Kanzaki, T.
Osaka J. Math.
1 (1964), 103-115

ON COMMUTOR RINGS AND GALOIS THEORY OF
SEPARABLE ALGEBRAS

Teruo KANZAKI

(Received May 20, 1964)

The purpose of this paper is to establish the Galois theory for a
separable algebra over a commutative ring in the sense of Auslander-
Goldman [1]. The notion of Galois extension defined in [1] for a com-
mutative ring will be naturally extended to a non commutative ring in
the following way. Let A be a ring, G a finite group of ring-automor-
phisms of A, and I' the fixed subring of A under G, i.e. the totality of
elements which are left invariant by G. If the homomorphism & of the
crossed product A(A,G) of A and G with trivial factor set to the I'-
endomorphism ring Homj (A, A) of A as I'-right module; 8: A(AG)=
SN PAu,—Hom% (A, A) defined by 6(\u,)(x)=A-o(x) for A, x€ A, is an

TEa
isomorphism, and if A is a finitely generated projective I'-right module,
then A is called a Galois extension of I' relative to G.

In §1 we shall show that a commutor ring of an arbitrary separable
subalgebra I' over R in the central separable algebra A over R (we denote
it by V,(I')) is also a separable algebra over R, and V,(V,(1I))=TI.
Further we obtain that if A is an R-separable algebra and M is a finitely
generated faithful A-projective module then for Q=Hom, (M, M) M is a
finitely generated Q-projective module, and Homg (M, M)=A. In §2 we
shall show that for Galois extension of non commutative ring we have
similar results to the case of commutative ring in [1]. Moreover we
shall show that if A is a Galois extension of I' relative to G and His a
subgroup of G then for the fixed subring Q of A under H A is a Galois
extension of O relative to H. In §3 we consider a Galois extension of
a separable algebra and its crossed product with trivial factor set. Let
A be a central separable algebra over C and G a finite group of (ring-)
automorphisms of A as follows; 1) G induces a group of automorphisms
of C such that it is isomorphic to G, 2) for the fixed subring R of C
under G C is a Galois extension of R relative to G. Then we can prove
that the crossed product A(A,G) of A and G with trivial factor set is a
separable algebra over R. In §4 we have the Galois theorem under the
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above assumption in §3. That is

1) if I' is the fixed subring of A under G then A is a Galois extension
of I' relative to G and I' is a central separable algebra over R,

2) I is a direct summand of A as I-two sided module,

3) for an arbitrary subgroup H of G and the fixed subring Q of A under
H, A is a Galois extension of Q relative to H, and Q is a separable
algebra over R. Moreover if we suppose that C is an integral domain,
then we have

4) if Q is an arbitray intermediate subring between A and I such that
Q is a separable algebra over R, then A is a Galois extension of ( relative
to H where

H = {seG|o{x)=x for all xe€Q}.

Throughout this paper we assume that every ring has an identity
element, every subring of a ring has common identity element, and every
module is unitary. Furthermore we shall denote by the ring R always
a commutative ring and an R-algebra means an algebra over R, and a
central R-algebra means an algebra having the center R. We use the
same notation as in [1].

1. Commuter ring in a central separable algebra

This section is concerned with a central separable R-algebra A and
a separable R-subalgebra I' of A containing K. We denote by V,(I") the
subring of A which consists of all element A satisfying yA=Ay for all
yeI.

Lemma 1. (Auslander, Goldman) Let A be a central separable R-
algebra and U a central separable R-subalgbra of A having the same center
R. Then V(1) is central separable R-algebra and V (V (I)=1I.

Proof. See [1], Theorem 3. 3.

Lemma 2. Let A be a separable R-algebra and M a A-module. If
M is a finitely generated projective R-module then M is a finitely generat-
ed projective A~module (cf. [17], Theorem 1. 8).

Proof. For any A-module N we have the isomorphism
0: Hom,e (A, Homg (M, N))—> Hom, (M, N)

defined by 6(g)(m)=g(1)(m) for g€ Hom e (A, Hom, (M, N), me M. Since
A is a projective A°-module and M is a projective R-module,
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Hom e (A, Homy (M, N)) is an exact functor relative to N, therefore
Hom, (M, N) is so. Consequently, M is a projective A-module.

Theorem 1. Let M be a faithfule A-module, and set Q=Hom , (M, M).
If A is a separable R-algebra and M is a finitely gemerated projective
A-module, then we have that Q is also a separvable R-algebra, M is a
finitely gemerated projective Q-module and Homgq (M, M)=A. If A is cen-
tral over R them Q is also central over R.

Proof. Let M be a faithful and finitely generated projective A~
module, and let A be a central separable C-algebra. Since A is a finitely
generated projective C-module, M is a finitely generated projective C-
module. By Proposition 5.1 in [17], Hom. (M, M) is a central separable
C-algebra. Since A is a central separable C-subalgebra of Hom (M, M),
from Lemma 1 Q=Hcm, (M, M)= Vyom. (D) is a central separable C-
algebra and Homg (M, M)= VHomc Q)= VHomc(M,M)( VHomc(M,M)(A‘)):A'
By Lemma 2 M is a finitely generated projective Q-module, since Q is a
central separable C-algebra. If A is a separable R-algebra in general,
then from Theorem 2.3 in [1] we have that A is a central separable
C-algebra and C is a separable R-algebra where C is the center of A.
Therefore Q=Hom, (M, M) is a central separable C-algebra. Hence Q is
a separable R-algebra.

Corollary 1. Let A be a separable R-algebra and M a A-module.
If M is a finitely generated projective R-module then Q=Hom,(M, M) is
a separable R-algebra and M is finitely gemerated and projective over Q.

Proof. Since the image A’ of the natural homomorphism A —
Hom (M, M) is also a separable R-algebra, M is a finitely generated pro-
jective A’-module by Lemma 2. Therefore Q=Hom (M, M)=Hom (M, M)
is a separable R-algebra and M is a finitely generated projective Q-
module by Theorem 1.

Corollary 2. If A is a separable R-algebra and ¢ is an idempotent
element in A, then eMe is also a separable R-algebra.

Proof. Since Ae is a 'projective A-left module, we have that
Hom (Ae, Ae)=eAe is a separable R-algebra.

Theorem 2. Let A be a central separable R-algebra. If I’ is an
arbitrary separable R-subalgebra of A containing R, then V,(I') is a
separable R-algebra and we have V (V,(I'))=I. (cf. [1], Theorem 3. 3)

Proof Since A is a finitely generated projective R-module, 1'® A°
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is a subring of A*=A®,A°. Since R is a direct summand of A as R-
module, A and A° may be regarded as subring of A®j A’ Then
AQpA°=A-A" and V,g,0(A)=A ([1], Theorem 3.5). It follows that
Vierd (TR g A=V, (I'). Now we consider AQ zkA’DI'®xA° DR, and then
I’'®,A" is a separable R-subalgebra of the central separable R-algebra
A® A’ ([1], Proposition 1.5). Let A°=RPA, where A, is an R-submodule
of A° then we have AQ ,A°’=ADARQ A, and 'R ,A’=TIPARA,. Since
FRRA TARQRA, I'A and I'Q A, AR A, we have 'Q A" [JA=1"
Now V,(Vo(I))=V,gra(VA(T)RA) = Vier!(Vargr (PR A Viyeno(A) =
Vier(Vaert(P®xA)) () A, it is sufficient to show that Vg, »0(I'®,A°) is
a separable R-algebra and V,g,\(Vier(I'®zA%))=I'®zA" Since
AR A =Homg (A, A) and A is a finitely generated projective R-module,
we may show that if M is a finitely generated projective R-module,
A=Hom,(M, M), and I' is a separable R-subalgebra of A, then V,(I') is
a separable R-algebra and V,(V,(I'))=TI. Let S be the center of I.
Then ADI>SDOR. We regard M as S-module. Since S is R-separable,
by Lemma 2 M is a finitely generated projective S-module, therefore
Homg (M, M) is a central separable S-algebra. Then V,(I")= Viyomp (L)
=Hom,(M, M). By Theorem 1 V,(I') is a separable R-algebra. Since S
is the center of I, we have Homp(MM)= Vyymsman (). Since
Homs(M,M)>I'>S, Hom,(M, M)>S, and Homg(M, M) and I are central
separable S-algebra, we have by Lemma 1

VA(VA(P)) = VHoms(M,M)(VHoms(M,M)(F)) =1I.

Corollary 3. Let A be a central separable R-algebra and I’ an arbi-
trary separable R-subalgebra containing R. Then I'-V,(I') is a separable
R-algebra and it is isomorphic to T'QgV  (I') where S is the center of L.
In particular, if S=R then A=I-V,(")=I'Q, V, 1) (cf. [1], Theorem 3.3).

Proof. By Theorem 1.4 V,(I') is a central separable S-algebra,
therefore I'®g V(') is a central separable S-algebra ([1], Proposition
1.5). In the homomorphism ¥ : 'Q¢ V(') =1V, (I') defined by Y{x®y)
=x.y for €I, ye V,(I'), the kernel of 4 is a two sided ideal of
I'®s V(). By Corollary 3.2 in [1] there exists an ideal a of S such
that ker y=a-LQ V(I'), but O=+(a)=aq, therefore ¢ is an isomorphism.
The case of S=R was proved in [1], Theorem 3. 3.

REMARK. In Theorem 2, the second part “V,(V,(I'))=1'" is proved
in the following way too. Since A is a finitely generated projective R-
module, and since I' is a separable R-algebra, A is a finitely generated
projective I’-right (or left) module by Lemma 2, and B=Hom/ (A, A) is
a separable R-algebra, and Homg(A, A)=I",, where I, is the ring of right
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multiplications by the elements of I' (Theorem 1). Hence A is, in the
sense of Nakayama [5], B-Galois extension over I'. Therefore I' is a
direct summand of A as I'-right module by Proposition 1 in [5], and we
have V,(V,(I"))=I" by Theorem 3.5 in [4].

2. Galois extension

In this section we assume that A is any ring and I' is a subring of
A having the common identity. We define a Galois extension for the
case of non-commutative rings similarly to the case of commutative rings
in [1]. Let G be a finite group of (ring) automorphisms of A. We
consider the crossed product A=A(A, G) with trivial factor set, that is
A=A(A, G):G;; PAu,, ur=c(\)-tt,, U+, =u,, for o, T€G, A€ A. Then

we may assume that #, is the identity of A and A is a subring of A.
The subring I' consisting of all elements of A fixed by every element of
G will be called the fixed subring of A under G. Then we shall say
that A is a (right-) Galois extension of I' relative to G if it satisfies the
following condition: 1) A is a finitely generated projective I'-right
module, 2) the ring-homomorphism &: A(A,G)— Hom’.(A, A) where
Hom’(A, A) is the I'~endomorphism ring of A as I'-right module, defined
by 8(Au,)(x)=A-o(x), A, x€ A, 6 €G, is an isomorphism.

REMARK. If A be an algebra over R, I' is a separable R-subalgebra
of A whose elements are left invariant by G, and if the condition 1) and
2) are satisfied, then it follows that I' is the fixed subring of A under
G from Theorem 1. In this case, A is a B-Galois over I, in the sense
of Nakayama [5], where B=Hom} (A, A).

We may regard A as a left A-module by setting a-A=8(a)-A. Then
we have a similar proposition to Proposition A.1 in [1].

Proposition 1. Let I' be a subring of a ring A, G a finite group of
automorphisms of A. Then A is a Galois extension of I' relative to G if
and only if U is the fixed subrving of A wunder G and T,(A)=A where
TL(A) is the trace ideal of A-module M. (See [1] and [2].)

Proof. This is proved similarly to Proposition A.1 in [1].

We regard the module Hom,(A, A) as I'-left module by setting
(v AYN)=f(A+7) for f€ Hom, (A, A), y€A, A€ A. Let « be a homomor-
phism of Hom, (A, A) into A defined by «(f)=f(1) for f€ Hom, (A, A).
Then we have

Lemma 3. The homomorphism « is a '-monomorphism, and the image
of x© is u-\ where u=>u, in A.

TER



108 T. KANZAKI

Proof. If f€ Hom, (A, A), y €T, then «(y- f)=(v- /) (L)=f(v)=7- (D)=
v-x(f). Therefore « is a I'-monomorphism. We shall show that
Im (¢)=u-A. Let f be any homomorphism of A into A without operator.
Then f is a A-homomorphism if and only if f(x)=x-f(1) and o(x)-f(1)
=u,-x- (1) for all x € A, o€ G. Therefore f is in Hom, (A, A) if and only
if there exists @ in A such that f(x)=x-a and a=u,a for all x€ A and
c€G. Now we set a=a€2; A%, where A,€ A. Then a satisfies u,a=a for

all 0€G if and only if o(A.)=A,, for all o, 7€G. If in o(A,)=27A,, wWe
put =1 then we have o()\)=A,. Conversely if we put A,=o(A,) for
every o €G where )\, is an element of A, then we obtain A,.=oT()\)=
o(T(\))=0c(\,) for all &, 7€G. Consequently f is a A-homomorphism if
and only if for every x € A it satisfies f(x)=x-a where a=(§}a(7\q)uT=

Mur=u-\, for any A €A, Therefore we have Im («)=uA.
oEG

Proposition 2. Let G be a finite group of automorphisms of A, and
I the fixed subring of A under G. Then T,(A)=Aif and only if A=AuA.

Proof. We have the homomorphism +: A® uA—A defined by
PAQRQuN)=ru)" for A, M€ A. In the following commutative diagram

1®
A®, Hom, (A, A) ——> A®,uA

T yr
A

where = is the trace mapping, T(AQf)=f(A), we have T,(A)=Im (7)=
Im (Yo (1®«))=AuA. Therefore we have that T,(A)=A if and only in

A =AuA.

Corollary 4. Let G be finite group of automorphisms of A, and I'
a subring of A. Then A is a Galois extension of T relative to G if and
only if I' is the fixed subring of A under G and A(A, G)=AuA.

Theorem 3. Let A be a Galois extension of I relative to G. If H
is a subgroup of G and Q is the fixed subring of A under H, then A is
a Galois extension of Q relative to H.

Proof. Since A is a Galois extension of I' relative to G, we have
A=A, G)=Aul. Let Ay=A, H )=; @DAu. be the crossed product of A
TCH

and H. Then we may regard A, as a subring of A=A(A, G)=>" BAxu,.
0EG
Now we shall show that Ay = A(A, H) = Au A for u,= > u.. Let
TEA
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G=o0H+o,H+ - +0o,H be a left decomposition of G with respect to H
where o,=1. Then it follows that A = > ®Au, = i‘ DAu,u, =

TEG i=1,7¢q

Z@ucigAu,zi}@u,iAH and u=>u,= 2 uc,‘.usZ'ul,,.uo. Since A=AuA
TE i=1 i=1

i=1 L i=1,7€d
we have A= 2' Uy Ag=Aul=A Z' Uy A }j u, (Au,\) = ﬁ Uy Ag=A.
i=1 i=1 i=1 i=1
Therefore > Du,,Ay=>Pu, Au,. Since u, AuAu, Ay fori=1,2, -, 7,
i=1 i=1

it follows that u, Aw,A=u, Ay. Consequently, we have Au A=A, By
Corollary 4 A is the Galois extension of Q relative to H.

Proposition 3. Let G be a finite group of automorphisms of A, and
C the center of A. We suppose that the group of automorphisms of C
induced by G is isomorphic to G. If for the fixed subring R of C under
G, Cis a Galois extenston of R relative to G, then A is a Galois extension
of I’ relative to G where I’ is the fixed subring of A under G.

Proof. We denote by A(C, G)=Z{]} P Cu, the crossed product of C and
o€
G, and denote by A(AG)=3" P Au, the crossed product of A and G. We may
TER

regard A(C, G) as a subring of A(A, G). By Corollary 4 we have A(C, G)=

CuC for u=>"u,, since C is a Galois extension of R relative to G. There-
TEG

fore for every o €G, u, is contained in CuC—AuA. Therefore Au,—Aul
and A(AG)=AuA. By Corollary 4 A is a Galois extension of I' relative
to G.

3. Separability of crossed product with trivial factor set

Proposition 4. Let A be a Galois extension of I’ relative to G, C the
center of A, and R the fixed subring of C under G. If I' is a separable
R-algebra, then A(A, G) and A are separable R-algebrar and the center of
A(A, G) coincides with the center of T.

Proof. If I' is a separable R-algebra then by Theorem 1, Hom}.(A, A)
is a separable KR-algebra, since A is a finitely generated projective I’-right
module. Therefore A=A(A, G) is a separable R-algebra, and A is a pro-
jective A°=A® pA’-module where A°=(A(A, G)) is the opposite ring of A.
Since A(A,GY=A(AG), A= PAu, is a direct summand of a A°~free

TEq
module as A°-module, and A°=A® A= 3 PAR A% u, Qul is a AR xA’-
o, TEG
free module. It follows that A is a direct summand of A® ,A’-free
module as A® ,A-module. Therefore A is a separable R-algebra. Since
I' is a separable R-algebra and A is a finitely generated projective I'-
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right module, we have Homi (A, A)=I" by Theorem 1. Therefore the
center of A=A(A, G) coincides with the center of I

We now show that under the following assumption A is the Galois
extension of the fixed subring I' under G and the crossed product A(A, G)
is separable over R.

(#) A is a central separable C-algebra, G is a finite group of auto-
morphisms of A which induces a group of automorphisms of C isomorphic
to G, and C is the Galois extension of R relative to G, where R is the
fixed subring of C under G.

REMARK. If C is a field then A and I' are simple algebras and
the assumption (#) means that A is an outer-Galois extension of I'.

Lemma 4. Let R be a subring of a commutative ring C, G a finite
group of automorphisms of C having the fixed ring R. We set Tr(c)=;o-(c)
TEG

Sor ceC. If C is a Galois extension of R relative to G, there exists an
element ¢ in C such that Tr(c)=1.

Proof. We consider two homomorphisms x: C®QpHomg(C, R)—
Homyg (C, C) defined by u(c® f)(x)=rf(x)-¢c and 7: CQxHomg(C,R) -~ R
defined by 7(c®f)=f(c). Since C is a finitely generated projective R-
module, # and = are isomorphisms ([2], Proposition A.1 and A.3).
Regarding C as submodule of Hom,(C, C), we denote by ¢ the homomor-
phism 7ox™' restricced on C. By Proposition A.4 in [1] we have
Hom,(C, R)=t-C. Since C is a finitely generated projective R-module
there exists fin Homg(C, R) such that f(C)=R. Accordingly there exist
a and b in C such that f=toa and f(b)=1. By Proposition A.3 in [1],
t(x)=§o(x) for xe€ C. It follows that 1=f(b)= toa(b)zt(ab):éTr(ab).

Theorem 4. Under the assumption (#), A is a Galois extension of I'
relative to G when U is the fixed subring of A under G, aud A(A,G) is a
separable R-algebra.

Proof. By Proposition 3, A is a Galois extension of L' relative to G.
For the opposite ring A° of A, G is regarded as a group of automophisms
of A° by setting o(A°)=(c(\))° for ¢ €G and A€ A. We have a opposite
correspondence between A(A, G)=>" BAu, and A°=A(A° G)=>) BA%, de-

TEG TEG
fined by M, =v,-2\". In A°=ARQrA’° and A°=AR,A° we set
Ji = Q1 —1@N e A°|ve A}, [J,= R-submodule of A° generated by
{#,01°-1Qv,-1€ A°|c € G}, and J={x®R1°—1Rx"€ A°|x€ A}. Then we
have A J=A°J, + A°J,, because M, Q1°—1Q\%, )’ =u,c ' (AM)R1°—1Qv, -\ =
U0 (MR =%, Qo' (M) + %, Q0 (M) — 1R ' (A, -1 = u,®1°% (¢ (M) R®1°—1
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R (A)+1Qe (A (#,R1°—1®v,-1). We denote by A the right an-
nihilator of J, in A® and denote by A the right annihilator of J in A’
We have easily A > PA u,Quv.. We define the automorphism o X = of

TTER
A’ by setting o X 7(x®3°)=c(x)R7(y°) for every o X 7€ G X G and x®y° € A”.
For any element f= X" a(o, 7 )%, ®v,-1 in EE} Au, RQv.-1, (a(o, T71) € A),
o, TER o,TER

f€eA if and only if (%,®1°—1®uv,1)-f=0 for all r€G. Since
(uy@1°—1Quvy-1)- f= U;:ﬂ {yx1(a)y o, 7)) —1 X7 (alo, v7 N}, Qv.-1, We

have that f€ A if and only if ¥y X ¥(a(y ‘o, 7 "))=a(o, yv~') for all o, 7, y€G.
We set vy 'o=0,, 7 '=7,, then f€ A if and only if v X y(a(,, 7,))=a(ve,, VY7,)
for all v,0,, 7,€G. We remark that yxy(A)=A for every yeG. If we
set 7,=1 and y-o,=96, then we get a(5, v)=v xy(a(y*3, 1)) from the above.
Therefore A contains every element f of the following form;
f:s§ v X y(a(y87!, 1)usQv, where a(r,1)€ A for re G. We set a(r,1)=0

if #==1. Then we have that for any element @ in A, nyyXfy(a)-u.,@v.,
[

is contained in A. We remark that v,=(uy,-1)° and @(y xv(a))=v(@(a))
for the homomorphism @:A°—A defined by @(x®y°)=xy. Then for
the homomorphism ¢ :A°—A (defined by ¢(x®Qy’)=x-y) we have
so(%v X v(a)- uy®vy)=so(%26 7 X (@) uy@(ty-1)f)= 2 (v X A@))= 2] v(p(a))=

Tr(p(a)). Therefore ¢(A)>D Tr(p(A)). Since A is a central separable
C-algebra and by Corollary A.5 in [1] C is separable over R, therefore
A is separable over R ([1], Theorem 2.3). Accordingly, by Proposition
1.1 in [1] #(A)=C, and have ¢(4)> T7(C). On the other hand by
Lemma 4 T7(C) contains the identity of R, therefore ¢(4)>1 and A is
a separable K-algebra.

Corollary 5. Under the same assumption as in Theorem 4, ' as a
separable R-algebra.

Proof. Since A is a finitely generated projective C-module and C
is a finitely generated projective R-module, A is a finitely generated
projective R-module ([3], IX Corollary 2.5). If we regard A as A(A, G)-
left module, then A is a finitely generated projective A(A, G)-module from
Lemma 2 since A is a separable R-algebra. By Theorem 1 the A(AG)-
endomorphism ring Homi(A,A) is a separable R-algebra. Since
Homj (A, A)=TI we have that I' is a separable R-algebra.

From Proposition 4 and the above proof we have

Corollary 6. Let A be an R-algebra satisfying the same assumption
(#) except “A is a separable C-algebra”. If A is a finitely generated
projective R-module and A(N, G) is a (central) separable R-algebra, then T’
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is also a (central) separable R-algebra.

4. Galois theory

In this section we shall consider a ring A satisfying the assumption

(#) in §3.

Lemma 5. Let A be a ring satisfying the assumption (4) in §3.
Then AN, G) and ' are central separable R-algebra, where I is the fixed
subring of A under G.

Proof. From Theorem 4 and Corollary 5, A(A,G)) and I' are separable
R-algebra, and by Proposition 3 A is a Galois extension of I' relative to
G. By Proposition 4 the center of A(A, G) coinsides with the center of
I'. We shall show that the center of A(A,G) in R. We denote by S the
center of I' (=the center of A(A,G)). We have R={ce C|o(c)=c for all
c€G=CN{xeAlr(\)=A for all ;€ G}=C[)I. Since the center of I is
contained in the center of A, we have ScCC()'=R. On the other hand
R is contained in the center of A, we have R=S.

Proposition 5. Let C be a commutative ving, and let C be a Galois
extension of R relative to G. If S is an intermedate ring between C and
R such that C is a Galois extension of S relative to a subgroup H of G,
then S is a separable R-algebra.

Proof. Since C is a Galois extension of R, C is a separable R-
algebra, therefore C is a projective C® ,C-module, and C is a finitely
generated projective S-module since C is a Galois extension of S. It
follows that C®Q,C is a projective S® pS-module ([3], IX Proposition
2.3), and S is a direct summand of C as two sided S-module, therefore
S is a separable R-algebra.

Proposition 6. Let C be a commutative integral domain, and let C
be a Galois extension of R relative to G. If S is an intermediate rving
betweeen C and R such that S is a separable R-algebra, then C is a Galois
extension of S relative to a subgroup H of G where H={oc€G|o(x)=2x
for all x€ S}, and C is a separable S-algebra.

Proof. Since C is a finitely generated projective R-module and S
is a separable R-algebra, from Lemma 2 C is a finitely generated pro-
jective S-module. We set T=Homg(C, C). From Proposition A.2 and
A. 3 in [2] we have Hom;(C, C)=S. Since Hom,(C, C)= A (C, G)=EZFCu¢,

T= Viompc,o(S)= Vacc,oS). Now we shall show that V, ,(S) is a crossed
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product A(C, H)=3 Cu, of C and H where H= {5 € G|o(x)=x for all x € S}.

TECH
If Y a,u, is an arbitrary element in Vi, 6 (S), then we have a,-o(x)=a,-x
for all x€S and 7€G. Since C is an integral domain, for every x in
S, a,(c(x)—x)=0 implies a,=0 or x=o{x). Therefore, if + is not con-

tained in H then a,=0. Consequently, > a0, is contained in >} Cu,=
a TEAL

A(C,H). Since A(C,H)T”Vyc(S)=T, we have T=A(CH). Since
S=Hom(C, C), S is the fixed subring of C under H. By Theorem 3 C
is a Galois extension of S relative to H, and by Corollary A.5 in [1] C
is a separable S-algebra.

Lemma 6. Let C be a commutative ring, M a projective C-module,
and m a non zero elemen in M. If cm=0 for an element ¢ in C, then
there exists a non zero element ¢’ in C such that c-¢’=0 and ¢’ is in-
dependent of c.

Proof. If M is a projective C-module then it can be imbedded in a
free C-module F=3) ®Cv;. Then we have ng cv; for m==0 in M.

If em=3ccv;=0 then we have cc;=0 where ¢; is independent of c.

Theorem 5. Let A be a central separable algebra over a commutative
ring C, and let G be a finite group of automorphisms of A such that G
induce the group of automorphisms of C isomorphic to G and for the fixed
subring R of C under G C is a Galois extension of R relative to G. Then
we have

1) if U is the fixed subring of A under G then A is a galois exten-
sion of ' and I' is a central separable algebra over R,

2) I is a divect summand of A as I'-two sided module,

3) for an arbitrary subgroup H of G, the fixed subring Q of A under
H is a separable R-subalgebra of A. containing I', and A is a Galois ex-
tension of Q relative to H.

Furthermore if we suppose that C is an integral domain, then we have

4) if Qis an arbitrary intermediate ving between A and I such that
Q is a separable R-algebra, then A is a Galois extension of Q relative to
H where H={c € G|o(x)=x for all x€ Q}.

Proof. 1). We have proved it above, but we may prove it also as
follows. By Lemma 5 A=A(A,G) is a central separable R-algebra and
A,=A(C,G) is so. From Theorem 2 the commutor ring V,(A,) of a
separable R-subalgebra A, in a central separable R-algebra A is a
separable R-algebra. On the other hand we have V,(A,)=I. Because,
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if 3I\,u, is an arbitrary element in V,(4,), then XA xu,=>] A, a(X),

for all x € C, therefore A, (x—o(x))=0 for all x€C. Since A is a pro-
jective C-module, if A,==0 then by Lemma 6 there exists a non zero
element ¢ in C such that ¢(x—o{(x))=0 for all x in C. If o==1, then u,
and 1 are linearly independent over C in A(C, G), therefore in Homy(C, C),
o and 1 are so. It follows that A,=0 for o=F1. Thus we have V.(A)CA.
Therefore we have that V,(A,) is the fixed subring I' of A under G.
Since the center of A(A,G) is R, by Proposition 4 I'is a central separable
R-algebra, and V,(I")=A, from Theorem 2.

2). Since V,(A,)=I" and A, is a central separable K-subalgebra of
A, we have A=A, I'=A ,®,I' from Corollary 3. Since C is a finitely
generated projective R-module, R is a direct summand of C as R-module,
and R is a direct summand of A,=A(C,G) as R-module. Therefore
I'=RQgI' is a direct summand of A=A,®,I' as two sided I'-module.
Since ADADI' we have that I is a direct summand of A as two sided
I'-module.

3). From Theorem 3 A is a Galois extension of Q relative to H.
We denote by S the fixed subring of C under H. Then C is a Galois
extension of S relative to H, and from 1) Q is a central separable S-
algebra. Since S is a separable R-algebra by Proposition 5, Q is a
separable R-algebra by Theorem 2.3 in [1].

4). We suppose that Q is an intermediate separable K-algebra be-
tween A and I'. Since A=A(A,G) is a central separable R-algebra and
0 is a separable R-subalgebra of A. We have V,(V,(Q))=Q, and V,(Q) is a
separable R-algebra. On the other hand V,(A)=C and V,(I")=A,=A(C, G).
Set T=V,(Q), so that RcC=TcA,. Since A, is a central separable
R-algebra and T is a separable R-subalgebra of A,, V,(7) is a separa-
ble R-algebra and V, (V, (T)=T. We set S=V, (T) We have
Vi (O)=C, V,(A)=R, and ROSDC. Since C is a Galois extension of
R relative to G, by Proposition 6 C is a Galois extension of S relative to H
where H={o € G|o((x)=x for all x€S}. Therefore A(C, H)=Homg(C, C).
Regarding A(C, H) =Homg(C, C), we have T =V, (S)= Viompwc.or(S) =
Homg(C,C)=A(C, H), and V,(Q)=T=A(C, H). Since Q=V,(T), Q is the
fixed subring of A under H. Therefore, from Theorem 3 we have that
A is the Galois extension of Q relative to a subgroup H of G.
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