
Luh, J.
Osaka J. Math.
7 (1970), 267-274

THE STRUCTURE OF PRIMITIVE GAMMA RINGS

JIANG LUH

(Received November 4, 1969)

1. Introduction

The notion of a Γ-ring was first introduced by Nobusawa [7]. The class

of Γ-rings contains not only all rings but also all Hestenes ternary rings. In

[7], Nobusawa generalized the Wedderburn-Artin Theorem for simple Γ-rings

and for semi-simple Γ-rings. Barnes [1] obtained analogues of the classical

Noether-Lasker theorems concerning primary representations of ideals for

Γ-rings. The author [5] gave a characterization of primitive Γ-rings with

minimal one-sided ideals by means of certain Γ-rings of continuous semilinear

transformations. He [6] also established several structure theorems for simple

Γ-rings having minimal one-sided ideals. Recently, Coppage and the author

[2] introduced the notions of Jacobson radical, Levitzki radical, nil radical for Γ-

rings and obtained some basic radical properties and inclusion relations for these

radicals together with the prime radical defined by Barnes [1].

The object of this paper is to study the structure of primitive Γ-rings. One

of its main results is a generalization of the Jacobson - Chevalley density theorem.

This generalizes further a result given by Smiley and Stephenson for Hestenes

ternary rings [8].

We refer to [4] for all notions relevent to ring theory.

2. Preliminaries

Let M and Γ be two additive abelian groups. If for all x, yy z^M and all

α , / 3 E Γ the conditions

(1) xay<=M

(2) (x-\-y)az=xazJryaz,

x(a-\-β)z=xaz-\-xβzy

xa(y-{-z)=xay-\-xazy

(3) (xay)βz=xa(yβz)

are satisfied then we call M a Γ-ring.

If these conditions are strengthened to
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(Γ) xay^M, axβ^T,
(2') the same as (2),
(3') (xay)βz=x(ayβ)z=xa(yβz)
(4') xay=O for all x,y^M implies α = 0 , then M is called a Γ-ring in the

sense of Nobusawa.

Let M be a Γ-ring. If S,T^M, we write SΓT for the set of finite sums
^isiaA where s^ 5, ί,e Γ, α t e Γ. A subgroup / of M is a left (right) ideal of
M if M Γ / c / (/Γilίc/), If / is both a left and a right ideal of M, then / is an
ideal of M. A one-sided ideal / is strongly nilpotent if 7 Λ =/Γ/ Γ/=0 for
some positive integer n. A non-zero right (left) ideal is minimal if the only right
(left) ideals of M contained in / are 0 and / itself. It has been shown that every
minimal right ideal which is not strongly nilpotent can be expressed as the form
eγM, where γGΓ, e e M a n d eye=e (see [5] Theorem 3.2).

Let F be the free abelian group generated by the set of all ordered pairs
(α, x) where α G Γ , # e M. Let K be the subgroup of elements Σx wt (ai9 ̂ G ί 1 ,
where m. are integers such that Σ t rat (#a t# t.)=0 for all x^M. Denote by R the
factor group FJK and by [a, x] the coset K-\-(a> x). Clearly every element in R
can be expressed as a finite sum Σ, [α, , Λ?J. We define multiplication in R by

Then R forms a ring. Furthermore, M is a right i?-module with the definition

xΣt[c[i9 x{] = Σ, xα,x,, for x^M.

We call the ring R the right operator ring of M. Similarly, we can define the
left operator ring L. Every element in L can be expressed as a finite sum
Σyfffy, βj] where x ^M, ^ GΓ. These two operator rings play important
roles in studying the structure of Γ-rings. We recall that a Γ-ring M is right
primitive if (i) MTx=0 implies x=0 and (ii) the right operator ring R of M is a
right primitive ring.

Theorem 1. If M is a right primitive Γ-ring, then the left operator ring
of M is a right primitive ring.

Proof. Let R and L be respectively the right and left operator rings of M.

Let G be a faithful irreducible right /?-module. Let A be the free abelian
group generated by the set of ordered pairs (g, γ), whereg^ G, γGΓ, and let B
be the subgroup of elements Σj m,-̂ ,., y^&A where m, are integers such that
^imigi[Ύo x]=0 for all x<=M. Denote by H the factor group A\B and, without
causing any ambiguity, by [g> y] the coset B-\-(g, γ). Every element in H there-
fore can be expressed as a finite sum Σf [£f , 7, ] H forms a right L-module
with the definition
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Σ#[ft, 7, ] Σy[*y, βj] = Σ,

for Σ/[£t , 7t.]eΛΓand Σy[#y, /3y]eL. We claim that if is a faithful irreducible
right L-module. Assume H Σ y |> y, /?y]=0. Then for all γ G Γ , £G G, we have
Σy[*[7, *y], βj]=[g, Ύ] Σ y[* y, j8y]=0, i.e.^Σy[γ, *y] [/?y> *]=0 for all * e M .
By the faithfulness of the i?-module of G, [7, Σytfy/?y#]=Σy[7, #y] [/3y, #]=0, SO
MΓ^ΣiXjβJx=0. By the condition (i), Ί,jxiβjx=Q for all *<=M. This means
that Σ y[* y, βj]=0 and H is faithful. To see that H is irreducible, let Ί,s[gi9 7,]
be an arbitrary non-zero element in H. Then the set G'=\Σigi[yi9 x]: x^M}
is a non-zero i?-submodule of G. Since G is irreducible, G'=G. For any
Σyfίy', Ty'JeίΓ, we may write g/='Σggi[yi, xj\ where x^M. Thus
Σ/[*/> ^y 1 = Σypίftfγ,, Λy], γ y ' ] = Σ,[^ , γ,] Σ y[^ y, γy] e Σ, [^, y,]L. Hence
i7 is irreducible and L is a right primitive ring.

3. Irreducible Γ-rings of homomorphisms on groups

Let G and H be non-zero additive abelian groups. If M and Γ are re-
spectively subgroups of Horn (H, G) and Horn (G, H) such that gT=H and
hM= G whenever O Φ ^ G G and Oφh^H, and moreover if xaye Mand α#/3e Γ
for all x, y^:My then M forms a Γ-ring in the sense of Nobusawa under the
composition of mappings. We shall call such a Γ-ring an irreducible Γ-ring
of homomorphisms on groups.

A Γ-ring M and a Γ'-ring Mf are said to be isomorphic if there exist a
group isomorphism θ of M onto Mr and a group isomorphism φ of Γ onto Γ'
such that (xay)θ=(xθ) (aφ) (yθ) for all x, y^M, α G Γ . It is clear that M is
right primitive if and only if M' is right primitive.

Theorem 2. A Γ-ring M is a right primitive Γ-ring in the sense of

Nobusawa if and only if it is isomorphic to an irreducible Γ-ring of homomorphisms

on groups.

Proof. Necessity. Let M be a right primitive Γ-ring in the sense of
Nobusawa with right operator ring R and left operator ring L and let G be a
faithful irreducible right i?-module, from the proof of Theorem 1, we can
construct the faithful irreducible right L-module H. Now, for each γ G Γ
let γφeHom(G, H) defined by g(yφ)=[g, 7]. Clearly φ is a group homo-
morphism of Γ into Horn (G, H). Moreover, if y!φ=y2φ, then [gy yλ — y2]
= 0 i.e. g\yx—yly x]—0 for all g^Gy x^M. By the faithfulness of G as an
i?-module, [7i~γ2> *]=0 for all X G M . Consequently M(y1—y2) M=0 and, by
the condition (4') in the definition of Γ-ring in the sense of Nobusawa,
71=72- Thus φ is a group isomorphism of Γ onto Γ '=Γφ.

Likewise, for each x&M, let xθ be the mapping of H into G defined by
Σi[giy yi](xθ)=Σigi[yiy x]. It can be shown easily that xθ^Hom(H> G) and



270 J. LUH

that θ is a group homomorphism of M into Horn (if, G). We claim that θ is one-
to-one. Indeed, if xθ=yθ, where x,y<=M, then g[y, x— y]=g[y, x] — g[l,y]
= 0 for all g^G, γ G Γ . Again by the faithfulness of G, [7, x—y]=0 for all
γ G Γ , or equivalently that MΓ(x—y)=0. Hence x=y and θ is a group iso-
morphism of M onto Mf=MΘ. It is easy to see that the Γ-ring M is isomorphic
to the Γ'-ring AT.

It remains to show that M' is an irreducible Γ'-ring of homomorphisms
on groups. Let OΦ^ίΞ G. Since gR=G, every element in H can be expressed
as J,j[gΣg[yij9 Xij], βj]=g{jφ) where yij9 /3,-EΞΓ, * , y e M and y=Έ,ijΎijXijβj.
Hence H=gYr. Now, let A be an arbitrary non-zero element in H. Then
h=g(yφ)=[g, y] for some γ G Γ . It follows that h(xθ)=[g, y](xθ)=g[y, x]
for all X G M . Thus hM' is a non-zero i?-submodule of G and hence JιM'=G.

Sufficiency. We may assume that M is an irreducible Γ-ring of homo-
rphisms on groups, and that OΦΓcHom (G, H), 0Φ M e Horn (H, G) where H
and G are abelian groups with the property that for any O Φ ^ G G and OΦλGi//,
gT=H and hM=G. Clearly, MTx=0 for x<= M implies x=0. For g<= G and
Σf[7, , Λ J G / ? , the right operator ring of M, we define composition

This composition is well defined. For if Σy[7f , ^J=2y[)Sy, yj\ in Λ, then
^ΣixΎiXi—yΣjxβJyj=O for all XGM. By noting that g(=gΓM, we
obtain τi(gyi)xi-τj(gβj)yj=g(τiy^i-βjyj)^gTM(τiyfii-^jβjyj)^^ so
£Σ, [7, , a j = #2y[/8y, J>/]. Clearly G forms an irreducible right i?-module.
Moreover, if Σf [7ί> *, ]6 f i and if GΣt{7/, ^ ]=0, then //MΣ,.[7, , Λ?f ] = GΓΛί
Σ, [7, , Xi]=G Σi[yiy x]=0, and hence ΛfΣf [7Λ ]=0. Consequently, Σ,- ,̂-, ^]
= 0 and G is a faithful i?-module. Thus, R is a right primitive ring and M is a
right primitive Γ-ring in the sense of Nobusawa.

Observe the definition of irreducible Γ-rings of homomorphisms on groups.
We can easily see that M is irreducible Γ-rings of homomorphisms on groups
if and only if Γ is a irreducible Γ'-ring of homomorphisms on groups, where
T'—M. Thus from Theorem 2, we immediately have the following

Corollary. Let M be a Γ-ring. Then M is a right primitive Γ-ring in the
sense of Nobusawa if and only if Γ is a right primitive ψΓ'-ring in the sense of
Nobusawa, where Γ'—M.

4. Chevalley-Jacobson density theorem

Let G and H be non-zero right vector spaces over division rings Δ and Δ'
respectively, and let σ be an isomorphism of Δ onto Δ'. A group iV of
semilinear transformations (associated with σ) of G into H is said to be dense if,
for every positive integer n and every n linearly independent elements glyg2>
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•••>£„ in G and every n elements hly h2y -~, hn in H, there exists x^N such
that gix=hiyi= 1,2, ••-,;*.

Now, if Γ is a dense group of semilinear transformations (associated with
σ) of G into // and M is a dense group of semilinear transformations (associated
with σ"1) of H into G, and if the compositions of mappings xay^M and αxβ^Y
for all x, y^M, α, β^T, then M forms a Γ-ring in the sense of Nobusawa
under the composition of mappings. We shall call such a Γ-ring a dense Γ-
ring of semilinear transformations.

Following is a generalization of the well known Chevalley-Jacobson density
theorem.

Theorem 3. Let M be α Γ-ήng. Then M is α right primitive Γ-ring in
the sense of Nobusαwα if and only if it is isomorphic to a dense Γ-ring of semilinear
transformations.

Proof. Sufficiency. It is an immediate consequence of Theorem 2,
since a dense Γ-ring of semilinear transformations evidently is an irreducible
Γ-ring of homomorphisms on groups.

Necessity. We assume that M is a right primitive Γ-ring in the sense of
Nobusawa. According to the proof of Theorem 1 we can construct a faithful
irreducible right jR-module G and a faithful irreducible right L-module H,
where R and L are respectively the right operator ring and the left operator
ring of M. Set Δ—Hom* (G, G) and A'=HomL (H, H). By Schur's Lemma,
Δ and Δ' are division rings.

First, we shall show that Δ and Δ' are isomorphic. For 8 E Δ , we define
the mapping δ σ : H->H by

(Σ,[&, 7W = Σ, [£S,., Ύί]

for Σ . f e ?,]€=#. Here 8σ is well defined. For, if Σ,[ f t, Ύt]=2j[g/, Ύ/]
then for all x^M, Σ. ̂  fγ. , x]=Σjg/[Ύj, x], and hence Σ, (^δ) [<γ, , x]=(Σig,
[Ύi, *])δ=(Σ,£/[<y/, x])S=Σj(g/B) [y/, x]. Thus Σ([gA 7,]=Σy[*/δ, Ύj']
as we desired. Clearly, δσ preserves addition. Moreover, for Σ, [£, , y^^H and

we have (Ugi Ύ^AxJ^jW=(^

Hence δ^eΔ'. It can be easily verified that σ: δ^δ 0" is a monomorphism of
Δ into Δ'. To show that σ is an onto mapping, we note that since H is a faithful
irreducible right L-module and G is a faithful irreducible right i?-module there
exist go^G and γ 0 GΓ such that {[gOy γ] : γGΓ}=ίf and {£o[7o> * ] : ̂ M } = G .
Let δ r be an arbitrary element in Δ' and [̂ 0, 70]Sr=[g0y 7i]> where γGΓ. Let
δ: G->G be defined by (#>[7o, Λ;])8=^0[7I, Λ;] for Λ ̂ M . This is well defined.
In fact, if go[jOy x]=go[Ύo, y], then, for any γGΓ, [g0,

 fγ1] [x, 7]=([<§
ro, 7o]S')

[x, Ύ] = ([go, To] [*, 7])δ/=[ftί7o] [y, 7])δ'=(ko, 7jδ') [ j , 7] = [ft, To] [^ Ύ]
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and hence, by the construction of Hy go[ytxy9 #]=£<) [Ύi^Ύ, #] for all γ G Γ , zE:M.

It follows that (go[Ύi> x]~ go[Ύi> y])R=0. Since G is a faithful irreducible

right Λ-module, go[yly x]=go[yly y]. Clearly S G Δ and 8σ=8'. Therefore

Δ ^ Δ ' .

In the proof of Theorem 2 we have known already that the Γ-ring M is

isomorphic to a Γ'-ring M'y where Γ' is a subgroup of Horn (G, H) and M'

is a subgroup of Horn (Hy G). More precisely, two group isomorphisms

θ: M-+M' and φ: Γ->Γ" exist such that ^[giy γ j (xθ)=Ί,igi[yiy x] and ̂ (γφ)

= [#, 7] for all giyg(=Gy yiy γGΓ, *<ΞAί.

Now we consider G and i/ as right Δ-vector space and right Δ'-vector

space respectively. For any g^G, S G Δ and γGΓ, we have (gδ) (yφ)=[gδ, 7]

= [*> 7]δσ=(^(γφ))δσ and ([g, y]δσ) (xθ)=[gS, y] (xθ)=gδ[yy x]=(g[y, x])S

=([g, 7] (Λ#))δ. Thus yφ and Λ:0 are semilinear transformations (associated

with σ and σ"1 respectively).

It remains to show the density property for Γ'. The density property for

M' can be obtained similarly. We shall show that for any n Δ-independent

elements gly g2, •••, gn^G and any n elements hly h2y •••, hn^H there exists γ G Γ

such that gi(yφ)=hiy i=\> 2, •••, w. We proceed by induction on n.

From Theorem 2, the assertion is obviously true for n= 1. Now we assume

that the assertion is true for n— 1. We want first to show the existence of γ G Γ

such that £t.(γφ)=0 for i<n and£M(γφ)φ0. Suppose such a γ G Γ does not

exist. Then, for any γGΓ,£ t (γφ)=0, \<i<n— 1, implies£rt(γφ)=0. Thus for

any h^Hy by the induction hypothesis, there exists γ 0 GΓ such that g^yoφ)

=h and£,.(γoφ)=O, l<i<n-l. If alsog1(y1φ)=h and g.(Ύlφ)=09 l<i<n-ίy

for some γjGΓ, then since gi((yo—y1)φ)=Oy for \<ί<n—\ it follows that

£*((7o—7I)Φ)=0, i.e. gn(yoΦ)=gn(yiΦ). Hence the mapping ^ : //-^.fί defined

by hψ=gn{yQφ) wheneverg1(yoφ)=h and gi(yoφ)=O for l<t<ny is well defined.

It is easy to see that \jr preserves addition. Let us recall that g0 is an element

in G with {[g0, y]: yet}=H. Let [g0y γ ] G # and Σ,^,, γ, ]GL. Then

ko, y]Ψ=gn(yoΦ) for some γ 0 GΓ, whereg1(yoφ)=[go, y] and ^.(γoφ)=O, 2 < z < ,

n - 1 . Thus, ([ffo,7]Ψ) Σt.[^ , 7 f-]=(^(7^)) Σ,[*f., Ύ j = [ ^ , 7O] Σ,[^, 7, ]

=gn(yιΦ)> where y1=Ί,iyQχiyi. On the other hand, since £i(7iΦ)=[£o> 7]

Σ. l*,., 7, ] and Λ ( γ . φ ) = 0 , 2 < z < n - 1 , by the definition of ψ, ([#>, 7] Σ. ̂ , 7,.])

Ψ=gn(yiΦ) Consequently, ([gOy 7] 2,[^, 7ί])ψ =(ko, y]Ψ) Σ,^-, γ. ] and

hence ψ G Δ ' . Let \Zr=δσ where S G Δ . Since ^ δ — ̂ Λ , ^ 2, •••, ^M_jare Δ-linearly

independent, by the induction hypothesis, there exists γ ' G γ such that (gβ—g,,)

(7'φ)Φθ and ^ ( γ ' φ ) = 0 for l<i<n. But by the definition of ψy (g1δ—gή)

(y'Φ)=(giδ) (y'Φ)—gn(y'Φ)=(gi(y'Φ))ψ—gn(y'Φ)=O, a contradiction. This

proves the existence of γ G Γ such that £ r t(γφ)φ0 and £t.(γφ):=0 for \<i<n.

Since gn(yφ)L=Hy there exists γMGΓ such that gn{ynφ)=hny and gi(yHφ)=0

for l<i<n.
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Likewise, there exist γ f e Γ , l < ί < n , such that gi(yiφ)=hi and £y(γ, φ)
= 0 for ί4=y. Now let 7=7i+72-~+7n> Then gi(7φ)=hiJl<i<n as we
desired. This completes the proof of the theorem.

We recall the definition of Hestense ternary rings. Let G and H be additive
abelian groups. M and Γ be subgroups of Horn (H, G) and Horn (G, H) re-
spectively. If there is a mapping * of M onto Γ such that a i* c^M whenever
a, by c^M then M is called a Hestenes ternary ring. The set of all finite sums
Σ, tf?έ, with aiy bj^M form a ring i? and the set of all finite sums Σ ^ rf* with
cif d^M form a ring L. Clearly M is a right i?-module and is a left L-
module. If M is irreducible as a i?-module and as an L-module then M is
called an irreducible Hestenes ternary ring. Evidently, if M is an irreducible
Hestenes ternary ring then M is a right primitive Γ-ring in the sense of Nobusawa
and the rings R and L are respectively the right operator ring and the left operator
ring of M. Therefore Theorem 3 generalizes further the extension of the
Chevalley-Jacobson density theorem given by Smiley and Stephenson (see [8, 9]).

5. Primitive Γ-rings with non-zero socles

In [6], we have introduced the notion of socles for Γ-rings. The right
(left) socle Sr(Sι) of a Γ-ring M is the sum of all minimal right (left) ideals of
M. In the case M has no minimal right (left) ideals, the right (left) socle of M
is defined to be 0. It has been shown that if M is an one-sided primitive Γ-ring
having minimal one-sided ideals then M is a two sided primitive and its right
socle and left socle coincide (see [5, Theorem 4.2] and [6, Theorem 4.3]).

In this section we shall present a characterization for primitive Γ-ring with
non-zero socle which is different from the one given in [5].

Theorem 4. A Γ-ring M in the sense of Nobusawa is primitive with non-

zero socle if and only if it is isomorphic to a dense Γ'-rίng M' of semi-linear transfor-

mations containing non-zero semilinear transformations of finite rank. Moreover,

the socle of M' is the set of semilinear transformations of finite rank contained in M'.

Proof. Necessity. Assume that M is a primitive Γ-ring in the sense
of Nobusawa with non-zero socle. According to Theorem 3, M can be regarded
as a dense Γ-ring of semilinear transformations. Let G and H be vector
spaces over division rings Δ and Δ', σ: Δ->Δr be an isomorphism, M be a
dense group of semilinear transformations of H into G (associated with σ"1) and
Γ be a dense group of semilinear transformations of G into H (associated with
σ). Let έ?γM be a minimal right ideal of M, where ^ G M , γ G Γ and e7e=e.
We claim that e is a rank 1, for otherwise, there would exist hly h2^H such that
hλe and h2e are Δ-linearly independent. By the density property of Γ and M,
there would exists γ 0 GΓ such that V γ o = O and /*2<?γoΦθ and h2e70M=G.
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Since ejM is minimal and h1e
rγ(erγ0M)=h1e yQM=O, the right ideal {x<=eyM:

h1χ=O}=erγM, i.e. A^γM^O. Particularly, hxe=hxeye=§, a contradiction.
Thus M contains non-zero semilinear transformations of finite rank. In addi-
tion, since the socle S of M is the sum of minimal right ideals, every element
in S is of finite rank.

Sufficiency. Assume that M is a dense Γ-ring of semilinear transfor-
mations on vector spaces G and H described above, and assume that M contains
semilinear transformations of finite rank. By density property, M contains
semilinear transformations of rank 1. Let a^M be of rank 1, and let
Ha=ζgiy> the subspace of Ggenerated bygλ. Consider / = { x e M : & c < ^ > } ,
a left ideal of M. We claim that / is minimal. Let O φ ^ e / . Then Hx1

=<^gτy and h1x1=g1 for some h^H. By the density property of Γ, there
exists γ ^ Γ such that gtfi—K- Thus g ^ g / y ^ . Now let x be an arbitrary
element in /. For any h<=H, there exists S G Δ such that hx=g1δ=(g1y1x1)δ
= (g18)rγ1x1=hxy1x1. Hence x=xγ1x1^MΓx1, so I^=MYx1 for every O + ^ G / .
Thereofre / is a minimal left ideal containing α, a is in the socle of M, and M
has a non-zero socle S.

The argument just used shows that every element in M of rank 1 is in S.
But the density property of M and Γ insures that every element in M of finite
rank is a sum of finitely many elements in M of rank 1. Therefore S contains all
elements in M of finite rank. This completes the proof.
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