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The problem of finding the explicit Plancherel formulas for semi-
simple Lie groups has been solved completely in the case of complex
semisimple Lie groups (see [3 (b)]). Moreover Harish-Chandra showed
[3 (f)] that the problem is solved also for a real semisimple Lie group
having only one conjugate class of Cartan subgroups. In the case of
real semisimple Lie groups with several conjugate classes of Cartan
subgroups, the problem is very difficult to attack. As far as the auther
knows, the problem was taken up and solved for SL(2, R) by V. Bargman,
[1], Harish-Chandra [3 (a)], R. Takahashi [9 (a)] and L. Pukanszky [7];
also for the universal covering group of SL(2, R) by L. Pukanszky.
In the previous note [6], we gave a method of finding the Plancherel
formula for the universal covering group of De Sitter group. The pur-
pose of this paper is to generalize this method and to obtain the ex-
plicit Plancherel formulas for simple Lie groups G which satisfy the
following conditions (A. 1)~(A.5).

(A.1) There exists a simply connected complex simple analytic group
G€ containing G as a real analytic subgroup corresponding to a real
form of the Lie algebra of G€.

(A.2) G has a compact Cartan subgroup.

(A.3) G has two conjugate classes of Cartan subgroups.

(A.4) Every Cartan subgroup of G is connected (c.f. Proposition 7).

(A.5) Let T, be the invariant distribution defined by the formula (3. 8)
in §3. Then there exists a finite number of irreducible unitary
representations %’, :--, ®$’ of G such that the character of the
representation »>P---Pwf’ coincides with the distribution T,
(c.f. Remark 1).

The Plancherel formula for such a group G, which is our main
result, will be given in Theorem 2 in §4 and Theorem 2’ in §5.

We shall see that the assumptions (A.1)~(A.5) are satisfied by the
universal covering group of De Sitter group. We shall thus obtain the
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explicit Plancherel formula for this group in Theorem 3 in §6. This
formula was conjectured by R. Takahashi in [9 (b)].

The author wishes to express his sincere gratitude to Professor M.
Sugiura who has suggested him to attack the problem and encouraged
him with kind advices. The author expresses his hearty thanks also to
T. Hirai who kindly informed him of the character formulas for the
representations U™**"* and T™*?PT*™? defined in [9 (b)].

1. Preliminaries

Let G be a simple Lie group which satisfies the conditions (A.1),
(A.2) and (A.3). We denote by g, g¢ the Lie algebras of G, G¢ respec-
tively. Let K be a connected maximal compact subgroup of G and f its
Lie algebra. We put

p={Xeg: BX,Y)=0 for all Yet},
where B denotes the Killing form of the Lie algebra g¢. We have then
ng—I—p, fﬂp:(O), [p ’p]Cf7 [f’ p]Cp-

We take a maximal connected abelian subgroup A, of K and fix it once
for all and let %), denote its Lie algebra. Then from (A.1) and (A.2)
A, is a Cartan subgroup of G corresponding to b, ; i.e.

A, = {geG: Ad(g)H = H for all HeY},

where Ad denotes the adjoint representation of G. For any subspace [
of g, we denote its complexification by I¢. Let =, denote the set of all
non zero roots of g¢ with respect to hf. Let o be the conjugation of
g¢ with respect to g and let ‘o be the linear transformation on the dual

space f)lc of Hf defined by
(foA)(H) =A(cH)  (HeEDS)

for any Aef)f.
Since ‘o induces a substitution of roots, there exists a complex

number «, for each «3, such that
ocE, = k Ety .

It is well known that we can find a basis {E,; a==,} of p¢ mod ¢
satisfying the following conditions ;
1.1) [H, E,] = a(H)E, for all Hehf,
1.2) B(E,, E_,)= —1,
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1.3) Naysg=N_, s (real number),
(1.4) kgl = 1.

Since [Bf, t¢]cCtc and [Hf, pClcps, it is clear that either E,=f€ or
E,=p¢. A root a3, is called compact or non compact according to
E.,=1¢ or E,e¥°.

For any aZ,, let H, denote the unique element in Hf such that

B(H,, H) = a(H) for all HeYf.

Put
(1.5) Uy = vV 2(Es+E_o)/(a(Ha)",
(1.6) Vo= V=1V 2(Es—E_,)[(a(H,))" .

Fix a non compact root «, in X, once for all. Then from (A. 2) and
(A.3), a=v/—1RU,, is a maximal abelian subalgebra in p (see [8]).

We consider the automorphism v=exp {(z/4)ad V,} of g¢ where ad
denotes the adjoint representation of g¢. Then we have

(1.7) V(\/:I)Umo =H,, v(H)= _\/:viUmo ’
__ 2
where H,= a(Hy) H, .

Put 9 ={HeY,: [H, X]=0 for all Xea}. Then h,=a+Hh is a
Cartan subalgebra of g which is not conjugate to ), (see [8]). From
the above assumption (A.3), every Cartan subalgebra of g is conjugate
to either %), or Y),. It is easy to see that

(1.8) v(HS) = ¢ and v(H)= H for all HeY .
For any Aef)f, let A denote the linear form on h§ defined by
(1.9) AH) = AwH)  (HeEYS).

Put S,={&:a=3}. Since v is an automorphism of g¢ it follows
that =, is exactly the set of all non zero roots of g¢ with respect to .
Select compatible orderings in the dual spaces of a and a++/—19" and
let &,, &,, .-, @& be all the simple roots in 3, under this order. Since
{&,, &,, ---, &} is a fundamental root system of 3,, {«a,, a,, =, a;} is a
fundamental root system of 3,. Hence we can define an order in X, such
that {a,, a,, --+, a;} is exactly the set of all simple roots in this order.

Moreover we may assume «,>0. We put H‘:orzT%I-‘jH‘”i (G=1, -, 0).
Let P, (resp. P,) be the set of all positive roots of 3, (resp. =,). We put

P; = {aeP,: a&(a)=*(0)},
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Then P; is the set of all compact positive roots in 3,. Let &
(resp. &,) be the set of all integral (resp. dominant integral) forms on §¢.
Then we have

% = {A == zm;A;: m;EZ (i=1, *ty l)} Y
Fo= {A = DImih;: m>0, meZ (i=1, -, D},

where {A,, A,, -+, A;} is the dual basis of {H,, H,, ---, H;}.

Since A, is a connected abelian Lie group, the mapping H —
exp H(H<Y,) is a homomorphism of §), onto A,. Let A be a linear form
on Y, such that ¢2®=1 for all HTI'(h,), where

r'M,) = {Heh,: expH = ¢} .
Then we can define a function £, on A, by
(1.10) Exexp H) = e®®  (Heb,).

Moreover &, is uniquely extended to a holomorphic function on A¢=exph¥f.
Although the following proposition is well known, it is fundamental
in the present paper so that we shall give a proof of it.

Proposition 1. Let A, be the character group of A,. Then
A={Er: AET}.

Proof. Put
= 2rv/ I MM mEZ (i=1,2, -~ D)} .

Then, since 9,/T'(H,)=A,, the proposition follows immediately if we prove

P:F(bl)'
Let H=T(h,). Then exp H=e, where ¢ is the identity of G. Since
A;(G=1, ---,]) is a dominant integral form, there exists an irreducible

finite dimentional representation =; of g¢ with the highest weight A;.
Since G€ is simply connected, there exists a representation #; of G¢ such
that d#;=7;. Let u; be a weight vector corresponding to A;. Then we
get

| ey, = exp (1;H)u; = #;(exp H)u; = u;=+0.

Hence AJ(H)E2r\/—1Z (i1=1, 2, -+-,l). This means HET.
Conversely let HeI'. Then H=27t\/?i$ m;H; for some m;cZ
(¢=1,2,---,1). Let 7 be a faithful representation of G¢ on a finite di-
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mensional vector space V. It is known that every weight A of = is an
integral form on hf and that V is the direct sum of eigenspaces V,, A
being a weight of . For any #«=V,, we have

r(exp H)u = exp 27/ —1 2: mydr(H;))u
_ 2V IS mAHD,,

This is equal to %, since A is an integral form. Hence 7(exp H) is an
identity transformation. Since = is a faithful representation, it follows
that exp H=e¢. This implies H=T'(),). Thus the proposition is proved.

2. Some results of Harish-Chandra

In this section we gather some results of Harish-Chandra which
will be used in this paper.

In this section we assume that G satisfies the conditions (A.1)~(A.4).

For any submanifold U of G, let C;(U) denote the set of all complex
valued C~-functions on U with the compact supports. Then for any
feC7(G) and a fixed g=G, the function f4: x—f(gxg™') (xG) is again
in C2(G), and if T is a distribution on G, the mapping T¢: f—T(f¢)
(feCz(G)) is also a distribution. We say T is invariant if 7=T for
all g&G. Let B be the algebra of all differential operators on G which
are invariant under both left and right translations. We denote by D(x)
the coefficitent of #/ in det ({+1—Ad (x)) (x€G). Then D is an analytic
function on G and an element x=G is called regular if D(x)=+=0. Let G’
be the set of all regular elements in G. Then G’ is an open and dense
subset of G whose complement is of measure zero with respect to the
Haar measure of G. For any subset B of G, we define B =BNG’. A
distribution 7 on an open submanifold U of G is called an eigendistribu-
tion of 3 on U if it satisfies the equation AT=X(A)T for any A3,
where X denotes a homomorphism of 3 into C.

Lemma 1. Let T be an invariant eigendistrvibution of 3 on G. Then
T is a locally summable function (as distribution) which is analytic on G'.
(see [3 ().
Since A, is connected by virtue of (A.4), we can define a continous
function A, on A, by
(2 1) Ak(h) — [ I1 (ew(H)/z_ e—m(H)/z) I I (eas(H)/z__ e—m(H)/z) ,
aEeP} acPiU Py

for all Z=exp HEA,.

Where P (resp. Pr) is the set of all non compact (resp. compact) roots
in 3, and P} =P3=¢ (empty set). Let x—x*® (x&G) be the canonical
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projection of G onto G/A, (k=1, 2). For any feCy(G), we put
2.2 FiP(h) = Ak(h)g S P)ydx®  (heAy),

GlAE

where dx® is the invariant measure on G/A, and A** =xhx ' (hE Ay).

Let S(HF) be the universal enveloping algebra of §Hf. Let B be an
open subset of A,. We regard it as an open submanifold of A, and
consider the space D(B) of all complex valued functions F on B of class
C~ satisfying the following two conditions.

(1) The closure in A, of the support of F is compact.

(2) For every ucs S(Hf),

T, (F) = ng'F(h? u)| <oco where F(h;u)= wF)h).

Define a topology in D(B) by means of the collection of seminorms
7, (@eSH€)). Then D(B) is a locally convex space and the same holds
for C3(G) under its usual topology (introduced by Schwartz).

Lemma 2. The mapping f—F* is a continuous mapping of C(G)
into D(AL). Moreover, for any relatively compact open subset U of G,
there exists an open subset B of A, such that B is compact and that F
is zero outside B for every fCz7(U).

For the proof, see [3 (f)].

Let A}’ be the set of all points Z=exp H= A, such that

I (em:H)/z_ e—m(H)IZ):‘:O .
ae Py

Lemma 3. (1) Let B be any connected component of Ai. Then
uFY (usS(HE)) can be extended to a continuous function on the closure of
B in A, with the compact support which is of class C° on A7’.

@) F® can be extended to a function of class C* on A, with the
compact support. :

For the proof, see [3 (f)]. :

Let U be the universal enveloping algebra of g°. Let W, be the Weyl
group of g¢ with respect to Hf (k=1,2). For any s W,, let u—su
(= S(HF)) denote the automorphism of S(H¢) which coincides with s on
h? (k=1, 2). Let I be the subalgebra of all elements #=S(H€) such that
su=u for all s W,.

Lemma 4. There exists an algebraic isomorphism v, : A—v(A) (AEB)
of B onto I, which satisfies the following conditions (k=1, 2);

1) Let u—u* (usW) denote the anti-automorphism of 1 which maps
X on —X (Xeg°. Then



PLANCHEREL FORMULAS 253

7A%) = (vi(A)*  (A€8).
@) F® = v A)F®  for all feC(G) and AcB.

For the proof of this lemma, see [3(d), (f)]. One should notice
that our definition of F¢ is a little different from the one given in
[3(f)] and consequetly (2) in Lemma 4 is a slight modification of [3 (f)].

Lemma 5. For arbitrarily normalized Haar measures dg and dh, the
invariant measures dx® can be normalized so that we have

| f@ag = 21|, sumppwdn for all reCz@).

This lemma is proved in the same way as [3(b)].

Now we fix the normalizations of the Haar measures of G and A,
arbitrarily. As for the Haar measure of A,, we normalize the measure
dh such that

2.3) S,, dh =1,

After this, we normalize the invariant measure dx‘® so that the equality
in Lemma 5 holds.

Now let S(f),?) be the symmetric algebra over A,,C, where f)f is the
vector space of all linear forms on H¢ (k=1,2). For any xef)f, we
denote by H, the unique element of ¢ such that B(H,, H)=x(H) for
all Heh¢. Then the mapping AN—H, (xef)f) can be uniquely extended
to an isomorphism of S(f)f) onto S(H¢) which we denote by 4. Put
me= Il ¢ and p,=% > a. We also put ===, and p=p,. Then

aEP, aEP,

()= SOP).

Lemma 6. For any feC7(G), 0(z)F can be extended to a continuous
Sfunction on A,. Moreover, there exists a positive number ¢ independent
of f such that

im F& (h; 8(z)) = o(=1)""fle)  (h€A)),

for all feC(G), where n (resp. q) is the number of the elements of P,
(resp. PY).
For the proof, see [3(f), (h)], and notice that A,(k)=(—1)"A,(k).

3. Definition and Properties of T,

In this section we shall define a distribution T, for A€ and get
some formulas on 7, under the additional assumption (A.5). Let G
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be a simple Lie group which satisfies the conditions (A.1)~(A.4).

S(f)f) can be regarded as the algebra of all polynomial functions on
BS. For any rhf and pESHE), let n, O=, 0(p)> denote the value
of p at H,. Let & be the set of all elements A= $ such that {A+p, 7> =+0.
We put W=W, and for any s W define § by

3.1 SH = s(vH) for all HeYhS.
For any A% we put

(3.2 Ay={h=expHecA,: |e"PH L1},
(3.3) Ay ={h=expHEA,: || >1},

Now we define a bounded continuous function £2 on A, as follows ;

3 e8P if p— exp HE A,
3.4 8 () =
3.4) ED () { S if = exp HE _A,

where s, denotes the Weyl reflexion H—H—2(ay(H)/a((H,))H,, on bf.
We put

(3- 5) Z:i\l) = Eptp-
For any s W, we put

&i(s) = &(s),
—&(s) if <sp, apy>0,
3.9 = { &(s) if <sp, a»<0,

where &(s) denotes the constant which is uniquely determined by
A (expsH) = &(s)A,(exp H) for all Heb,.
For any A%, we define

3.7 20 (h) = 2 Ex($)ER(R)  for hEA, (k=1,2),
sew
where A°=s(A+p)—p.
Proposition 2. Let

(3.8) Ta() = (=13 |, w0 WFPUdr  (FECIE)).

k=1

Then T, is an invariant distribution on G. Moreover T, is an eigendis-
tribution of 8 on G,
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Proof. Since 7% is continuous on A,, making use of Lemma 2, we

can easily show that T, is a distribution. Moreover, from the definition
of F¥, we have

Ff = FP  (g=0),
for all f=C(G).
Therefore from (3.8) we have
T (f5) =T\(f) (g€6),
for all f€Cs(G). Hence T, is an invariant distribution. For any A€ 3
and feC2(G’), we have

(3.9) (AT (f)

H

(A*f )
(= 1)"

I

> 7% (h) &, (h)dh

Ak

H
=
M 1M

H

SAk DYFP (b va(A)dh
S 2P (B F® (b ve(A))dR

— (-1 ,,J,, w0 (3 Ta Q) FS (W

In the above deduction, we made use of Lemma 3 and 4. From Lemma
4, we can easily deduce that

(3.10) s V(A ER = A+p, v, (ADES for all seW.

Since {A+p, v (A)>=<{A+p, 7,(A)> and sy,(A)=7,(A) (s€ W). It follows
from (3.7), (3.9) and (3.10) that

(3.11) AT(f) = <A+p, (AN TA(S) -

Hence T, is an eigendistribution on G’.
This completes the proof of the proposition.

Now we assume that G satisfies the additional condition (A.5) (see
Introduction).

Proposition 3. The series

Z‘. A+p, TN (fEC2G)

AED,

converges absolutely.

Proof. By the assumption (A.5), there exists for any AES, a
finite number of irreducible unitary representations w}’, --+, 0y’ of G such
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that
(3.12) T, =T,
k=1
where T denotes the character of % (k=1, .-, s). We may assume

that o, -+, ©§’ are not mutually equivalent.
Take any f=Cy(G’). Then from Proposition 2, there exists a homo-
morphism X, of B in C such that

(3.13) TA(A*%F) = X, (AT (f) (Ae8).
On the other hand, we have
(3.14) TYA*f) = XPA)TL(f)  (A€8),

where X¢ is the infinitesimal character of (.
From (3. 12), (2.13) and (3. 14) we get

DTLB)-XAANT () =0 (A€B).

Therefore from Lemma 1, we can show (see [3(c)]) that
XB(A) = X, (A) aed) (k=1, -, s).
Now let f be an element of C;(G). Then we have

(3.15)  ATA(f) = Tx@a%) = 3 TY@*) = XA TL(S)
= VAT = XaB)Ta() -

Hence T, is an eigendistribution of 8 on G.
Let C be the Casimir operator on G. Then from (3.11) and (3. 15)
we have

(3. 16) XA(C) = <A+p, 7(C)) .
On the other hand from (3.8) we have

2

EOIE S SRR OIRI T OIE

=1
<w3 | IFPmldh<e,
k=1J Ap
where w is the order of the Weyl group W.

The convergence of the integral follows from (1) in Lemma 3. Put

M= w3 SAle}"’(h)[dh.
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Then M, is independent of A and
3.17) | TA(F)| <M, .

Since v,(C) is a differential operator of elliptic type, we can find integers
/, m such that

(3.18) [<A+p, 2> | < [<A+p, v(C)|?  and
1

(8.19) RN e (o)L

where F = {A€F,: <A+p, 7,(C)>+0} .

Therefore, from (3.15)~(3.18) we have

@20 hrp w1 TN =B o] DD

< IKA+p, | | TACH™P)]
[CA+p, OB KA+ p, 7ACT”
. Mo,
KA+p, 7ACST

It is easy to see that %0—§ is a finite set. It follows from (3.19) and
(3.20) that

2 A+p, | TA(f) <oo.

AEF,
Thus the proposition is proved.

Now we shall define T, also for any A€® as follows.
First we define £, »{ also by (3.5), (3.7) respectively.
Then we have

20(h) =0 for all heA, if AsTF-F .
Put
A, ={h=expHEA,: || >1},
A, ={h=expHeEA,: || <1}.

For any A€ such that <A+p, a,>=0, we define
+A,=,A, and _A, = _A,.

On the other hand, for any A=® such that <A+p, a,>+0, we define
JA,, _A, again by (3. 2), (3. 3) respectively. We define £ also by (3.4).
For any A% such that A+p=F, we define »® and T, again by (3.7),
(3. 8) respectively. Finally for any A= we define
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T,=T,,
where A, is a unique element of & such that
A +peF, and A=A, for some s=W.
It is easy to see that
T,s=T, for all s€W and AEFH.
The following proposition is a direct consequence of Proposition 3.

Proposition 3. The series

2 KA+p, 2| TA(f)  (fECIG)
AET

converges absolutely.
For the proof, we have only to notice that = {A*: AET,, s€ W}

and that <A+p, »>=0 for all AcF—-F".
Now for any A€, we define

EX(h) if he.A,,
3.21 @(f) = q
8.21) 240 {—sxz’(h) it he_ A,
and
(3.22) W = DEYR)  for  hedy (k=1,2),
where EY = Atp e

Theorem 1. For any AEF,
(3.23) [KA+p, m>| TA(f) = (—1)™7 ,,;21 SA,, AR F3(h 5 0(zw))dh .

A proof of this theorem will be given in §7.
We shall now prove some formulas which will be needed in the

next section.

Proposition 4. The notation being as in Lemma 6, we have

> S TR(REF (k5 (z))dh = we(—1)""f(e)
AEF J A

for all feC7(G),
where w is the order of the group W.

Proof. In the proof of Proposition 1, we have shown that §,/T'=A4,,
the isomorphism being induced by the exponential mapping. Hence if

we put



PLANCHEREL FORMULAS 259

F@,, 0., -+, 0) = FS (exp (31 v/ —10,Hy); 0(x)),

then F is periodic in each of the variables with period 2». Therefore

!
if we put A=>m;A;, then we have
i=0

[, EFP@; o)

l
2n 27 SV =1m;0;
— (2_};)_1 SO SO F,,6,, -, 0,)ei‘=“1\/ Y% 0.6, d0), .

From (1) in Lemma 3, we easily see that F is piecewise smooth in each

of the variables 6, (=1, 2, -+, /). It follows from the theory of Fourier
series and Lemma 6 that the series

2 | ewFPo: a@nan

Ae

!
_ L O e, )oYy
_"'1.~Z.'”1 m So So F(@,, -, O,)e a0,---do,

(3. 24)

converges absolutely to
lim F@,, -, 0;) = lim F®(h; o(x))
€0y,-0,2>(0,.-.,0> h->e
=c(=D)™f(e).
Therefore from the absolute convergence of (3.24) we have

2 | awwrpe; o)an
A4

= 5 3| eemFra; o)an

AEFEW J A,

=B A, EenoFP (s 2 an)

AEF

-513 ], ewrre; awa)

SEW Ae%

= we(—=1)"f(e) .

In the above deduction, we made use of the fact that p is a integral
form and that for any s€ W the mapping A—sA (AEF) is a bijection
from & onto itself. Thus Proposition 4 is proved.

Now we consider the series

(3.25) = |, mwFPh; o@an.
AET ‘4,
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It follows from Proposition 3, Theorem 1 and the absolute convergence
of (3.24) that the series (3. 25) converges absolutely. Since A, is connect-
ed, if we put A=expa and A =explh~, then we have A4,=AA". Put
a,=exp+\/—1tU, . Then any heA, is written uniquely in the form
h=ah~ (t€R, h"A"). Put h*=va. Then we have h,=H"+h~ (direct)
(see §1).

Let §*, b, f)l denote the vector spaces of all pure imaginary valued
linear forms on YH*, H~, b, respectively. Since §,=Hh"+bH~ (direct), we can
consider h* and h~ as subspaces of b, so that f),=f)+ +b- (direct). For
any Aef), we denote by A*, A~ the f)*, f)“—component of A respectively.
We put A*=exp§*. Then it is clear that A,=A*A~ and that D=A*NA"
is a finite group. Let A, be a closed subgroup of A,. Then it is well
known that the character group Ao of A, is given by

A\o = {gtAo: EEAx} .

where E|A, is the restriction of £ to A4,.
For any £ A, it is clear that

EIAD)ID = (E1AN)ID.

Conversely for §+E/i+, g‘efi“ such that £'|D=§g |D, there exists a
unique element £ A, such that
E|A* = E" and E|A =E".
Put
Ft={A": A%} and F = {A " : AcH}.
Then
A" = {£,+: A*€F'} and A = {£,-: A €T}

Since A* is a one dimensional torus, D is a cyclic group. Let m be
the order of D and let v be a generator of D. Select T*€h" and I'"€h~
such that y=expI'*=expI'". For any integer & (0<k<m), we put

i = {ATEF*: eateHah _ v zekm)
Xy = {AEF 1 eaTHOXD = gvTimkmy
Then we have
8= Urode (disjoint sum),
where Be={AT+A: AT EF, A €57},

For any A<, there exists: an integer » such that A*+p*=rAg,

where A,=4%4a,. It is clear that
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A, ={a,h €A,: t20, hreAd},
A, ={ah €A, t<0, heA}.

For any k=a,h = A,,

@it HPTXHT) if <0,
EXah™) = { g~ THH(ATHPTHT if 7>0.

Hence
(3. 26) ED(a,h™) = e 11T HPTXAET (a,h€.4,).

Similarly we have
(3.27) E(A:Z)(ath—) = — "It (ATHPTIHT) (ah~s_A,).

Now we need the following Lemma 7, a proof of which will be
given at the end of the present section.

Lemma 7. F®(a_hi; 0(r,)=—FP @k ; 0(r,)) (h-€A").

Making use of this lemma and (3.27) we have
|, swF@; oG)dn

= — Sim SA« elrlt+(A"+p—)(H‘)F(f2)(ath— : a(ﬂz))dtdk_

— Sm SA_ élflt+(A‘+P‘)(H_)F}2)(a_th— : 6(71'2))dtdh_

0

SN S,,- ¢TI ATHPOEDED (g b 3 3(x,))dEdh

In the above formula, d#~ denotes the Haar measure of A~ such that
dh=dt dh~, where dt is the canonical volume element in R'. The above
formula and (3.26) give the equality

B.28) | EPWFPG; o) dh

=2 Sw S g~ 71t (A‘+P‘)(H‘)F-(r2)(ath— s 0(z,))dtdh .
a-

0

It is easy to see that
B = {Um+Rk)A§—p7: €2},

where A, = —;— a, .

Hence from (3.28) we have
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3.29) 3 5 EPRFP(h; 0(x,))dh
A+tegilAa

— 2 lim Zle Sm S e—|Im+k|t+(A'+P')(H)F-(72)(ath— ; a(ﬂz))dtdh_
qi’:: I=-(p-1 Jo JA™

= 2 lim

PR
X F®(a,h™ 3 0(m,)dtdh

_ . ch((m—2k)t/2) EATHPTXHD P - -
=2 S SA_ Aot e F®(ah; 0(z))dtdh- .

o —kt —(Mm—-Rt_ p—(Dm—kdt _ ,—(am—k)t

e ¥ +e e’ e (A= +P7XCH™>

—r 4
o JA™ 1—e

In the above deduction, we used the following fact.

Lemma 8. +F(a,i”; 0(z,)) can be extended to a C*~function with

the compact support on A,.
This lemma is an immediate consequence of (2) in Lemma 3 and
Lemma 7.

From the absolute convergence of the series (3.25), using (3.22)
and (3.29), we have

> | wwFPG; o)an

AET

-3 { > S ERRF2(h; a(nz))dh}

W lAed

:w"’z‘;" a3 { s S EP(R)F P (I ; 6(n2))dh}

AtEFTF

_ KS| - ch((m—2k)2/2) s io->cu->pe - -
— 2w A%_S SA_——.—Smmt iy F®(ah ; 0(z,))dtdh

_ < (7 CA™+PTICHT) (2 - ch((m—2k)t/2)
_ ZwES {AE%; [ e F®(ah; 0(z,))dh }~—h(.72) dt .

In the above, we used Lemma 8 again. Thus we have obtained the
following result.

Proposition 5.

s [, mewEP®n; oGydn
AET V42
— 2S? Sm { ch(m—2k)t/2) 4,

eATHPTOEDED (g b 0(m,))dh” } sh(mt /2)’

2.
A-EFy
where m is the order of the group D=ATNA".
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Now we come to the proof of Lemma 7. We put k, =
exp ((z/2)\/ =1H,). Then from (1.1), (1.2), (1.5) and (1.7) it follows
easily that

(3. 30) kK, Ad(k)|b, =5,.

On the other hand, from (2.2) we have (F®)%'=F%. From this and
(3.10) we have

FP(ah™ 5 8(my) = (FPY (kah ks 5 8(sors))
= —FP(a_ 3 0(n) .

Thus Lemma 7 is proved.

RemMark 1. It is plausible that a simple Lie group G satisfies always
the condition (A.5) whenever it satisfies the conditions (A.1)~(A. 4).

ReMARK 2. We shall prove in §5 that the order m of the cyclic
group D=A*NA" is equal to 2.

4. Main theorem

Let m be the centralizer of a in f and let M be the corresponding
analytic subgroup of .G. Then it is easy to see that )~ is a Cartan
subalgebra of m and that A~ is a Cartan subgroup of M. Pj; is naturally
identified with the set of all positive roots of m¢ with respect to ()¢
under some linear order.

For any A-€%~ we put

S(A_)*{ 1 if <A +p7, 2 >0,
Tl =1 if <A+p, 2O<0

where p =4 3 aand "= II «a. Take a A% such that (A~ +p ", 77>
ae Py acs Py

#0. Then it is known that there exists an irreducible unitary represen-
tation §,- of M whose character {,- is given by the following formula ;

§A‘(h—) — Aefl(xh__)) 2 E(S)es(A“H!‘)(H') (h— = exp H—E(A—)/)

SEW _
where
W_ = {seW: sa, = a,},

A(h) = II (e™Hre_ g-acbrz)
aEP;

For each a=P, let X, be an element of g¢ such that X,=+0 and
[H, X,]=a(H)X, for all He%¢. Then from the assumption for the
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order intronduced in I,, we can show that
n=( = cx,,) Ng
asP§

is a nilpotent Lie algebra. Let N be the analytic group corresponding
to n. Then Iwasawa has shown that

4.1 G = KAN,
4.2) g=f+a+n (direct sum as a vector space).

It is easy to show that MAN is an analytic subgroup of G. For a non
zero real number A and A“F such that (A~ +p~, z~>+0, we define
the irreducible unitary representation L, ,- of the group MAN by

L, r-(mam) = ¢ -13 \~(m) .
Let o, ,- denote the unitary representation of G induced by the re-

presentation L, ,- of MAN (see [2]). The following formula for the
character T, - of the representation w, ,- is due to Harish-Chandra

(see [3(®)]-
Lemma 0. Ty s-(f)=|_ A&, s-(e)dg for all feC:(G),

where X, n- is the invariant analytic function on G’ defined by
0 if heAl,

Xaa-(h) = { 28_(/23(2())5 At :E%:— PO

if h=a,expH €A4}.
To prove this lemma, we have only to notice that {-,0o=&,- and

c=1 in Theorem 2 of [3 (b)].
For any real number A we put

1 if x>0,
—1 if A<O0.
We define T, ,-(f)=0 for all f€CZ(G) if </ —IAA+A~+p~, z>=0.

Proposition 6. For any real number \,

sgn (\) = {

Z l<\/:_i7\,A0+A—+P_, 7Z'>I T)\,A_(f)

A-EFy

— 4w_(— 1) sgn (\) r{ 2 S AT OHDE® (g G(nz))dh'}
0 A—E;}; A
X sin \tdt for all FeC7(G),

where w_ is the order of the group W_.
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Moreover this series converges absolutely and uniformly with respect to ).

Proof. Put W,={sesW,:sh,=p,}. Then it is easy to see that
W,=1{1, §}W_ (direct). For any s W, we have

A,(exp sH) = &(s)A(exp H)

where &(s)=1 or —1.
We define &(s) (s€ W,) by this formula. From Lemma 5 and 9 we
have

Ton () = | A&, - (9)dg

4.3) = a-tiamrdn| - foedx

G/
SCOIPENC DI OLT
In this formula we put
(4.4) na,a-(h) = ZW Efs)e 2P (h = exp HE A})
where A+p, =/ —IANA+A"+p .

Making use of (2) in Lemma 3, for each a=P, we get

Atpy, | enrmpEpan

2

= SA <S(A—|—p2), Sa>eS(A+P2XH)F}2)(h)dh
2

— SA {6(Sa)es(A+P2)(H)} F;Z)(h)dh

I

= [ e mppm; osa)dn .
A4z
Applying this formula repeatedly we conclude that

A A a R OLL

2

= (~)" | NP R G osm)dh

Ay

= (-1 |, exr R o)

Az

Hence from (4.3) and (4.4) we have

5)  Arpn mpTo () = (6N | s DF PG5 )i
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where Taa-(h) = ZW E($)E(s)g> AtPPUHD (h=exp HEA,),
=2/ "Isinnt 3) E£LTHOED  (h—g,exp H €A,).

By a complex root «, we mean a root « in X, such that «a(a)=(0) and
a(9™)=+(0). It is easy to see that for any a€ Py, ‘ca=a if and only if
a=&,. Since *¢P;=P5, it follows that the number » of all complex
roots in P, is even. Moreover there exists a subset P; of Pi—{&,}
such that ‘oP; N P;=¢ and P5—{&}="*¢P;NPj.

Now we shall prove that

(4.6) l+g7r=g.

Clearly we have
dimg=/+2rn, dimt=/+2n—q)
dima=1 and dimn=1+r.

It follows from (4.2) that
I+2n =14+2n—q)+1+(1+7).

Hence we have 1+37=¢q. Thus our assertion is proved. Since
to(v/ —INK,+ A" +p )=y —1IAA,—A~—p~, we have

<A+P2,7E2>
= VTN AT+, @ 1}<\/ —IANA AT HPT, o
aec
X HP (V=18 + A +p a0 <V =1A+A+p7, toad}
ac P}
= =1Ix °( )<A +p7, > H { K/ =IAB+A"+p7, >}
=/ —=1(=1)"x i °’°)<A +pT, 7> I KV =18 +A+p7, ap|”.
aeP. 2
It follows that
4.7 CA+py5 70 =/ —1(—1)"sgn NEAT) [KA+P,, 7).

From (4.5)~(4.7), noticing that CA+p,, m,o=</ —1AA+A"+p", 7>, We
get

(4.8)  [KV=INB A+ A +p7, 20| Ta a-(f)
=2(—1)"""'sgn () Sf SA sin M‘SZ‘ g5 AT HPTIHT
F&(ah™ ; 0(w,))dtdh™ .
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From Lemma 7, the right hand side of this equation is equal to

4(—1)" " sgn () S“ SA_ SinnE S @B OHOED (g b 3(m))dtdh .
0

SEW _

Since F{®(a,h™ ; 0(r,)) is clearly invariant by the operation of any s€ W_,
we have

SA- ELTHPOHDED (g B 5 O(w,))dh”
@) _ SA— AT HPOCTIHYED (g B~ 3 O(,))dh
_ SA_ BT OHDED (g b=+ 3(z))dh .

From the well known fact about Fourier series, making use of (2) in
Lemma 3 we can show that the series

(4. 10) EBTHPOEDED (g b 5 O(,))dh-

is convergent absolutely and uniformly with respect to the variable ¢#.
Therefore from (4.9) we get

SEW _

Zgg Sm SA sin A\ ¢ Z gS(ATHPTH” ’F“)(a,h a(ﬂz))dtdh’
A-EFY

B g { ENTHPIIXHDED (g = s a(ﬂz))dh'} sin 1 tdt
sew o \A-e8y

)
= 23 g {A - S AT HPTOHDED (g ) a(nz))dh‘} sin A dt
0 =n

SEW _

— w_ S”{ N g CATHRTHDED (g a(nz))dh‘}sinxtdt.
0 A"e%; A~

From this and (4. 8) our proposition follows immediately.

Lemma 10. Let a be a real number such that 0<a<m. Then

“ch ((m—2a)t/2) sh 27z /m)
S o sh(mt/2) sin 1t = m ch (27N /m) — cos 2ra/m) "

For the proof, see [5] (p. 147).
Making use of this lemma and Proposition 6, from the well known
theory of Fourier transforms we have
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“ (A~ +P™XCH™) (2 - ch ((m 2“)”)
(4.11) g { » SA_ ¢ F®(a,h; 8(z,))dh- }Wdt

A3y
= 1 (= 1)+t S sh (27 /m)
2muw_ o ch 27\ /m)—cos (2za[m)

B VI AT D Ty (D)
This formula is valid for a real number @ such that 0<ae<m, in par-
ticular for a=k (0<k<m). Since T, ,-(f) is a Fourier transform of a
function of class C~ with the compact support, it follows that the integral
on the right hand side in (4.11) is convergent uniformly for sufficiently
small ¢. In view of Lemma 8 similar statements hold for the left hand
side in (4.11). Tending a to zero, we conclude that the equality (4.11)
is valid also for a=0. Hence the equality (4. 11) is valid for all integers
a=Fk such that 0<<k<m. Therefore from Proposition 5 we have

3§, ARWEFR0 o))

AEF
o sh 27\ /m)
= —( 1) E_]M E%_ So ch @z /m)— cos 2k /m)

X |V ZINAG+A+p7, 25| Ty a-(F)dN .

From this, Theorem 1, Proposition 3’ and Proposition 4, we have

Z [{A+p, 2| TA(f)
NEF

“4.12) - sh (221 /m)
= wcf(e)———— 2 So ch 27\ /m)—cos 2rk/m)

MW _ k=0 A - =557y
X |CEANAG+ A +p7, 2> | To a-(fdN .

We put
Bo = {A€F : sA"<A™ for all seW_.} and &), = & NTs.

Then clearly ¥ = U(%,, ), (disjoint sum). It is easy to see that

[KAT+p, 2| Tas(f) = I<A+p, 2| TA(f)  (s€W),
[V =TIAAA (AT 47, 20| Taoa»(f) = KV =IAA+ A" +p7, 2D | Th 4-(f)
(seWw.).

Therefore noticing that [{A+p, n>|=<{A+p, > (AEF,), from (4.12) we
have
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cf(e) = Z‘ {A+p, T AN(f)

£ E 0
(4.13) LS Sw sh (221 /m)
m =0 A- E(F5), o Ch (2N /m) — cos 2zk[m)

X[ =INMAG+AT+p7, 20| Ty o-(f)dN .

Now let & denote the set of all equivalence classes of irreducible uni-
tary representations of M. Then it is well known that the correspond-
ence A~—8,- (A"€%Bs) is a bijection of Fy onto Q.

We put

Q= {8,-€Q: A" €@} -

Then Q= [r¢ Q, (disjoint sum). When A~ €%, corresponds to
e, we put

sz = TA AT
_ KVEIMGHA T, |
(4.14) dys = TS
And we also put
(4. 15) d, - <_A<:Pﬂ'—>”> (AERy).

Since ¢ is a positive constant and <{p, z>>0, we can normalize the Haar
measure of G such that

(4. 16) c=<p, .
Hence from (4.13) we finally get
fle) = Z drTA(f)

1 i3 - sh (27x /m)
T 050, go ch 2=\ /m)—cos (2rk[m) dys T s(f)dN

under the above defined normalization of the Haar measure of G. Thus
we have obtained the following result.

Theorem 2. The Haar measure of G can be so normalized that
fle) = 2 dATA(f)
1 nd < sh 27\ /m)
m =0 5€0, So ch (2z\ /m)— cos 2k [m) DaTo ol Flax
for all feC7(G).
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ReEMARk 3. With a slight modification, our method can be applied
also to SL (2, R) which does not satisfy the condition (A.4) (see §5).

REMARk 4. It is instructive to compare (4.14), (4.15) with the
formula for the formal degree given by Harish-Chandra (see [3(e)] p. 612).

5. Some consequences of (A.1), (A.2) and (A.3)

In this section we shall make use of the notation of §1 and [4]
without further comment.

Let G be a simple Lie group which satisfies the conditions (A.1),
(A.2) and (A.3). It is known that the Lie algebra g of such a group
is one of the types su(/, 1) (/>1), 80(2/,1) (!>2), 8p(/—1,1) (/>2) and
FII (see [8]). The diagrams of the complexifications g¢ of these Lie
algebras are as follows;

al az al—l (24
(I) su(,1) O—@--- o—o,
a, o, o, o
(IT) 80(2/, 1) O«—@ @ 0.
al az a,_l al
I sp(—1,1) O— @ o—0,
a, a, a, o,
(IV) FII O o ® o.

In these diagrams the white vertex O denotes the unique non compact
simple root of g€ with respect to Hf under a certain linear order. From
these diagrams we see easily that

(5.1) a,(H,) = —1,
if rank G>2.

Therefore the value of «, at H=2n\/:_12_l]a,~H,~ in §, is equal to
o,(H)=2n\/—1(2a,—a,). It follows that in th:case of rank G>2,
(5.2) Heb if and only if 2a, = a,,
where b = {HeY,: a,(H)=0}.

Put §,==1RU, +b". Then b, is a Cartan subalgebra of g which
is not conjugate to 5, (cf. §1). Let A, be the Cartan subgroup
corresponding to §,. Then from (A.3) A, is connected if and only if
A, is connected.

Proposition 7. Let g be one of the above types (I), (1) and (III).
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Then every Cartan subgroup of G is connected if and only if rank G=2.

Proof. In view of (A.1), in the cases (I), (III) we have G=SU(/, 1)
or S,(/—1,1). The proposition is verified immediately in these cases.
In the case (II), G is a proper covering group of the identity component
S0,(2/,1) of SO(2/, 1) and

(5.3) G/Z = S0,(2!, 1) (isomorphic)

where Z is the center of G.

We remark that every Cartan subgroup of S0,(2/,1) (/>2) is con-
nected. On the other hand it is clear that A-=exp §~ <(4,),, where (4,),
is the connected component of A,. Therefore, if we show

(5.4) ZCc A,

it follows from (5.3) that A,=(A4,),Z=(4,),, which proves that A, is
connected. Since compact Cartan subgroups are connected (see §1), this
will prove Proposition 7.

Now we come to the proof of (5.4). Let z&Z. Then from the

definition of A, we have z& A,. Suppose H=27\/—1 Z:] c;H;=9, be such

that z=exp H. Then «a,(H) is an integral multiple of 2z\/—1, that is,
there exists an integer / such that 2¢, — ¢, =/ (see (5.1)). Since
exp 2=/ —1 H,) is the identity element of G (see §1), it follows that

exp H=exp (Zn\/l—l(clH1+2clH2+$ c;H))). In view of (5.2), the right

hand side belongs to A-=exp §~. This proves (5.4) and so Proposition
7.

Proposition 8. Under the assumptions (A.1), (A.2) and (A.3) put
b*=+/—1RH,, and A =expYh)™. Then the order m of the cyclic group
D=A*NA" is equal to 2 if and only if rank G=2. Moreover, D consists
of the elements exp (kr\/ —1H,) (k=0, 1).

Proof. Since a, was arbitrary fixed non compact root in X,, we
may assume o,=a, by changing the order introduced =, if necessary.
“Only if” part of the proposition is trivial. So we assume that rank
G>2. Suppose that exp H'=expH (H %", H €9~). Then H*—H T
(see §1). On the other hand it follows from (5.2) that

H* = 22/ "1aH,, H = 2zy/—1 (alH1+2a1H2+E; aH),

where «, a,, a,, -+, a; are real numbers (see § 3). Therefore, in order that
H*—H €T, it is necessary and sufficient that a—a,, 24,, a,, -+, a; are
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integers. From this, it follows that D consists of the elements
exp (kr\/—1H,) k=0,1).
Thus Proposition 8 is proved.

Making use of Proposition 8, we obtain the following improved
version of Theorem 2.

Theorem 2. Let G be a simple Lie group which satisfies the condi-
tions (A.1)~(A.5).
Then the Haar measure of G can be so normalized that

fle) = 25 d\T\(f)
AET,

+52 3 [T th O+ b TD2) d T (NN

1 S
k=08€Q 4, Jo

For the proof of this theorem, we have only to notice that

sh za - _
ch zxn—cos z(k+1) = th(=z(A +-v =1)/2) (k=0,1).

6. Universal covering group of De Sitter group

In this section we shall prove that the formula of Theorem 2
actually gives the explicit Plancherel formula for the universal covering
group G of De Sitter group. Let @ be the usual quaternion field. For
any ¢g=Q let g denote the conjugate quaternion of g. The field of
complex numbers C can be canonically identified with a subfield of Q.
Let G be the group of all matrices g of degree 2 with coefficients in the
quaternion field, satisfying the condition ;

gog* = o,

where 0'=<(1) _(1)> and g*=<§ 3—) if g= (? db> Then G is isomorphic to

the universal covering group of De Sitter group (see [9(b)]). It follows
that G satisfies the conditions (A.1)~(A.4) (see §5). We put

(Ch t/2 sh t/2) (e""/z 0 ) q (ew/z 0 )
a: = Uy = and m, =
*“\sht/2 cht/2), ° \0 e v 0 evr),

where ¢ is the imaginary unit of C. Let

A, = {ugm,: 6, p= R},
A, = {am,: t, pER} .
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Then A, and A, are the non conjugate Cartan subgroups of G. Every
Cartan subgroup of G is conjugate with either A, or A, (see [8]). The
Lie algebra of A, is

We define two linear forms A, and A, on Y, by
A(HO, 9)) = i(lp+0)/2,
A(H(G, p)) = i0.
Then we can show that
Bo = A +mA,: >0, m>0, |, meZ}
under a certain linear order in the dual space of \/ —15,.

Suppose that n= m+%+1 and p = El—+1.

Then if / and m are both non negative integers, » and p are half in-
tegers such that n>p>1 and n—psZ. Moreover we have

(A, +mA,) (HO, @) = i2n+1)0/2+i2p—1)p/2.

Let U,,, T, , denote the characters of the representations U™,
T™"*PT*™? defined in [9(b)] respectively and let X3, X5, be the
locally summable functions on G which coincide with U,,, T, , as dis-

" p
tributions respectively.
For any A=IA,+mA,€%,, we define
T, = T,,,p and d, ,=d,
where n=m+%+1 and p=%+1.
The following character formulas are due to T. Hirai;
Xi.fé(uemea) =0,
(6. 1) a (e;Vt+e—;vt) (ei(2"+1>¢/2_e~i<2"+1)¢/2)
X‘h ) = ’
,V(atm<l’) Az(h)
Xi.z,;)(uemw) =
(6 2) _1_{(e£(2n+1)o/2 _ —.'(2n+1)0/2) (e;(zp—lw/z —e .‘(2p—1)¢/2) _ (e;(zp—x)o/z _ e—,-(zp— 1)0/2)

Ay(h)
X (ei(2”+1)¢/2_ e—i(2"+1)¢/2)} ,
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2
X;»}(atm(a) =
_:2‘{9:/(.2»1“)”|/2(€;(—211—:i<f/2 _ e-;(zﬁﬂ)wﬂ) . e—(2;—1)|”/z(e,~(2n+1)¢/2 _ e_i(zn“)“,/z)}

A(h)

It follows immediately that G satisfies also the assumption (A.5).
Therefore we can apply Theorem 2’ to G. It is easy to see that

p-ana- {39 (59

= {(59): =)

Let p" be the irreducible unitary representation of U={us@Q: || =1}
of dimension 2x+1 defined in [9(b)], where » is a half integer i.e.
2neZ. We define the irreducible unitary representation p” of M by

p"(m) = p™(w) for m = (8 2>EM

Then we have
Q,= {p": 2rn=1 (mod 2)},
Q, = {p": 2n=0 (mod 2)} .
It is easy to see that

dy , = 2n+1) 2p—1) (n+p) (n—p+1)/6,
dyn = |(2n+DA[(@n+1)°+2"] | /24 .

Since A=2» and T, pzT,,,O, »+ Ton »? it follows from Theorem 2’ that

6 fle) = g 2n+ 1)0%1(217— 1) (n+5) (1~ p+ D) {To () + Ton ()}
+25 @) [ th ot T (4 2 Y ] Vs

under the normalization of the Haar measure of G such that (4.16)

holds.
Let d**? be the formal degree of T™*? (see [3(e)]). From Remark

5.2 in [9(b)] (p. 431), we have
d™? = 2n+1)(2p—1) (n+p) (m—p+1)/167",

under the normalization of the Haar measure of G introduced in [9 (b)].
Therefore from the uniqueness of the Plancherel measure, we have

the following result.

Theorem 3. Let T,, » T, and U,, be the characters of the



PLANCHEREL FORMULAS 275

representations T™"?, T*™? gnd U"*/** respectively. Then

£© = 1ox D@+ 1) 3 @6=1) (14 5) (4= b+ D{ T () + To ()

tgrr D @D [ Gy =T [ (n+ 3 ) 40| Unids,

under the normalization of the Haar mearure of G that is introduced in
[9 (b)].
This formula was conjectured by R. Takahashi in [9(b)] (p.432).

REMARK 5. As far as the author knows, the explicit character for-
mulas of the representations 7™%? and T°™? are not known although
the character of the representation 7™"?@®T>™? is known (see (6. 1),
(6.2)). As we saw above, in order to obtain the explicit Plancherel
formula, it is sufficient for us only to know the character of the re-
presentation T™*?@T*™? These facts suggest that it is natural to
consider the character 7T, which is the sum of the characters of irre-
ducible unitary representations having the same infinitesimal and central
character (see the proof of Proposition 3).

REMARK 6. There are some misprints in the character formulas
given in [6]. The correct formulas should be (6.1) and (6.2). Other
misprints in [6] are as follows; p. 24, line 12, read “+%:--” instead of
“—1...7, p. 26, line 16, read “Lemma 2” instead of “Theorem 1”, line
19, read “— H H,(H3— H3)” instead of “H H,(H:—H}%)".

7. Proof of Theorem 1

In this section we shall give a proof of Theorem 1. In view of the
definition of T,, it is sufficient to prove the theorem when A+pEg,.
Let a,, a,, -+, a, be all the distinct roots in P,. Then P,= {&,, &,, -+, &,}.
Put

a;.
1

=

pr:ﬁai’ ﬁr:
=1

Then we have

sp, = f_lsoz,-, $p, = EIS‘CE; for all seW.
Fix an element A€ such that A+pe$,. We shall prove the follow-
ing by the induction on 7 (0<r<n).
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(P) A+p, pTA(S)
=Dy {6(s) L gAPIDED (] 3(sp,)) dh

+262(S) S 3C K+ﬁ)cH>F<,2)(h ; 6(§ﬁ,))dh}

e
+ AA‘
Lemma 11.

S egogd"ﬁxH)F}z’ (h; 0(35,5p,)dh = S T rﬁXH)F}Z)(h ; 0(3p,)dh .
_Aps +ARps

Proof. We use the notation of the proof of Lemma 7. Since
Adk(.A,s)=_A,s, we have

| o, @FCPPER G 05,38 dh
‘AAS

&AAS FEBPEIED (b bkt s 3(3,55,)) dh

_ S ., es(]&JxH)(F;_Z))kJI(h; 0(3p,))dh
+ANS

_ g 93(7\+53<H3F}“(/Z; o(5p,))dh .
+Aps

Thus the lemma is proved.
Supposing (P,) is valid for a moment, we shall prove Theorem 1.

view of Lemma 11, (P,) implies that
<A+P, 7[>TA(f)
= (_1)”->~qs§ {SA es<A+p)<H)F(f1)(h; 6(7:))dh

In

+&,(8)E(s) g An ERTPIDED () 1+ (7)) AR+ E,(S)E(S)
% S_AAS esoscx+ﬁ)(H)F§_2>(k ; 8(71'2)) dh} ’

since p,=mn, &s,)=—1, 0(sp,)=E&(s)d(x) and 9(3p,)=&(s)o(x,) for all s& W.
Moreover, clearly we have the followings (see § 3).
Ay = _A, and _A,s = A, if <sp, a,>>0,

Es)E(s) = —1,
A = A, if <{sp, a,><0.

&,(5)E(s) =1, +Ays = A, and
Therefore from the above formula we can derive the following ;
{A+p, )T ()
= sy ERER G o)

o EmFem; wan=|  ERFP; on)dn)
+A, A ’

- 42
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(see (§3)). From the definition of #%¥ (k=1, 2), Theorem 1 is now ob-
vious.

Now we come to the proof of (P,) (0<r<#). Again making use of
Lemma 11, we can show that (P,) is equivalent to

Tu(f) = (~1 5|, o FPedn.

k=1

Since this is valid from the definition of 7,, our assertion follows im-
mediately for r=0. Assume now that (P,) is valid for some » (0<r<n).
It is easy to see that <{A+p, a, L™ = s(A+p), s, > BT

— 6(8a,+1)es(A+p)(H), <A +p, a'+1>e§( R+PXH) <§ ([x_‘_ ﬁ), §dr+1> esc K+PCH) 0 (§d,+l)
£ATPhUD - Hence multiplying the both sides of (P,) by <A+p, a,.>, We
get

(1.1) <A+P Dre>TA(S)

= (g {8(3) | Do, de s> P a(spy) di
+26(9) |, | [06a, )6 P F@(h; 0(sp,) dh)

— (_ 1)r+1+qs§f {e(s) S eS(A+P)(H)F-(r1)(h ; 6 (Sp’+1)) dh

A

+26(5) |, | EFPDER(; 0(5Py.)dh
+Anps s
+(=1rr S {e6) [ | oG, Lo R PG asp) ]

+2600) |, 86, [N PRFP(h; 055 )1dh)
Put

J2 = 366 | ot ) Lo mE (s o(sp)1dn

P =326, |, 06w, )EFPPEEh; o) 1dh.
Then the validity of (P,.,) is equivalent to J®+J¥=0. In order to
prove that J©+/J®=0, we need more precise informations about J§
and JP®.

First we consider J{’. For any ac= Py, put o,= {h=exp HEA,:
a(H)YE2r/ "1Z}. It is easy to see that P} is exactly the set of all
positive singular roots in X, (see [3 (h)] for the definition of a singular
root).

Put F®(h:s)=F®(h; 0(sp,)). Then by making use of (1) in Lemma
3 we have the following (c.f. [3 (h)]).
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7.2 W T &)<, sty GBI D (] - o) dor
@2 J¥=v-ig 3 A e | (h: 5)do

where

Fo(h:s)=lim {F™(exp (H+ &y ~1H.,) 1 5)— F¥(exp (H—&v/ —1H.): 5)}
(this limit always exists from (1) in Lemma 3). In this formula do,
denotes the canonical Lebesgue measure induced by dZ on o,. Let Wg
denote the set of all elements = W such that Ad (k)|Y,=¢ for some
k=K. Then for any a=P?, there exists an element ¢ Wx such that
ta,=ca. For each a= P}, we fix such an element ¢ and denote it by £,.
Then by definition, there exists an element k= K such that Ad (k) |9,=¢,.
We also fix such an element £ and denote it by k,. Then we have

FP(exp (t,H,+6/ —1H,); 0(sp,))
= FP(ky exp (Hx &/ =11 H, )k ; 9(sp,)
= (FP)*a'(exp (H+6v/ —1Hy;1) ; 0(851sD,))
= E(t,)F(exp (Hx&/ —1H,); (t. sp,)) .

Hence

(7.3) F(khky 2 s) = FP(expt,H :s) = E(t,)Fo)(h: t5's).
Moreover it is easy to see that

(7.4 a(H,) = a(H,,), <a, sty = {ay, t7rsot,,,> .

On the other hand, do,, goes to do, under the mapping k—k,hk;* which

maps oy, onto oy.
Therefore it follows from (7.2), (7.3) and (7.4) that

JO =1 E(s)Xaty, t;lsa,+l>5 gD PtatDg(t \FD(] : 1718)do
SEwW ge Py \/ao(Hwo) “a @ 0 @ @,

e s)Xay,, talsat, i S et;IS(AJro)(H)F%)(h L 1715) dog,

- \/ B 111;111] {SEW \/ao(Hwo) @,

)T E(sXay,s SAypi> SCA+PYCED LY (], -
- VT g SR ge FO(h: s)dos, -

Put
(7. 5) K®(A) = \/—lq\i(;)fgo’)saHQ S, GMPEED ()2 5)do,, .
0 ﬁo wo
Then

7.6) JP = DEPW).
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Now we come to /. Notice that &, is the only one positive sin-
gular root in X,. Then we get similarly as above

@) __ 26,(s)<a,, Sty SCA+PCH D [ J— - -
7.7 -3 s SA_e FO(h: 5)dh

where F‘,f’(h‘:s)=1girr01 F®(ah ;0(5p,). It is easily seen from (2) in

Lemma 3 that F®(h™ :s) is a function of class C*. We put

(7.8) K®(A) = 252(32“(0}[80;’+1> SA_ EAPXHDED(p 2 s\ dh

Then
(7.9) J¥ =32 KP().
sew

Put W,={seW:sa,= +a,}.
Then from (7.6) and (7.9) we have

(7.10) PHTP = 3 KR+ KA}

= > I AKPAN+K2(A)}
s*eW\W teW,

where s* denotes the coset in W \W which contains s. Hence in order
to prove J+J¥ =0, it is sufficient to prove that > {K{(A)+KR(A)}
teWw,

=0 for all s W. For this purpose we need some additional lemmas.
Now fix a coset sfe W\W arbitrarily.
Put A()=A+IsT'a,.

Lemma 12.
111_{2 A +p, pOT aax(f)= 0 (lez).
Proof. Since A is an integral form, A(/)=A+Is7'a’® (€ Z) is again

an integral form. Moreover if /%! (I, ’=Z) then A()==A(/). There-
fore since

<A@ +p, 2| < IKAD) +p, 70|

for sufficiently large /, the lemma follows immediately from Proposition
3.

Lemma 13. Let s be any element of W. Then we have

(1) ,1—1’133 SA es(A(l)+p)(H)F§_1)(h; 6(sp,+l))dh =0 ,
(2>‘ ,11{? S+AA<,)s e3<5(1)+ﬁ><H)F}z>(h; 6(§ﬁ,ﬂ))dk =0,



280 K. OkamoTO

Proof. In view of (1) in Lemma 3, (1) follows immediately from
Riemann-Lebesgue theorem. When s*=+sf it is obvious that
{Heb™ : B(H, b,) = (0)} +(0)
where b, = {Heh : ss7'a,(H) = 0} .
Therefore in case s*=s¥, (2) follows also from Riemann-Lebesgue theo-

rem. Now we assume that s*=sf in (2). When / is sufficiently large
[ RDUED | 1 if and only if || <1. Hence

SICRCDO+PXCED 2 (], -
S+AA(I)’ ¢ F7oh; 8(8B,))dh

— Xw et {S eSI(A+P)(tH0+H—)F;_2>(ath— : 6(525,“)) dh—} dt
a-

0

for sufficiently large /. Obviously the right hand side of the last equality
tends to zero when /—oco. This proves the lemma.

Lemma 14.
(7.11) lim {J%0,+J&} = 0.
1>00
This lemma is a direct consequence of Lemma 12, Lemma 13 and
(7.1).

Lemma 15. Let s be any element of W such that s*=s¥. Then we
have

(7.12) im KiP(A() =0 (k=1,2),

for all teW,.
This lemma is proved in the same way as Lemma 13.

Lemma 16.
(7.13) K (M) = K (A) k=1, 2),
for all leZ.

Proof. For t€ W, and exp HEo,, we have

ta(H) = +aH)e2x/"1Z.

NI P +
Hence ot SIAHISTIB)+PXHD . pt Sy(A+PXCHD

for all /eZ.
It follows from (7.5) that
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K (A() = K¥5,(A) .
Similarly from (7.8) we get
K& (AWD) = K& (A)

for all te W, and /=Z (/=0).
This proves the lemma.

When / tends to infinity in (7.10), we have from (7.11), (7.12) and
(7.13)

3 KSR +KE0)
= lim 33 {K®,(A0)+ K2 0M0)

= lim {0+ T 0 — %_V‘.\ Z} {KR(AD)+KE(AD)}}
s*=t°s*
=0.
Since s was arbitrarily chosen, we have
E {K‘#E(A)JrK‘z)(A)} =0

for all s& W. Thus Theorem 1 is proved.
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Added in proof.
By the recent result of T. Hirai:
The characters of irreducible representations of the Lorenz group of
n-th order, to appear.
Our assumptions (A.1)~(A.5) are satisfied also by the groups of type
(IT) in §5.





