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Introduction

In [2], van der Walt has defined s-prime ideals in noncommutative rings and
obtained analogous results of McCoy [1] for s-prime ideals. In the present
paper, we shall give a generalized concept of prime ideals, called /-prime ideals,
by using some family of ideals, and obtain analogous results in [2], If our

family of ideals is, in particular, the set of principal ideals of the ring, the /-prime
ideals coincide with the prime ideals and conversely. In addition, if we take
multiplicatively closed systems as kernels, the /-prime ideals coincide with the

s-prime ideals.

1. f-prime ideals and the f-radical of an ideal

Let R be an arbitrary (associative) ring. Throughout this paper, the term

' ideals" will always mean "two-sided ideals in R".
For each element a of R, we shall associate an ideal f(ά) which is uniquely

determined by a and satisfies the following conditions:
(I) tf6Ξ/(*),and

(II) x<=f(a)+A =φf(x)^f(ά)+A for any ideal A.
The principal ideal (a) generated by a is an example of the f(ά), and this

is the case of [2], Moreover there are other interesting examples of the/(α). For
example, let Q be any subset of R. If we define, for each element a of Ryf(ά)=
(a, Q), the ideal generated by a and Q, then it is easy to see that f(ά) satisfies the
above conditions. If, in particular, Q is the empty set, then the f(ά) coincides
with the principal ideal (a).

REMARK. As is easily seen, the following four conditions are equivalent:
(i) For any element a of R, f(a)=(a)y

(iii) For any ideal A, x<=A =φf
(iv) For any element a of R, x^(ά) =Φ f(x)^(ά).

DEFINITION 1.1. A subset S of R is called an / '-system if S contains an



292 K. MURATA, Y. KURATA AND H. MARUBAYASHI

ra-system S*, called the kernal of Sy such that/(s)n S*φφ for every element s
of S. φ is also defined to be an /-system.

We note that every s-m-system in the sense of [2] is an /-system and also
every ^-system is an /-system with kernel itself. In the sequel we shall denote
by S(S*) the /-system S with kernel S*, whenever it be convenient. We also
note that if S(S*) is an /-system, then S=φ if and only if S*=φ.

DEFINITION 1.2. An ideal P is said to be f -prime if its complement C(P)
in R is an /-system.

R is evidently an /-prime ideal. Obviously an s-prime ideal in the sense
of [2] is a prime ideal in the sense of [1], and it follows from Lemma 1.4 below
that if we assume f(a)=(ά) for every element a in R, then prime ideals are nothing
but /-prime ideals. But it can be shown that this is not always true with a suitable
choice of f(a).

EXAMPLE 1.3. Consider the ring Z of integers. Let P be the ideal (p2) and
let S* be the w-system {<?, <?2, <?3, }, where p and q are different prime numbers.
If we put/(α)— (<2, q) for each element a in Z, then the complement C(P) of P in
Z is an /-system with kernel 5*. Hence P is an /-prime ideal, but not a prime
ideal. This also shows that an /-prime ideal need not be an s-prime ideal, in
general.

Lemma 1.4. For any f -prime ideal P,
some ί.

Proof. It is evident from the definition of /-systems.

Lemma 1.5. Let S(S*) be an f-system in Rf and let A be an ideal in R
which does not meet S. Then A is contained in a maximal ideal P (in the class of
all ideals, each of] which does not meet S. The ideal P is necessarily an f -prime ideal.

Proof. If S is empty, the assertion is trivial, and so suppose that S is not

empty. The existence of P follows from Zorn's lemma. We now show that
C(P) is an /-system with kernel S*-\-P. For any element a of C(P), the maximal
property of P implies that/(<z)+P contains an element s of S, and thus we can
choose an element s* inf(s) Π S*. Since f(s) is contained in/(α)+P, we can write
s^^a'-^p where a' in/(#) and p in P. Then a'=s*—p is contained in/(α)(Ί

(5*+P), which completes the proof of the lemma.

DEFINITION 1.6. The f -radical r(A) of an ideal A will be defined to be
the set of all elements a of R with the property that every /-system which contains
a contains an element of A.

Theorem 1.7. The f -radical of an ideal A is the intersection of all the f-
prime ideals containing A.
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Proof. We show that if P is an/-prime ideal containing A, then r(A) is

contained in P. For suppose that r(A) is not contained in P. Then there
exists an element x in r(A) not in P. Since C(P) is an/-system, C(P) Π ^4φφ.
But this contradicts the fact that A is contained in P. Hence r(A) is contained
in the intersection of all/-prime ideals which contain A.

Conversely, let a be an element of R, but not in r(A). Then there exists
an /-system S(S*) which contains a but does not meet A. There exists,
by Lemma 1.5, an/-ρrime ideal P which contains A and does not meet S. Hence,
P does not contain a and a can not be in the intersection of all /-prime ideals

containing A. This completes the proof.

Corollary 1.8. The f-radical of an ideal is an ideal.

Now, let S(S*) be an/-system in R and let A be an ideal which does not
meet S. It follows from Zorn's lemma that there exists a maximal ^-system
Sf which contains S* and does not meet A. Let us consider the set
S1={x^R\f(x)Γ\S^φ} Π C(A). Then S, is an/-system with kernel S? and
does not meet A. According to Lemma 1.5, there exists an/-prime ideal P which
contains A and does not meet S^ As is seen in the proof of Lemma 1.5, C(P)
is an /-system with kernel 5f+P, and the maximal property of Sf implies that
Sf+P=Sf. Hence we have C(P)=S1 by the definition of S,.

In view of this we make the following definition:

DEFINITION 1.9. An /-prime ideal P is said to be a minimal f-prime ideal
belonging to an ideal A if P contains A and there exists a kernel S* for the/-system
C(P) such that S* is a maximal m-system which does not meet A.

It follows from the above consideration that any/-prime ideal P containing
A contains a minimal/-prime ideal belonging to A. From Theorem 1.7, we can
conclude the following:

Theorem 1.10. The f-radical of an ideal A coincides with the intersection

of all minimal f-prime ideals belonging to A.

2. Elements f-related to an ideal

We now make the following definition:
Definition 2.1. An element a of R is said to be (left-)f-related to an ideal A

if, for every element a' in/(α), there exists an element c not in A such that a'c
is in A. An ideal B is said to be (left-}f-related to A if every element of B is
/-related to A. Elements and ideals not/-related to A is called (left-)]--unrelated
to A.

Elements and ideals right-/-related to A can be similarly defined, but the

right hand definitions and theorems will be omitted.
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Proposition 2.2. Let A be an ideal. Then the set S consisting of all elements

of R which are f-unrelated to A is an f-system.

Proof. For every element a in 5, we can choose an element α* in/(α) such

that, for every element c not in A, a*c is not in A. The set S* which consists

of all such elements #* is multiplicatively closed and hence S is an/-system with

kernel S*.

It is natural to consider that every element of R is/-related to R. Further-

more we shall now assume, in this section, the following condition:

(a) Each ideal A is f-related to itself.

It may be remarked that (a) can be stated in the following convenient form:

(a1) 0 is f-related to each ideal A.

For suppose that 0 is/-related to A. Let a be any element in A. Then

a is in A-\-f(Q) and hence f(a) is contained in ^4+/(0). For any element a' in

f(a)y there exist a" in A and b" in/(0) such that a'=d'+b". Since 0 is/-related

to Ay we can choose an element c not in A such that b"c is in A. Therefore,

a'c=a"c-\-bnc is in A and this means that A is/-related to itself.
Clearly, (a) is fulfilled in case f(a)=(a) for every element a in R. And, it

can be proved that, whenever R has no right zero-divisors, R satisfies (a) if and

only if f(a)=^(a) for every element a in R. But, in case of general rings, this

need not be true as is seen from the following example.

EXAMPLE 2.3. Consider a simple module M such that m1m2=0 for any two

elements m1 and m2 in M. Let K be a field and let R be the direct sum of M and
K as modules. Then R can be made into a commutative ring by defining as

(m1+k1)(m2+k2) = k,k2y

where mly m2 in M and kίy k2 in K. As is easily seen, the ideals in R are Ry
My K and (0). If we define/(#)=(#, M) for every element a in Ry then R satisfies

(ά)y but f(a) does not coincide with (#), since /(0)=MΦ(0).

Proposition 2.4. Let A be an ideal. Then the f-radical r(A) of A is f-related
to A.

Proof. Let S be as in Proposition 2.2. If r(A) contains an element /-

unrelated to Ay then, by the definition of the radical, we have S Π ^4φφ, a con-

tradiction.

It follows from this proof, in terms of relatedness, that the assumption

(α) can be also restated as follows: for any ideal Ay the/-radical of A is/-related to

A.
Let A be an ideal and let S be the /-system consisting of all elements /-
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unrelated to A. Then S does not meet the ideal (0), and hence, by Lemma 1.5,
there exists a maximal ideal (in the class of all ideals, each of) which does not
meet *S, or equivalently, a maximal ideal (each of) which is/-related to A. Each
such maximal ideal is necessarily an /-prime ideal. In view of this, we put the
following:

DEFINITION 2.5. A maximal ideal in the class of all ideals, each of which
is/-related to an ideal Ay is called a maximal f-prime ideal belonging to A.

Proposition 2.6. Let A be an ideal. Then A is contained in every maximal
f-prime ideal belonging to A.

Proof. Let P be any maximal/-prime ideal belonging to A. Then it is
sufficient to show that A-\-P is/-related to A. Let a-\-p be any element in A-\-P,
where a in A and p in P. Since a-\-p is in A+f(p), f(a-\-p) is contained in
A-\-f(p], and hence each element a' mf(a-\-p) can be written as a'=a"+p\ where
a" in A and p" in f(p). We can choose an element c not in A such that p"c is
in A. Then a'c=a"c-\-p"c is contained in A, which completes the proof.

Since any /-prime ideal containing A contains a minimal /-prime ideal
belonging to A, it follows from Proposition 2.6 that every maximal/-prime ideal
belonging to A necessarily contains a minimal /-prime ideal belonging to A.
The converse is also true in case of [1], but we can provide an example to show
that this need not be true in our case.

EXAMPLE 2.7. Let us consider the ideal A=(xy) in the ring K[x, y] of poly-
nomials in two non-commutative indeterminates x and y over a field K. If we
define/(#)=(#) for every element a in K[x, y ] , then the assumption (a) is satisfied
and A is /-related to itself. Hence we can consider the maximal /-prime ideal
belonging to A. As is easily seen, the ideal (y) is a minimal/-prime ideal be-
longing to A, but it is /-unrelated to A. Thus, (y) is not contained by any
maximal/-prime ideal belonging to A.

Proposition 2.8. Let A be an ideal. Then every element or ideal which is
f-related to A is contained in a maximal f-prime ideal belonging to A.

Proof. Obviously, an element a is/-related to A if and only if f(a) is/-related
to A. So we shall prove the only case of an ideal which is/-related to A. Let
B be such an ideal, and let S be the /-system consisting of all elements of R
which are/-unrelated to A. Then B does not meet S and hence, by Lemma 1.5,
B is contained in a maximal /-prime ideal P belonging to A.

It follows from this proposition that the ideals of R which are /-related to A
are spread over the maximal/-prime ideals belonging to A.

DEFINITION 2.9. Let A be an ideal and let b be an element in R. The (left-)
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f-quotient A: b of A by b will be defined to be the set of all elements x of R such
that f(b)f(x) is contained in A. Moreover, for any ideal B, the (left-)f-quotίent
of A by B will be defined as Π b^B (A: b), and denoted by A: B.

From this definition, we have
(1) A'^A" =Φ A1: b^A": b and A': B^A": B,
(2) B'<^B" => A : B'^A : B'',

(3) (A'Γ\A"):b=(A':b)Γl(A":b) and (A'Γ\ A"\.B=(A'\ B)Π (A":B).
We note that A:b may be empty. However, if it is not, it is an ideal con-

taining A. To see this, take an arbitrary element x+a in (A\b)+A, where x in
A :b and a in A. Then x+a is contained in/(#)+A and so isf(x-\-a). Hence
f(b)f(x-\-ά) is contained in A. That is, (A:b)-\-A is contained in A:b.

DEFINITION 2.10. Let A be an ideal, and let P be any maximal /-prime
ideal belonging to A. The principal /-component AP of A determined by P will
be defined as follows:

A (if P=R).

For PΦP, the principal/-component AP may be empty in certain cases. In
f(a)=(ά) for every a in R it is not empty, but, as is seen from Example 2.3,

there exists a ring in which (α) is satisfied, and f(a) need not be (a), and AP is
not empty for all A and PΦP.

So we shall assume, in the rest of this paper, the following condition:

(β) For any ideal A and ideal B not contained in r(A), we have A:B^φ.

For any maximal/-prime ideal P belonging to A, it follows from Proposition
2.6 that P contains A, and hence r(A) is contained in P. If s is not in P, then
s does not contained in r(A). Hence, from the assumption (/?), A:s=£φ and
therefore we have ^4PΦφ.

We now show that AP is an ideal containing,A If P = R> the assertion is
trivial. Let PΦP and let x, y be any two elements of AP. Then there exist
s and t in C(P) such that both f(s)f(x) and/(ί)/(j>) are contained in A. Take two
elements s* in S* Π f(s) and ί* in 5* Π f(t\ where 5* is a kernel of C(P). Since
5* is an m-system, s*zt* is in 5* (whence is in C(P)) for some % in /?. Thus

s*zt*ϊΞf(s) Π /(ί), /(*****)£/(*) Π /(ί) Hence /($**f*)/i

Now let x=x'-\-x" be any element in^4F+^4, where x' in ^4P and x" in A
Then/($)/(#') is contained in A for some s in C(P). Since x is in/(#')+^4,/(#)
is contained in/(^/)+^4, and hence we havef(ήf(x)^f(s)f(x')+f(s)A<^A. Thus
x is in yίp and A is contained in AP.

For any maximal/-prime ideal P belonging to ^4, since A<^AP<^P, AP~R
if and only if A=R. Furthermore, if P is the only maximal/-prime ideal belong-
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ing to Ay or equivalently by Proposition 2.8, if its complement C(P) consists of
all elements which are /-unrelated to Ay then we have AP=A.

Proposition 2.11. Let A be an ideal, and let P be any maximal f -prime ideal

belonging to A. Then the principal /-component AP is contained in every ideal
D such that A is contained in D and that any element of C(P) are /-unrelated to D.

Proof. If P=R, the assertion is trivial. Let P^R and let D be any ideal
such that A is contained in D and that any element of C(P) are /-unrelated to
D. If x is an arbitrary element of AP, then there exists an element s in C(P) such
that f(s)f(x)<Ξ:A. Since s is /-unrelated to Z), we can choose an element ί* in
/(s) such that s*c^ D implies c^D. s*x is in D and hence x is in D.

We note from Proposition 2.8 that any element of C(P) are /-unrelated to
D if and only if any maximal /-prime ideal belonging to D are contained in P.

Theorem 2.12. Any ideal A is represented as the intersection o/ all its
principal /-components AP.

Proof. Since A is contained in every principal /-component of A, it is
also contained in their intersection. To prove the converse, let a be an arbitrary
element of the intersection of all principal /-components AP. For any maximal
/-prime ideal P belonging to A,/(s)/(a) <Ξ A for some s in 5— C(P). Consider the
ideal B which consists of all elements b of R such that f(b)f(ά)<^A. Then B is
not contained in P, and hence according to Proposition 2.8, B can not be /-related
to A. This means that B contains at least one element b which is /-unrelated to
A. Since f(b)f(a) is in A, the /-unrelatedness of b implies that a is in A. The
theorem is therefore established.

REMARK. It is natural to define a (left-)/-primal ideal as follows: an ideal
A is said to be (left-}] '-primal, if the set X of the elements, each of which is (left-)
/-related to A, forms an ideal. If A is /-primal, X is called the (left-)adjoίnt of
A. Then we can prove that the principal /-component of A determined by the
maximal /-prime ideal P is contained in the intersection of all /-primal ideals A λ

such that (1) A\ contains A, and (2) the adjoint of Aλ is contained in P.

3. f-primary decompositions

In this section, we shall consider /-primary decompositions of ideals on the

analogy of the primary decompositions of ideals in a commutative Noetherian
ring. For this purpose, we assume besides (β), throughout this section, the

following condition:

(γ) // S is an f -system with kernel S*, and if for any ideal A, S Π A is not

empty, then so is 5* ΓΊ A.
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Clearly, this assumption is satisfied in casef(ά)=(ά) for every element a in

R. But, for a suitable choice of /(#), this is not always satisfied as is seen from

the following example:

EXAMPLE 3.1. As is seen from Example 1.3, for the ideal P=(p2) in

the ring Z of integers, its complement S=C(P) is an /-system with kernel

S*={q, q2, #3,•"}:» where p and q are different prime numbers. Now, let A be
the ideal (p\ then we have SΓiA^φ, though 5* Π A=φ.

Proposition 3.2. Let A and B be any two ideals. Then

(1) A^B ** r(A)^r(B),
(2) r(r(A))=r(A),

(3) r(AΓ(B)=r(A)Γ(r(B).

Proof. (1) and (2) follow from the definition of the radical.

It is clear that r(A Π B)^r(A)Π r(B). Conversely, let x be any element in

r(A) Π r(B) and let S be any /-system containing x. Then, there exist two
elements a and b in S (Ί A and 5 Π B respectively. By the assumption (γ), we

can choose two elements a* and δ* in 5* Π ̂ 4 and 5* Π -β respectively. Since

5* is an m-system, α*#δ* is in *S* for some element z in /?. Therefore 0*#δ*

e 5* Π (-4 Π £), and hence 5 Π (A Π 5) is not empty. This means that x is in
r(AΓ\B), which completes the proof of (3).

DEFINITION 3.3. An ideal Q is called (left-}f-primary, iff(a)f(b)^Q implies
that a<=r(Q) or b(=Q.

Let us note that, by Lemma 1.4,/-prime ideals are always/-primary ideals.
As is easily seen from Definition 3.3, we have

Proposition 3.4. // Q' and Q" are f-primary ideals such that r(Q')=r(Q"),

then Q=Q'f}Q" is also an f-primary ideal such that r(Q)=r(Q')=r(Q").

Another characterization of /-primary ideals can be given by means of

/-quotients.

Proposition 3.5. An ideal Q is f-primary if and only if Q:B=Q for all
ideals B not contained in r(Q).

Proof. Suppose that Q is /-primary and that B is an ideal not contained in
r(Q). We can choose an element b in B but not in r(Q). By the assumption

(/?), Q:b is not empty, and for any element a in Q:b,f(b)f(a) is contained in Q.

Since Q is/-primary and b is not in r(Q), a is in Q. Thus Q:b is contained
in Q. This shows that Q=Q:B, because again by (/9) Q:B is an ideal such

that Q^Q:B ^Q:b.
Conversely, suppose that f(a)f(b) is contained in Q and that a is not in
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r(Q). Then/(<2) is not contained in r(Q)> and hence we have Q f(ά)=Q For
an arbitrary element a' iκf(a)J(a'}f(b}<^f(a)f(b)<^Qy and thus b is in Q' f(a)=Q.
This proves that Q is /-primary.

If an ideal A can be written as

where each Q{ is an /-primary ideal, this will be called an /-primary decomposition

of A, and each Q{ will be called the /-primary component of the decomposition.

A decomposition in which no Qι contains the intersection of the remaining Qj

is called irredundant. Moreover, an irredundant /-primary decomposition, in

which the radicals of the various /-primary components are all different, is
called a normal decomposition. As is easily seen from Proposition 3.4, each

/-primary decomposition can be refined into one which is normal.

Besides the assumptions (β) and (γ), we assume, in this section, the following

condition :

(8) For any f -primary ideal Q, we have Q:Q=R.

Evidently, this assumption is satisfied in case f(a)=(a) for every element a

in R. But, for a suitable choice of /(#), this is not all true.

EXAMPLE 3.6. As is seen from Example 1.3, the ideal (p2) is /-prime and
hence is an /-primary ideal in Z. Suppose that the assumption (δ) is satisfied

for this (p2). Then we have f(p2)^(p2) and hence (p2)=f(p2)=(p2)+(q), a
contradiction.

Now we shall prove, under the assumptions (/5), (γ) and (δ), that the

number of /-primary components and the radicals of /-primary components of

a normal decomposition of A depend only on A and not on the particular normal

decomposition considered. This is a main theorem of this section.

Theorem 3.7. Suppose that an ideal A has an f-primary decomposition,

and let

be two normal decomposίons of A. Then n=m, and it is possible to number the
f-primary components in such a way that r(Qi}=r(Q/

i)for l<i<n=m.

Proof. If A coincides with R, the assertion is trivial. We may suppose

therefore that A does not coincide with R, in which case all the /-primary com-

ponents Q19 •••, Qn, Qi, ••-, Q'm are proper ideals. Among the radicals r(Q^ •••,
r(Qn)> r(QΊ)> "m9r(Qm) take one which is maximal in this set, and we may assume
that it is r(Q^). We now prove that r(Q^) occurs among r(QΊ), •••, r(Q^. To

prove this it will be enough to show that Q1 is contained in r(Qj) for some j.



SOU K. MURATA, Y. KURATA AND H. MARUBAΫASHl

Suppose that Q1 is not contained in r(Q'3) for l<j<m. Then we have, by

Proposition 3.5, Qj' Qι=Qj for l<j<m, and consequently

= ρίn-nρί,
= A.

If n=ί, then, by the assumption (δ), we have

R=Qs.Q1 = A:Q1 = A,

a contradiction. On the other hand, if »>1, then we have again by (δ)

since Ql is not contained in r(Q{) for 2<i<n. This is a contradiction. Now we

may arrange that Qf and Q'5 so that ir(Qi)=r(Q{).
We shall use an induction on the number n of /-primary components. If

w=l, then ^4=ρι=ρjn ••• ΓiQmy and moreover if w>l, then £>ι is not con-
tained in rfρ/) for 2<j<m. Since

we have J?=ρj=ρj= = ρ ,̂ by Proposition 3.5, a contradiction. Similarly,

m=l implies that w=l, and in this case the assertion is trivial.

Let us now assume that n<m. We shall show that n=m and by a suitable

ordering r(Qi) = r(Qt) for l<i<n=m. Assume that these results are valid for
ideals which may be represented by fewer than n /-primary components. Put

ρ=ριnρί, then by Proposition 3.4, Q is an /-primary ideal such that r(Q)

= r(ρι) = r(ρQ. Also ρf.:ρ = ρf for 2<i<ny and Q,:Q=R. For the first
relation follows from the fact that Q is not contained in r(Q{), while the second

follows from R= Ql : Q1 c Q1 : Q. Consequently A : Q= Q2 Π Π QHJ and an

exactly similar argument shows that A: Q=Q 2 ΓΊ ••• Π Q'm. Hence, we have

and moreover both decompositions are normal. Thus by the induction

hypothesis we have n—l=m—l, that is, n=m. Furthermore, by a suitable

ordering we have ιr(Qi)=r(Qt) for 2<i<n=m. This completes the proof.
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