Luh, J.
Osaka J. Math.
7 (1970), 267-274

THE STRUCTURE OF PRIMITIVE GAMMA RINGS

Jiane LUH

(Received November 4, 1969)

1. Introduction

The notion of a I'-ring was first introduced by Nobusawa [7]. The class
of T'-rings contains not only all rings but also all Hestenes ternary rings. In
[7], Nobusawa generalized the Wedderburn- Artin Theorem for simple I'-rings
and for semi-simple T'-rings. Barnes [1] obtained analogues of the classical
Noether-Lasker theorems concerning primary representations of ideals for
T-rings. The author [5] gave a characterization of primitive T-rings with
minimal one-sided ideals by means of certain T'-rings of continuous semilinear
transformations. He [6] also established several structure theorems for simple
T'-rings having minimal one-sided ideals. Recently, Coppage and the author
[2] introduced the notions of Jacobson radical, Levitzki radical, nil radical for T'-
rings and obtained some basic radical properties and inclusion relations for these
radicals together with the prime radical defined by Barnes [1].

The object of this paper is to study the structure of primitive I'-rings. One
of its main results is a generalization of the Jacobson - Chevalley density theorem.
This generalizes further a result given by Smiley and Stephenson for Hestenes
ternary rings [8].

We refer to [4] for all notions relevent to ring theory.

2. Preliminaries

Let M and T be two additive abelian groups. If for all x, y, & M and all
a, B<T the conditions

(1) xayeM

(2) (x+y)az=xaz+yaz,
2o+ B)z=xaz+xLz,
xa(y+2)=xaytxaxz,

(3) (vay)Be=xa(yBs)

are satisfied then we call M a T'-ring.
If these conditions are strengthened to
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(1) xayeM, axB<T,

(2') the same as (2),

(3") (xay)Bz=x(ayB)z=xa(yBz)

(4') xay=0 for all x, y& M implies =0, then M is called a T-ring in the
sense of Nobusawa.

Let M bea I'-ring. If S, Tc M, we write ST'T for the set of finite sums
3.0t where s;€ S, t,€ T, a,cT. A subgroup I of M isa left (right) ideal of
M if MTICI (ITMCI). If Iis both a left and a right ideal of M, then I is an
ideal of M. A one-sided ideal I is strongly nilpotent if I*=ITI..-T'I=0 for
some positive integer n. A non-zero right (left) ideal is minimal if the only right
(left) ideals of M contained in I are 0 and I itself. It has been shown that every
minimal right ideal which is not strongly nilpotent can be expressed as the form
eyM, where yeT, e M and eye=e (see [5] Theorem 3.2).

Let F be the free abelian group generated by the set of all ordered pairs
(a, x) where a =T, x& M. Let K be the subgroup of elements 3;m; (a;, x,)E F,
where m; are integers such that 3m; (xa;x;)=0 for allx& M. Denote by R the
factor group F/K and by [a, x] the coset K+(«, x). Clearly every element in R
can be expressed as a finite sum =;[a;, x;]. We define multiplication in R by

2o, %] 2,08 v;] = 24 ilan x.8,y,] .
Then R forms a ring. Furthermore, M is a right R-module with the definition
x3[a;, %] = Zxax; forxe M .

We call the ring R the right operator ring of M. Similarly, we can define the
left operator ring L. Every element in L can be expressed as a finite sum
3,[x;, B;] where x;& M, B,T. These two operator rings play important
roles in studying the structure of I"-rings. We recall that a T'-ring M is right
primitive if (i) MTx=0 implies =0 and (ii) the right operator ring R of M is a
right primitive ring.

Theorem 1. If M is a right primitive I'-ring, then the left operator ring
of M is a right primitive ring.

Proof. Let R and L be respectively the right and left operator rings of M.

Let G be a faithful irreducible right R-module. Let 4 be the free abelian
group generated by the set of ordered pairs (g, v), where g G, yET, and let B
be the subgroup of elements 3;m,(g;, v.)€ A where m; are integers such that
Zim;gi[v:, x]=0 for all k& M. Denote by H the factor group 4/B and, without
causing any ambiguity, by [g, v] the coset B4-(g, v). Every elementin H there-

fore can be expressed as a finite sum X,[g;, v;,]. H forms a right L-module
with the definition
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Zilgn vd-Zlx, B5] = 2, sledvs %51, Byl

for 3,[g,, v.]JeHand 3 ,[x;, B,]= L. We claim that H is a faithful irreducible
right L-module. Assume H = [x;, 8,]=0. Then for all yET, g€ G, we have
2 ;lgly, x;), B;1=[g 7] Z,[*;, B;]=0, i.e. g=,[v, ;] [B;, x]=0 for all x=M.
By the faithfulness of the R-module of G, [v, = %;8x1=3[v, x;] [B;, x]=0, so
MTZx,8,x=0. By the condition (i), = x,3,4=0 for all ¥ M. This means
that 3 [x;, 8;]=0and H is faithful. To see that H is irreducible, let ;[g;, v;]
be an arbitrary non-zero element in H. Then the set G'={Z,g;[v;, x]: x€ M}
is a non-zero R-submodule of G. Since G is irreducible, G'=G. For any
3;[g;s v;'1€H, we may write g,/=3.g][v; x;] where x,M. Thus
2085 v 1=2,[2:8lvs %), ¥, 1=2i80 vi] Z)lx; v,]€2gs v:]L. Hence
H is irreducible and L is a right primitive ring.

3. Irreducible I'-rings of homomorphisms on groups

Let G and H be non-zero additive abelian groups. If M and T are re-
spectively subgroups of Hom (H, G) and Hom (G, H) such that gT'=H and
hM=G whenever 0=+ g& G and 0k H, and moreover if xaye M and axB<T
for all x, y= M, then M forms a T'-ring in the sense of Nobusawa under the
composition of mappings. We shall call such a I'-ring an irreducible I'-ring
of homomorphisms on groups.

A T-ring M and a I''-ring M’ are said to be isomorphic if there exist a
group isomorphism @ of M onto M’ and a group isomorphism ¢ of T" onto T’
such that (xay)d=(x0) (ap) (y0) for all x, ye M, acT. Itis clear that M is
right primitive if and only if M’ is right primitive.

Theorem 2. A I'-ring M is a right primitive I'-ring in the sense of
Nobusawa if and only if it is isomorphic to an irreducible I"-ring of homomorphisms
on groups.

Proof. Necessity. Let M be a right primitive I'-ring in the sense of
Nobusawa with right operator ring R and left operator ring L and let G be a
faithful irreducible right R-module, from the proof of Theorem 1, we can
construct the faithful irreducible right L-module H. Now, for each yeT
let yp=Hom (G, H) defined by g(vp)=[g, v]. Clearly ¢ is a group homo-
morphism of T into Hom (G, H). Moreover, if v,p=17,4, then [g, v,—.]
=0 ie. g[v,—v:, #]=0 for all g G, x M. By the faithfulness of G as an
R-module, [y,—,, ¥]=0 for all x& M. Consequently M(v,—v,) M=0 and, by
the condition (4') in the definition of T'-ring in the sense of Nobusawa,
v,="%,. Thus ¢ is a group isomorphism of T" onto I"'=T'¢.

Likewise, for each x& M, let xf be the mapping of H into G defined by
Slgi vil(x0)==;g:[v:» ¥]. It can be shown easily that x0c Hom (H, G) and
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that 6 is a group homomorphism of M into Hom (H, G). We claim that § is one-
to-one. Indeed, if x0=y6, where x, ye M, then g[y, x—yl=g[v, x]—g[v, y]
=0 for all g&G, y&T. Again by the faithfulness of G, [y, x—y]=0 for all
vET, or equivalently that MT'(x—y)=0. Hence x=y and @ is a group iso-
morphism of M onto M'=M§. Itiseasy to see that the T'-ring M is isomorphic
to the T"'-ring M".

It remains to show that M’ is an irreducible T'-ring of homomorphisms
on groups. Let 0+g=G. Since gR=G, every element in H can be expressed
as 3 ,[g3,[7:; %5, B;]1=g(v¢) where v;;, B,ET, x,,€M and v=Z2, ;7:%:,8;-
Hence H=gT". Now, let & be an arbitrary non-zero element in H. Then
h=g(y$)=[g, v] for some yeT. It follows that h(x0)=[g, v] (x0)=g[v, x]
for all xe M. Thus AM’ is a non-zero R-submodule of G and hence AM'=G.

Sufficiency. We may assume that M is an irreducible I'-ring of homo-
rphisms on groups, and that 0&=T"C Hom (G, H), 0+M cHom (H, G) where H
and G are abelian groups with the property that for any 04g= G and 0=he H,
gl=H and hkM=G. Clearly, MTx=0 for x& M implies x=0. For g&G and
2.[v: x]= R, the right operator ring of M, we define composition

g2 %] = Z(gvi)x; .

This composition is well defined. For if = [v;, x]=3,[8;, ¥;] in R, then
Saxyx,—2%03,;y;=0 for all xeM. By noting that ge€gl'M, we
obtain X ,(gv,)x;,—=(gB;)y; :g(zi%xi—lgjyj)egFM(Zi'Yixi—szjyj)ZO, SO
g2iv:, x]=g%,[8,, ;. Clearly G forms an irreducible right R-module.
Moreover, if Z,[v;, x]€R and if GZ[v;, x,]=0, then HMZ[v;, x,]=GT'M
2 v %]=G Z,[v;, x]=0, and hence M=, [v,x;]=0. Consequently, =[v;, x;]
=0and G is a faithful R-module. Thus, R is a right primitive ring and M is a
right primitive I'-ring in the sense of Nobusawa.

Observe the definition of irreducible T"-rings of homomorphisms on groups.
We can easily see that M is irreducible T'-rings of homomorphisms on groups
if and only if T is a irreducible I''-ring of homomorphisms on groups, where
I'"=M. Thus from Theorem 2, we immediately have the following

Corollary. Let M be a I'-ring. Then M is a right primitive I'-ring in the
sense of Nobusawa if and only if I' is a right primitive 'I'’-ring in the sense of
Nobusawa, where I'' =M.

4. Chevalley-Jacobson density theorem

Let G and H be non-zero right vector spaces over division rings A and A’
respectively, and let o be an isomorphism of A onto A’. A group N of
semilinear transformations (associated with &) of G into H is said to be dense if,
for every positive integer 7 and every z linearly independent elements g, g,,
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-, g, in G and every n elements h,, h,, ---, h, in H, there exists x& N such
that g.x=h,,i=1, 2, ---, n.

Now, if T" is a dense group of semilinear transformations (associated with
o) of G into H and M is a dense group of semilinear transformations (associated
with o7') of Hinto G, and if the compositions of mappings xaye M and axB<T
for all x, ye M, o, BET, then M forms a T'-ring in the sense of Nobusawa
under the composition of mappings. We shall call such a T"-ring a dense I'-
ring of semilinear transformations.

Following is a generalization of the well known Chevalley-Jacobson density
theorem.

Theorem 3. Let M be a I'-ring. Then M is a right primitive ['-ring in
the sense of Nobusawa if and only if it is isomorphic to a dense I'-ring of semilinear
transformations.

Proof. Sufficiency. It is an immediate consequence of Theorem 2,
since a dense I'-ring of semilinear transformations evidently is an irreducible
T-ring of homomorphisms on groups.

Necessity. We assume that M is a right primitive T'-ring in the sense of
Nobusawa. According to the proof of Theorem 1 we can construct a faithful
irreducible right R-module G and a faithful irreducible right L-module H,
where R and L are respectively the right operator ring and the left operator
ring of M. Set A=Homg (G, G) and A’=Hom, (H, H). By Schur’s Lemma,
A and A’ are division rings.

First, we shall show that A and A’ are isomorphic. For § A, we define
the mapping §°: H—H by

(Z:lgi vi)3° = =i g8 7]

for =,[g;, v;]EH. Here & is well defined. For, if =,[g;, v.]=3,[g,", v;']
then for all x& M, =,g,[v., x]==,2,'[v; %], and hence Z(g:5) [v:, x]=(2:g:
s 5= (2,8, T,/ DO=2,(g,8) [,2 4. Thus g3, 7]=3,[g,'3, 7,
as we desired. Clearly, 87 preserves addition. Moreover, for 3,[g;, v;]€ H and
2,lx; B;]€L, we have (Z[g; V=[x, B8 = (Z: ;[gilv: x,1, B = (%,
(g v ;8,187 =3 ;[8:8, v:x;8;1=2 ;[8:8, vi] [%;,8,1=(Z:[ 80> 7i]07)Z (x5 B;]-
Hence 8°A’. It can be easily verified that o: §—>8 is a monomorphism of
A into A’. 'Toshow that ¢ is an onto mapping, we note that since H is a faithful
irreducible right L-module and G is a faithful irreducible right R-module there
exist g,& G and v,&T such that {[g,, ¥]: yET}=H and {g,[7., x]: x&€ M}=G.
Let 8’ be an arbitrary element in A’ and [g,, 7,]8'=[g, 7.], where yET'. Let
8: G—G be defined by (go[vo, x])8=go[v:, x] for x& M. This is well defined.
In fact, if g[ve, X]=g[70, ¥], then, for any vyET, [go, v:] [, Y]=([£0» Vc]3")
[x, Y1=([g0 7o [ ¥])'=[go70] [¥> ¥1)8'=([80> 7:18") [3> ¥1=[80» 7] [3> 7]
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and hence, by the construction of H, g,[v,xv, 2]=g, [7,y7, 2] forallyeT, z€ M.
It follows that (g[vi, x]—g[vs, ¥])R=0. Since G is a faithful irreducible
right R-module, g,[v,, x]=go[v:, y]. Clearly €A and 8°=8’. Therefore
A=A'.

In the proof of Theorem 2 we have known already that the I'-ring M is
isomorphic to a I''-ring M’, where T is a subgroup of Hom (G, H) and M’
is a subgroup of Hom (H, G). More precisely, two group isomorphisms
0: M—M' and ¢: T—T"' exist such that =;[g;, v,] (x0)==;g:[v;:, ¥] and g(v¢)
=[g, 7] for all g;,, g=G, v;, veT, x€ M.

Now we consider G and H as right A-vector space and right A’-vector
space respectively. For any g G, §€ A and YT, we have (g8) (v¢)=[gs, 7]
—[g 7" =(g(v9))>" and  ([g, 715") (¥6)=[g8, ¥] (x6)=gd[v, ¥]=(glv, *1)8
=([g, v] (x6))5. Thus v¢ and x0 are semilinear transformations (associated
with o and o™ respectively).

It remains to show the density property for I''. The density property for
M’ can be obtained similarly. We shall show that for any » A-independent
elements g,, g,, -**, 2. G and any z elements A,, h,, «--, h,& H there exists yT'
such that g,(v¢)=h;, i=1, 2, ---, n. We proceed by induction on =.

From Theorem 2, the assertion is obviously true for n=1. Now we assume
that the assertion is true for n—1. We want first to show the existence of y&T
such that g,(v¢)=0 for i<z and g,(y$)+0. Suppose such a y=T does not
exist. Then, for any yeT, g,(y$)=0, 1 <i<n—1, implies g,(y¢$)=0. Thus for
any he H, by the induction hypothesis, there exists ,&T" such that g,(v,)
=h and g,(v,$)=0, 1<i<n—1. If also g,(v,¢)=Fh and g,(v,$)=0, 1<i<n—1,
for some «,eT, then since gi((vo—7:)$p)=0, for 1<i<n—1 it follows that
Za((Yo—7)p)=0, i.e. gu(Yo)=gn(7:¢). Hence the mapping yr: H—H defined
by hr=g.(7.p) whenever g,(v,p)=h and g;(v,$)=0 for 1<<i<m, is well defined.
It is easy to see that «r preserves addition. Let usrecall that g, is an element
in G with {[g, v]: y€T}=H. Let [g, v]EH and Z[x;, v,JEL. Then
[0, VI —gn(vuh) for some 7, T, where g,(vo) [ 7] and g(voh)=0, 2<i <,
n—1. Thus, ([go, YIV) Zifx;, ¥:]=(8a(ve$)) Zil®:> V:]=[gm ve] Zilxs, 7]
=gn (7:$), Where v,=3,7%;v;, On the other hand, since g,(v:p)=[gs 7]
3i[x;, ;] and g(7v.,4)=0,2<i< n—1, by the definition of yr, ([go, 7] =:[x;, v:])
V=ga(71¢). Consequently, ([go, ¥] Z;[x;, v )¥=([g 7]V¥) Zi[x;, v;] and
hence yy&A’. Let =38 where S A. Since g,8—g,, g, ***, gx_.3r€ A-linearly
independent, by the induction hypothesis, there exists v’ such that (g,6—g,)
(v'$)=*0 and gi(v'¢)=0 for 1<i<mn. But by the definition of v, (g,8—g,)
(7' $)=(8£3) (v'd)—gu(7v'$)=(&:(v'P))¥—ga(7'$)=0, a contradiction. This
proves the existence of y&T" such that g,(v$)+0 and g,(v$)=0 for 1 <i<n.

Since g.(vp)L=H, there exists v,&T such that g,(v.0)=Hh,, and g,(v.$)=0
for 1<i<n.
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Likewise, there exist ,&T,1<i<n, such that g(v,p)=h; and g;(v.p)
=0 for i4j. Now let y=v,+v,+v, Then g(vp)=h,1<i<n as we
desired. This completes the proof of the theorem.

We recall the definition of Hestense ternary rings. Let G and H be additive
abelian groups. M and I" be subgroups of Hom (H, G) and Hom (G, H) re-
spectively. If there is a mapping * of M onto T" such that a b* ¢ M whenever
a, b, ce M then M is called a Hestenes ternary ring. The set of all finite sums
3;a¥b; with a;, b, M form a ring R and the set of all finite sums 3,c,d¥* with
¢;, d;eM form a ring L. Clearly M is a right R-module and is a left L-
module. If M is irreducible as a R-module and as an L-module then M is
called an irreducible Hestenes ternary ring. Evidently, if M is an irreducible
Hestenes ternary ring then M is a right primitive I'-ring in the sense of Nobusawa
and the rings R and L are respectively the right operator ring and the left operator
ring of M. Therefore Theorem 3 generalizes further the extension of the
Chevalley-Jacobson density theorem given by Smiley and Stephenson (see [8, 9]).

5. Primitive I'-rings with non-zero socles

In [6], we have introduced the notion of socles for I'-rings. The right
(left) socle S,(S;) of a I'-ring M is the sum of all minimal right (left) ideals of
M. In the case M has no minimal right (left) ideals, the right (left) socle of M
is defined to be 0. It has been shown that if M is an one-sided primitive I'-ring
having minimal one-sided ideals then M is a two sided primitive and its right
socle and left socle coincide (see [5, Theorem 4.2] and [6, Theorem 4.3]).

In this section we shall present a characterization for primitive I*-ring with
non-zero socle which is different from the one given in [5].

Theorem 4. A I'-ring M in the sense of Nobusawa is primitive with non-
zero socle if and only if it is isomorphic to a dense I''-ring M’ of semi-linear transfor-
mations containing non-ero semilinear transformations of finite rank. Moreover,
the socle of M' is the set of semilinear transformations of finite rank contained in M'.

Proof. Necessity. Assume that M is a primitive T'-ring in the sense
of Nobusawa with non-zero socle. According to Theorem 3, M can be regarded
as a dense I'-ring of semilinear transformations. Let G and H be vector
spaces over division rings A and A’, o: A—A’ be an isomorphism, M be a
dense group of semilinear transformations of H into G (associated with o~') and
T be a dense group of semilinear transformations of G into H (associated with
o). Let eyM be a minimal right ideal of M, where e M, y&T and eye=e.
We claim that e is a rank 1, for otherwise, there would exist 4,, A, H such that
h,e and h,e are A-linearly independent. By the density property of I" and M,
there would exists y,&T such that hey,=0 and h,ey,+0 and hey,M=G.
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Since eyM is minimal and h,ey(ev,M)=h,e v,M=0, the right ideal {x&eyM:
hx=0}=eyM, i.e. heyM=0. Particularly, he=h,eye=0, a contradiction.
Thus M contains non-zero semilinear transformations of finite rank. In addi-
tion, since the socle S of M is the sum of minimal right ideals, every element
in S is of finite rank.

Sufficiency. Assume that A is a dense I'-ring of semilinear transfor-
mations on vector spaces G and H described above, and assume that M contains
semilinear transformations of finite rank. By density property, M contains
semilinear transformations of rank 1. Let acM be of rank 1, and let
Ha={g,>, the subspace of G generated by g,. Consider I={xe M: Hx={g,>},
a left ideal of M. We claim that [ is minimal. Let Ox,&1. Then Hx,
={g,> and hx,=g, for some hcH. By the density property of T', there
exists v, such that g,v,=h,. Thus g,=gy,x,. Now let x be an arbitrary
element in I. For any kA= H, there exists §& A such that hx=g,8=(g,7.%,)0
=(g,8)y.%,=hxv,x,. Hence x=xvy,x,& MTI'x,, so I=MTx, for every O%x,&I.
Thereofre I is a minimal left ideal containing a, a is in the socle of M, and M
has a non-zero socle S.

The argument just used shows that every element in M of rank 1 is in S.
But the density property of M and T insures that every element in J of finite
rank is a sum of finitely many elements in M of rank 1. Therefore S contains all
elements in M of finite rank. 'This completes the proof.
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