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On Transitive Groups that Contain Non-Abelian
Regular Subgroups

By Osamu NAGAI

1. In 1911 Burnside [2] proved the following celebrated theorem :
If a permutation group © of prime power degree pm contains a cycle of
order pm(m^>l), then © is doubly transitive or imprimitive. This result
has been generalized by Schur and Wielandt. The best is due to Wielandt
[11]. Before stating his result, we shall define a B-group (see Wielandt
[13], p. 57). A group § of order n is called a B-group (or Burnside-
group) when every primitive permutation group of degree n which con-
tains the regular representation of ξ> is doubly transitive. Then the
result of Wielandt can be stated as follows: An abelian group of com-
posite order in which at least one Sylow group is cyclic is a B-group.
Another type of abelian B-group was obtained by Kochendorffer [6] and
Manning [7] (at about the same time and by quite different methods):
An abelian group of type (pa,pb), where a^>b, is a B-group. As for
non-abelian B-group, in 1949 Wielandt [12] obtained the following re-
markable result: A dihedral group is a B-group. But other type of
non-abelian B-group is not known (at least to the author). Now in the
present paper we shall show the following :

Theorem. Let p be a prime number of the form 2 3β + l, where a
Then a non-abelian group of order 3p is a B-group,

In the proof we do not use the ring-properties (due to Schur [9]}
which are the useful weapons in studying the abelian case. Our proof
is based largely on the investigation of the behavior of a ^-Sylow sub-
group.

2. First of all, we shall summarize some known results which are
necessary for our purpose.

A. Theorem of JORDAN. Let the integer n=p + ky where p is a
prime and k^3. If a primitive permutation group © of degree n con-
tains a cycle of length py then © contains the alternating group A^
(Jordan [5]).
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B. Theorem of MANNING. Let the integer n=2p+ky where p is a
prime ^ 5 and k^2. If a primitive permutation group © of degree n
contains an element of order p and of degree 2py then © contains the
alternating group An (Manning [8]).

C. Let © be a transitive permutation group of degree n. Then ©
can be represented as a matric group ©* of demension n isomorphically.
Let Σ*e f ϊ f be the complete reduction of @* into its irreducible consti-

i = l

tuents over the complex number field. And let the subgroup ®1 fixing
one letter have m transitive sets Δt of length w, (ί = l, 2, ••-, m).

CI. If © is primitive and if n{=2 for some ίy then © contains a
regular normal subgroup of index 2 (Wielandt [13], p. 43).

CII. m = Σ**ϊ (Wielandt [13], p. 77).
ί = l

CIII. Theorem of FRAME. The number

q = (n)m-2Uni/n.3$
i=l 1=1

is a rational integer, where xi = Dgli (Frame [4]).

D. Theorems of BRAUER. Suppose that a finite group © satisfies
the condition : (*) © contains an element P of order p which commutes
only with its own powers P£. Then the order g of © is expressed as
g=p(p—l)(l + np)/t, where 1 + np is the number of £-Sylow subgroups
and t is the number of conjugate classes which contain an element
of order p. Furthermore, the ordinary irreducible representations of ©
can be classified into four different types:

I. The representations 3IP of degree upp + l. Denote their charac-
ters by A?. Then, for an element P of order p, AP(P) = 1.

II. The representations S3σ of degree vσp—l. Denote their charc-
ters by Bσ. Then Bσ(P)=-l.

III. The representations (£°° of degree c = (wp + δ)/t with δ = ± l .

Denote their characters by CCV). Then CW(P) = - δ Σ ^ . There are t

rsuch characters CCV) and they are ^-conjugate.

IV. The represntations ®τ of degree dτ=0 (mod p). Denote their
characters by Dτ. Then DT(P) = 0.

There are q = (p—l)/t characters of type I and type II in ©. These,
together with / characters of type III, form the first ^-block Bλ(p).
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Among their degrees holds the following relation:

(D) Σ DgAp + δDgC™ = Σ DgBσ .
P σ

It is easy to find all irreducible characters of the normalizer
of φ in ©, which is generated by P and Q such that Pp = l, Q9= 1,
Q-ψQ=pt\ where γ is a primitive root (mod p)y and tq=p—l. Let ω
be a primitive #-th root of unity. We then have q linear characters ωμ

0* = 0, 1, 2, •••, ?- l ) defined by

Besides, we have £ conjugate characters Ycv) of degree q.

i) = 0 for i φ O (mod ?).

DI. If we consider the characters of © only for elements N of the
subgroup yi{ψ), then AP(N) contains up + l of the ωμ(N), <B(iV) contains
ι;σ-l of the ωμ(i\Γ), CCV)(ΛΓ) contains (w + δ)/t of the ωμ(Λ0 and DT(N)
contains dτ/p of the ωμ(2V).

E. Theorem of TUAN. Let © be a group of order g=pg\ where
p is a prime greater than 7 such that (p, g') = l. Let @ have no normal
subgroup of order p. Let @ have a 1-1 irreducible representation of
degree 2<(2/>+l)/3. Then the factor group of © by its center is iso-
morphic to LF(2, p). For p = 7 and 2 = 4, the factor group of © by its
center is isomorphic to either LF(2, 7) or A7 (Tuan [10]).

3. Now, we shall prove our theorem. Let^ = 2 3Λ + l. Let a group
ξ>={Λ B\A*=B* = 1, B~1AB=Aj}. Suppose that © is a primitive per-
mutation group of degree 3p which is not of doubly transitive and con-
tains ξ> as its regular subgroup. Our purpose is to show that, under
these circumstances, a 5^2.

(a). The order of © contains a prime p to the first power only. Let
?β be a ^-Sylow subgroup of ©. Every element P + l of $ is a product
of ^-cycles and 1-cycles (Here ^-cycle means a cycle of length p). If
P contains only one ^-cycle, then from theorem of Jordan (see A) © is
doubly transitive. If P contains just two ^-cycles, then from the theorem
of Manning (see B) © is doubly transitive. So P is a product of three
^-cycles. Then the subgroup ^ of !β leaving one letter fixed is trivial.
This means the order of 3̂ is p.

(b). The centralizer (£(̂ 3) of 3̂ in © coincides with Sβ. From (a),
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w e c a n a s s u m e ^3 is g e n e r a t e d b y A = (alya2y --,ap) (ap+ly •••, a2p)(a2p+ly

—, a3fi). N o w p u t T,= {aly a2y ••, ap}y Γ2 = {ap+ly •••, a2p) a n d Γ 3 = {a2p+1>

•••, a3p}. Let V be a ^-regular element in (£($β) and let 2; be its order.
For an integer 1/ satisfying t/v = l (mod p)y we consider the element
S=VA°\ Then SV = A. Hence the lengths of the cycles in S must be
the multiples of p. If S is itself a cycle of length 3py then, by the
theorem of Schur [9], @ is doubly transitive. So S is either a product
of a cycle of length 2p and that of length p or a product of three bi-
cycles. Therefore the order v of V=SP is at most 2. Since every ele-
ment of (£($β) induces a permutation over {ΓΊ, Γ2, Γ3}, K(5β) is homomorphic
to a subgroup of S3. Its kernel is Sβ itself. Since the order of an element
of (£0β)/φ is at most 2, the order &(*β) is at most 2£. Suppose there
is an element V of order 2 in K(s^). Then we can assume that V=
(aiy ap+h)(a2y ap+h) ••• (apy ap+ip). Since ξ> = {A 5} is transitive over
Γ^uΓ^vΓg, there is an element X such that af = a2p+J. This X must
normalize Vy because ξ> is contained in the normalizer 9i($β) of 3̂ = {̂ 4}.
But Γ T I φ F . This is a contradiction. Therefore V=E, that is,
g(φ) = sβ. Thus © satisfies the condition (*) (see D). And g=p(p-ϊ)
(l + np)/t.

Now, we shall examine the decomposition of ©* into its irreducible
constituents (see C). Denote by Π* the character of ©*.

(c). xx = l and Xi^>l for i^2. Since © is transitive, eί = l. If
x2 = l, then ϊ 2 is linear. As © is not abelian, ϊ 2 is not faithful. Let ®
be its kernel. Since © is primitive, & is transitive. Hence ©*($) can
be considered as the matric group Si* corresponding to $. X2, considered
in $, is a unit representation. This contradicts the transitiveness of $.

(d). TΛ^ irreducible representations of type III c#w wo/ occwr ίw the
decomposition Σ ^ * °/ ®* K some ϊ f is of type III, all of its ^-con-
jugate representations must occur. Thus we have the following inequali-
ty :

i) w = 3. Thenc = (3p-l)/t. 3 - 1 = 0 (mod/). If t = ly such represen-
tation X, can be considered as that of type II. This will be discussed
later (see (h)). If / = 2, then Π * - Λ + CC1) + CC2). Decompse Cco in 3i(φ).
Then CC1) contains only one linear character, say ωμ. Since CC2) is p-
conjugate to CC1), CC2) also contains the same ωμ. For the element 5,
since B does not fix any letter at all, we have 0 = l-h2ω\ This is
impossible.

ii) w=2. Then 3p = l + 2p + 8 + χ. If δ = l, x=p-2. This can not
give the degree of the characters. Hence δ = — 1 . c = (2p—l)/t. This
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yields ί = l . This case will be discussed later (see (h)).

iii) 10 = 1. Then c = (p + l)/t or c = (p-l)/t. If C°° is not faithful,
then the order of its kernel $ is prime to p (Brauer [1], Theorem 4).
On the other hand, since © is primitive, the normal subgroup & is
transitive. So the order of $ is a multiple of 3p. This is a contradic-
tion. Thus such representation C°° is faithful. And by the theorem of
Tuan (see E), p = 7 or © = LF(2, p). In LF(2,p), since p-l=0 (mod 3), the
subgroup of index 3p must be contained either in a dihedral group of
order p + 1, or in A5. But anyhow this means that ^ ^ 2 - 3 + 1. This is
the desired one.

(e). Π*, restricted in 9£(5β), contains just three different linear charac-
ters of 3ϊ($β), one of which is a principal character ω0. Set Ω = ωo + ω1 +

1. Then we have Ω(l) = Ω(Pj) = q, Ω(Qj)=0 for i φ O (mod q).

with N in the sum ranging over the elements of SROβ). From the or-
thogonality relations for the characters of 5R(φ), Π*(iV) contains three
of the ωμ(iV"). Since Π* contains a principal character of ©, at least one
of the ωμ is ω0. As (d) i), these ωμ are different.

(f). q = (p-l)/t=3 or =6. From (b) we can assume that
{A9 X\XZι = ly Xι = B and X~1AX=Ay\ where γ is a primitive root modulo
p and q = (p—l)/t = 3l}. Since Xι = B, the lengths of cycles in X are
the multiples of 3. Let 3lly3l2, •••, 3/5 be the lengths of cycles in X,
where Σ Ί =A Then value of Π*(X) must be zero. But as above Π*

contains only three different linear characters of 9i($β), say ω0, ωμ and
ωv. This yields the equation ωo(X) +ωμ(X) + ωv(X) = 0. l + ωμ + ωv = 0.
From the theorem of Kronecker (Carmichael £3], p. 228), (ωμ)3 = (ωv)3 = l.
Thus these three different linear characters must be ω0, ω/ and ω2/.
Therefore

Ό for fφO (mod 3),

for ί = 0 (mod 3).

Since Π*(®) is the character corresponding to the permutation ©, every
element of ϋft(̂ β) fixes either three letters or none of them. If /f ̂ >/y,
then Xnj leaves fixed at least 3/y letters. This means ls = 1. Since the
order of X is 3/, I1 = l2= - = l~l and /f+1 = / ί + 2 = =/ s = l. Pick up the
element X3, then as above I1 = l2="'=zh-i = l and ls = l. Consider the
cyclic subgroup generated by X3. This group is a permutation group
over 3^—3 letters and of order /. But since the subgroup leaving one
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letter fixed is trivial, 3^—3=0 (mod/). Since Xι=B fixes no letter,
/ φ θ (mod 3). Thus

l) = 3 3 / ί = 2 3"+1 = 0 (mod/).

/ΞΞJΞO (mod 3).

From these, 1=1 or 1=2. If /=1, then t=2 3a~1 and (p-l)/t = 3. If
l=2y then ί^""1 and (/>-l)/ί=6.

(g). #t Φ^. Let ® be the irreducible representation of degree p:
Xi=p. Then its character contains only one linear (non-principal)
character ωμ. Consider the determinant of ®(Z). Then Det (®(X)) =

.ωι*.ω«i+2+ +«-i5# if (p-i)/t = 3, then Det (®(X)) = ω".ω^1+2> = ω". The
representation of © induced by

X->Det (®(X))

is linear and its kernel ® has an index at least 3 in ©. By the theorem
of Brauer (Theorem 2, [1]), St = & and [©:©'] = 3. This yields that
the normalizer of β̂ in ©' is Sβ itself. By the theorem of Burnside, ©'
contains a normal ^-complement which is a characteristic subgroup of
©;. Hence this subgroup is normal in © which is not transitive. This
contradicts the primitiveness of ©. If (/>-l)/ί = 6, then Det (®(X)) =

The representation of © induced by

is linear and its kernel $ has an index at least 6 in ©. Then, as
above, by the theorems of Brauer, [©:©'] = 6. And the normalizer of
β̂ in ©7 is β̂ itself. Hence there exists a normal subgroup of © which

is not transitive. This is a contradiction.

(h). Now, we can examine the decomposition of Π* explicitly. For
convenience' sake, we shall denote by "x" the character of degree x.

i) x2 = up + l. Then 3p^l + up+l. 2^u. If u=2, then 3p-xx-x2

=p-2. This shows that "x3" is of type III. This contradicts (d). If
M = l, then 3^—^ — ̂ 2=2^—2. This shows that there are two more
irreducible characters of degree p—1 in Π*. Then,

Case I. Π* = "1" + "p + l" + "p-l" + "p-l" .

ii) x2 = vp-l. Then 3^υ. If υ = 3y then π* = "Γ + u3p-Γ. This
shows that © is doubly transitive. If v=2, then

π * = «ι» + "2p-l" + "p".
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This contradicts (g). If υ = lythen3p—x1 — x2 = 2p. This yields several
cases:

Case II. Π* = «l" + «p-Γ + "2p" ,

Case I. Π* = 'T' + ' ^ - r ' + ' ^ - Γ ' + ' ^ + Γ'

or

π * = «ι»+«p_v>+«p»+«p»Λ

The last case does not occur (see (g)).

(i). Case I does not occur. Suppose on the contrary that Case Γ
occurs : Π* = " l " + " ί + l " + " ί - l " + " ί - l " . We shall discuss two cases :
q = 6, q = 3 separately.

i) q = (p—l)/t=6. Then since t is odd, by the theorem of Brauer
(Theorem 9, [1]) [ ® : ® f ] = 0 (mod 2). Since [©:©'] = 6 yields contra-
diction as above and since [ ® : ® ' ] ^ 6 , [©:($']=2. So by the theorem
of Brauer (Corollary 5, [1]) the order g' of ©' is g'' =p(p-l)(l + np)lt'
= 3p(l + np) and ®' = ®". If "p±l". is reducible in ©', then its irreduci-
ble constituents should be of degree {p±ϊ)jt\ where ΐ=2t = 2-3a-\ If
this character of ®' is not faithful, then its kernel $ is the unique
maximal normal subgroup of an order prime to p (Brauer [1], Corollary
2). This shows $ is characteristic in ©'. Therefore Sΐ is normal in ©.
But this S can not be transitive. Thus by the theorem of Tuan (see
E), p = 7 or ® ̂  LF(2, p). Then as (d) iii), we can assume both "p-1" and
"/> + l" are irreducible in (Sr. Since ©' = ©" and ©' satisfies condition
(*), we can examine the degrees of the irreducible characters of ©' in
its first ^-block B^p). Bt(p) consists of " 1 " , "p + 1", "p-1" and f
"(wp + δ)/f". From (D),

This yields δ=—1, 3f = wp-l. But since 3t'=p-ly we have w = l..
This yields that Bλ{p) contains "(p—l)lt'". This is a contradiction (see
(d) iii)).

ii) (p—ϊ)/t=3. In this case, we can assume ©=©'. So the latter
half of the above argument can be applied. Thus we can exclude
Case I.

Now we shall consider the case II, which is the only possible case.

Case II. Π* = "l" + "p-l" + "2p" .

(j) n2φn3. Assume the contrary, then, from m = 'Σιe
2

i, we have-



206 O. NAGAI

nx = l and n2 = n3 = (3p—l)/2. Applying the theorem of Frame, we can
conclude that q = 3p(wp—l)2/8p(p-l) must be a rational integer. We can
putp-l = 6s. Then q = (9s + l)2Us. 81s2 + 1 8 s + l = 0 (mod s). We have
5 = 1. This means ^=2-3 + 1. This is the desired one.

(k). 4p = 3c2 + l for an integer c. Since n{=2 is excluded in CI, we
can assume 2<^n2<^n3. Put n2 = υ. Applying the methods of Wielandt
[14], we have two equalities:

(1) v+2pa + (p-l)b = 0,

(2) v2+2pa2 + (p-l)b2 = 3pv ,

where a, b are integers.
From (1), v = b (moά p). From (2),

(p-l)b2<3pv.

b2< 3pv/(p-l)<3p.3p/(p-l) = 9p2/(p-l).

Since p^7y we have £2<>2. Then 1) b = v or 2) b=-p + v or 3)

If b = vy then 2a + b = 0. Substituting these in (2), we have

= 3pb.

= 0.

This yields a = b = υ = 0 or a=— 1 and b=2. This contradicts CI. If
b=—p + υ, then a=— (ί + l)/2. Substituting this in (2), we have 4£ =
3£2 + l. If b=-2p + vy then a=-(b + 2)/2. Substituting this in (2), we
have 4j> =

(1). 4p = 3c2 + l yields p=2-3a + l with a < 2 . From 4^ = 3c2 + l and
î  = 2 3α + l, we have % V~x = e-\. If c - l - 2 36, then c + l = 2 36 + 2.
c2-\ = ± 3\3h + \). We have b = a-l and 3̂  + 1=2. These imply b = 0.
Hence α = l. If c - l = 22 36, then c + l = 4 3& + 2. c2-l = 8 3b (2 36 + l).
We have 2 3* + l = 3. 6 = 0. Then c 2 - l = 8 3 = 8 3β-1. Hence a = 2. Thus
our theorem is proved completely.

4. There exists a primitive not doubly transitive group of degree
.21, which contains a non-abelian regular subgroup of order 21 (due to
N. Ito).

Let Ω be the set of unordered pairs {a> b} from the set of seven
letters: {1,2, 3, •••, 6, 7} such that aφb. For an element G of the
alternating group AΊ, we consider the permutation G over ί2 such that
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{ay b}G={aG, bG}. Thus we have a permutation group @ over O which
is isomorphic to A7. Since there is no element which maps {1,2} to
{1,2} and {1,3} to {4,5}, @ is not doubly transitive. As is easily
seen, ©Cl.2> is maximal. Hence © is primitive. The permutations
corresponding to the normalizer of a 7-Sylow subgroup are of order 21
and regular.

The above example shows that aφl in p=2 3ajrl is essential.
But whether « Φ 2 is essential or not is an open question.

(Received March 24, 1961)
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