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1. In 1911 Burnside [2] proved the following celebrated theorem :
If a permutation group & of prime power degree p™ contains a cycle of
order p”(m_>1), then & is doubly transitive or imprimitive. This result
has been generalized by Schur and Wielandt. The best is due to Wielandt
[11]. Before stating his result, we shall define a B-group (see Wielandt
[13], p. 57). A group © of order # is called a B-group (or Burnside-
group) when every primitive permutation group of degree » which con-
tains the regular representation of © is doubly transitive. Then the
result of Wielandt can be stated as follows: An abelian group of com-
posite order in which at least one Sylow group is cyclic is a B-group.
Another type of abelian B-group was obtained by Kochendorffer [6] and
Manning [7] (at about the same time and by quite different methods):
An abelian group of type (p° p°), where a_>b, is a B-group. As for
non-abelian B-group, in 1949 Wielandt [127] obtained the following re-
markable result: A dihedral group is a B-group. But other type of
non-abelian B-group is not known (at least to the author). Now in the
present paper we shall show the following :

Theorem. Let p be a prime number of the form 2-3°+1, where a _>2.
Then a non-abelian group of ovder 3p is a B-group.

In the proof we do not use the ring-properties (due to Schur [97])
which are the useful weapons in studying the abelian case. Our proof
is based largely on the investigation of the behavior of a p-Sylow sub-
group.

2. First of all, we shall summarize some known results which are
necessary for our purpose.

A. Theorem of JorDAN. Let the integer n=p-+k, where p is a
prime and #=3. If a primitive permutation group & of degree n con-
tains a cycle of length p, then & contains the alternating group A,

(Jordan [5]).
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B. Theorem of MANNING. Let the integer n=2p+k, where p is a
prime =5 and k=2. If a primitive permutation group & of degree »
contains an element of order p and of degree 2p, then & contains the
alternating group A, (Manning [8]).

C. Let ® be a transitive permutation group of degree n. Then &
can be represented as a matric group &* of demension # isomorphically.
Let 3% ¢;%; be the complete reduction of &* into its irreducible consti-

i=1

tuents over the complex number field. And let the subgroup ®, fixing
one letter have m transitive sets A; of length n; (:1=1, 2, -+, m).

Cl. If & is primitive and if »,=2 for some 7, then & contains a
regular normal subgroup of index 2 (Wielandt [13], p. 43).

CIIL. m = _Z” e (Wielandt [13], p. 77).
CIII. Theorem of FRAME. The number
m k 2
q = (m)"* 1L m; /11 x7*
is a rational integer, where x;,=Dg¥%; (Frame [4]).

D. Theorems of BRAUER. Suppose that a finite group & satisfies
the condition : (x) & contains an element P of order p which commutes
only with its own powers P?{. Then the order g of & is expressed as
g=p(p—1)1+np)/t, where 1+np is the number of p-Sylow subgroups
and ¢ is the number of conjugate classes which contain an element
of order p. Furthermore, the ordinary irreducible representations of &
can be classified into four different types:

I. The representations 2, of degree u,p+1. Denote their charac-
ters by A,. Then, for an element P of order p, A,(P)=1.

II. The representations B, of degree v,p—1. Denote their charc-
ters by B,. Then B,(P)=—1.

III. The representations € of degree c=(wp-+90)/¢t with 8= +1.
Denote their characters by C®. Then C¥(P)= —SEéy“t. There are ¢
.such characters C* and they are p-conjugate. g

IV. The represntations D, of degree d,=0 (mod p). Denote their
characters by D.. Then D.(P)=0.

There are g=(p—1)/t characters of type I and type Il in @. These,
together with ¢ characters of type III, form the first p-block B,(p).
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Among their degrees holds the following relation :
(D) | > Dg4,+8DgC™ = 31 DgB, .

It is easy to find all irreducible characters of the normalizer ()
of P in ®, which is generated by P and @ such that P?=1, Q?=1,
Q'PQ=P", where v is a primitive root (mod p), and tg=p—1. Let o
be a primitive g-th root of unity. We then have ¢ linear characters o,
(x=0,1, 2, ---,g—1) defined by

w#(Qf) = a)"j, co,L(Pj) =1
Besides, we have ¢ conjugate characters Y of degree g.
Y(Q) =0 for j==0 (mod gq).

DI. If we consider the characters of & only for elements N of the
subgroup N(P), then A, (N) contains #,+1 of the ».(N), B(N) contains
v,—1 of the o, (N), C*(N) contains (w+39)/¢t of the w, (N) and D.N)
contains d./p of the o (N).

E. Theorem of Tuan. Let & be a group of order g=pg’, where
p is a prime greater than 7 such that (p, g)=1. Let © have no normal
subgroup of order p. Let & have a 1-1 irreducible representation of
degree z< (2p+1)/3. Then the factor group of & by its center is iso-
morphic to LF(2, p). For p=7 and z=4, the factor group of & by its
center is isomorphic to either LF'(2,7) or A, (Tuan [10]).

3. Now, we shall prove our theorem. Let p=2-3°+1. Let a group
$=1{A, B|A?=B’=1, B'AB=A’}. Suppose that & is a primitive per-
mutation group of degree 3p which is not of doubly transitive and con-

tains © as its regular subgroup. Our purpose is to show that, under
these circumstances, a 2.

(@). The order of & contains a prime p to the first power only. Let
B be a p-Sylow subgroup of &. Every element P==1 of ® is a product
of p-cycles and l-cycles (Here p-cycle means a cycle of length p). If
P contains only one p-cycle, then from theorem of Jordan (see A) ® is
doubly transitive. If P contains just two p-cycles, then from the theorem
of Manning (see B) & is doubly transitive. So P is a product of three
p-cycles. Then the subgroup 3, of P leaving one letter fixed is trivial.
This means the order of L is p.

(b). The centralizer S(P) of P in & coincides with B. From (a),
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we can assume P is generated by A=(a,, a,, -, ap) (@psy, ) @sp) (@opes,s
wo, @,). Now put I''={a,, a,, -+, a,}, I',=1{a,.,, -, @,,} and I';={a,,.,,
-, a;,}. Let V be a p-regular element in €(B) and let v be its order.
For an integer ¢’ satisfying ¢’v=1 (mod p), we consider the element
S=VA”. Then S'=A. Hence the lengths of the cycles in S must be
the multiples of p. If S is itself a cycle of length 3p, then, by the
theorem of Schur [9], ® is doubly transitive. So S is either a product
of a cycle of length 2p and that of length p or a product of three p-
cycles. Therefore the order » of V=S? is at most 2. Since every ele-
ment of €(P) induces a permutation over {I',, I',, I';}, €() is homomorphic
to a subgroup of S,. Its kernel is B8 itself. Since the order of an element
of C(P)/V is at most 2, the order €(P) is at most 2p. Suppose there
is an element V of order 2 in €(3). Then we can assume that V=
(@, @p.i) (@;, Qi) - (@,, api;,). Since = {A, B} is transitive over
Iyul,uly, there is an element X such that af=a,,.;. This X must
normalize V, because 9 is contained in the normalizer N(P) of P={A}.
But X'VX==V. This is a contradiction. Therefore V=E, that is,
C(P)=NP. Thus O satisfies the condition (¥) (see D). And g=p(p—1)
Q+np)/t.

Now, we shall examine the decomposition of &* into its irreducible
constituents (see C). Denote by II* the character of &*.

(¢). %=1 and x;,>1 for i=2. Since & is transitive, ¢,=1. If
x,=1, then X, is linear. As & is not abelian, %X, is not faithful. Let &
be its kernel. Since ® is primitive, & is transitive. Hence &*(®) can
be considered as the matric group &* corresponding to &. X,, considered
in &, is a unit representation. This contradicts the transitiveness of f.

(d). The irreducible representations of type III can not occur in the
decomposition > e;X; of &*. If some X%; is of type III, all of its p-con-
jugate representations must occur. Thus we have the following inequali-
ty: 3=1+Hwp+90)/t =wp. 3=w.

i) w=3. Thenc=3p—1)/t. 3—1=0(mod ¢). If =1, such represen-
tation %; can be considered as that of type II. This will be discussed
later (see (h)). If £=2, then IT*=A,+C*®V+C®. Decompse C% in J(P).
Then C contains only one linear character, say ,. Since C® is p-
conjugate to C°, C® also contains the same ®,. For the element B,
since B does not fix any letter at all, we have 0=1+20". This is
impossible.

ii) w=2. Then 3p=1+2p+6+x. If 6=1, x=p—2. This can not
give the degree of the characters. Hence 6=—1. ¢=(2p—1)/t. This
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yields #=1. This case will be discussed later (see (h)).

iii) w=1. Then c=(p+1)/t or c=(p—1)/t. If C™ is not faithful,
then the order of its kernel & is prime to p (Brauer [1], Theorem 4).
On the other hand, since & is primitive, the normal subgroup & is
transitive. So the order of & is a multiple of 3p. This is a contradic-
tion. Thus such representation C® is faithful. And by the theorem of
Tuan (see E), p=7 or &=LF(2, p). In LF(2, p), since p—1=0 (mod 3), the
subgroup of index 3p must be contained either in a dihedral group of
order p+1, or in A,. But anyhow this means that p<<2-3+1. This is
the desired one.

(e). II*, restricted in N(PB), contains just three different linear charac-
ters of N (P), one of which is a principal character o,. Set Q=w,+ o, +
-++w,_,. Then we have Q(1)=Q(P/)=¢q, Q(Q’)=0 for j==0 (mod g).

2 IHN)Q(N) = X IIH(PH) QPF) = 3pg

with N in the sum ranging over the elements of 9(%3). From the or-
thogonality relations for the characters of F(%?), II*(N) contains three
of the o, (N). Since IT* contains a principal character of &, at least one
of the w, is »,. As (d) i), these o, are different.

(f). gq=(p—1)/t=3 or =6. From (b) we can assume that J(P)=
{4, X|X¥=1, X'=B and X 'AX=A", where v is a primitive root modulo
p and g=(p—1)/t=3l}. Since X’'=B, the lengths of cycles in X are
the multiples of 3. Let 3/, 3/,, -+, 3/, be the lengths of cycles in X,
where le,: p. Then value of IT*(X) must be zero. But as above II*

contains only three different linear characters of N(*B), say o,, », and
o,. This yields the equation o,(X)+o(X)+o,(X)=0. 1+e*+e*=0.
From the theorem of Kronecker (Carmichael [3], p. 228), (0*)*=(0")’=1.
Thus these three different linear characters must be ,, ®, and ,.
Therefore

0 for ¢==0 (mod 3),

I*(X?) = 1+ 0+ 0 =
X enTe {3 for i=0 (mod 3).

Since IT*(®) is the character corresponding to the permutation &, every
element of MW(P) fixes either three letters or none of them. If /;,>>/;,
then X*; leaves fixed at least 3/; letters. This means /; =1. Since the
order of X is 3/, /,=/,=-=[;=[ and [/;,,=!;,,=---=[,=1. Pick up the
element X° then as above /,=/,=-=/,_,=/ and /,=1. Consider the
cyclic subgroup generated by X° This group is a permutation group
over 3p—3 letters and of order /. But since the subgroup leaving one
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letter fixed is trivial, 3p—3=0 (mod /). Since X‘=B fixes no letter,
/==0 (mod 3). Thus

3(p—1) = 3-3+1-# = 2-3'=0 (mod /).
/=20 (mod 3).

From these, /=1 or /=2. If /=1, then ¢#=2-3*" and (p—1)/t=3. If
/=2, then t=3°" and (p—1)/t=6.

(g). x;=%=p. Let D be the irreducible representation of degree p:
x;=p. Then its character contains only one linear (non-principal)
character ®,. Consider the determinant of D(X). Then Det (D(X))=
oFe@tTErra-h If (p1)/#=3, then Det (D(X))=o" -0’ **? =w" The
representation of & induced by

X — Det (D(X))

is linear and its kernel & has an index at least 3 in . By the theorem
of Brauer (Theorem 2, [1]), =®& and [S:®]=3. This yields that
the normalizer of P in & is P itself. By the theorem of Burnside, &
contains a normal p-complement which is a characteristic subgroup of
&’. Hence this subgroup is normal in & which is not transitive. This
contradicts the primitiveness of &. If (p—1)/t=6, then Det (D(X))=
0" ! = (_1)o*, The representation of & induced by

X — Det (D(X))

is linear and its kernel ® has an index at least 6 in &. Then, as
above, by the theorems of Brauer, [®:® ]=6. And the normalizer of
B in & is P itself. Hence there exists a normal subgroup of & which
is not transitive. This is a contradiction.

(h). Now, we can examine the decomposition of IT* explicitly. For
convenience’ sake, we shall denote by “x” the character of degree x.

i) x,=up+1. Then 3p=1+up+1. 2=u. If u=2, then 3p—x,—x,
=p—2. This shows that “x,” is of type III. This contradicts (d). If
u=1, then 3p—2x,—x,=2p—2. This shows that there are two more
irreducible characters of degree p—1 in II*. Then,

Case I. II* — ‘(1?7_|_“p+17’+‘¢p_1”+(‘p_1?7.

ii) x,=vp—1. Then 3=v. If v=3, then II*=“1"+“3p—1". This

shows that & is doubly transitive. If v=2, then

H* —_ “1”+“2ﬁ_17’+(‘p’y .
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This contradicts (g). If v=1, then 3p—x,—x,=2p. This yields several
cases :

Case II. I* = “1”+¢¢p_1n+(¢2pn ,
Cace L. I = “1”4+“p—1"+“p—1"+“p+1”
or

H* — ((17’+((p_1’,+((p,’+“p7’ .
The last case does not occur (see (g)).

(i). Case 1 does not occur. Suppose on the contrary that Case I
occurs: II*=“1"+“p+1"+“p—1"+“p—1”. We shall discuss two cases:
q¢=6, g=3 separately.

i) g=(p—1)/t=6. Then since ¢ is odd, by the theorem of Brauer
(Theorem 9, [1]) [G:®']=0 (mod 2). Since [G: & ]=6 yields contra-
diction as above and since [®: &' ]<6, [G:@]=2. So by the theorem
of Brauer (Corollary 5, [1]) the order g’ of & is g'=p(p—1)A+np)/t’
=3p(1+np) and & =@". If “p+1’ is reducible in &, then its irreduci-
ble constituents should be of degree (px1)/t, where ¢'=2¢{=2-3*"". If
this character of & is not faithful, then its kernel ® is the unique
maximal normal subgroup of an order prime to p (Brauer [17], Corollary
2). This shows & is characteristic in &'. Therefore & is normal in &.
But this & can not be transitive. Thus by the theorem of Tuan (see
E), p=7 or &= LF(2, p). Then as (d) iii), we can assume both “p—1" and
“p+1” are irreducible in &. Since &'=®" and & satisfies condition
(x), we can examine the degrees of the irreducible characters of & in.
its first p-block B,(p). B(p) consists of “1”, “p+1”, “p—1" and ¢
“~wp+98)/t'"”. From (D),

14+p+14+8(wp+0)/t = p—1. 3+8(wp+98)/¢’=0.

This yields 6=—1, 3/=wp—1. But since 3#/=p—1, we have w=1.
This yields that B,(p) contains “(p—1)/#'”. This is a contradiction (see.
(d) iii)).

ii) (p—1)/t=3. In this case, we can assume &=@'. So the latter

half of the above argument can be applied. Thus we can exclude
Case L

Now we shall consider the case II, which is the only possible case.

Case 1I1. I = “1"—!—“]7—1”—!—“2p” .

k
(j)- m,==mn,. Assume the contrary, then, from m=>1¢?, we have
i=1



206 0. Nagar

n,=1 and n,=n,=3p—1)/2. Applying the theorem of Frame, we can
conclude that ¢=3p(wp—1)?/8p(p—1) must be a rational integer. We can
put p—1=6s. Then ¢g=(9s+1)*/4s. 81s*+18s+1=0 (mod s). We have
s=1. This means p=2-3+1. This is the desired one.

(k). 4p=3c*+1 for an integer c¢. Since n;=2 is excluded in CI, we
can assume 2<_n,<n,. Put m,=v. Applying the methods of Wielandt
[14], we have two equalities:

1) v+2pa+(p—1)b =0,
2) v+ 2pa’+(p— 1) = 3pv,

where a, b are integers.
From (1), v=56 (mod p). From (2),

(p—1)p* <3pv.
b <3pv/(p—1)<3p-3p/(p—1) = 9*/(p—-1).

Since p=7, we have »¥<p°. Then 1) b=v or 2) b=—p+v or 3)
b=—-2p+v.
If b=v, then 2¢+b=0. Substituting these in (2), we have

O+2pa’+(p—1)b* = 3pb.
2a°+b = 3b.
2a°+4a°+6a = 0.

This yields a=b=v=0 or a=—1 and #=2. This contradicts CI. If
b=—p+v, then a=—(b+1)/2. Substituting this in (2), we have 4p=
3b°+1. If b=—2p+v, then a=—(b+2)/2. Substituting this in (2), we
have 4p=3(b+1)*+1.

. 4p=3c*+1 yields p=2-3°+1 with a<2. From 4p=3c*+1 and
»=2-3"+1, we have 8:3°'=¢"—1. If ¢—1=2-3% then c+1=2-3°+2.
¢*—1=4-3%(3*+1). We have b=a—1 and 3°+1=2. These imply b=0.
Hence a=1. If ¢—1=2°-3% then ¢+1=4-3"4+2. ¢*—1=8-3° (2-3°+1).
We have 2:3*+1=3. »=0. Then ¢°*~1=8-3=8-3°"". Hence ¢=2. Thus
our theorem is proved completely.

4. There exists a primitive not doubly transitive group of degree
.21, which contains a non-abelian regular subgroup of order 21 (due to
N. Ito).

Let O be the set of unordered pairs {@, b} from the set of seven
letters: {1, 2,3, --, 6,7} such that e==b6. For an element G of the
alternating group A,, we consider the permutation G over Q such that
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{a, b}¢={a® b°}. Thus we have a permutation group & over Q which
is isomorphic to A4,. Since there is no element which maps {1, 2} to
{1, 2} and {1,3} to {4,5}, ® is not doubly transitive. As is easily
seen, ®, is maximal. Hence & is primitive. The permutations
corresponding to the normalizer of a 7-Sylow subgroup are of order 21
and regular.

The above example shows that e¢==1 in p=2-3°+1 is essential.
But whether a=-2 is essential or not is an open question.

(Received March 24, 1961)
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