Murata, K., Kurata, Y. and Marubayashi, H. Osaka J. Math. 6 (1969), 291-301

A GENERALIZATION OF PRIME IDEALS IN RINGS

KENTARO MURATA, YOSHIKI KURATA AND HIDETOSHI MARUBAYASHI

(Received February 6, 1969)

Introduction

In [2], van der Walt has defined *s*-prime ideals in noncommutative rings and obtained analogous results of McCoy [1] for *s*-prime ideals. In the present paper, we shall give a generalized concept of prime ideals, called *f*-prime ideals, by using some family of ideals, and obtain analogous results in [2]. If our family of ideals is, in particular, the set of principal ideals of the ring, the *f*-prime ideals coincide with the prime ideals and conversely. In addition, if we take multiplicatively closed systems as kernels, the *f*-prime ideals coincide with the *s*-prime ideals.

1. f-prime ideals and the f-radical of an ideal

Let R be an arbitrary (associative) ring. Throughout this paper, the term "ideals" will always mean "two-sided ideals in R".

For each element a of R, we shall associate an ideal f(a) which is uniquely determined by a and satisfies the following conditions:

(I) $a \in f(a)$, and

(II) $x \in f(a) + A \Rightarrow f(x) \subseteq f(a) + A$ for any ideal A.

The principal ideal (a) generated by a is an example of the f(a), and this is the case of [2]. Moreover there are other interesting examples of the f(a). For example, let Q be any subset of R. If we define, for each element a of R, f(a) =(a, Q), the ideal generated by a and Q, then it is easy to see that f(a) satisfies the above conditions. If, in particular, Q is the empty set, then the f(a) coincides with the principal ideal (a).

REMARK. As is easily seen, the following four conditions are equivalent:

- (i) For any element a of R, f(a)=(a),
- (ii) f(0)=0,
- (iii) For any ideal A, $x \in A \Rightarrow f(x) \subseteq A$,
- (iv) For any element a of R, $x \in (a) \Rightarrow f(x) \subseteq (a)$.

DEFINITION 1.1. A subset S of R is called an f-system if S contains an

m-system S^* , called the *kernal* of S, such that $f(s) \cap S^* \neq \phi$ for every element s of S. ϕ is also defined to be an f-system.

We note that every *s*-*m*-system in the sense of [2] is an *f*-system and also every *m*-system is an *f*-system with kernel itself. In the sequel we shall denote by $S(S^*)$ the *f*-system S with kernel S^* , whenever it be convenient. We also note that if $S(S^*)$ is an *f*-system, then $S=\phi$ if and only if $S^*=\phi$.

DEFINITION 1.2. An ideal P is said to be *f*-prime if its complement C(P) in R is an *f*-system.

R is evidently an *f*-prime ideal. Obviously an *s*-prime ideal in the sense of [2] is a prime ideal in the sense of [1], and it follows from Lemma 1.4 below that if we assume f(a)=(a) for every element *a* in *R*, then prime ideals are nothing but *f*-prime ideals. But it can be shown that this is not always true with a suitable choice of f(a).

EXAMPLE 1.3. Consider the ring Z of integers. Let P be the ideal (p^2) and let S^* be the *m*-system $\{q, q^2, q^3, \dots\}$, where p and q are different prime numbers. If we put f(a)=(a, q) for each element a in Z, then the complement C(P) of P in Z is an f-system with kernel S^* . Hence P is an f-prime ideal, but not a prime ideal. This also shows that an f-prime ideal need not be an s-prime ideal, in general.

Lemma 1.4. For any f-prime ideal P, $f(a_1)f(a_2)\cdots f(a_n) \subseteq P \Rightarrow a_i \in P$ for some i.

Proof. It is evident from the definition of *f*-systems.

Lemma 1.5. Let $S(S^*)$ be an f-system in R, and let A be an ideal in R which does not meet S. Then A is contained in a maximal ideal P (in the class of all ideals, each of) which does not meet S. The ideal P is necessarily an f-prime ideal.

Proof. If S is empty, the assertion is trivial, and so suppose that S is not empty. The existence of P follows from Zorn's lemma. We now show that C(P) is an f-system with kernel S^*+P . For any element a of C(P), the maximal property of P implies that f(a)+P contains an element s of S, and thus we can choose an element s^* in $f(s) \cap S^*$. Since f(s) is contained in f(a)+P, we can write $s^*=a'+p$ where a' in f(a) and p in P. Then $a'=s^*-p$ is contained in $f(a) \cap$ (S^*+P) , which completes the proof of the lemma.

DEFINITION 1.6. The *f*-radical r(A) of an ideal A will be defined to be the set of all elements a of R with the property that every *f*-system which contains a contains an element of A.

Theorem 1.7. The f-radical of an ideal A is the intersection of all the fprime ideals containing A.

Proof. We show that if P is an f-prime ideal containing A, then r(A) is contained in P. For suppose that r(A) is not contained in P. Then there exists an element x in r(A) not in P. Since C(P) is an f-system, $C(P) \cap A \neq \phi$. But this contradicts the fact that A is contained in P. Hence r(A) is contained in the intersection of all f-prime ideals which contain A.

Conversely, let a be an element of R, but not in r(A). Then there exists an f-system $S(S^*)$ which contains a but does not meet A. There exists, by Lemma 1.5, an f-prime ideal P which contains A and does not meet S. Hence, P does not contain a and a can not be in the intersection of all f-prime ideals containing A. This completes the proof.

Corollary 1.8. The f-radical of an ideal is an ideal.

Now, let $S(S^*)$ be an *f*-system in *R* and let *A* be an ideal which does not meet *S*. It follows from Zorn's lemma that there exists a maximal *m*-system S_1^* which contains S^* and does not meet *A*. Let us consider the set $S_1=\{x\in R \mid f(x)\cap S_1^*\pm\phi\}\cap C(A)$. Then S_1 is an *f*-system with kernel S_1^* and does not meet *A*. According to Lemma 1.5, there exists an *f*-prime ideal *P* which contains *A* and does not meet S_1 . As is seen in the proof of Lemma 1.5, C(P)is an *f*-system with kernel S_1^*+P , and the maximal property of S_1^* implies that $S_1^*+P=S_1^*$. Hence we have $C(P)=S_1$ by the definition of S_1 .

In view of this we make the following definition:

DEFINITION 1.9. An f-prime ideal P is said to be a minimal f-prime ideal belonging to an ideal A if P contains A and there exists a kernel S^* for the f-system C(P) such that S^* is a maximal m-system which does not meet A.

It follows from the above consideration that any f-prime ideal P containing A contains a minimal f-prime ideal belonging to A. From Theorem 1.7, we can conclude the following:

Theorem 1.10. The f-radical of an ideal A coincides with the intersection of all minimal f-prime ideals belonging to A.

2. Elements f-related to an ideal

We now make the following definition:

Definition 2.1. An element a of R is said to be (left-)f-related to an ideal A if, for every element a' in f(a), there exists an element c not in A such that a'c is in A. An ideal B is said to be (left-)f-related to A if every element of B is f-related to A. Elements and ideals not f-related to A is called (left-)f-unrelated to A.

Elements and ideals right-f-related to A can be similarly defined, but the right hand definitions and theorems will be omitted,

Proposition 2.2. Let A be an ideal. Then the set S consisting of all elements of R which are f-unrelated to A is an f-system.

Proof. For every element a in S, we can choose an element a^* in f(a) such that, for every element c not in A, a^*c is not in A. The set S^* which consists of all such elements a^* is multiplicatively closed and hence S is an f-system with kernel S^* .

It is natural to consider that every element of R is f-related to R. Furthermore we shall now assume, in this section, the following condition:

(α) Each ideal A is f-related to itself.

It may be remarked that (α) can be stated in the following convenient form:

 (α') 0 is f-related to each ideal A.

For suppose that 0 is *f*-related to *A*. Let *a* be any element in *A*. Then *a* is in A+f(0) and hence f(a) is contained in A+f(0). For any element *a'* in f(a), there exist *a"* in *A* and *b"* in f(0) such that a'=a''+b''. Since 0 is *f*-related to *A*, we can choose an element *c* not in *A* such that b''c is in *A*. Therefore, a'c=a''c+b''c is in *A* and this means that *A* is *f*-related to itself.

Clearly, (α) is fulfilled in case f(a)=(a) for every element a in R. And, it can be proved that, whenever R has no right zero-divisors, R satisfies (α) if and only if f(a)=(a) for every element a in R. But, in case of general rings, this need not be true as is seen from the following example.

EXAMPLE 2.3. Consider a simple module M such that $m_1m_2=0$ for any two elements m_1 and m_2 in M. Let K be a field and let R be the direct sum of M and K as modules. Then R can be made into a commutative ring by defining as

$$(m_1+k_1)(m_2+k_2)=k_1k_2$$
 ,

where m_1, m_2 in M and k_1, k_2 in K. As is easily seen, the ideals in R are R, M, K and (0). If we define f(a)=(a, M) for every element a in R, then R satisfies (α), but f(a) does not coincide with (a), since $f(0)=M \neq (0)$.

Proposition 2.4. Let A be an ideal. Then the f-radical r(A) of A is f-related to A.

Proof. Let S be as in Proposition 2.2. If r(A) contains an element funrelated to A, then, by the definition of the radical, we have $S \cap A \neq \phi$, a contradiction.

It follows from this proof, in terms of relatedness, that the assumption (α) can be also restated as follows: for any ideal A, the *f*-radical of A is *f*-related to A.

Let A be an ideal and let S be the f-system consisting of all elements f-

unrelated to A. Then S does not meet the ideal (0), and hence, by Lemma 1.5, there exists a maximal ideal (in the class of all ideals, each of) which does not meet S, or equivalently, a maximal ideal (each of) which is f-related to A. Each such maximal ideal is necessarily an f-prime ideal. In view of this, we put the following:

DEFINITION 2.5. A maximal ideal in the class of all ideals, each of which is f-related to an ideal A, is called a maximal f-prime ideal belonging to A.

Proposition 2.6. Let A be an ideal. Then A is contained in every maximal f-prime ideal belonging to A.

Proof. Let P be any maximal f-prime ideal belonging to A. Then it is sufficient to show that A+P is f-related to A. Let a+p be any element in A+P, where a in A and p in P. Since a+p is in A+f(p), f(a+p) is contained in A+f(p), and hence each element a' in f(a+p) can be written as a'=a''+p'', where a'' in A and p'' in f(p). We can choose an element c not in A such that p''c is in A. Then a'c=a''c+p''c is contained in A, which completes the proof.

Since any f-prime ideal containing A contains a minimal f-prime ideal belonging to A, it follows from Proposition 2.6 that every maximal f-prime ideal belonging to A necessarily contains a minimal f-prime ideal belonging to A. The converse is also true in case of [1], but we can provide an example to show that this need not be true in our case.

EXAMPLE 2.7. Let us consider the ideal A=(xy) in the ring K[x, y] of polynomials in two non-commutative indeterminates x and y over a field K. If we define f(a)=(a) for every element a in K[x, y], then the assumption (α) is satisfied and A is f-related to itself. Hence we can consider the maximal f-prime ideal belonging to A. As is easily seen, the ideal (y) is a minimal f-prime ideal belonging to A, but it is f-unrelated to A. Thus, (y) is not contained by any maximal f-prime ideal belonging to A.

Proposition 2.8. Let A be an ideal. Then every element or ideal which is f-related to A is contained in a maximal f-prime ideal belonging to A.

Proof. Obviously, an element a is f-related to A if and only if f(a) is f-related to A. So we shall prove the only case of an ideal which is f-related to A. Let B be such an ideal, and let S be the f-system consisting of all elements of R which are f-unrelated to A. Then B does not meet S and hence, by Lemma 1.5, B is contained in a maximal f-prime ideal P belonging to A.

It follows from this proposition that the ideals of R which are f-related to A are spread over the maximal f-prime ideals belonging to A.

DEFINITION 2.9. Let A be an ideal and let b be an element in R. The (left-)

f-quotient A:b of A by b will be defined to be the set of all elements x of R such that f(b)f(x) is contained in A. Moreover, for any ideal B, the (*left-*)*f*-quotient of A by B will be defined as $\bigcap_{b \in B} (A:b)$, and denoted by A:B.

From this definition, we have

- (1) $A' \subseteq A'' \Rightarrow A' : b \subseteq A'' : b$ and $A' : B \subseteq A'' : B$,
- (2) $B' \subseteq B'' \Rightarrow A: B' \supseteq A: B''$,
- (3) $(A' \cap A''): b = (A':b) \cap (A'':b) \text{ and } (A' \cap A''): B = (A':B) \cap (A'':B).$

We note that A:b may be empty. However, if it is not, it is an ideal containing A. To see this, take an arbitrary element x+a in (A:b)+A, where x in A:b and a in A. Then x+a is contained in f(x)+A, and so is f(x+a). Hence f(b)f(x+a) is contained in A. That is, (A:b)+A is contained in A:b.

DEFINITION 2.10. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. The principal f-component A_P of A determined by P will be defined as follows:

$$A_P = \begin{cases} \bigcup_{s \notin P} (A:s) & \text{(if } P \neq R) \\ A & \text{(if } P = R) \end{cases}.$$

For $P \neq R$, the principal f-component A_P may be empty in certain cases. In case f(a)=(a) for every a in R it is not empty, but, as is seen from Example 2.3, there exists a ring in which (α) is satisfied, and f(a) need not be (a), and A_P is not empty for all A and $P \neq R$.

So we shall assume, in the rest of this paper, the following condition:

(β) For any ideal A and ideal B not contained in r(A), we have $A: B \neq \phi$.

For any maximal f-prime ideal P belonging to A, it follows from Proposition 2.6 that P contains A, and hence r(A) is contained in P. If s is not in P, then s does not contained in r(A). Hence, from the assumption (β), $A:s \neq \phi$ and therefore we have $A_P \neq \phi$.

We now show that A_P is an ideal containing A. If P = R, the assertion is trivial. Let $P \neq R$ and let x, y be any two elements of A_P . Then there exist s and t in C(P) such that both f(s)f(x) and f(t)f(y) are contained in A. Take two elements s^* in $S^* \cap f(s)$ and t^* in $S^* \cap f(t)$, where S^* is a kernel of C(P). Since S^* is an *m*-system, s^*zt^* is in S^* (whence is in C(P)) for some z in R. Thus $s^*zt^* \in f(s) \cap f(t), f(s^*zt^*) \subseteq f(s) \cap f(t)$. Hence $f(s^*zt^*)f(x+y) \subseteq (f(s) \cap f(t))(f(x)$ $+f(y)) \subseteq f(s)f(x)+f(t)f(y) \subseteq A$.

Now let x=x'+x'' be any element in A_P+A , where x' in A_P and x'' in A. Then f(s)f(x') is contained in A for some s in C(P). Since x is in f(x')+A, f(x) is contained in f(x')+A, and hence we have $f(s)f(x) \subseteq f(s)f(x')+f(s)A \subseteq A$. Thus x is in A_P and A is contained in A_P .

For any maximal *f*-prime ideal *P* belonging to *A*, since $A \subseteq A_P \subseteq P$, $A_P = R$ if and only if A = R. Furthermore, if *P* is the only maximal *f*-prime ideal belong-

ing to A, or equivalently by Proposition 2.8, if its complement C(P) consists of all elements which are *f*-unrelated to A, then we have $A_P = A$.

Proposition 2.11. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. Then the principal f-component A_P is contained in every ideal D such that A is contained in D and that any element of C(P) are f-unrelated to D.

Proof. If P=R, the assertion is trivial. Let $P \neq R$ and let D be any ideal such that A is contained in D and that any element of C(P) are f-unrelated to D. If x is an arbitrary element of A_P , then there exists an element s in C(P) such that $f(s)f(x)\subseteq A$. Since s is f-unrelated to D, we can choose an element s^* in f(s) such that $s^*c \in D$ implies $c \in D$. s^*x is in D and hence x is in D.

We note from Proposition 2.8 that any element of C(P) are f-unrelated to D if and only if any maximal f-prime ideal belonging to D are contained in P.

Theorem 2.12. Any ideal A is represented as the intersection of all its principal f-components A_P .

Proof. Since A is contained in every principal f-component of A, it is also contained in their intersection. To prove the converse, let a be an arbitrary element of the intersection of all principal f-components A_P . For any maximal f-prime ideal P belonging to $A, f(s)f(a) \subseteq A$ for some s in S = C(P). Consider the ideal B which consists of all elements b of R such that $f(b)f(a) \subseteq A$. Then B is not contained in P, and hence according to Proposition 2.8, B can not be f-related to A. This means that B contains at least one element b which is f-unrelated to A. Since f(b)f(a) is in A, the f-unrelatedness of b implies that a is in A. The theorem is therefore established.

REMARK. It is natural to define a (left-)*f*-primal ideal as follows: an ideal A is said to be (*left-*)*f*-primal, if the set X of the elements, each of which is (left-) *f*-related to A, forms an ideal. If A is *f*-primal, X is called the (*left-*)*adjoint* of A. Then we can prove that the principal *f*-component of A determined by the maximal *f*-prime ideal P is contained in the intersection of all *f*-primal ideals A_{λ} such that (1) A_{λ} contains A, and (2) the adjoint of A_{λ} is contained in P.

3. f-primary decompositions

In this section, we shall consider *f*-primary decompositions of ideals on the analogy of the primary decompositions of ideals in a commutative Noetherian ring. For this purpose, we assume besides (β) , throughout this section, the following condition:

(γ) If S is an f-system with kernel S^{*}, and if for any ideal A, S \cap A is not empty, then so is S^{*} \cap A.

Clearly, this assumption is satisfied in case f(a)=(a) for every element a in R. But, for a suitable choice of f(a), this is not always satisfied as is seen from the following example:

EXAMPLE 3.1. As is seen from Example 1.3, for the ideal $P=(p^2)$ in the ring Z of integers, its complement S=C(P) is an *f*-system with kernel $S^*=\{q, q^2, q^3, \cdots\}$, where p and q are different prime numbers. Now, let A be the ideal (p), then we have $S \cap A = \phi$, though $S^* \cap A = \phi$.

Proposition 3.2. Let A and B be any two ideals. Then

$$(1) \quad A \subseteq B \Rightarrow r(A) \subseteq r(B),$$

 $(2) \quad r(r(A)) = r(A),$

(3) $r(A \cap B) = r(A) \cap r(B)$.

Proof. (1) and (2) follow from the definition of the radical.

It is clear that $r(A \cap B) \subseteq r(A) \cap r(B)$. Conversely, let x be any element in $r(A) \cap r(B)$ and let S be any f-system containing x. Then, there exist two elements a and b in $S \cap A$ and $S \cap B$ respectively. By the assumption (γ) , we can choose two elements a^* and b^* in $S^* \cap A$ and $S^* \cap B$ respectively. Since S^* is an *m*-system, a^*zb^* is in S^* for some element z in R. Therefore $a^*zb^* \in S^* \cap (A \cap B)$, and hence $S \cap (A \cap B)$ is not empty. This means that x is in $r(A \cap B)$, which completes the proof of (3).

DEFINITION 3.3. An ideal Q is called (*left-*)*f-primary*, if $f(a)f(b) \subseteq Q$ implies that $a \in r(Q)$ or $b \in Q$.

Let us note that, by Lemma 1.4, f-prime ideals are always f-primary ideals. As is easily seen from Definition 3.3, we have

Proposition 3.4. If Q' and Q'' are f-primary ideals such that r(Q')=r(Q''), then $Q=Q' \cap Q''$ is also an f-primary ideal such that r(Q)=r(Q')=r(Q'').

Another characterization of f-primary ideals can be given by means of f-quotients.

Proposition 3.5. An ideal Q is f-primary if and only if Q:B=Q for all ideals B not contained in r(Q).

Proof. Suppose that Q is f-primary and that B is an ideal not contained in r(Q). We can choose an element b in B but not in r(Q). By the assumption (β) , Q:b is not empty, and for any element a in Q:b, f(b)f(a) is contained in Q. Since Q is f-primary and b is not in r(Q), a is in Q. Thus Q:b is contained in Q. This shows that Q=Q:B, because again by (β) Q:B is an ideal such that $Q\subseteq Q:B \subseteq Q:b$.

Conversely, suppose that f(a)f(b) is contained in Q and that a is not in

r(Q). Then f(a) is not contained in r(Q), and hence we have Q:f(a)=Q. For an arbitrary element a' in $f(a), f(a')f(b) \subseteq f(a)f(b) \subseteq Q$, and thus b is in Q:f(a)=Q. This proves that Q is f-primary.

If an ideal A can be written as

$$A = Q_1 \cap Q_2 \cap \cdots \cap Q_n,$$

where each Q_i is an *f*-primary ideal, this will be called an *f*-primary decomposition of *A*, and each Q_i will be called the *f*-primary component of the decomposition. A decomposition in which no Q_i contains the intersection of the remaining Q_j is called irredundant. Moreover, an irredundant *f*-primary decomposition, in which the radicals of the various *f*-primary components are all different, is called a normal decomposition. As is easily seen from Proposition 3.4, each *f*-primary decomposition can be refined into one which is normal.

Besides the assumptions (β) and (γ), we assume, in this section, the following condition:

(δ) For any f-primary ideal Q, we have Q:Q=R.

Evidently, this assumption is satisfied in case f(a)=(a) for every element a in R. But, for a suitable choice of f(a), this is not all true.

EXAMPLE 3.6. As is seen from Example 1.3, the ideal (p^2) is *f*-prime and hence is an *f*-primary ideal in \mathbb{Z} . Suppose that the assumption (δ) is satisfied for this (p^2) . Then we have $f(p^2) \subseteq (p^2)$ and hence $(p^2) = f(p^2) = (p^2) + (q)$, a contradiction.

Now we shall prove, under the assumptions (β) , (γ) and (δ) , that the number of *f*-primary components and the radicals of *f*-primary components of a normal decomposition of *A* depend only on *A* and not on the particular normal decomposition considered. This is a main theorem of this section.

Theorem 3.7. Suppose that an ideal A has an f-primary decomposition, and let

$$A = Q_1 \cap Q_2 \cap \dots \cap Q_n = Q'_1 \cap Q'_2 \cap \dots \cap Q'_m$$

be two normal decomposions of A. Then n=m, and it is possible to number the f-primary components in such a way that $r(Q_i)=r(Q'_i)$ for $1 \le i \le n=m$.

Proof. If A coincides with R, the assertion is trivial. We may suppose therefore that A does not coincide with R, in which case all the f-primary components $Q_1, \dots, Q_n, Q'_1, \dots, Q'_m$ are proper ideals. Among the radicals $r(Q_1), \dots, r(Q_n), r(Q'_1), \dots, r(Q'_m)$ take one which is maximal in this set, and we may assume that it is $r(Q_1)$. We now prove that $r(Q_1)$ occurs among $r(Q'_1), \dots, r(Q'_m)$. To prove this it will be enough to show that Q_1 is contained in $r(Q'_1)$ for some j. Suppose that Q_1 is not contained in $r(Q'_j)$ for $1 \le j \le m$. Then we have, by Proposition 3.5, $Q'_j: Q_1 = Q'_j$ for $1 \le j \le m$, and consequently

$$A: Q_1 = (Q'_1 \cap \dots \cap Q'_m): Q_1$$

= $(Q'_1: Q_1) \cap \dots \cap (Q'_m: Q_1)$
= $Q'_1 \cap \dots \cap Q'_m$
= A .

If n=1, then, by the assumption (δ), we have

$$R = Q_1 : Q_1 = A : Q_1 = A$$

a contradiction. On the other hand, if n>1, then we have again by (δ)

$$A = A: Q_1 = (Q_1 \cap \dots \cap Q_n): Q_1$$
$$= (Q_1: Q_1) \cap \dots \cap (Q_n: Q_1)$$
$$= Q_2 \cap \dots \cap Q_n,$$

since Q_1 is not contained in $r(Q_i)$ for $2 \le i \le n$. This is a contradiction. Now we may arrange that Q_i and Q'_j so that $r(Q_1) = r(Q'_1)$.

We shall use an induction on the number *n* of *f*-primary components. If n=1, then $A=Q_1=Q'_1\cap\cdots\cap Q'_m$, and moreover if m>1, then Q_1 is not contained in $r(Q_1')$ for $2 \le j \le m$. Since

$$R = Q_1 : Q_1 = (Q'_1 : Q_1) \cap \cdots \cap (Q'_m : Q_1)$$
,

we have $R=Q'_2=Q'_3=\dots=Q'_m$, by Proposition 3.5, a contradiction. Similarly, m=1 implies that n=1, and in this case the assertion is trivial.

Let us now assume that $n \le m$. We shall show that n=m and by a suitable ordering $r(Q_i)=r(Q'_i)$ for $1\le i\le n=m$. Assume that these results are valid for ideals which may be represented by fewer than *n f*-primary components. Put $Q=Q_1 \cap Q'_1$, then by Proposition 3.4, Q is an *f*-primary ideal such that r(Q) $=r(Q_1)=r(Q'_1)$. Also $Q_i: Q=Q_i$ for $2\le i\le n$, and $Q_1: Q=R$. For the first relation follows from the fact that Q is not contained in $r(Q_i)$, while the second follows from $R=Q_1: Q_1\subseteq Q_1: Q$. Consequently $A: Q=Q_2\cap \cdots \cap Q_n$, and an exactly similar argument shows that $A: Q=Q'_2\cap \cdots \cap Q'_m$. Hence, we have

$$Q_{\mathtt{2}}\cap \cdots \cap Q_{\mathtt{m}} = Q'_{\mathtt{2}}\cap \cdots \cap Q'_{\mathtt{m}}$$
 ,

and moreover both decompositions are normal. Thus by the induction hypothesis we have n-1=m-1, that is, n=m. Furthermore, by a suitable ordering we have $r(Q_i)=r(Q'_i)$ for $2 \le i \le n=m$. This completes the proof.

YAMAGUCHI UNIVERSITY

PRIME IDEALS IN RINGS

References

- [1] N. H. McCoy: Prime ideals in general rings, Amer. J. Math. 71 (1948), 823-833.
- [2] A. P. J. van der Walt: Contributions to ideal theory in general rings, Proc. Kon. Ned. Akad. Wetensch. A67 (1964), 68-77.