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Introduction

Let X=G/K be a bounded symmetric domain in C¥, where G is a semi-
simple Lie group with finite center and K is a maximal compact subgroup of G.
An automorphic factor j on X is a C”-mapping j: GX X— GL(S), S being a
finite dimensional complex vector space, which satisfies the conditions:

1) j(s, «) is holomorphic in x€ X for each s&G;
2) j(ss’, x)=j(s, s'x)j(s’, x) for x&€X and s, s'G.

Let x, be the point of X=G/K represented by the coset K. An automorphic
factor j defines a representation 7 of the group K by the formula 7(¢)=j(t, x,) for
teK and we say that j is a prolongation of the representation 7 of K. We
know that, given a representation 7 of K in a complex vector space S, there
exists an automorphic factor J.: GXx X — GL(S) which is a prolongation of 7
and which we call the canonical automorphic factor of type 7 [4, 6, Part II].
Moreover, if 7 is an irreducible representation of K, then the automorphic
factors which are prolongations of 7 are equivalent to each other [6, Appendix].

Let j be an automorphic factor on X. Then G acts on XX S as a group
of holomorphic transformations if we define the action of s&G by putting

s(x, u) = (sx, j(s, x)u)

for (x, u)e X x S.

Now let T" be a discrete subgroup of G. Then T" acts on X properly and
discontinuously. In the following we assume that the quotient space T'\X is
compact and that I" acts freely on X and let M=T"\X. Then M is a compact
complex Kihler manifold. Moreover, T' acts on XX S and let E(j) be the
quotient of X X S by the action of I": E(j)=T'\(Xx.S). Then E(j) is a holomor-
phic vector bundle over M with typical fibre S. In this paper we consider
exclusively the case where j is a canonical automorphic factor J,. In this case the
vector bundle E(/J,) may be interpreted in the following way [6]. Let X, be
the hermitian symmetric space of compact type associated with X. The repre-
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sentation 7 of K defines a “homogeneous” vector bundle E,(7) over X,. Now
X is imbedded in X, as an open submanifold and T" acts on E,(7)| X as a group
of bundle automorphisms, where E,(7)| X denotes the portion of E () over X.
Then the quotient of E,(7)| X by the action of I" is a holomorphic vector
bundle over M which is isomorphic to E(J,).

Let E(J,) denote the sheaf of germs of holomorphic sections of E(J].).
Each cohomology class in H?%M, E(],)) is represented by an E(J,)-valued
harmonic g-form which we shall call an automorphic harmonic g-form of type
J.. In particular, for =0 an automorphic harmonic 0-form is nothing but a
holomorphic automorphic form of type J, in the usual sense.

In Part I of this paper we shall show that an automorphic harmonic ¢g-form
7 of type /. is identified with a set (fs)se w 2o of holomorphic automorphic forms
fs of type J. provided that the highest weight A of the representation 7 of
K satisfies a certain condition; here W', denotes a subset of the Weyl group of
the Lie algebra g¢ uniquely determined by A and 7g is a representation of K
determined by A and S in a certain way. We shall show also that, for g=g¢,,
where g, is a number uniquely determined by A, the set W(q) consists of a
single element; thus every automorphic harmonic ¢g-form 7 of type J, is identified
with a holomorphic automorphic form of type /. for g=g,.

In Part IT of this paper we shall prove a formula which expresses the dimen-
sion of the space of “automorphic forms” in terms of the unitary representation
of G in LA(T'\G). Combined with the results obtained in Part I we obtain a
formula on the dimension of the space of automorphic harmonic forms which
might be interesting in view of a conjecture stated by Langlands in [3].

Part 1

1. We retain the notation introduced in the introduction. We have a
decomposition of the Lie algebra

gC — n'f'@n_@fc R

where € is the complexification of the subalgebra £ of g corresponding K and
n* are abelian subalgebras of g¢ such that

[£¢, n*]Cn®, [n*, n7]CfC.

Moreover, f contains a Cartan subalgebra ) of g and n* and n~ are spanned by
root vectors corresponding to the roots of g¢ (with respect to the Cartan sub-
algebra b)) (see [6, Part II]). We denote by W the set of all roots « such that
the root vector X, belongs to n*. Then

nt=3'CX, and n~ = >CX_,

L 7='s aeEw
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with X_,=X,, where - denotes the conjugation of g€ with respest to the real
form g. We choose X, in such a way that

(p(Xm X—m) =1 ’

where @ denotes the Killing form of g€.

We know that there exists an ordering of the roots such that the roots in
W are all positive. We fix once and for all such an ordering of roots. We
denote by ® the set of all positive roots not belonging to ¥. Then the root
vector of 30O belongs to €. We call a root o belonging to ¥ (resp. ®) as a
non-compact (resp. compact) positive root. We shall denote by = the set of all
roots and by Z* (resp. =7) the set of all positive (resp. negative) roots.

Let W be the Weyl group of g¢. W is a group of linear transformations of
the dual space §,* of the real vector space ==/ —19 in g€ and W is generated
by the reflections S, (a@ EZ*) with respect to the hyperplanes P,={\|(a, A)=0}.

We shall denote by W, the subgroup of W generated by S; with 3€©. W,
is isomorphic to the Weyl group of €. For T €W, let

¢T — T(E_) ﬂ 2+
and let

n(T') = the number of roots in @ .

Let W be the subset of the Weyl group W consisting of all 7' W such that
@, ,CP. Itis easy to see that T belongs to W* if and only if 77} (@)C=*.

Now let 7 be an irreducible representation of K in a complex vector space
S. Then 7 defines an irreducible representation of the complex reductive Lie
algebra ¢ which we shall denote by the same letter 7. Let A be the highest
weight of 7. Then we have

(A, B)=>0 forall Be®.
We shall assume that 7 satisfies the following condition:
(*) (A, )=0 forall acsv.

Then (A, v)>0 for all y&X" and hence there exists an irreducible represen-
tation of g¢ whose highest weight is A. We shall denote this representation of
g¢ by p and by A’ the lowest weight of p.

Now put

Wy={TeW' TN = RA},
where R, is the unique element of W, such that

R(®)= —0.
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Further we let
Wiq) = {TeWyIn(T)= g .
For TeW" we shall denote by 7, the irreducible representation of £¢ whose
highest weight is —&7, where
£y = TN +<{Dr> = T(N'—8)+8;
here, for any subset @ of 3, <®) denotes the sum of the roots belonging to @

and §=<{G")/2.
Now we can state

Theorem 1. In the notation introduced above, to each automorphic harmonic
g-form n of type J., where T satisfies the assumption (*), we can associate uniquely
a set (fs)sew, o> of holomorphic automorphic forms of type J, and each of such a
set corresponds to an automorphic harmonic q-form » of type J.. In other words
we have the following isomorphism of the cohomology groups:

A, B(T) = :43 HM, E(].))-

ReMARK 1. If g=N=dim¢ M, this theorem reduces to the duality theorem
of Serre as we shall see later.

REMRAK 2. Actually we shall prove Theorem 1 without the assumption that
T acts freely on M. See Theorem 1’ in § 2.

Under the same assumption (*) on A, let ¢, be the number of positive roots
a €Y such that (A, a)>0.
Then we have

Theorem 2. If g<gq,, then W'\(q) is empty. Moreover, W'\(q,) consists
of a single element T, such that

Dy, = {aEY|(RA, a)>0}.
Thus we have
HYM, E(J.)) =0  for q<gqa;
H\(M, E(].)) = H(M, E(]Jzy,)) ,

where the highest weight of the irreducible representation 71 of £€ is
~ = — TN —(®r,>.

ReMRAK 3. The vanishing of the cohomology groups H?(M, E(J,)) for
g<<qa has been already proved in [5]. We also remark that R A is the lowest
weight of the representation 7 of €.

The proof of these theorems will be given in the following sections.
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2. We shall recall here some results proved in [4] and [5]. Let p be an
irreducible representation of g€ in a complex vector space F' with highest weight
A.

A*  Restricting the representation p of g€ to n~, we may consider F as an
n~-module. Let C(n~, F)=>"C?%u", F) be the cochain complex of the abelian

q

Lie algebra n~ with coeflicients in F, where C?(n~, F') is the vector space of all
g-linear alternating maps of n~ into F. By the Killing form ¢ of g¢ we can
identify n* with the dual space of n~ and hence C(n~, F) with F® An* and

C%(n~, F) with F ®/q\n+. Let (,)r be the inner product in F such that
(p(%)u, v)p=(u, p(%)0)r for all xEnt@n~ and (p(y)u, v)r=—(u, p($)v)r for all
yetC, where - denotes the conjugation of g€ with respest to g. The Killing
form @ of g¢ defines an inner product in n* such that {X,|a=¥} is an
orthonormal basis. Using these inner products in F and n* we can define an
inner product in C(n~, F') which we denote by (, ). Let d~ be the coboundary
operator. Then there exists an operator 8~ of degree —1 such that
d ¢, c)=(c,8 ¢ forallc,c’eC(n~, F). Let A"=d 8 +8d~. Anelement
ceC?n~, F) is called a harmonic g-cocyle if A"c=0. Every cohomology class
of H%(n™, F) is represented by a unique harmonic cocyle. Let 4 be the space
of all harmonic ¢-cocyles.

Now C/(n~, F)=FQ® An* is a f¢-module, where y={€ operates on F and
nt respectively by p(y) and ad(y). Let

(1) FQ AW = Symy Uy

be a decomposition of FQ /q\nJr into direct sum of irreducible ¥¢-modules Uy,
where £ denotes the lowest weight of the irreducible representation 7¢ of € in
Uy and my denotes the multiplicity of 7.

For TeW?, let

Er = TN +< D).

Then the mapping T — &4 is an injection of W*' into the set {§'} of lowest
weights appearing in (1) and we have:.
‘g{q = 2 U&’T ’ mEIT = 1 3
rewl@
where W'(q)={T € W"|n(T)=gq}. This result is due to Kostant [2].

B. The g°-module F decomposes into sum F=S,+S,+ :--+.S,, of mutu-
ally orthogonal £¢-submodules such that

* See [4] §§8, 10 or [6].
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1) p(X)S,C S, for XEn* and p(Y)S,CS,:, for Yen™ for t=1, 2,---,m,
where S,=3S,,.,=(0);

2) S, and S,, are simple £¢-modules and the highest weight of the repre-
sentation of £€ in S, is A. Moreover

S, ={ueF |p(X)u=0 forall Xent},
S,,={usF|p(Y)u=0 forall Yen}.

(See [4, Lemma 5.2] or [6, Lemma 6.1].)
Let

IO = (S,@ Ant)N I .
Then
(2) g1 = 3 Uy,

rewl @
where, as in §1, Wi(q)={T € W"'|TN'=R\A, n(T)=gq}.

Proof. Since 4(™? is a fC-submodule of H? and 4’ is a direct sum of
simple £¢-modules Uy, which are not isomorphic to each other, we have
0,9 __
H —-Tgl Usl"'
where A is a subset of W'(q). Then Uy, is contained in S1®/"\n+ with
multiplicity 1 for T 4.
Now let
F=2>nvFu
lJ'l

be the decomposition of F into direct sum of simple f¢-submodules F,.s with
lowest weight x’ and with multiplicity #,/. Then S;=Fg , and ng ,=1. For
any T€W?', T A appears as one of p’ with nyyy=1. Indeed, as T} (@)=,
KTAN,B>=IN,T'8><0 for all SO and therefore TA’ is the lowest
weight of an irreducible respresentation of ¢ which is contained in F and the
eigenspace for the weight T'A’ is of dimension 1. Now let T 4. Then
Er=TN +{(®;)> and hence the 1-dimensional eigenspace for the weight £% is

contained in Fr,y/® /q\n+. On the other hand, it is contained in S;® /q\n+.
Therefore we should have S,=F;,s and hence RRA=TA’. Thus T €Wi(qg).
Let, conversely, T€W'(q). Then F;,=S,, because TA'=RA and F;,/ ®

/q\n+:) Uy, and therefore T€A4. Thus we have proved that 4 =W’(¢g) and
hence our assertion.

C. Now let 7 be a representation of K in a complex vector space S and let
T be a discrete subgroup of G such that T'\G is compact. We don’t need to
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assume that T acts freely on X=G[K. Let A™(T, X, J,) denote the vector
space of all S-valued differential forms of type (0, ¢) on X such that

(’7°L7)x = ]7(77 x)"]x

for all yeT and x= X, where L, denotes the transformation of X by v. Then
Z,4%(X, T, J,) is a complex with coboundary operator d”” and we denote by
H"(X, T, J,) the g-th cohomology group of this complex. Each cohomology
class of H*?(X, T, J.) is represented by a harmonic form which we shall call an
automorphic harmonic q-form of type J.. In the case ¢=0, an automorphic
harmonic form is a holomorphic function f on X such that f(yx)=] (v, *)f(x)
for all y€T and x€ X, i.e. a holomorphic automorphic form of type /..

If T acts freely on X, then the cohomology group H*?(X, T, J.) is isomor-
phic to H?(M, E(],)).

D. From now on we assume that 7 is an irreducible representation of
K such that the highest weight A of 7 satisfies the condition (*) in §1, i.e.
(A, a)>0 for all roots «=W. There exists then an irreducible representation
p of g€ in a complex vector space F' whose highest weightis A. Then we have
a decomposition F=S,+4S,+---+S,, of F into direct sum of fC-submodules
such that the representation space S of 7 is isomorphic to S, as f¢-module.

We assume that the representation p of g€ is induced from a representation
p of the group G. Let A(X, T, p) be the vector space of all F-valued r-forms
o on X such that woL,=p(v)w for all yeT'. Then 3,4"(X, T, p) is a complex
with coboundary operator d (d being the operator of exterior differentiation)
and each element of the cohomology group H”(X, T, p) is represented by a
unique harmonic form; moreover H"(X, T, p)= >} H?%X, T, p), where

=p+q
H?»%(X, T, p) denotes the cohomology classes represented by harmonic forms

of type (p, q) (see [4], [5], [6]). We have proved in [5] the following results:
a) Ho’q(X’ T, ]’r)gHO‘q(X’ T, P);
b) The space of harmonic forms of type (0, q) in 4%(X, T, p) is identified

with the space of all F Q /q\n+ valued smooth functions f on T'\G satisfying the
following condition:

(i) Yf=—(p®adi)(Y)fforall Y&t
(i) For every point x&T'\G, the value f(x)(€F ®/q\n+) is a harmonic
cocycle of C/(n~, F)=F® An* and moreover fx)eS® Ant.
(i) X,f=0 for all ac¥;
here we consider an element X g€ as a complex vector field on I'\G which is

a projection of the left invariant complex vector field X on G. For the details
see [5, Theorem 7.1 and Lemma 6.1].
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Thus we may identify an automorphic harmonic ¢-form » with an F®Q /v\n+
valued function f on T'\G satisfying the above three conditions. We denote by
L the vector space consisting of all these functions. It follows from (ii) that
every f& L is actually 47 valued. H*? is a direct sum of simple £¢-modules
Ug (TEWN(q)). To simplify the notation we put Ur=Uy, and let 77 denote
the representation of £¢in U;. Then 7(Y)=(pR®ad1)(Y) on Uy forall Y f°.

Let fr(x) denote the Up-component of f(x) for x€T\G. Then f=X f, and
-L decomposes into direct sum

af - ETIT )
where L consists of all Uz -valued functions f; on T'\G satisfying

1) Yfr=—4(Y)fr, forall Yet;
2;) X.f=0 forall acw.

The inner product in F® An* defines an inner product in Uy such
that (77(Y)u, v)+(u, 74 (Y)u)=0 (Y t€). Let # be the conjugate linear
isomorphism of U; onto the dual space U% defined by

(Fu)(v) = (v, u) forall veUr.

Let 7 denote the representation of € in U% contragredient to 7%. Then we
have

Tr(Y)u = #(77(V)u)

for Yet¢. For every Ugp-valued function f on T\G we define U¥%-valued
function #f on T'\G by putting

(#N)(x) = #f(x) .

Then, for X g€, we have
B(X[) = X(#f).

Thus # defines a conjugate linear isomorphism of _L; onto the complex vector
space L% consisting of all U#% valued functions % on I'\G satisfying

1¥) Yh= —7(Y)h forall Y ef;
2%) X_ =0 forall Bew.

On the other hand by [4], a function A&_L% is identified with a holomorphic
automorphic fclrm of type J.,; in fact for a holomorphic automorphic form
a(x) on X let i(s)=],.(s, x,)'a(x(s)), for s€G, where z: G— X denotes the
canonical projection. Then the function %z on G is left invariant by I'" and
hence % defines a function % on T'\G and this function % satisfies the above two
conditions.
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Thus we have proved the following Theorem 1’.

Theorem 1'. Let T be a discrete subgroup of G such that T\G is compact.
Let 7 be an irreducible representation of K with highest weight A such that (A, o) >0
for all a=Y. Then the space of automorphic harmonic q-forms of type J. is
isomorphic to the direct sum of the spaces of holomorphic automorphic forms of type
Jrp» where T ranges over the subset W,(q) of the Weyl group W of g¢ and where 71
denotes the irreducible representation of £€ with the highest weight — T A’ —{Dr), A’
being the lowest weight of the irreducible representation p of g€ with highest weight A.

REMARK 1. Let g=N=dim¢ X. There exists a unique element Re W
such that R(Z*)==%=". Let R'=R;'R. Then R'eW" and ®z,=V¥. In fact,
(R)'(®)=R'R(®)=R*(—O)C=" and hence R'e W'. Moreover since ¥
is the set of weights of the ¥¢-module n* and since R, W,, we have R (¥)=¥
and hence R((R')"'¥)=WCZ" and hence (R')"'W?cC3". Thus YWCR'(Z)
and hence ¥=®5z!. Thus R'"eW*(N). Next we show that R'e Wi(N), i.e.
R'A'=R,A. In fact, we have RA'=A, i.e. RR'A’=A. But R’=1and hence
R'A’=R,A. Moreover, it is clear that IW,(NV) consists of a single element and
hence Wj(N)={R'}. Now we show that

TRl - O-®T*’

where o is the 1-dimensional representation of f in 7\n‘ defined by o(Y)=
tr(ad_(Y)) (Y €£€) and 7* is the contragredient of 7. In fact, the highest weight
of g is —R'N'—{ @ >=—RA—<¥>. On the other hand, the weight of &
is —(¥) and the highest weight of 7* is —R,A and hence 7, =0 ®@7*. By
Theorem 1, we have H*N(X, T, J)=H"(X, T, J,9.). If " acts freely on X,
we have E([J,9+)=KQ®E(J,)*, where K denotes the canonical bundle of
M=T\X and E(].)* is the dual vector bundle of E(/,) and hence the isomor-
phism HN(M, E(],))=H(M, KQE(J.)*) and this is a special case of Serre
duality theorem.

Remark 2. We have (—§&7, —E7+28)=(A, A+28) for any 7T, where
8§ =73,>(ef2). In fact E7=T(A'—8)+8 and hence (—&7, —E7+28)=
(T(A'—38), T(A'—8)—(8, 8)=(A"—8, A'—8)—(5, §)=(A', A)—2(A', )=
(RA, RA)—2(RA, R(R78))=(A, A)—2(A, —8)=(A, A+205).

3. In this section we shall prove Theorem 2. Let R and R, be the
elements in W and W, respectively such that R(Z*)=—=* and R,(©)=—0.
Then R°=R}’=1. Let

Va={TeW|TA=A}.

Then we see easily that R,V \R={T €W |TA’=R,A} and hence
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(1) Wi=W'NRV,R.
On the other hand we have
(2) W'= RW'R.

In fact, let T W' and a€©. Then (R, TR)'a=RT'R,a € RT™'(—0©)
C —R3"=3" and hence (R, TR)'®C=* which shows that R, TR is in W".
Thus RW'RCW"'. But we have R°’=R’=1 and hence we get W'c RW'R
and hence (2). From (1) and (2) we obtain:

(3) Wiy=R(W'NV,)R.
Let
W'NV)g) = {TeW' NV,InT) =g .
For a subset @ of 5+, ®° will denote the complement of ® in =*.

Lemma 1. Let TEW"'. Then ®prr=R,(¥Y NP7) and hence n(R,TR)
=N—n(T), where N denotes the number of roots in V.

Proof. We first remark that R(¥)=Y¥ and that, as R,TR and T are in
w, Ppr,rr and P are subsets of ¥. Pg 7 consists of all aEW such that
(R,TR)"'a<0. Now (R,TR)'a=RT'R,a (¢ =V¥) is negative if and only if
T7'R,a is positive. But RaeW¥ and hence T'R,a is positive if and only if
R,a & D4 and this proves Lemma 1.

From (3) and Lemma 1 we get

(4) Wig) = R(W'NV)N—gR.
Let now

(5) v, = {as¥|(A, a)=0}.

Then the number of roots in ¥, is N—gq,.

Lemma 2. If TeW'NV,, then ®.CTS.

Proof. Let a=®;. Then oW and T 'a <0 and hence (A, T 'a)=
(TA, )<0. Since TV, we have TA=A and hence (A, )<0. By our
assumption on A, (A, &) >0 and therefore (A, a)=0 and this shows that a € ¥ 3.

From Lemma 1 and 2 we see that, if 7' W}, then n(T)>q, which
proves the first part of Theorem 2.

Now we are going to show that there exists a unique elements SEW' NV,
such that ®s=®;. Then T;=R,SR will be the unique element in W}(¢g,) and
Or={Ralacs¥, (A, a)>0={a|ac¥, (RA, a)>0}.
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First we remark that the uniqueness of 7" such that ®;=W¥} follows from a
results of Kostant [2, Prop. 5.10]*: The mapping 7'— @ (T W) defines
an injection of W into the set of subsets of =*.

Now let

g, =+ —1m+t,

where g=m-- is the Cartan decomposition of g so that m®=n*+n". Then
g, is a compact real form of g¢. Let H, be the element in § such that o(H, H,)
=+/—1A(H) for all HY). Then [H, X,]=v/—1(A, a)X, for all root .

Let | be the centralizer of H,in g,. Then [is the Lie algebra of a compact
Lie group and I€ is identified with the centralizer of H, in g¢. We see easily
that

€= E)C_f_wg;: (gm+g—m) )

where E={aE3"|(A, a)=0} and g, denotes the 1-dimensional eigenspace for
the root «.

Let G, be the adjoint group of g, and L the subgroup of G, consisting of
all 0 G, such that o(H,)=H, Then the Lie algebra of L is{ and, L being
the centralizer of a 1-parameter subgroup, L is connected. Now let T€ V.

We consider W as a group of linear transformations of ¥) by identifying
roots o with elements H,, in Y such that \/—1 a(H)=¢ (H, H,) for all H€).
Then we know that for T €W there exists an element t G, such that
{X)e T(X) for all X&bh. Then TA=A implies ¢(H,)=H, and hence ¢
belongs to L. Thus T belongs to the Weyl group of I¢. It follows then that
V, is the subgroup of W generated by S, with a€E, where S, denotes the
reflection with respect to the hyperplane a=0.

Now let

Q = {ae3|(A, a)>0}.

Then EU(—E)UQ is a closed system, i.e. if « and 8 belong to this set of
roots and o+ 3 is also a root, then a+ 3 belongs also to this set. Then

n= bc+n§5(gm+g—m)+ w;ggm
= IC—Fw;ng

is a parabolic subalgebra and I¢ and >'g, are the reductive part and the
reEQ

nilpotent part of ut respectively. Then by a theorem of Kostant [2, Prop. 5.13],
every T € W is written uniquely

* The existence of T €W such that @, =¥ ,° follows also the same proposition, but it is
not easy to see that T €W,
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T=T,T* T, eV,, T*eV?*,
where VA={T €W |®,CQ}.
Lemma 3. Let Uc W' and let
U=ST, SeV,, TeVA.
Then &5=d,NT,.

Proof. LetasQ. Then (A, @)>0and (A, a)=(S7*A, S7'a)=(A, S7'a),
because ST'A=A. Then S« is positive and belongs to Q. Hence ®sNN=¢.

Next let a=ENO. Since U W*, we have U 'a>0. Suppose S'a is
negative. Then —S'a=T(—U"'a)>0and —U *a>0 and hence T(— U ')
belongs to ®,. Since TV *, &, is contained in Q and hence —S'asQ.
One the other hand, as a=E and SV ,, we have (A, —S'a)=(SA, —a)=
—(A, @)=0 and this contradicts the fact —S*a Q. Therefore S™'a must
be positive for all « =E N O and this shows that DN E N O=4¢.

Finally let e€cENY. Suppose U'a<0 and S7'aa>0. Then S~'a=
TU'a and hence S'acEN®,;CENQ=¢ and this is a contradiction.
Therefore if U <0, then S '« must be negative. Analogously we can show
that if U 'a>0, then S 'a>0. These show that

DPNENY =PyNENY = DyNY,.
On the other hand we have
r=EUQ=ENY)UENB)UQ (disjoint)
Therefore we get from what we have proved so far
O = DyNT..
Lemma 4. An element U of W belongs to W' NV if and only if ®,C V3.

Proof. By Lemma 2, if U W*'NV,, ® is contained ¥. Conversely,
let ®y,C ¥} and let U=S-T as in Lemma 3. Then ®3;=®, by Lemma 3.
But the mapping T'— @ is bijective and hence U=S&V,. But ®,Cc¥, C¥
and hence Ue W', Thus UeW'NTl,.

Now let R'=R,R. Then R'eW" and ®,'=Y¥ (see Remark 1 in §2). Let
R'=ST as in Lemma 3. Then S belongs to W' NV, and ®s=P N V=Y.
Thus S is the unique element in (W'N W) (N—q,) and Theorem 2 is proved.

From Theorems 1’ and 2 we get the following theorem.

Theorem 2'. The assumptions and the notation being as in Theorems 1’ and
2, the space of automorphic harmonic q,--forms of type J. is isomorphic to the
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space of holomorphic automorphic forms of type Jcr,, where T, is the umque
element in Wi(q,). We have

Pr, = {@a€¥|(RA, a)>0}.
The highest weight of T, is
—T,RA—{Dr) .

Part IT

We retain the notation introduced in Part I*>. Let g=m-f be the Cartan
decomposition of g and let {X,,---, X,,} and {Y,,:--,Y,} be the bases of m
and T respectively such that o(X;, X;)=38;;, @(Y,, Y;)=—28, (¢, j=1,---,m;
a, b=1,---,7). Then the Casimir operator C is the differential operator on G
given by

C= 2 X2-31vy2,

=1

We denote by C=(G, V') the complex vector space of all C~-functions on G
with values in a finite dimensional complex vector space V.

1. Let 7 be a representation of K in a complex vector space V and let " be
a discrete subgroup of G. By an automorphic form of type (T, 7, A,) we mean
a function f € C (G, V) satisfying the following three conditions (cf. [1]):

1) fleh)y="(k")f(8), k€K, gE€G;

2) flve)=f(g), vET, ¢€G;
3) Cf=.f, where ), is a complex constant depending only on 7.

We denote by A(T, 7, A,) the vector space of all automorphic forms of type
T, 7 ).

Proposition 1. Assume T'\G is compact. Then the dimension of the vector
space A(T, T, \,) is finite.

Proof. ([1]). It follows from the condition 1) for automorphic forms

that Yf=—7(Y)f for Yt and fe AT, 7, \,). Put
C' =3V
Then C’f=7(C")f, where T(C’)=2 7(Y,)’. Let

L=C+2C" = 2} X3 Y2.

a=]1

* In Part II we don’t need to assume that G/K has a G-invariant complex structure.
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Then L is a left invariant elliptic differential operator on G. For fe A(T', 7, \,)
we have

Lf = Mf,
where M denotes the endomorphism of V' defined by
M =\, I4-27(C") .

Let F(x) be a polynomial such that F(M)=0 and let P=F(L). Then P is also
a left invariant elliptic operator on G and we have Pf=0 for f€ A(T', 7, \.).

Now by the second condition on automorphic forms, we may consider f as
a V-valued function on I'\G and by the left invariance of P, we may consider P
as an elliptic operator on I'\G. The manifold T'\G being compact, the vector
space of all V-valued functions on T'\G satisfying the equation Pf=0 is finite
dimensional and in particular A(T, 7, \,) is finite dimensional.

ExampPLE. Let us assume that G/K is a bounded symmetric domain in C¥
as in Part I and let /J, be the canonical automorphic factor of type 7. Assume
7 is irreducible and let A be the highest weight of 7. Then the space of all
holomorphic automorphic forms of type J, on G/K is identified with the space
of all automorphic forms of type (T, 7, ) with

A= (A, A+25),

where

8= ajz=<=D2.

2. Let T be a unitary representation of G in a Hibert space H and let Cy
be the Casimir operator of the representation 7. Cj is a self-adjoint operator of
H with a dense domain and if T is irreducible, there exists a complex number
Az such that Cr =A@ for all @ in the domain of Cy.

Let T be irreducible and let Tx be the restriction of 7 onto K. Then
Tk is a unitary representation of K and it is known that T« decomposes into a
countable sum of irreducible representations of K and each irreducible repre-
sentation 7 of K enters in T, with finite multiplicity which we shall denote by
(Tk: 7).

Let U be the unitary representation of G in the Hibert space L,(I'\G):
(Ug)f)(x)=f(xg), x€T\G, g G. We know that U decomposes into sum
of a countable number of irreducible unitary representations in which each
irreducible representation 7 enters with a finite multiplicity which we shall
denote by (U: T). ,

Note that we have Cyf=Cf for f € L(T'\G) N C~(T'\G).

Theorem 3. Assume that T\G is compact and T is irreducible. Then
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dim AT, 7, A,) = 2 (U: T)(Tgk: ™),
TE‘DNr

where T* denotes the irreducible representation of K contragredient to t and D,
denotes the set of irreducible representations T of G such that Ap=N,, Ar being the
constant such that Crp=»n,@ for all ¢ in the domain of the Casimir operator Cr.

From Theorem 2’ and Remark 1 in Part I, §2 and Example in Part II, §1,
we obtain the following corollary.

Corollary. The notation and the assumptions being as in Theorems 2’ and 3,
the dimension of the space of automorphic harmonic q,~forms of type J, is equal to

N (U: TY(Tk: 77,) »

TED A, A+25>

where 17, denotes the irreducible representation of K with lowest weight

Er, = TN LD,
where

P, = {@a€EY|(RA, a) >0}.
3. Proof of Theorem 3. Let
mn@:é@m

be the decomposition of L*T'\G) into direct sum of irreducible invariant closed
subspaces and let

U,=U|H,.
Let a be an index such that Cy p=X.p for @ in the domain of Cy, and let

m, = (U)k: ™).
Further let

Ha = E@Ha,b

be the decomposition of H, into direct sum of irreducible K-invariant sub-
spaces. We may assume that for b=1, 2, .-, m, the irreducible representation
of K in H, ,, is equivalent to 7*.
Take a basis {v,, -+, v,} of the representation space V of 7 and let
r(kR)o, = D) 75(R)vu kek.

M

Then there exists a basis {f3,, -, fa,} of H, , such that
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(1) a,0(xR) = 2# (k") fa,5(x)

for k€K and xT'\G. Define a V-valued function f, , on I'\G by putting

fa,b(x) = ;fﬁ,b(x)vx .
Then
Jap(xk) = 7(k7") fa,5(%) -

Put
fa,b = fa,b°7[ ’

where 7 denotes the projection of G onto I'\G. Then £, , satisfies the con-
ditions 1) and 2) of automorphic forms of type (T, 7, A,). If {g5,, - ga.} is
another basis of H, , satisfying the condition (1), then there exists a complex
number « such that « g ,=f4, for A=1,---, n by Schur’s Lemma. Therefore
the function fa, » is well defined up to constant multiple.

Let us prove that £, , is differentiable and satisfies the equation C Fas=
P f,,_,,. To show this it is sufficient to show that every function pEH, , is
differentiable. In fact, @ is then in the domain of the operator Cyy;= C and
Cyp=Cy,p=n,p (Remark that C is a differential operator on G left invariant
by G and hence we may consider C as a differential operator on I'\G. To
show the differentiability of pH, ,, we remark first that for any e C~(I'\G)
and yr€ H, we have

(2) (Chy W) = (b, A) .

In fact, let 4» be an element in the domain of the operator Cy,. Then
(Ch, Ar)=(Cyh, ¥r)=(h, Cysyr)=(h, A)r). The elements +r being dense in H,,
the equality (2) holds for any vy H,. Now let pH,,. Then for any Y &f,

lim L (Uy(exp tY)p—9) = ULY)p
t>0

exists. In fact, Uy(Y)p=—7*(Y)p. In particular
U(Cp = (C')p
where, as in the proof of Proposition 1 in §1, we put C’=Z Y2, Let
L=C+2C".
Then for any p€H, , and he C*(T'\G) we get from (2):

(Lb, @) = (Ch, 9)+2(C"h, 9) = (by 79+ (h, 20%(C")p)
= (h’ B¢) ’
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where B=2x,I4+27*(C") is an endomorphism of the finite dimensional vector
space H,,. By induction we get (L* h, p)=(h, B*p) for k=1, 2,---,. Let
F(x) be a polynomial such that F(B)=0 and let P=F(L). Then (Ph, )=0.
This shows that the distribution D,, defined by D,(k)=(k, @) satisfies the elliptic
equation PD,=0. Then ¢ is differentiable and in fact Pp=0.

Thus we have shown that for each index a such that U, Da,, we get m,
functions £, ,(b=1, -, m,) belonging to A(T, 7, A,). If c is another index such
that U,E Da,, then we get also functions £, ; (d=1, 2,++,m ; m,=((U,)k: 7))
belonging to A(T, 7, \,) and it is easy to see that f,, and f,, are linearly
independent. By Proposition 1, the dimension A(T, 7, \,) is finite. It follows
then that the number of the irreducible unitary representations 7" of G belonging
to D, such that (U: T)=0 and (7': 7*)=0 is finite. We may therefore assume
that U,, U,,-:, U, are these unitary representations. For each a, 1<a<t.
We get functions £, , (1<b6<((U,)k: 7*)) in A(T, 7, A,) and these functions are

linearly independent. The number of these functions equals tZ((U,,),ﬁ 7*)

which is equal to TgT(U : T)(Tk:7*). Thus we get
dim A(T, , xT)ZTEEDT (U: TY(Tk:7).
Now let fE A(T, 7, A,) and let
F@O=327On, g=6.

Then f* is a differentiable function on G such that f(yg)=F*(g) for all yT".
Then there exists a differentiable function f* on I'\G such that f*=jf*oz.
Then we have

frah) = S M) A()

for all ke K and xT"\G. Moreover
Cf* =x.f*.
Let P, be the projection of L¥T'\G) onto H,. If k is differentiable, we have
P, Xh= lg? %Pa( Ulexp tX)h—h) = l,lfol %(Ua(exp tX)P,h—P,h)= UYX)P,h.
It follows that P 4 is in the domain of Cy, =3} UyX,)’—>3 Uy(Y,)* and
P,Ch=Cy,P,h. Thus we get: ’ b
CuLof* =N Paf*.

It follows that, if U,€:Da,, then P,f*=0. Therefore we have:

(3) =P AP fr AP
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Let a<[1, t] and assume P,f*+0 for some A. Let F be the linear subspace
of H, spanned by {P,f', P,f% -+, P,f"}. 'Then F=(0) and F is K-invariant.
In fact

U,k)P,f* = P,UKk)f* =P, 2 (k)
= SIRIPS
Let {¢',---, £"} be the basis of V* dual to the basis {v,,-+,v,} of V. The

linear map of V* onto F defined by £—P,f” is a K-homorphism and in fact a
K-isomorphism, because V'* is irreducible. It follows that P,f*,.--, P,f, are

linearly independent and F is contained in Za@Ha,,, because of the orthogo-
b=1

nality relation. Then we can write:

Pf =3 3 albpfhs
Then
(Pof*)(sk) = 33 Bl (k)
= ST AR ()
On the other hand
(Puf*)ck) = 33 7h(k™)(Puf*)(®)
SIhk) 33 B aalx)

Therefore we get:
S a@ReE) = SN ( v=1,,7).
0

By Schur’s Lemma we have a(b).=a, ;0. where «a, , is a constant depending
on aand b. Thus

mg
Paf)\ = ; aa,bfz.b ’

whence A= P,,f"=2b Agsfup. Therefore X3 fro,=3" a0, sfa s It follows
a a, ab A

then £ is a linear combination of £, ,’s and therefore {£, ,} form a basis of the
vector space A(T, ,7 A,) and the theroem is proved.
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