is a strong Frobenius (resp. Frobenius or quasi-Frobenius) extension of Γ .

Proof. Suppose Δ is a symmetric *C*-algebra. Then Ω is a symmetric extension of Λ , since $\Omega = \Lambda \otimes_C \Delta^0$ and Δ^0 is *C*-symmetric. Hence we have

 ${}_{\Omega}\mathrm{Hom}\,({}_{\Lambda}\Omega, {}_{\Lambda}\Lambda)_{\Lambda\otimes\Delta^{0}} \simeq {}_{\Omega}\Omega_{\Lambda\otimes\Delta^{0}}, \text{ i.e., } {}_{\Omega-\Delta}\mathrm{Hom}\,({}_{\Lambda}\Omega, {}_{\Lambda}\Lambda)_{\Lambda} \simeq {}_{\Omega-\Delta}\Omega_{\Lambda}$

Then by Lemma 5 and the above isomorphism, we have

$$\Gamma_{-\Delta} \operatorname{Hom} (\Lambda_{\Gamma}, \Gamma_{\Gamma})_{\Lambda} \simeq \Gamma_{-\Delta} \operatorname{Hom} ({}_{\Omega}\Lambda, {}_{\Omega}\Omega)_{\Lambda} \simeq \Gamma_{-\Delta} \operatorname{Hom} ({}_{\Omega}\Lambda, {}_{\Omega}\operatorname{Hom} ({}_{\Lambda}\Omega, {}_{\Lambda}\Lambda))_{\Lambda} \simeq \Gamma_{-\Delta} \operatorname{Hom} ({}_{\Lambda}\Omega \otimes_{\Omega}\Lambda, {}_{\Lambda}\Lambda)_{\Lambda} \simeq \Gamma_{-\Delta} \operatorname{Hom} ({}_{\Lambda}\Lambda, {}_{\Lambda}\Lambda)_{\Lambda} \simeq \Gamma_{-\Delta} \operatorname{Hom} ({}_{\Lambda}\Lambda, {}_{\Lambda}\Lambda)_{\Lambda}$$

Thus Λ is a strong Frobenius extension of Γ . For the rest of the proof, see Theorem 6.1 [7].

Corollary 2. Let Λ be an H-separable extension of Γ such that Γ is a Γ - Γ -direct summand of Λ . Then the following conditions are equivalent.

- 1) Λ is left Γ -finitely generated projective.
- 2) Λ is right Γ -finitely generated projective.
- 3) Λ is a strong Frobenius extension of Γ .

Proof. Since Γ is a Γ - Γ -direct summand of Λ , $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ by Prop. 1.2 [10] and Δ is C-separable by Prop. 4.7 [4]. Thus Δ is C-symmetric by Theorem 4.2 [1], and we can apply Theorem 4.

The converse of Theorem 4 holds for H-separable extension as follows.

Theorem 5. Let Λ be an H-separable extension of Γ . Then if Λ is a strong Frobenius (resp. Frobenius or left or right quasi-Frobenius) extension of Γ , Δ is a symmetric (resp. Frobenius or quasi-Frobenius) C-algebra, where $\Delta = V_{\Lambda}(\Gamma)$ and C is the center of Λ .

Proof. Suppose Λ is a strong Frobenius extension of Γ. Then there exists a Λ-(Δ−Γ)-isomorphism $_{\Lambda}\Lambda_{\Delta-\Gamma} \simeq _{\Lambda} Hom (_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Delta-\Gamma}$. Then, since $_{\Gamma}\Lambda$ is finitely genereted projective,

$$\underset{\Lambda \to \Delta}{\overset{\Lambda \to \Delta}{\cong}} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda \to \Delta} \cong_{\Lambda \to \Delta} \operatorname{Hom} (\Gamma_{\Gamma}, \Lambda_{\Gamma}) \otimes_{\Gamma} \Lambda_{\Lambda \to \Delta} \cong_{\Lambda \to \Delta} \operatorname{Hom} (\operatorname{Hom} (_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, \Lambda_{\Gamma})_{\Lambda \to \Delta} }$$
$$\cong_{\Lambda \to \Delta} \operatorname{Hom} (\Lambda_{\Gamma}, \Lambda_{\Gamma})_{\Lambda \to \Delta}$$

On the other hand, since Λ is *H*-separable over Γ , there exist $(\Lambda - \Delta)$ - $(\Lambda - \Delta)$ -isomorphisms

 $\xi \colon \Lambda \otimes_{\Gamma} \Lambda \to \operatorname{Hom} ({}_{c}\Delta, {}_{c}\Lambda) \qquad \xi(x \otimes y)(d) = xdy \quad \text{for} \quad x, y \in \Lambda \text{ and } d \in \Delta$ $\eta \colon \Lambda \otimes_{c}\Delta \to \operatorname{Hom} (\Lambda_{\Gamma}, \Lambda_{\Gamma}) \qquad \eta(x \otimes d)(y) = xyd \quad \text{for} \quad x, y \in \Lambda \text{ and } d \in \Delta$

Hence we have $(\Lambda - \Delta)$ - $(\Lambda - \Delta)$ -isomorphisms

$$\operatorname{Hom}\left({}_{c}\Delta, {}_{c}\Lambda\right) \cong \Lambda \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}\left(\Lambda_{\Gamma}, {}_{\Gamma}\right) \cong \Lambda \otimes_{c}\Delta$$

Then, taking Hom (*, $_{\Lambda}\Lambda_{\Lambda}$), we obtain Δ - Δ -isomorphisms

 ${}_{\Delta}\mathrm{Hom}\left({}_{\Lambda}\mathrm{Hom}\left({}_{C}\Delta, {}_{C}\Lambda\right)_{\Lambda}, {}_{\Lambda}\Lambda_{\Lambda}\right)_{\Delta} \cong {}_{\Delta}\mathrm{Hom}\left({}_{\Lambda}\Lambda_{\Lambda}, {}_{\Lambda}\Lambda_{\Lambda}\right) \otimes {}_{C}\Delta_{\Delta} \cong {}_{\Delta}C \otimes {}_{C}\Delta_{\Delta} \cong {}_{\Delta}\Delta_{\Delta}$

since Δ is C-finitely generated projective, and

$${}_{\Delta}\mathrm{Hom}\,({}_{\Lambda}\Lambda \otimes_{c} \Delta_{\Lambda}, {}_{\Lambda}\Lambda_{\Lambda})_{\Delta} \cong {}_{\Delta}\mathrm{Hom}\,({}_{c}\Delta, {}_{c}\mathrm{Hom}\,({}_{\Lambda}\Lambda_{\Lambda}, {}_{\Lambda}\Lambda_{\Lambda}))_{\Delta} \cong {}_{\Delta}\mathrm{Hom}\,({}_{c}\Delta, {}_{c}C)_{\Delta}$$

Thus we see $_{\Delta}$ Hom $(_{C}\Delta, _{C}C)_{\Delta} \cong _{\Delta}\Delta_{\Delta}$, which means that Δ is a symmetric *C*-algebra. In case of Frobenius extension, $_{\Delta}\Lambda_{\Gamma} \cong _{\Delta}$ Hom $(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}$ induces

 $_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda-\Delta} \simeq _{\Lambda}$ Hom (Hom $(_{\Gamma}\Lambda, _{\Gamma}\Gamma)_{\Gamma}, \Lambda_{\Gamma})_{\Lambda-\Delta} \simeq _{\Lambda}$ Hom $(\Lambda_{\Gamma}, \Lambda_{\Gamma})_{\Lambda-\Delta}$

where ${}_{\Lambda}\Lambda \otimes {}_{\Gamma}\Lambda_{\Lambda-\Delta}$ is iduced by ${}_{\Lambda}\Lambda_{\Gamma-\Delta}$ and ${}_{\Gamma}\Lambda_{\Lambda}$, while in case of right quasi-Frobenius extension ${}_{\Lambda}$ Hom $({}_{\Gamma}\Lambda, {}_{\Gamma}\Gamma)_{\Gamma} \langle \oplus_{\Lambda} (\Sigma \oplus \Lambda)_{\Gamma}$ induces

$$_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda-\Delta} \simeq {}_{\Lambda}\mathrm{Hom}\left(\mathrm{Hom}\left({}_{\Gamma}\Lambda,{}_{\Gamma}\Gamma\right)_{\Gamma},{}_{\Lambda}\Lambda_{\Gamma}\right)_{\Lambda-\Delta}\langle \oplus_{\Lambda}(\Sigma^{\oplus}\mathrm{Hom}\left(\Lambda_{\Gamma},{}_{\Lambda}\Lambda_{\Gamma}\right))_{\Lambda-\Delta}\rangle$$

Then the same argument as in the case of strong Frobenius extension proves the theorem in both cases.

HOKKAIDO UNIVERSITY

References

- [1] S. Endo and Y. Watanabe: On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242.
- [2] K. Hirata and K. Sugano: On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan 18 (1966), 360-373.
- [3] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107–115.
- [4] K. Hirata: Separable extensions and centralizers of rings, Nagoya Math. J. 35 (1969), 31-45.
- [5] B. Müller: Quasi-Frobenius Erweiterungen, Math. Z. 85 (1964), 345-468.
- [6] B. Müller: Quasi-Frobenius Erweiterungen II, Math. Z. 88 (1965), 380-409.
- [7] K. Morita: The endomorphism ring theorem for Frobenius extensions, Math. Z. 102 (1967), 385-405.
- [8] K. Nakane: Note on separable extensions of rings, Sci. Rep. Tokyo Kyoiku Daigaku 10 (1969), 142–145.
- [9] T. Onodera: Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. 18 (1964), 89–107.
- [10] K. Sugano: Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270.
- [11] K. Sugano: Supplementary results on cogenerators, Osaka J. Math. 6 (1969), 235– 241.
- [12] K. Sugano: On centralizers in separable extensions, Osaka J. Math. 7 (1970), 29-40.