A GENERALIZATION OF PRIME IDEALS IN RINGS

Kentaro MURATA, Yoshiki KURATA and
Hidetoshi MARUBAYASHI

(Received February 6, 1969)

Introduction

In [2], van der Walt has defined s-prime ideals in noncommutative rings and obtained analogous results of McCoy [1] for s-prime ideals. In the present paper, we shall give a generalized concept of prime ideals, called f-prime ideals, by using some family of ideals, and obtain analogous results in [2]. If our family of ideals is, in particular, the set of principal ideals of the ring, the f-prime ideals coincide with the prime ideals and conversely. In addition, if we take multiplicatively closed systems as kernels, the f-prime ideals coincide with the s-prime ideals.

1. f-prime ideals and the f-radical of an ideal

Let R be an arbitrary (associative) ring. Throughout this paper, the term "ideals" will always mean "two-sided ideals in R ".

For each element a of R, we shall associate an ideal $f(a)$ which is uniquely determined by a and satisfies the following conditions:
(I) $a \in f(a)$, and
(II) $x \in f(a)+A \Rightarrow f(x) \subseteq f(a)+A$ for any ideal A.

The principal ideal (a) generated by a is an example of the $f(a)$, and this is the case of [2]. Moreover there are other interesting examples of the $f(a)$. For example, let Q be any subset of R. If we define, for each element a of $R, f(a)=$ (a, Q), the ideal generated by a and Q, then it is easy to see that $f(a)$ satisfies the above conditions. If, in particular, Q is the empty set, then the $f(a)$ coincides with the principal ideal (a).

Remark. As is easily seen, the following four conditions are equivalent:
(i) For any element a of $R, f(a)=(a)$,
(ii) $f(0)=0$,
(iii) For any ideal $A, x \in A \Rightarrow f(x) \subseteq A$,
(iv) For any element a of $R, x \in(a) \Rightarrow f(x) \subseteq(a)$.

Definition 1.1. A subset S of R is called an f-system if S contains an
m-system S^{*}, called the kernal of S, such that $f(s) \cap S^{*} \neq \phi$ for every element s of $S . \quad \phi$ is also defined to be an f-system.

We note that every s - m-system in the sense of [2] is an f-system and also every m-system is an f-system with kernel itself. In the sequel we shall denote by $S\left(S^{*}\right)$ the f-system S with kernel S^{*}, whenever it be convenient. We also note that if $S\left(S^{*}\right)$ is an f-system, then $S=\phi$ if and only if $S^{*}=\phi$.

Definition 1.2. An ideal P is said to be f-prime if its complement $C(P)$ in R is an f-system.
R is evidently an f-prime ideal. Obviously an s-prime ideal in the sense of [2] is a prime ideal in the sense of [1], and it follows from Lemma 1.4 below that if we assume $f(a)=(a)$ for every element a in R, then prime ideals are nothing but f-prime ideals. But it can be shown that this is not always true with a suitable choice of $f(a)$.

Example 1.3. Consider the ring \boldsymbol{Z} of integers. Let P be the ideal $\left(p^{2}\right)$ and let S^{*} be the m-system $\left\{q, q^{2}, q^{3}, \cdots\right\}$, where p and q are different prime numbers. If we put $f(a)=(a, q)$ for each element a in \boldsymbol{Z}, then the complement $C(P)$ of P in \boldsymbol{Z} is an f-system with kernel S^{*}. Hence P is an f-prime ideal, but not a prime ideal. This also shows that an f-prime ideal need not be an s-prime ideal, in general.

Lemma 1.4. For any f-prime ideal P, $f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{n}\right) \subseteq P \Rightarrow a_{i} \in P$ for some i.

Proof. It is evident from the definition of f-systems.
Lemma 1.5. Let $S\left(S^{*}\right)$ be an f-system in R, and let A be an ideal in R which does not meet S. Then A is contained in a maximal ideal P (in the class of all ideals, each of) which does not meet S. The ideal P is necessarily an f-prime ideal.

Proof. If S is empty, the assertion is trivial, and so suppose that S is not empty. The existence of P follows from Zorn's lemma. We now show that $C(P)$ is an f-system with kernel $S^{*}+P$. For any element a of $C(P)$, the maximal property of P implies that $f(a)+P$ contains an element s of S, and thus we can choose an element s^{*} in $f(s) \cap S^{*}$. Since $f(s)$ is contained in $f(a)+P$, we can write $s^{*}=a^{\prime}+p$ where a^{\prime} in $f(a)$ and p in P. Then $a^{\prime}=s^{*}-p$ is contained in $f(a) \cap$ $\left(S^{*}+P\right)$, which completes the proof of the lemma.

Definition 1.6. The f-radical $r(A)$ of an ideal A will be defined to be the set of all elements a of R with the property that every f-system which contains a contains an element of A.

Theorem 1.7. The f-radical of an ideal A is the intersection of all the f prime ideals containing A.

Proof. We show that if P is an f-prime ideal containing A, then $r(A)$ is contained in P. For suppose that $r(A)$ is not contained in P. Then there exists an element x in $r(A)$ not in P. Since $C(P)$ is an f-system, $C(P) \cap A \neq \phi$. But this contradicts the fact that A is contained in P. Hence $r(A)$ is contained in the intersection of all f-prime ideals which contain A.

Conversely, let a be an element of R, but not in $r(A)$. Then there exists an f-system $S\left(S^{*}\right)$ which contains a but does not meet A. There exists, by Lemma 1.5, an f-prime ideal P which contains A and does not meet S. Hence, P does not contain a and a can not be in the intersection of all f-prime ideals containing A. This completes the proof.

Corollary 1.8. The f-radical of an ideal is an ideal.
Now, let $S\left(S^{*}\right)$ be an f-system in R and let A be an ideal which does not meet S. It follows from Zorn's lemma that there exists a maximal m-system S_{1}^{*} which contains S^{*} and does not meet A. Let us consider the set $S_{1}=\left\{x \in R \mid f(x) \cap S_{1}^{*} \neq \phi\right\} \cap C(A)$. Then S_{1} is an f-system with kernel S_{1}^{*} and does not meet A. According to Lemma 1.5, there exists an f-prime ideal P which contains A and does not meet S_{1}. As is seen in the proof of Lemma 1.5, $C(P)$ is an f-system with kernel $S_{1}^{*}+P$, and the maximal property of S_{1}^{*} implies that $S_{1}^{*}+P=S_{1}^{*}$. Hence we have $C(P)=S_{1}$ by the definition of S_{1}.

In view of this we make the following definition:
Definition 1.9. An f-prime ideal P is said to be a minimal f-prime ideal belonging to an ideal A if P contains A and there exists a kernel S^{*} for the f-system $C(P)$ such that S^{*} is a maximal m-system which does not meet A.

It follows from the above consideration that any f-prime ideal P containing A contains a minimal f-prime ideal belonging to A. From Theorem 1.7, we can conclude the following:

Theorem 1.10. The f-radical of an ideal A coincides with the intersection of all minimal f-prime ideals belonging to A.

2. Elements f-related to an ideal

We now make the following definition:
Definition 2.1. An element a of R is said to be (left-)f-related to an ideal A if, for every element a^{\prime} in $f(a)$, there exists an element c not in A such that $a^{\prime} c$ is in A. An ideal B is said to be (left-)f-related to A if every element of B is f-related to A. Elements and ideals not f-related to A is called (left-) f-unrelated to A.

Elements and ideals right-f-related to A can be similarly defined, but the right hand definitions and theorems will be omitted.

Proposition 2.2. Let A be an ideal. Then the set S consisting of all elements of R which are f-unrelated to A is an f-system.

Proof. For every element a in S, we can choose an element a^{*} in $f(a)$ such that, for every element c not in $A, a^{*} c$ is not in A. The set S^{*} which consists of all such elements a^{*} is multiplicatively closed and hence S is an f-system with kernel S^{*}.

It is natural to consider that every element of R is f-related to R. Furthermore we shall now assume, in this section, the following condition:
(α) Each ideal A is f-related to itself.
It may be remarked that (α) can be stated in the following convenient form:
$\left(\alpha^{\prime}\right) \quad 0$ is f-related to each ideal A.
For suppose that 0 is f-related to A. Let a be any element in A. Then a is in $A+f(0)$ and hence $f(a)$ is contained in $A+f(0)$. For any element a^{\prime} in $f(a)$, there exist $a^{\prime \prime}$ in A and $b^{\prime \prime}$ in $f(0)$ such that $a^{\prime}=a^{\prime \prime}+b^{\prime \prime}$. Since 0 is f-related to A, we can choose an element c not in A such that $b^{\prime \prime} c$ is in A. Therefore, $a^{\prime} c=a^{\prime \prime} c+b^{\prime \prime} c$ is in A and this means that A is f-related to itself.

Clearly, (α) is fulfilled in case $f(a)=(a)$ for every element a in R. And, it can be proved that, whenever R has no right zero-divisors, R satisfies (α) if and only if $f(a)=(a)$ for every element a in R. But, in case of general rings, this need not be true as is seen from the following example.

Example 2.3. Consider a simple module M such that $m_{1} m_{2}=0$ for any two elements m_{1} and m_{2} in M. Let K be a field and let R be the direct sum of M and K as modules. Then R can be made into a commutative ring by defining as

$$
\left(m_{1}+k_{1}\right)\left(m_{2}+k_{2}\right)=k_{1} k_{2},
$$

where m_{1}, m_{2} in M and k_{1}, k_{2} in K. As is easily seen, the ideals in R are R, M, K and (0). If we define $f(a)=(a, M)$ for every element a in R, then R satisfies (α), but $f(a)$ does not coincide with (a), since $f(0)=M \neq(0)$.

Proposition 2.4. Let A be an ideal. Then the f-radical $r(A)$ of A is f-related to A.

Proof. Let S be as in Proposition 2.2. If $r(A)$ contains an element f unrelated to A, then, by the definition of the radical, we have $S \cap A \neq \phi$, a contradiction.

It follows from this proof, in terms of relatedness, that the assumption (α) can be also restated as follows: for any ideal A, the f-radical of A is f-related to A.

Let A be an ideal and let S be the f-system consisting of all elements f -
unrelated to A. Then S does not meet the ideal (0), and hence, by Lemma 1.5 , there exists a maximal ideal (in the class of all ideals, each of) which does not meet S, or equivalently, a maximal ideal (each of) which is f-related to A. Each such maximal ideal is necessarily an f-prime ideal. In view of this, we put the following:

Definition 2.5. A maximal ideal in the class of all ideals, each of which is f-related to an ideal A, is called a maximal f-prime ideal belonging to A.

Proposition 2.6. Let A be an ideal. Then A is contained in every maximal f-prime ideal belonging to A.

Proof. Let P be any maximal f-prime ideal belonging to A. Then it is sufficient to show that $A+P$ is f-related to A. Let $a+p$ be any element in $A+P$, where a in A and p in P. Since $a+p$ is in $A+f(p), f(a+p)$ is contained in $A+f(p)$, and hence each element a^{\prime} in $f(a+p)$ can be written as $a^{\prime}=a^{\prime \prime}+p^{\prime \prime}$, where $a^{\prime \prime}$ in A and $p^{\prime \prime}$ in $f(p)$. We can choose an element c not in A such that $p^{\prime \prime} c$ is in A. Then $a^{\prime} c=a^{\prime \prime} c+p^{\prime \prime} c$ is contained in A, which completes the proof.

Since any f-prime ideal containing A contains a minimal f-prime ideal belonging to A, it follows from Proposition 2.6 that every maximal f-prime ideal belonging to A necessarily contains a minimal f-prime ideal belonging to A. The converse is also true in case of [1], but we can provide an example to show that this need not be true in our case.

Example 2.7. Let us consider the ideal $A=(x y)$ in the ring $K[x, y]$ of polynomials in two non-commutative indeterminates x and y over a field K. If we define $f(a)=(a)$ for every element a in $K[x, y]$, then the assumption (α) is satisfied and A is f-related to itself. Hence we can consider the maximal f-prime ideal belonging to A. As is easily seen, the ideal (y) is a minimal f-prime ideal belonging to A, but it is f-unrelated to A. Thus, (y) is not contained by any maximal f-prime ideal belonging to A.

Proposition 2.8. Let A be an ideal. Then every element or ideal which is f-related to A is contained in a maximal f-prime ideal belonging to A.

Proof. Obviously, an element a is f-related to A if and only if $f(a)$ is f-related to A. So we shall prove the only case of an ideal which is f-related to A. Let B be such an ideal, and let S be the f-system consisting of all elements of R which are f-unrelated to A. Then B does not meet S and hence, by Lemma 1.5, B is contained in a maximal f-prime ideal P belonging to A.

It follows from this proposition that the ideals of R which are f-related to A are spread over the maximal f-prime ideals belonging to A.

Definition 2.9. Let A be an ideal and let b be an element in R. The (left-)
f-quotient A : b of A by b will be defined to be the set of all elements x of R such that $f(b) f(x)$ is contained in A. Moreover, for any ideal B, the (left-) f-quotient of A by B will be defined as $\cap_{b \in B}(A: b)$, and denoted by $A: B$.

From this definition, we have
(1) $A^{\prime} \subseteq A^{\prime \prime} \Rightarrow A^{\prime}: b \subseteq A^{\prime \prime}: b$ and $A^{\prime}: B \subseteq A^{\prime \prime}: B$,
(2) $B^{\prime} \subseteq B^{\prime \prime} \Rightarrow A: B^{\prime} \supseteq A: B^{\prime \prime}$,
(3) $\left(A^{\prime} \cap A^{\prime \prime}\right): b=\left(A^{\prime}: b\right) \cap\left(A^{\prime \prime}: b\right)$ and $\left(A^{\prime} \cap A^{\prime \prime}\right): B=\left(A^{\prime}: B\right) \cap\left(A^{\prime \prime}: B\right)$.

We note that $A: b$ may be empty. However, if it is not, it is an ideal containing A. To see this, take an arbitrary element $x+a$ in $(A: b)+A$, where x in $A: b$ and a in A. Then $x+a$ is contained in $f(x)+A$, and so is $f(x+a)$. Hence $f(b) f(x+a)$ is contained in A. That is, $(A: b)+A$ is contained in $A: b$.

Definition 2.10. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. The principal f-component A_{P} of A determined by P will be defined as follows:

$$
A_{P}= \begin{cases}\cup_{s \notin P}(A: s) & \text { (if } \quad P \neq R) \\ A & \text { (if } \quad P=R) .\end{cases}
$$

For $P \neq R$, the principal f-component A_{P} may be empty in certain cases. In case $f(a)=(a)$ for every a in R it is not empty, but, as is seen from Example 2.3, there exists a ring in which (α) is satisfied, and $f(a)$ need not be (a), and A_{P} is not empty for all A and $P \neq R$.

So we shall assume, in the rest of this paper, the following condition:
$(\beta) \quad$ For any ideal A and ideal B not contained in $r(A)$, we have $A: B \neq \phi$.
For any maximal f-prime ideal P belonging to A, it follows from Proposition 2.6 that P contains A, and hence $r(A)$ is contained in P. If s is not in P, then s does not contained in $r(A)$. Hence, from the assumption $(\beta), A: s \neq \phi$ and therefore we have $A_{P} \neq \phi$.

We now show that A_{P} is an ideal containing A. If $P=R$, the assertion is trivial. Let $P \neq R$ and let x, y be any two elements of A_{P}. Then there exist s and t in $C(P)$ such that both $f(s) f(x)$ and $f(t) f(y)$ are contained in A. Take two elements s^{*} in $S^{*} \cap f(s)$ and t^{*} in $S^{*} \cap f(t)$, where S^{*} is a kernel of $C(P)$. Since S^{*} is an m-system, $s^{*} z t^{*}$ is in S^{*} (whence is in $C(P)$) for some z in R. Thus $s^{*} z t^{*} \in f(s) \cap f(t), f\left(s^{*} z t^{*}\right) \subseteq f(s) \cap f(t)$. Hence $f\left(s^{*} z t^{*}\right) f(x+y) \subseteq(f(s) \cap f(t))(f(x)$ $+f(y)) \subseteq f(s) f(x)+f(t) f(y) \subseteq A$.

Now let $x=x^{\prime}+x^{\prime \prime}$ be any element in $A_{P}+A$, where x^{\prime} in A_{P} and $x^{\prime \prime}$ in A. Then $f(s) f\left(x^{\prime}\right)$ is contained in A for some s in $C(P)$. Since x is in $f\left(x^{\prime}\right)+A, f(x)$ is contained in $f\left(x^{\prime}\right)+A$, and hence we have $f(s) f(x) \subseteq f(s) f\left(x^{\prime}\right)+f(s) A \subseteq A$. Thus x is in A_{P} and A is contained in A_{P}.

For any maximal f-prime ideal P belonging to A, since $A \subseteq A_{P} \subseteq P, A_{P}=R$ if and only if $A=R$. Furthermore, if P is the only maximal f-prime ideal belong-
ing to A, or equivalently by Proposition 2.8, if its complement $C(P)$ consists of all elements which are f-unrelated to A, then we have $A_{P}=A$.

Proposition 2.11. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. Then the principal f-component A_{P} is contained in every ideal D such that A is contained in D and that any element of $C(P)$ are f-unrelated to D.

Proof. If $P=R$, the assertion is trivial. Let $P \neq R$ and let D be any ideal such that A is contained in D and that any element of $C(P)$ are f-unrelated to D. If x is an arbitrary element of A_{P}, then there exists an element s in $C(P)$ such that $f(s) f(x) \subseteq A$. Since s is f-unrelated to D, we can choose an element s^{*} in $f(s)$ such that $s^{*} c \in D$ implies $c \in D . \quad s^{*} x$ is in D and hence x is in D.

We note from Proposition 2.8 that any element of $C(P)$ are f-unrelated to D if and only if any maximal f-prime ideal belonging to D are contained in P.

Theorem 2.12. Any ideal A is represented as the intersection of all its principal f-components A_{P}.

Proof. Since A is contained in every principal f-component of A, it is also contained in their intersection. To prove the converse, let a be an arbitrary element of the intersection of all principal f-components A_{P}. For any maximal f-prime ideal P belonging to $A, f(s) f(a) \subseteq A$ for some s in $S=C(P)$. Consider the ideal B which consists of all elements b of R such that $f(b) f(\dot{a}) \subseteq A$. Then B is not contained in P, and hence according to Proposition 2.8, B can not be f-related to A. This means that B contains at least one element b which is f-unrelated to A. Since $f(b) f(a)$ is in A, the f-unrelatedness of b implies that a is in A. The theorem is therefore established.

Remark. It is natural to define a (left-)f-primal ideal as follows: an ideal A is said to be (left-)f-primal, if the set X of the elements, each of which is (left-) f-related to A, forms an ideal. If A is f-primal, X is called the (left-)adjoint of A. Then we can prove that the principal f-component of A determined by the maximal f-prime ideal P is contained in the intersection of all f-primal ideals A_{λ} such that (1) A_{λ} contains A, and (2) the adjoint of A_{λ} is contained in P.

3. f-primary decompositions

In this section, we shall consider f-primary decompositions of ideals on the analogy of the primary decompositions of ideals in a commutative Noetherian ring. For this purpose, we assume besides (β), throughout this section, the following condition:
(γ) If S is an f-system with kernel S^{*}, and if for any ideal $A, S \cap A$ is not empty, then so is $S^{*} \cap A$.

Clearly, this assumption is satisfied in case $f(a)=(a)$ for every element a in R. But, for a suitable choice of $f(a)$, this is not always satisfied as is seen from the following example:

Example 3.1. As is seen from Example 1.3, for the ideal $P=\left(p^{2}\right)$ in the ring \boldsymbol{Z} of integers, its complement $S=C(P)$ is an f-system with kernel $S^{*}=\left\{q, q^{2}, q^{3}, \cdots\right\}$, where p and q are different prime numbers. Now, let A be the ideal (p), then we have $S \cap A \neq \phi$, though $S^{*} \cap A=\phi$.

Proposition 3.2. Let A and B be any two ideals. Then
(1) $A \subseteq B \Rightarrow r(A) \subseteq r(B)$,
(2) $r(r(A))=r(A)$,
(3) $\quad r(A \cap B)=r(A) \cap r(B)$.

Proof. (1) and (2) follow from the definition of the radical.
It is clear that $r(A \cap B) \subseteq r(A) \cap r(B)$. Conversely, let x be any element in $r(A) \cap r(B)$ and let S be any f-system containing x. Then, there exist two elements a and b in $S \cap A$ and $S \cap B$ respectively. By the assumption (γ), we can choose two elements a^{*} and b^{*} in $S^{*} \cap A$ and $S^{*} \cap B$ respectively. Since S^{*} is an m-system, $a^{*} z b^{*}$ is in S^{*} for some element z in R. Therefore $a^{*} z b^{*}$ $\in S^{*} \cap(A \cap B)$, and hence $S \cap(A \cap B)$ is not empty. This means that x is in $r(A \cap B)$, which completes the proof of (3).

Definition 3.3. An ideal Q is called (left-)f-primary, if $f(a) f(b) \subseteq Q$ implies that $a \in r(Q)$ or $b \in Q$.

Let us note that, by Lemma 1.4, f-prime ideals are always f-primary ideals. As is easily seen from Definition 3.3, we have

Proposition 3.4. If Q^{\prime} and $Q^{\prime \prime}$ are f-primary ideals such that $r\left(Q^{\prime}\right)=r\left(Q^{\prime \prime}\right)$, then $Q=Q^{\prime} \cap Q^{\prime \prime}$ is also an f-primary ideal such that $r(Q)=r\left(Q^{\prime}\right)=r\left(Q^{\prime \prime}\right)$.

Another characterization of f-primary ideals can be given by means of f-quotients.

Proposition 3.5. An ideal Q is f-primary if and only if $Q: B=Q$ for all ideals B not contained in $r(Q)$.

Proof. Suppose that Q is f-primary and that B is an ideal not contained in $r(Q)$. We can choose an element b in B but not in $r(Q)$. By the assumption $(\beta), Q: b$ is not empty, and for any element a in $Q: b, f(b) f(a)$ is contained in Q. Since Q is f-primary and b is not in $r(Q), a$ is in Q. Thus $Q: b$ is contained in Q. This shows that $Q=Q: B$, because again by $(\beta) Q: B$ is an ideal such that $Q \subseteq Q: B \subseteq Q: b$.

Conversely, suppose that $f(a) f(b)$ is contained in Q and that a is not in
$r(Q)$. Then $f(a)$ is not contained in $r(Q)$, and hence we have $Q: f(a)=Q$. For an arbitrary element a^{\prime} in $f(a), f\left(a^{\prime}\right) f(b) \subseteq f(a) f(b) \subseteq Q$, and thus b is in $Q: f(a)=Q$. This proves that Q is f-primary.

If an ideal A can be written as

$$
A=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}
$$

where each Q_{i} is an f-primary ideal, this will be called an f-primary decomposition of A, and each Q_{i} will be called the f-primary component of the decomposition. A decomposition in which no Q_{i} contains the intersection of the remaining Q_{j} is called irredundant. Moreover, an irredundant f-primary decomposition, in which the radicals of the various f-primary components are all different, is called a normal decomposition. As is easily seen from Proposition 3.4, each f-primary decomposition can be refined into one which is normal.

Besides the assumptions (β) and (γ), we assume, in this section, the following condition:
(δ) For any f-primary ideal Q, we have $Q: Q=R$.
Evidently, this assumption is satisfied in case $f(a)=(a)$ for every element a in R. But, for a suitable choice of $f(a)$, this is not all true.

Example 3.6. As is seen from Example 1.3, the ideal $\left(p^{2}\right)$ is f-prime and hence is an f-primary ideal in \boldsymbol{Z}. Suppose that the assumption (δ) is satisfied for this $\left(p^{2}\right)$. Then we have $f\left(p^{2}\right) \subseteq\left(p^{2}\right)$ and hence $\left(p^{2}\right)=f\left(p^{2}\right)=\left(p^{2}\right)+(q)$, a contradiction.

Now we shall prove, under the assumptions $(\beta),(\gamma)$ and (δ), that the number of f-primary components and the radicals of f-primary components of a normal decomposition of A depend only on A and not on the particular normal decomposition considered. This is a main theorem of this section.

Theorem 3.7. Suppose that an ideal A has an f-primary decomposition, and let

$$
A=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}=Q_{1}^{\prime} \cap Q_{2}^{\prime} \cap \cdots \cap Q_{m}^{\prime}
$$

be two normal decomposions of A. Then $n=m$, and it is possible to number the f-primary components in such a way that $r\left(Q_{i}\right)=r\left(Q_{i}^{\prime}\right)$ for $1 \leq i \leq n=m$.

Proof. If A coincides with R, the assertion is trivial. We may suppose therefore that A does not coincide with R, in which case all the f-primary components $Q_{1}, \cdots, Q_{n}, Q_{1}^{\prime}, \cdots, Q_{m}^{\prime}$ are proper ideals. Among the radicals $r\left(Q_{1}\right), \cdots$, $r\left(Q_{n}\right), r\left(Q_{1}^{\prime}\right), \cdots, r\left(Q_{m}^{\prime}\right)$ take one which is maximal in this set, and we may assume that it is $r\left(Q_{1}\right)$. We now prove that $r\left(Q_{1}\right)$ occurs among $r\left(Q_{1}^{\prime}\right), \cdots, r\left(Q_{m}^{\prime}\right)$. To prove this it will be enough to show that Q_{1} is contained in $r\left(Q_{j}^{\prime}\right)$ for some j.

Suppose that Q_{1} is not contained in $r\left(Q_{j}^{\prime}\right)$ for $1 \leq j \leq m$. Then we have, by Proposition 3.5, $Q_{j}^{\prime}: Q_{1}=Q_{j}^{\prime}$ for $1 \leq j \leq m$, and consequently

$$
\begin{aligned}
A: Q_{1} & =\left(Q_{1}^{\prime} \cap \cdots \cap Q_{m}^{\prime}\right): Q_{1} \\
& =\left(Q_{1}^{\prime}: Q_{1}\right) \cap \cdots \cap\left(Q_{m}^{\prime}: Q_{1}\right) \\
& =Q_{1}^{\prime} \cap \cdots \cap Q_{m}^{\prime} \\
& =A .
\end{aligned}
$$

If $n=1$, then, by the assumption (δ), we have

$$
R=Q_{1}: Q_{1}=A: Q_{1}=A,
$$

a contradiction. On the other hand, if $n>1$, then we have again by (δ)

$$
\begin{aligned}
A=A: Q_{1} & =\left(Q_{1} \cap \cdots \cap Q_{n}\right): Q_{1} \\
& =\left(Q_{1}: Q_{1}\right) \cap \cdots \cap\left(Q_{n}: Q_{1}\right) \\
& =Q_{2} \cap \cdots \cap Q_{n},
\end{aligned}
$$

since Q_{1} is not contained in $r\left(Q_{i}\right)$ for $2 \leq i \leq n$. This is a contradiction. Now we may arrange that Q_{i} and Q_{j}^{\prime} so that $r\left(Q_{1}\right)=r\left(Q_{1}^{\prime}\right)$.

We shall use an induction on the number n of f-primary components. If $n=1$, then $A=Q_{1}=Q_{1}^{\prime} \cap \cdots \cap Q_{m}^{\prime}$, and moreover if $m>1$, then Q_{1} is not contained in $r\left(Q_{1}{ }^{\prime}\right)$ for $2 \leq j \leq m$. Since

$$
R=Q_{1}: Q_{1}=\left(Q_{1}^{\prime}: Q_{1}\right) \cap \cdots \cap\left(Q_{m}^{\prime}: Q_{1}\right)
$$

we have $R=Q_{2}^{\prime}=Q_{3}^{\prime}=\cdots=Q_{m}^{\prime}$, by Proposition 3.5, a contradiction. Similarly, $m=1$ implies that $n=1$, and in this case the assertion is trivial.

Let us now assume that $n \leq m$. We shall show that $n=m$ and by a suitable ordering $r\left(Q_{i}\right)=r\left(Q_{i}^{\prime}\right)$ for $1 \leq i \leq n=m$. Assume that these results are valid for ideals which may be represented by fewer than $n f$-primary components. Put $Q=Q_{1} \cap Q_{1}^{\prime}$, then by Proposition 3.4, Q is an f-primary ideal such that $r(Q)$ $=r\left(Q_{1}\right)=r\left(Q_{1}^{\prime}\right)$. Also $Q_{i}: Q=Q_{i}$ for $2 \leq i \leq n$, and $Q_{1}: Q=R$. For the first relation follows from the fact that Q is not contained in $r\left(Q_{i}\right)$, while the second follows from $R=Q_{1}: Q_{1} \subseteq Q_{1}: Q$. Consequently $A: Q=Q_{2} \cap \cdots \cap Q_{n}$, and an exactly similar argument shows that $A: Q=Q_{2}^{\prime} \cap \cdots \cap Q_{m}^{\prime}$. Hence, we have

$$
Q_{2} \cap \cdots \cap Q_{n}=Q_{2}^{\prime} \cap \cdots \cap Q_{m}^{\prime}
$$

and moreover both decompositions are normal. Thus by the induction hypothesis we have $n-1=m-1$, that is, $n=m$. Furthermore, by a suitable ordering we have $r\left(Q_{i}\right)=r\left(Q_{i}^{\prime}\right)$ for $2 \leq i \leq n=m$. This completes the proof.

Yamaguchi University

References

[1] N. H. McCoy: Prime ideals in general rings, Amer. J. Math. 71 (1948), 823-833.
[2] A. P. J. van der Walt: Contributions to ideal theory in general rings, Proc. Kon. Ned. Akad. Wetensch. A67 (1964), 68-77.

