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0. Introduction. The problem of statistical discrimination has been
hitherto investigated with respect to mean vectors of several multi-
dimensional normal populations with a common variance matrix by Fisher
[7], [8], [9], Wald [31], Rao [23], [24], Anderson [3], [4] and others.
We shall consider in this paper the problem with respect to variance
matrices of two multi-dimensional normal populations with a common
mean vector. The reason why this problem has not been taken up be-
fore seems to be the complexity of its theory on the one hand and the
scantiness of its application to practical sciences on the other, compared
with that for mean vectors. But the theory can be developed to some
extent and there has been found at least one interesting application in
the field of biometry.

The paper is divided into three parts. Part I is concerned with the
case when the populations are completely specified, or the common mean
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vector together with two variance matrices are all known. Part II deals
with the case when the populations are incompletely specified, while the
information for unknown parameters is provided by a random sample
taken from each population. Part III finally illustrates the theory by a
practical example.

PART I. COMPLETELY SPECIFIED POPULATIONS

1. Problem of discrimination. Let I7; (=1, 2) be two populations
in a space ¥ and let P; be their probability functions. We do not in this
section set up any assumption for P; such as normality. If an observa-
tion is performed on either I, or II, and the result x belonging to X
is informed to us, we are confronted with the problem of discrimination.
We may take either the decision d,, judging that x came from the
population 77,, or the alternative decision d, in favor of the other possi-
bility.

Let w; ({=1, 2) be the loss incurred in adopting d,_; when x comes
in fact from 7;. Let ¢, 0<@(x)<1 for any x, be a randomized decision
function to the effect that when x is observed we adopt the decision d,
with the assigned probability @(x). We call @ a discrimination function,
distinguishing it from the term discriminant function originated by R. A.
Fisher. The error that we adopt d, when II, is true or the error that
we adopt d, when I/, is true has the probability

LD PeIL ) = [p0P@En) or PAI29) = | A-p@)PEn,

respectively. And the expected loss or risk when II; is true is given by
(1.2) R/P;) = w,P(3—1li, ).
If by some random device I7; (=1, 2) is chosen with probability
w; (#,+m,=1) to give rise to an observed value x, then the average
risk is .
2
(1.3) R, = 3 wRAP).

A discrimination function @ minimizing this expression is called a Bayes
discrimination ( function) with respect to (=,, =,) and is often denoted
later by ®g. Similarly, ® minimizing the maximum risk

(1.4) RE = max (Ry(P)), Ry(P,))

is called a minimax discrimination ( function) and is denoted by @,,.
We assume now that the probability functions P; (=1, 2) have
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density functions p;(x) with respect to a certain measure » in . Welch
[33], Rao [24] and Anderson [4] states a theorem on non-randomized
Bayes discrimination which is easily adapted to the randomized case
such as '

Theorem 1. A necessary and sufficient condition that a discrimina-
tion function @ is Bayes with respect to (=,, =,) is that @ satisfies
1 it 7w p(x)<mw.px)
0 if 7mwp(x) >mw,px).

There exists at least one Bayes discrimination.
The theorem is obtained from the equations

(1.5) P(x) = {

R, = a0, | (0P dx)+ w0, | (1—p@)Py(d)

= 7T,W, + S <p(x) [ﬂlwlpl(x)_ ”zwzpz(x)] V(dx) .

There exist many Bayes discrimination functions so long as the set of
x determined by 7w, p.(x)=7,w,p,(x) has positive v measure but of course
the average risk R, for each of them coincides.

Similarly, corresponding to the theorem of Mises [187] and Anderson
[4] on the non-randomized minimax discrimination, we get under less
assumptions

Theorem 2. A necessary and sufficient condition that a discrimination
function @ is minimax is that @ satisfies
1.6) Ry(P)) = R,(P,)

as well as (1.5) for some (w,, =,). There exists at least one minimax
discrimination function.
The theorem is implied in the following Lemmas 1 and 2.

Lemma 1. Two properties below are equivalent :
(i) @ is minimax.
(i) @ minimizes R,(P,) under the rvestriction (1.6).

Proof. It suffices to show that any minimax discrimination function
satisfies the equation (1.6). Now suppose that for some @* we have
R(P)<Ry(P,). For & 0< &< 1, put @(x)=E+(1—&)p*(x), then

Ry(P,) = &w,+(1—&E)Rp(P)), Ry(P,) = (1—ERP,).
Choosing & such that R,(P,)=R,(P,), we know that
max R,(P;) < max Ro(Py),
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which implies that @* is not minimax.

Lemma 2. The property (ii) in Lemma 1 is equivalent to
(ili) @ is Bayes for some (7, @,) and satisfies (1.6).

Proof. The equation (1.6) is written in the form
[ = pe) w0+ w01 0(dx) = w,
and the condition R,(P,)=min. is equivalent to
| a—p()w,p.(2)(dx) = max.

Thus the problem is quite analogous to that of testing hypothesis ; hence
Neyman-Pearson’s fundamental lemma gives the solution

1’ if clwl pl(x) > CZ[wlpl(x) + w2p2(x)] ’
0, if cw,pi(x) < clwipi(x)+w.pi(x)]

for some ¢, and ¢,. This is equivalent to

1, if cfw p.(x) < cFw,p.(x),
0, if Cikw1p1(x)>cé<w2pz(x)

for some c¥ and c¥. Since ¢§f and c¥ are readily seen to be non-negative,
they determine a prior probability (z,, =,) rendering (1.7) identical with
(1.5).

Existence of a minimax discrimination function results from the
condition (iii).

1-p() - |

1.7 P(x) = {

2. Bayes discrimination for variance matrices. From this section
through the last let /7, (=1, 2) denote a p-dimensional normal population
N(p, ;) with a common mean vector ¢ and a variance matrix X;.
Then the space ¥ of observation is an Euclidean p-space. Furthermore
throughout Part I we assume that # and 3,’s are known completely. The
7 th density function (with respect to Lebesgue measure) is

bi(x) = 2m)~?1|Z,;| 7 exp [_% (x—”)/zz_l(x—#)] )

a prime superfixed to any vector or any matrix denoting always the
transpose. From Theorem 1 in the preceding section any Bayes discri-
mination function is given by

1 if Q>ks

@1 ¢B(x)={0 if Q—k
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where
2.2) Q= x—p)(Z7'-27")(x—p)
and

- W, 12|
2.3) kg = 2log 7r2w2+ log AR

The function @ corresponds to the linear discriminant function appearing
in the discrimination for means and hence will be called the gquadratic
discriminant function. Since the set of x satisfying @==Fk; has Lebesgue
measure zero, the Bayes discrimination is determined uniquely with
probability one.

There exists a non-singular matrix F as well as a diagonal A with
the diagonal elements in descending order in magnitude such that

@. 4) F's.F-1I, F'3,F=A,

where I denotes the identity matrix (cf. for example Roy [28]). The
diagonal elements A, >\, > >, of A are the roots of the determinantal
equation

2.5) |Z,—22,| =0,

or in other words the eigenvalues with respect to the pair (¥,, ¥,). They
are all positive since both 3, and ¥, are positive definite. Two equations
in (2.4) together imply that 3,F=3F A, and therefore X,f,=)\,3f; for
the 7 th column f; of F ({=1, -+, p). This means that f; is an eigenvec-
tor with respect to the eigenvalue M; and the pair (&,, ¥,). If all the A;
are distinct, then F' is determined uniquely except for the sign of every
column. Uniqueness will be required later but not for the present.
Define

(2.6) y=F(x—p),
then we have
2.7 Q=yIT-Ay =Q(y) (say).

If the observation x comes from the population /7, or from //,, then y may
be regarded as coming from the normal population N(0, I) or N(0, A),
respectively, to which we refer as PY or PY¥. The latter is also re-
ferred to as Py indicating explicitly the dependence on A=(\,, X,, -+, Ap).
Thus the distribution of @ depends only on A, whether x comes from
II, or from II,. This is the canonical reduction used frequently in the
multivariate analysis and we call y a canonical variate. We could but
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did not indeed start from the reduced populations, intending to make a
correspondence with the discussion in Part II where the ¥; are unknown
and so the reduction is not permitted. By the way the reason why the
discrimination for variance matrices is more complicated than that for
mean vectors is that the canonical parameter is p-dimensional M for the
former, while it is one-dimensional Mahalanobis’ distance D? for the latter.
Hence results also the difficulty of dealing with more than two normal
populations in this paper.

In terms of the canonical variate y the Bayes discrimination is per-
formed as follows: we adopt the decision d, or d, according as y belongs
to the set

2.8) DM ={y; Qy)<ks\)} or DN = {y; Q) >ksMN)},
where

2.9 ks(\) = 2 log % +S'log ), .

i=1

We may take either one of d, and d, whenever Q(y)=Fkz(A). Thus the
discrimination is essentially determined by the pair (D,(A), D,(A)) and the
probabilities of error of two kinds are given by

PRIL 2) = PEOM) = Pr(S3(1—51) 2 > k)

2. 10) ]
P12, p5) = PEDM) = Pr(30,—1)Z: ko))

where Z; (1=1, 2, ---, p) are independent N(0, 1) variates.

We shall now investigate the behavior of the average risk R, , given
by (1.3) for the Bayes discrimination @z when X; varies with the =;
and the w; being fixed. We write Rz(N) for R, ,.

Theorem 3. For each i (i=1, 2, ---, p) Rg(N) is strictly monotonically
(i) increasing in N; if O< N, <1,

and
(ii) decreasing in A; if 1<\, .

Roth this and Theorem 4 in Section 3 are based on the

Lemma 3. Let D,M) be the set of y satisfying Q(y)<k (const).
Then for each i (i=1,2, -+, p) the function PY.(D,N)) of N<=(\F, ---, A¥)
ts monotonically
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(i) mon-decreasing in Nf if 0< N, <1,
and
(ii) mom-increasing in Nf if 1<\;.
Proof of (ii). Suppose X;>>1 and let A** be a vector which differs.

by one component A¥* >A¥ from M. Since (1—1/A)AFE>(1—1/))NF
for every j, we have as in (2. 10)

(1 _ _> NFRZE k>

< Pr (ﬁ( %) NEZE k) Y(D,(N)) .

J

PL(DM) = Pr (3]

j=1

And (i) is proved similarly.

Proof of Theorem 3. To prove (ii) suppose 1<\, and let M be a
vector which differs by one component A¥ >X; from M. We must show

(2.11) Rx(N) > Rp(M*) .
It is seen from (2. 10) that
Rp(N) = 7.w.PY(D,N)+7.w,PY (D)) .
Lemma 3 then yields that
Ry(A) = 7w, PY(D,(M) + 7w, PX(D,(N)) .
Obviously the Bayes discrimination (D,(M), D,(M*)) corresponding to the

pair of populations (P¥, PX) does not coincide (a.e.) with (D,(N), D,(N)) ;.
hence the right-hand side of the last relation is larger than

7w, PY (D,M)) + 7w, PY(D,(A))

which is equal to Rgz(M). This implies (2.11). The proof of (i) is quite
analogous.

Theorem 3 means that as eigenvalues \; are the more distant from
1, larger or smaller, the smaller grows the average risk Rz(\) or the
more efficient the Bayes discrimination becomes.

3. Minimax discrimination for variance matrices. We shall now
consider the minimax discrimination for two normal populations /7, and
II,. From Theorem 2 in Section 1 we obtain the minimax discrimina-
tion function

1 if Q>ku,

(G Y) ¢M(x)={0 if Q< k
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where
(3.2 Q = (x—p) (27 —27") (x—p)

and k,=Fkyu(M) is the constant depending only on A, determined by the
equation R,,,(P,)=R,,/(P,) or by

(3.3)  wpPr (Z (1-%) 7 >kM(h)> — w,Pr (g O —1)Z2 < kM(h)>
on account of (2.10). On each side of (3.3) there appears a weighted
sum of X? variates and so the equation cannot be solved to represent
k(M) in such a simple formula as (2. 9) for the Bayes case. In particular
the minimax discrimination function when w,=w, does not coincide with
the Bayes one when w,=w, and =,=w,, while for the discrimination for
means two functions coincide with each other. The value of k(M) will
be obtained by numerical computation as will be explained in Section 5
but we note here that it is continuous in M.

Let us study the behavior of the risk R¥,=R,,,(P;) of the minimax
discrimination @,, when \; varies with the w; being fixed. We write
Ry (M) for R¥, to indicate its dependence on M.

Theorem 4. For each i (1=1,2, -+, p) the function Ry,(N) is strictly
monotonically

(i) increasing in \; if 0< 1, <1
and
(i) decreasing in N; if 1<, .

Proof. To prove (ii) suppose 1<X; and let M be a vector which
differs by one component Af _>\; from M. we show that

(3.4) Ry (M) > Ry (V) .
Indeed we get from (2. 10)
Ry(A) = max (w,PY(D,N)), w.PY(D(N)),

where D,(AM) and D,(A) are given by (2.8) with k,/(M) in place of kgz(A)
there. Then from Lemma 3

Ry (M) = max (w,PY (D)), w,PX(D,(M)).

‘Obviously again the minimax discrimination (D,(M*), D,(AM¥)) corresponding
to the pair of populations (PY¥, PY.) does not coincide (a.e.) with (D.,(A),
D,(N)), and hence the right-hand side of the last expression is larger than
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max (w,PY (D)), w.PY(D,(M))),

which is equal to R,(M). Thus (3.4) holds as asserted and the proof
of (ii) is complete. (i) is proved slmilarly.

It should be remarked that this theorem is not included in Theorem
3 in despite of the fact that the minimax discrimination is Bayes for a
particular choice of the prior probability.

We find that the more distant are the A’s from 1, the more efficient
are the minimax as well as the Bayes discrimination.

4. Reduction in dimensions. In the preceding two sections we
have discussed the Bayes and the minimax discrimination utilizing the
whole information of a p-dimensional observation x in the space ZX.
What problem will arise if any discrimination is to be performed utiliz-
ing only a projection of x on a certain ¢g-dimensional (¢< p) subspace
X* of X? There occur two cases: X* is given to us a priori or it
can be so chosen by us as to enjoy in some sense optimal property, with
only the number ¢ of dimensions being fixed. While the former case
involves no new problem, the latter does. Assume for simplicity that
the eigenvalues defined by (2.5) are distinct and let y=(y,, ., ==, ¥,)
be the canonical variate defined uniquely by (2.6). The problem is then
how to choose a new variate

4.1) x* = Ay,

where A denotes a g X p constant matrix, as a basis of the subspace X¥*
in order to get the most efficient discrimination.

Now there is a well-known (cf. for example Hamburger & Grimshaw
[10], p. 75)

THEOREM (Cauchy’s inequality). Let N\,>N\,>--->>\, be the eigenvalues
of a real symmetric pxp matrix A and let NF>NF>.-- >N\N¥ be those of
AAA’, A denoting any q X p matrix such that AA =1, (identity). Then
it holds that

4.2) >\'i+p-q£7\'>ik£7\'i ((=1,2,-,9).

Now we state

Theorem 5. Given the number q of dimensions, a basis x* of the
subspace which minimizes the average (or maximum) visk of the Bayes (or
minimax) discrimination is given by onme of (q+1) variates (y, -+, ¥s,
Yp-gistrr s ¥p) Where s=0,1, -, q. The corresponding discrimination
Sunction is
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(1 if Q* >k
4.3) P (x¥) = { o i eor
where
(4. 4) Q* - (;21+ i=p$+s+1> <1_X1-—> 'y%
and
(4.5) k= kM) or k= ky(V),

which is obtained from (2.9) or (3.3) by replacing M there by M=\, -+,
Agy X pogisrs 05 Np), according as @* is Bayes or minimax.

The solution is determined wuniquely: s=q when all \; are >1, or
s=0 when all \; are <1.

Proof. We shall consider only the Bayes case since the proof is
quite similar for the minimax one. We may assume that AA’=1,. If
x comes from the population /7, or from II,, then x* is regarded as
coming from the population /7¥ : N(0,I,) or IT§ : N(0, AAA’), respectively.
Denote by AF(AF>AF>--->\¥) the roots of the determinantal equation
|AAA — T, | =0.

Applying the discussion in Section 2 to the pair of populations
(I1¥, IT¥), we know that the average risk of the Bayes discrimination is
a function Rz(AM*) of M<=(A¥, ---, A¥), which grows smaller as the A} are
more distant from 1. For the eigenvalues A; and A¥ the Cauchy inequa-
lity (4.2) holds, whence it is readily seen that Rg(A*) attains its minimum
at M =(a,, ==, A,) if all the A; are >>1 or at M=,_,,, -, A,) if A, <1
for all 7. If among the \'s there are some >1 and some <1, then the
minimum point M picks up some largest A; among those which are
greater than 1 and some smallest among those which are less than 1
to fill the dimension ¢. Summing up, Rg(M*) attains its minimum at one
of (g+1) points A*=(A,, =, A, My gisiqs == Ap), Where s=0,1, -+, ¢q. To
this AM* corresponds the variate x*=(y,, -**, ¥, ¥p-qis+1> *>» ¥) and this
proves the theorem.

5. Weighted sum of X* variates. In applying the results in the
preceding sections to any actual data it is necessary to calculate the
probabilities of the form

Pr (z (x,.—l)Z?<k> or Pr (z <1—%>Z§>k>

i=1 i=1 i ’
where Z,, Z,, ---, Z, are independent N(0, 1) variates. We give in this
section a practical procedure convenient for evaluating such probabilities.
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We shall consider the distribution of a weighted sum

(5.1) W = ; A

of X? variates Z%, where we assume that all the coefficients @; are of the
same sign, positive in fact. This requires that in the preceding sections
either all the A;>1 or all <<1 but this, it seems to the author, is not
a serious restriction for any practical application.

The distribution of W has been studied occasionally by several
authors. For instance, Satterthwaite [29] approximates it by the dis-
tribution of kX2, where k=23a}/3a; and n=(2a;)?/Za:. The notation X2
will be used henceforth consistently for a X* variate with » degrees of
freedom. The paper [20] of the present author gives an inequality

Pr(31a,zi <o) < Priax; <o),

where a=(lI1a;)’? and c¢ is any constant. It may be available as an
approximation provided that the a;’s differ relatively little. Robbins &
Pitman [27] and Box [5] also dealt with this problem. The former
obtained an interesting result by means of the method of mixture due
to Robbins [26], which will be improved as follows from the point of
view of accelerating the convergence.

The characteristic function of W is

»

(5.2) o(t) = [] 1—2iat)™".

i=1

Using an arbitrary positive constant x, we get

gt =% 1—2%x)— (1% — Qi =201 _ g2
1-—2ia;t x[(l 2ixt) <1 aj>] W 1—cw?),

where

(5.3) ¢j = 1—5— , w = (1—2ixt)™"*,

i
We suppose here that the complex function w denotes the branch which
takes the value 1 when ¢#=0. Putting

(5.4) J@?) = [ A—c;w),
we rewrite (5.2) in the form

(5.5) P(t) = x"”(jé a;) " w? fw?)]7.
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For x, an arbitrary constant, Robbins & Pitman [27] chose

(5.6) x = min a; = x, (say),

which implies 0<c¢;< 1 in view of (5.3) for every j. This and the fact
that |w’| =|1—2ix,¢| <1 for any real £ together guarantee the absolute
convergence of the expansion of (1—c,w*)~"* in w* and hence we find

[F @)1 = 3 fa™,

f, being constant coefficients. Then we have from (5.5)
(5.7) P(t) = x8(J] @) 3 fLw .
j=1 n=0

Since w™=(1—2ix,)""/* is the characteristic function of a variate xX32,
we obtain Robbins-Pitman’s expansion

5.8) PA(31 0,23 < 0) =3 (J] @)™ 33 fuPr(xXhp <)

for any c.

Though the convergence of (5.8) results necessarily from the choice
(5.6) of x, its speed proves to be very slow in many cases. Thus it is
required to find an alternative choice of x capable of accelerating the
convergence. We recommend here one which makes the coefficient of w?
in the expansion of f(w’) vanish, although unfortunately we have not
succeeded yet in proving the convergence in general. The condition
stated implies

p_ &l
(5.9) L _5

»
J"Elaj’

or x is the harmonic mean of the a;’s. From the definition of x, how-
ever, it will be expected that the expansion of [ f(w®)]™** in w* converges
about twice as fast as that of the Robbins-Pitman expansion provided
the convergence is assured anyhow for the former. This expectation
is really met in the following example.

Consider the special case where the number p of dimensions is even
(=2r) and the coefficients a@; are divided into two groups such that

a,=a,= - =a, and a,, = - =a,.

Then from (5.9), (5.3) and (5.4) we have

2a.a
(5. 10) x=a_#, €= =Cp= —Cpyy =+ = —Cp =
1 »
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and
(5.11) f@w?) = A—cw?) (1—c,w?)” = A—ciw') .

Since 0<c}<1 and |w'|=|1—2ix¢t| *<1 for any real £, we obtain the
expansion converging absolutely

(5.12) @] = A—cw) ™" = 31 b,ctruw™,
where
(5.13) by=1, b, =r(r+2) - r+2m—1)/2"n! ®=1,2, ).

Substitution of (5.12) into (5.5) yields

Pt) = 2 (@a,) 7" S byctw
n=0
which implies

o

(5.14)  Pr(aXi+a,X;*<c) = 2" (@,a,) """ 2] b, Pr(xXi. e < )

for any ¢, where X/* denotes a X*® variate with » degrees of freedom.
distributed independently of XI. We may suppose a,>a, without loss
of generality and put @,=aa,(e¢>1). Replacing ¢ in (5.14) by a,c and
substituting (5.10), we have the result ’

’ _ 2\/a >r - <d—1>2” ( 2 a+1 )
2 4-X’2 = -_— —
(5.15)  Pr(aX?+X2<¢) (a 4 ) 330,(57) Pr (Mas <%te

for any c.

On the other hand if we set x=mina;=a, after Robbins & Pitman,.
then we have

@) = [1-(1-L)w] ™ - g,(1- L) wr

n=y a

with the coefficients b, defined in (5.13). Hence
6.16)  Pra+xz <o) = (=) Eo.(40) Protas <o
a n=0
for any ¢. The speed of convergence of either (5.15) or (5.16) depends.
on a, ¢ and ». Especially it becomes slower as a varies from 1 to in-

. a—1\" a—1\"
finity because of the factor <a—+1> or <—a——> .
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We shall now compare two expansions (5.15) and (5.16) with each
other. Specifically, let us compare the nth term of (5.15) with the
{2n) th term of (5.16) in the following four items :

(i) the coefficients b, and b,, are of comparable magnitude ;

2
(ii) the ratio <%—1—%> of the geometric series of (5.15) is smaller

than (a—;—l>2 of (5. 16);
(iii) each number of degrees of freedom of X* variates is equal

{(=4n+2r);
(iv) the abscissa £Zi—10 of the X? distribution of (5.15) is smaller

2a
than ¢ of (5. 16).

From these comparisons it might be said that (5. 15) converges twice
or more as speedily as (5.16) does. And when ¢ is very large the advan-
tage is more than twice as seen from the item (iv) above, which property
is very profitable because the convergence then slows down for either

expansion.
Note that the formula (5.15) can be easily evaluated numerically by
using
2 1 AR 1z
(5.17) Pri¥in < A) = oty S ¥ dx

=1
In particular, if p equals two, then as a special case (»=1) of (5.15)
we get

| N N a—1>2" ( a+1)
(5.18) Pr(aZi+Zi< ¢ a+1n2=ob"(a_+1 Pr(xg.. <% 1e

for any ¢, where from (5.13)

B _ 1.3 (2n—1)
(5.19) b,=1, b, 5ed o @n) for n>1.

In Section 3 as well as in Section 4 we have reduced the problem
of the minimax discrimination to the equation (3. 3), which is written in
the form

6200 PrOu-DZ3<ku0w) = Pr((1- 1) z> k0
or
G.21)  PrOu—DZE+ 0 1DZ3 < ky M)

—Pr ((1-%})2&(1-%) Z§>kM(h)>’ A= (0, 0
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when w,=w, and p=1 or 2, respectively. The value of k) (»,) satisfying
(5. 20) is easily calculated from any table of normal probability functions.
As for (5.21) we may apply the expansion (5.18) to both sides, replace
the probabilities appearing there by the formula (5.17) and utilize any
numerical method for solving an equation.

Table 1 gives the probability (5.20) or (5.21) of the error committed
by the minimax discrimination procedure and Table 2 the corresponding
critical value k,,(M) for some typical values of A, or of the pair (A, A,).
The first column in each table designated as A,=1 corresponds to
(5.20) and others to (5.21). Actual computation was carried out by the
automatic computer NEAC 2203 at Electronic Equipment Industry Division,
Nippon Electric Company, Tokyo.
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PArRT II. INCOMPLETELY SPECIFIED POPULATIONS

6. Discrimination when parameters are estimated. We turn to
the case when for two p-dimensional populations 7;: N(g, 2;) (1=1, 2)
the variance matrices ¥; are unknown whereas the common mean vector
£ is either (1°) known or (2°) unknown, while a random sample taken
from each population provides the information about unknown parameters.

Let X;=(x{", x5, ---, ;") be a sample of size #n; from each II;.
Suppose that given an observation x we wish to decide whether x comes
from 11, or II,, utilizing also the knowledge of X, and X,. Then any
discrimination function should be a function of x, X, and X,. In this
general formulation, however, there is unfortunately no such simple results
as in Section 1 of Part I. It might be possible to introduce the notion
such as the invariance and the power for the purpose of obtaining any
optimal discrimination function, as was done by Kudé [16], [17] in order
to justify the classical discriminant function for the problem of mean
vectors. But we shall look to another occasion for this approach and
confine ourselves in the present paper to a study of the sampling distribu-
tion and of estimation, adopting the discrimination function obtained by
applying a conventional modification to that used in Part I.

Let us assume for simplicity throughout this Part that the eigenvalues
A, Ay, o0, A, given by

6.1) |Z,—AZ, | =0
are all distinct. Then the matrix F of eigenvectors defined by
(6.2) F3F=1, F3F=A

is determined uniquely up to the sign of every column. To determine
F completely we require that the first row of F consists of positive
elements. Now two cases should be distinguished.

Case (1°): g is known. Put for each ¢

(0 — ) (0 — 1)

"
@

1
(6. 3) 2 = o~

the maximum likelihood estimate of X;. Since the statistic (ﬁl, ﬁz) is
sufficient for the unknown parameter (¥,, ¥,) we have only to consider
a discrimination function which depends only on x, ﬁl and %,, provided
that our concern lies in minimizing the risk. In fact we adopt
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. 1 if >k
(6' 4) ¢(x» ﬁl’ 22) = { 0 if QA< ]g’
where
(6.5) Q = (x—py (B2 (x—4p),

which will be called the (estimated) quadratic discriminant function. Q is
defined by replacing the ¥,’s in the formula (2.2) by their estimates 2/s.
The critical value £ will be discussed later on.

First we consider the sampling distribution of @ We show that it

depends only on A=(},, -1, A,). Indeed, putting

(6. 6) ¥ =F'2F, 3f¥=F'3F
and

(6.7) y=F'(x—p)

we have

(6.8) Q =y (@ —ZFNy.

As is well-known the random matrix n,-ﬁ,- follows the Wishart distribu-
tion W(Z,, n;) for each 7 (for the notation see Anderson [4]); hence n3¥
and n,2¥ are distributed according to W (I, n,) and W (A, #n,), respectively.
On the other hand y follows N(O, I) or N(0, A) according as x comes
from [I, or from I7,. Thus from (6.8) it is seen that the distribution
of Q depends only on M as contended.

Next, consider the estimation of A, F and y. As in Section 2 we
know that there exist a matrix £ and a diagonal matrix A with the
diagonal elements in descending order such that

(6.9) F3F -1, F'3F=A.

The diagonal elements 3»123»22---295 of A are the roots of
(6.10) 15,-25|=0.

Then A consists of eigenvalues and F of eigenvectors with respect to the
pair (£, 3). We adopt (A, F) as an estimate of (A, F). It is the
maximum likelihood estimate because of the corresponding property of
(2., %). The probability that the equation (6. 10) has equal roots is zero,
and hence ¥ is determined uniquely with probability one if we adopt
again the convention used for F.

Quite similarly there exists a canonical reduction (A*, F*) such that

(6.11) FrgtFx = I, F¥siF* = A*.
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The diagonal elements of A* are the roots of
(6.12) | ZF—A*3¥| =0

and the uniqueness of F* can be ensured if we require that every
diagonal element of F* is non-negative. Substitution of (6.6) into (6. 11)

yields
(FF*y3(FF*) = I, (FF*)3(FF*) = A*.

Comparing this with (6.9) we know from the uniqueness of the solution
of (6.9) that with probability one
(6.13) A=Ax, F=FF*D,_,
where D, denotes a certain diagonal matrtx with elements +1 or —1.
The problem is thus reduced to (A*, F*) given by (6.11) and will be
taken up in the following section. But we note here that the distribu-
tion of (A*, F*) depends only on A.

We turn to the “estimation” of the canonical variate y. Note that

the quantity to be estimated is not a constant but a variate. We may
take as an estimate of y

(6.14) $=F'(x—p)

with £ being defined by (6.9). In view of (6.13) and (6.7) this is
written in the form

(6.15) y=D.F¥y,

which reduces the problem again to F*. Since the distribution of both
F* and y depend only on M, so is that of ¥ up to the sign of every
component.

As for k in the formula (6.4) we set

(6.16) h=ksA) or k= ky@)

according as we wish to get an asymptotically Bayes or a minimax dis-
crimination, where kz(A) is given by (2. 9), k(M) by (3.3) and M by (6. 10).

CasE (2°): g is unknown. For each 7 (/=1,2) the sample mean
vector and the sample variance matrix are defined as follows:

(6.17) w0 = Lstaw,

(6.18) ﬁi = il nz_' (xS — FD) (X — XD,
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Since the statistic (x®, x®, ﬁl, ﬁz) is sufficient for the unknown parameter
(¢, 2,, X,), it suffices to consider a discrimination function which is de-
pendent only on this sufficient statistic and x. We adopt in fact

1 if O>F
ZD 2D Py — T
(6.19) Plx 0, %%, 5, ) {0 if Q< 5,
where
(6. 20) Q = (x—x) (3 —37") (x—3%)
—  nEP+n,xX®
(6.21) x = ~atn

In doing this we have replaced g, X, and ¥, in (2.2) by their estimates
x, 2, and 2,, which are not the maximum likelihood estimates contrary
to Case (1°).

The problem again concerns with the sampling distribution of Q
and the estimation of A4, F and y. Put

(6.22) ¥ =F'3F, 3f=F23F
and

(6.23) y=F'(x—p),

then it follows that

(6.24) Q= (y-3) E 25 (y-).

We know that (#7,—1)3%; obeys the Wishart distribution W(Z;, n;—1) for
each 7 and hence (#,—1)2¥ and (n,—1)2¥ obey W, n,—1) and W (A, n,—1)
respectively. Furthermore the distribution of ¥ is N(0, (n 1 +n,A)/(n,+n,)?)
and that of ¥y is N(0,I) or N(0, A) according as x comes from II, or
from I7,. This time again the distribution of é depends only on A.

As regards the estimation of (A, F) and the choice of £ in (6.19)
the situation is quite analogous with Case (1°), so that the equation from
(6.9) through (6.13) as well as (6.16) hold with only the alteration that
the number of degrees of freedom of ¥; is reduced from #; to n;—1
for each i.

As for the estimation of y we take the estimate

(6.25) y=F'(x—x)
in place of (6.14). This can be written in the form
(6. 26) y=D.F¥(y-3y),

whose distribution depends only on A.
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7. Reduction in dimensions. We have utilized in the preceding
section the whole information provided by p-dimesnsional variates x and
x(°. In parallel with Section 4 of Part I it is conceivable to reduce the
number of dimensions from p to ¢(<p), holding then the efficiency of
discrimination as high as possible. Along the line of Theorem 5 we
consider a discrimination function written in the form

1 if Q* >k,
7.1 X, ﬁn ﬁz = { A A
.1 4 )=10 i Ox<h.
Then we have only to determine Q* and £ as respective estimate of Q*
in (4.4) and of k in (4.5). We set in fact

I (oL

where the >Aui are given by (6.9), while the #; are defined either by (6. 14)
for Case (1°) or by (6.25) for Case (2°). We set further

(7.3) B =kEsA%) or b= k¥,

according as we aim at an asymptotically Bayes or a minimax discrimina-
tion, where the functions kg(M*) and k,,(AM*) are the same as in (4.5) and

A¥ = (A, o0 A, 7\'p—q+s+1, ) 7\'p) .

Clearly, from the discussion of the preceding section the distribution of
Q* depends only on M but not necessarily on M=, -, A, N giii1)
=, A,). Now from (6.8), (6.11) and (6.15) it holds that

B LV OUEDS (1-%) 9.

A comparison of this and (7.2) shows that Q* picks up dominant terms,
¢q in number, of the canonical form of Q.

8. Asymptotic distribution of the eigenvalues and the eigenvec-
tors. Though we are interested in the asymptotic distribution of the
random variable (A*, F*) defined by (6. 11), let us change the notation for
convenience. Let A, and B,, be random matrices such that »,4, and
n,B,, follow independently the Wishart distributions W(Z, n,) and W(A, n,),
respectively, where A is diagonal with diagonal elements satisfying

8.1) A A, e A, 0.

Then the set of equations
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(8.2) F!A,F,=1I, F.,B,F,=A,

determines uniquely with probability one the diagonal matrix 4,=(\;(»)3,;)
of eigenvalues and the matrix F,=(f;;(n)) of eigenvectors subject to the
additional conditions

8.3) (1) = Ny(n) = - =N (n)
and
(8.4) film) =0 (=12, -, p).

For simplicity we suppose #,=#, regarding #, as a function of »n,. The
problem is to find the asymptotic distribution of (A,, F,) when #,, n,—>co
in such a way that

(8.5) v Z—‘ — ¢ (a positive constant).
2

Analogous problems are dealt with in Hsu [12], [13], [14] and
Anderson [1], [2]. The following derivation is based on Rubin’s theorem
as is the case with Anderson [2]:

TaEOREM (Rubin). Let X, (n=1, 2, ---) and X be p-dimensional ran-
dom vectors and let f, (n=1, 2, ---) and f be mappings from a Euclidean
p-space to a q-space. Suppose that

(i) X, converges in law to X as n—oo,

(ii) for every continuity point x of f, it holds that f,(x,)—1f(x)
whenever x,—x, and

(iii) the probability that X falls in the set of discontinuities of f is
zero.

Then f,(x,) converges in law to f(X) as n— oo.
We now state the

Therem 6. (1) For each i (i=1,2, ---, p) the random vector (\;(n),
fi:(n)) follows asymptotically a normal distribution with

A; 22 <l+l> A; \f
n, n, n,

and N 1 1

1 i 2n, J

as the mean vector and the variance matrix, respectively.

(2) For each pair (i, j) (i, =1, 2, ---, p; i< j) the random wvector
(fi;(n), f;:(n)) is distributed asymptotically normally with
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| A M) .<_1_ l)
’ d 1 ( ki(EJrZ) Mo\ T,
and ———— | .
o BT gy (A L) o (Rea)
\ n, n, n, "N,

.as the mean vector and the variance matrix, respectively.

(8) These random vectors are distributed asymptotically independently.

As a consequence of this theorem we know the following properties
.concerning the quantities defined by (6.9), (6.11) and (6.13). First

(8. 6) plimA* = A, plimF*=1

as n,, n,— oo under (8.5). Accordingly, plim D,=1I and hence
8.7 plimA = A, plimF = F,

‘Thus (/i, F ) is a consistent estimate of (A, F).

Furthermore, from (1) of Theorem 6 it is seen that log ii follows
.asymptotically

®.8) | N(log s 2<nl+l>>,

1 n2

whence a confidence ihterval of log); or of \; itself can be obtained.
As for 9, the estimated canonical variate, we know from (6.15) or
(6. 26) that

(8.9) y—y (in law)
for either of Cases (1°) and (2°).
Proof of Theorem 6. Put
(8.10) U,=+vn(A,-I), V,=n,(B,,—A4),

then from the central limit theorem their elements u;;(n) and v,;(n)
¢, j=1, 2, ---, p; i <j) follow in the limit independent normal distribu-
tions with the mean zero in common and the variances

(8.11) { E@w:) =2, E@L) =2)\, o
E(uf,) =1, E(”?J) = >“i7\’j (¢ <J).

Put

(8.12) 6,=Vnd,-A), Z,=\/nF,-I),

or, in terms of elements,

(8.13) 0,(n) = Vn Mi(m)—N) 5 2;;(n) = n (fi,(n)—=38,)),
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then we have to prove that (6;(n), z;,(n)) and (2;;(n), 2;;(n)) follows in the
limit independent normal distributions with the mean (0, 0) in common
and the variance matrices

A (1+¢) N 1 A HEN) = NN(14C)
(8.14)

, % Qi =20 a1+ MQu+en)
respectively.

Substituting A4,,, B,,, 4, and F, given by (8.10) and (8.12) into
(8.2), (8.3) and (8.4), we get respectively

(e 2+ ooy 2) -1

8. 15)
1 1
<I+\/nz></1+¢nzv)<1+\/nz> A+\/_9,,,
(8.16) A+ \/; \/7 (1) = =N+ \/Lf?p(n)
and
(8.17) 1+-L >0 @(=1,2 7).

V'n

These equations together determine (6,, Z,) uniquely with probability
one. If we neglect in them the terms of order »™* or higher, then,
omitting the subscript # of 6,, Z,, U, and V,, we get from (8.15)

Z+Z'+U =0,
AZ+Z'A+cV =96,

while both (8.16) and (8.17) reduce to triviality.

It is easily seen that (8.18) determines (8, Z) uniquely in terms of
(A, U, V). Indeed, putting U=(u;;), V=(v;;), 6=(0,8;;) and Z=(z,;),
we get the solution

8.18) {

0; = cvyi—MNuyi s 2y = —%—un ’

8.19

( ) AU ;—Cv;; CV ;— N5 . .
Rij = 7“;—7&-_ » Ry =T A —A; @ <Jj).

Suppose that #;; and v;; (7, 1=1, 2, -+, p; i< j) follow independent normal
distributions with the mean zero and the variances given by (8.11), so
that U,—- U and V,—V in law as n—c. Then (8.19) implies that
0;, z;;) and (2;;, 2;;) are distributed independently normally with the
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mean (0, 0) and the variance matrices given by (8.14). Thus we have
only to prove that (@,, Z,) defined by the equations (8.15), (8.16) and
(8.17) converges in law to (O, Z) defined by (8.18). Substituting
X, =U,, V,), X=U,V) f(X,)=0,, Z,) and f(X)=(6, Z) in Rubin’s
theorem, we see that the condition (i) is already ascertained and (iii) is
trivial since the mapping f is continuous as is seen from (8.19). It re-
mains thus to verify the condition (ii).

From now on we regard all variates in the equations from (8.15)
to (8. 18) as non-stochastic and prove that for any pair of matrices (U, V)
the convergence

(8.20) w,, vV, - (U, V) as #n— oo
implies that
(8.21) ®,,Z,)—(®,2Z) as #n— oo,

We rewrite (8.15) in the form

F,;<I+—1—U >F,, ~1,

(8.22) Vf
F,;(A Ly \F, -4,
' Jr\/n2 ”> ”

and we begin by showing that
(8.23) F,—-1I, A,—-A as n— oo,

To verify this we have to prove that for any subsequence {#’} of {»}
there exists a subsequence {#n”’} of {#’} such that

(8.24) F,,//-)I, A,//-*A as n’ — oo,

Now from the first equation of (8.22) we see that F, (n=1, 2, .--) are
bounded and hence for any {#’} there exist a subsequence {#”} and a
matrix F*=(f¥) such that F, —F* as n”—c. This together with
(8.20) and (8. 22) implies that A, converges to a certain diagonal matrix
A*=(\}S;;) as n”’— oo such that

(8.25) F¥F*x =], F¥AF* = A%,
Passing to the limit in (8.3) and (8.4), we know that Af>AfF>... >AF
and £¥% >0 for every i. Accordingly, the uniqueness of the canonical

reduction (8.25) implies F*=1I and A*=A, which proves (8.24) as
asserted.
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Thus we have obtained the first' terms of A4, and F,. We now
turn to the second terms 6, and Z, defined by (8.12). The convergence
F,— I implies that for sufficiently large » F, is nonsingular ; hence two
equations in (8.22) together with the first equation of (8.12) yield

(8.26) <A+\/1n_ V”>F <I+—U> ,,<A+—l_—9n>_

Vn Vn

The equation for the (7, 7) elements is

Aifii \/ln— é V;x(n) fri(n)

- 1 2
= (v )| St + T i) a0 |
or equivalently

G2 B[y euo- xu,k<n>]

= 0,00 £+ = T s Frs )|

Using (8.20) and (8.23) or, in terms of elements, #;;(#) >u;;, and v,;(n) —
v;; and f;;(n)—9,;, we find from (8.27) that

(8.28) 0.(n) = cv;;—Mu;; for every .
The equation for the (¢, j) elements (==j) of (8.26) is

7\' ft](n) +—= \/—— 2 vlk(n)fkj(n)

= (v + o 0,0) [ £+ S B s )|

Substituting z;;(n)=+/"n f;;(n), we get
N —X))z;(n) + ];»1 Sri(n) [«/E v;p(n) — >Lj“ik(")]
= 0,00)] £1m) + = S 40) f o) |

In view of the convergences (8.5), (8.20), (8.23) and (8.28) it holds
that

cv; . .
(8.29) z;;(n) — Tﬁ for 7s=7.

Finally from the first equation of (8.22) we get for every ¢
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» b »
31 FH)+ 333 Fusmhn(m) Ful) = 1.
k=1 N k=l1=1

Substituting f;;(n)=1+23;;(n)/\/n, we obtain after a straight-forward cal-
culation

(8. 30) 2;:(n) > —%— u;; for every 7.

The relations (8.28), (8.29), (8.30) together with (8.19) imply (8.21) and
the proof of the theorem is complete.

9. Asymptotic distribution of the quadratic discriminant function.
We consider the asymptotic property of the discrimination procedure
defined by (7.1) including then (6 14) and (6 19) as special cases. As
is seen in the preceding section A= (xl, 1,) converges in probability
to A=, ==, A,) and ¥=(9,, -+, 9,) converges in law to ¥y=(y, ¥,
as n,, n,— oo under the restriction (8.5). Therefore from the well-known
theorem for stochastic convergence (cf. Cramér [6], p. 254) we find that

9.1 Q* — Q* (in law),

where @Q* is given by (4.4). On the other hand, since the functions
ks(MV*) and k(M) are continuous in M =(\,, «=5, Ny, Ajp_gioiry 055 Ay), We
get

9.2) plim ks(M) = ky(A¥), plim ky (M) = Ep (M) .

Two convergences (9.1) and (9.2) together imply that the discrimina-
tion function (7. 1) is asymptotically equivalent to (4.3) and the probabili-
ties of error of two kinds are approximated either by (2.10) for the
Bayes case or by the probabilities appearing in (3.3) for the minimax
case, using in either case M in place of A.

This is the first approximation, as it were, of the asymptotic dis-
tribution of @*. What will be then the second approximation? For the
problem of discrimination for means of two normal populations I7;:
N(¢%, ¥) with the common variance matrix, the forthcoming paper [21]
by the author deals with the asymptotic distribution of the linear dis-

criminant function V= (x<‘>—x<2>)’ﬁ ‘l[x— % (x<l>+x<2))] , where x> denotes

for each ¢ (=1, 2) a sample mean of size #; from I7; and 2 an unbiased
estimate of 2 with f degrees of freedom. As #n,, n,, f—>c V follows

asymptotically the same distribution as U= (#£°— p®)' Y 'l[x— %(y‘”—l— p@)]
does, which is N <%D2, D2> or N <—%D2, D2> according as x comes from
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II, or from II,, where D*=(p"—p£?) 3 (g —p®) is the Mahalanobis.
distance. Let ®(¢) and ¢(¢#) be the cdf and pdf, respectively, of N(0, 1),.
then in the expansion

0.3  Pr(V<gD+DIIL,) = @(t)+¢(,)(A A, A)

f

in the inverse power of n,, n, and f the coefficients A4,, A, and A, are-
given in terms of # and D% The probability P(2|1) of error is obtained
by setting f=—D/2. It may be said that the formula (9.3) gives the
second approximation of the distribution of V.

The similar formula for Q* may be obtainable but the derivation,
it seems, is rather difficult for the general case and hence we give only"
a sketch of the derivation after the studentization method of Moriguti
[19] and Wallace [32] for the special case where the mean vector is
known and the reduced number g of dimensions equals one.

We evaluate the probabilily that the quadratic discriminant function
Q*:(l—l/il)ﬁ with §, given in (6.14) is larger than K(il), K(\) being
any function twice differentiable in A, when x comes from I7,, that is,

9. 4) Pr(§*>KQM)|I) = P(2|1) (say).
Clearly
(9.5) P@|1) = E'[Pr(@* >KO)IA; 1)1,

where E’ denotes the expectatlon with regard to A, while Pr the condi-
tional probability given A. From (6.15) it follows that 9, =37, fXy:
and hence the conditional distribution of $, given A is N(, 22, 5.

If we put

e t*dt

V() = PrX: <) = S' V%E

then (9.5) is written in the form
: MK ()
©.6) P@I1) = 1-E [‘I’(—————)]
(7\'1_1)Z€=1fi*12 °
If we have the expansion
MEGD)  _MKOW) 1

1
Q _A+ B
=D 2 M—1 \/n

in the power of #7', where n=n, denotes the size of the first sample-
X,, neglecting the terms of higher order, and if E'(4)=0, then it holds.
that
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@n  pem=1-v(3E) [«sz'(3)+ FVE@)]

where

WO = VO = e, V) = L)

and

The formula (9.7) gives the second approximation required. And it
remains only to calculate E’(B) and E’(AY.
From the arguments in Section 7 it follows that

1 1
A =M+—=0,+—¢,
Vn n¢
% 1 1 1 %« 1 .
=1+ zut—w, fh=—F—z, (=1
Fi \/nz n Fa \/nz @ )

with the terms of higher order being neglected, where 6,, z,, and z;
are given by (8.19) and

CU;— MU
E( 18 )\l “) —§—u1](7\. Uy, — Cvn)’

i

2

w, = — =z
1 2.’—21!1’

u; and v,; ({=1, ---, p) denoting independent normal variates with the
mean zero in common and the variances (8.11). After a straightforward
calculation we get

E(4) -0,
. 8) E(4&) = ()hz_)“;)z[ Z(RI_{I ‘K')2+ ¢ (7?1_{‘1‘ ‘XK'Y] :
BB) = 525 perreak (vs-  2) - K (254525 - . 250)]

9.9)

AS 2 p—l)}

2 A {2 17 /< _ 2 _ >__ —
+c MK”+AK'(AS S=1 p+1 K(x-l 1y A=l

A—1

where ¢ is given by (8.5) and we have put A=7,, K=K), K’zdﬁ;:K(X),
K" —;iK’(k) and S=237_,(\,—)\;)"%. Substitution of (9.8) and (9.9) into

(9. 7) yields the second approximation of the probability (9. 4).
Similarly, for the probability
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9. 10) P(112) = Pr(§* < KO\)|IT,)
of the reversed error we have
9. 11) PA2) = (K("l)> [%E’ (D)+ 5 WE (CZ)]
where
n=v(E), w-v(%)

and
9.12) E/(C?) = ZME/(A)

E/(D) = {VK”+ XK’<XS—~j> K(%—(TZ_XTQ}
o + cZ{VK”+ xK'<x5~ 2 pe 1) + K((xs p+1}=2 (x2x1)2>} .

If we wish to get the probabilities of the two kinds of error com-
mitted by the Bayes discrimination procedure, we may set K(\)=kg(A)=
log A together with K'=X\" and K”=—XA"?% in the formulas (9.9) and
(9.13), assuming 7,==, and w,=w,. For the minimax case we have the
function K=K(\)=k,(\) implicitly defined by

©. 14) v (xK 1>+\1f <;‘K1> —1.

By differentiating (9.14) once or twice in A we know

" = "‘L'I‘l + \f”z
K (A—1) (ry +2ry)
" Ve “lbl(‘;’l + ‘t”z) A+ 1,
K= s Dty [ A ARk S ( N +4“4'z> ]

which we may substitute in (9.9) and (9.13).

PArT III. AN APPLICATION

10. Discrimination of zygosity of twins. As an illustration of the
theory so far developed let us consider the problem of discrimination of
zygosity of twins. It is recognized by biologists that there are two kinds
of iwins, monozygotic or dizygotic. Generally speaking, two members of
a pair of monozygotic twins resemble each other in many respects,
physical or mental, qualitative or quantitative, more closely than those
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of dizygotic twins do. For. instance, a pair of monozygotic twins is
necessarily like-sexed but this is not true for a dizygotic pair. Con-
versely, if a pair of twins is opposite-sexed, then it must be dizygotic
but if otherwise, we cannot assert anything. We encounter thus the
problem of discrimination.

Consider some characteristics of a person, p in number, distributed
continuously among the population of persons and suppose that discri-
mination is to be based on measurements of these characteristics perform-
ed for each member of a pair of twins. Denote by § and n the observed
two p-vectors. It is noted here that we cannot specify which member
of the pair § or n should be referred to; § may be referred to either
member and n to the other. This situation accompanied with a kind of
arbitrariness will be called an intraclass property. Now for the popula-

tion of (2p)-dimensional variate <i> we assume normality, which will

not be so unrealisticc. Then from the intraclass property above it will
be reasonable to assume that the population has the form

(10. 1) 1 N([z] [IS, ’;]) G=1,2),

where I';, the covariance matrix of § and =, is symmetric and I7}
corresponds to monozygotic population and 77 to dizygotic. In this
formulation the problem is to discriminate between two normal popula-
tions having distinct variance matrices with the mean vector in common.
The parameters are supposed to be unknown in general.

Of course it is possible at this stage to apply the theory of Part I
or II but, conforming to the principle of ecomomy, it is desirable to
reduce the number of dimensions of variates considered as far as possible.
For this purpose introduce a one-to-one linear transformation

(& x| (&—m
(10.2) : L 9[ (:[
7 X L E+n

For each ¢ (=1, 2) if <i> comes from I7;, then the new variates x and

X are distributed independently in
10. 3) N(0,2(X—r;) and NQg 2(Z+1T;))

respectively. As is already seen in Section 2 or 3 the efficiency of the
Bayes or minimax discrimination depends only on the eigenvalues with
respect to the pair of the variance matrices. Now from the subject
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matter consideration above it will be expected that both covariance
matrices I, and I', are close to the variance matrix ¥ and furthermore
that I', is much closer to ¥ than I', is. This situation may be represent-
ed symbolically in a figure below arranging the matrices in a linear
order ;

|

| | | { | |
O >-r, -1, X X+r, ZX+I, 2%
hence we have a set of approximate inequalities
(10.4) I+, <2+T,< 2%,

where the sign of inequality means that the difference matrix is positive
definite. If (10.4) holds exactly, then as is easily verified every eigen-
value with respect to the pair (2(F+1I,), 2(Z+1,)) is smaller than 2. On
the other hand it is quite probable that there exist large eigenvalues
among those with respect to (2(—TI,), 2(F—1TI",)). This means that the
contribution of the variate x to the efficiency of discrimination occupies
the major part of the efficiency provided by the whole information (x, X),
which is equivalent to (§, ). It will not therefore bring a heavy loss
to utilize only the measurement x instead of (§, 7). Then a discrimina-
tion should be made between two normal populations

(10. 5) 1,: NO©,3,), where 3, =2(-TI) (=12).

This reduction indeed has been used by biologists from the intuitive
ground. We mention further that it has other favorable properties as
follows :

(i) The fact that the mean vector of I7; is known, in fact constant
zero, simplifies considerably the theory required and also reduces drasti-
cally the amount of numerical computation for obtaining the estimates
f,-, as is seen from a comparison of (6.3) with (6. 18).

(ii) It might happen that in the real field of application there exists
a certain variation of the population mean g, which we assumed constant.
This possibility endangers any application of the theory to the popula-
tions /7; but not to I7,. There may also exist a variation of (¥, I';) but
most of its possible effect will be absorbed by taking the difference
3, =2(Z-T)).

(iii) Though less probable than (ii) the assumption that #is common
in [1{ and II; may not represent well the situation. As for I7; we are
free also from such a difficulty.
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11. Analysis of the data of twins. We shall analyze the data*
consisting of measurements of ten anthropological characteristics on a
series of 143 pairs of like-sexed twins, aged from 10 to 13, from primary
and junior high schools in Osaka City. The constitution is represented
in the table below, where the discrimination of the data themselves between

Male Female Total
Monozygotic 48 43 91
Dizygotic 18 34 52

mono- and dizygotic groups is performed by ‘“polysymptomatische Aehn-
lichkeitsdiagnose” due to H. W. Siemens and O. v. Verschuer and hence
there have been excluded several pairs of twins which were difficult to
discriminate. Ten characteristics are (1) stature, (2) right iliospinal height,
(3) biacromial breadth, (4) upper limb length, (5) maximum head length,
(6) maximum head breadth, (7) maximum bizygomatic breadth, (8) bien-
tokanthial breadth, (9) total facial length and finally (10) auricular height.
All these variates are of continuous type and may be regarded as jointly
normally distributed.

Though the data provide us p(=10)-dimensional variate § as well as
n for every pair of twins, we utilize only the difference x=§—mn, neglect-
ing the information of Xx=§&-+n as is described in the preceding section.
Recall now the property (ii) there. In the present context there exists
certainly a variation of the mean # and perhaps also of (£, I';) resulting
from the variation of ages ranging from 10 to 13. But it is expected
that such a variation does not exert any serious influence on the applica-
tion of the theory if we consider only the variate x. There may also
exist most probably a definite difference between male and female
populations within either the monozygotic group or the dizygotic, and
hence to aim at rigor it is necessary to deal with the problem for each
sex separately. But in this example we amalgamate two samples from
male and female groups in order to enhance the precision of inference
by enlarging the sample sizes and so we try the discrimination of zygosity
with the sexes mixed. This procedure though somewhat rough may be
tolerable because of the same reason as above.

* These data have been provided to the author cordially by Professor Mototsugu Kohama,
Department of Anatomy, School of Medicine, Osaka University and have been analyzed also from
other points of view; the case of discrete characteristics is dealt with in Okamoto & Ishii [22]
as intraclass contingency table, and Tanaka [30] investigates the inference concerning intraclass
canonical correlation.
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, Tables 3.1 and 3.2 give the moment matrices fl and ﬁz, respectively,
computed by the formula (6.3) with regard to the variate x. Units of

Table 3.1. Moment matrix of ten characteristics for monozygotic twins

St IH B.B LL HL HB B.B B,B FL AH
St 3425 1.948 0.568 1.154 1.965 0.910 1.331 0.880 1.154 1.513
1H 1.810 0.369 0.773 1.342 0.764 0.910 0465  0.901 0.803
B.,B 0.774 0312 -—0.158 0.154 0.458 0186  0.147 —0.226
LL 1.009 0.499 0.480 0.467 0.389  0.353 0.240
HL 12111 —-1.714 —0.879 0912 0.846 4.671
HB 8.429 3.517 0.033 0517 1.418
B.B 5.616 0.330 1.012 0.231
B.B 1.747 0143 —0.550
FL 4.847 —0.220
AH 19.857

Table 3.2. Moment matrix of ten characteristics for dizygotic twins

St IH B,B LL HL HB B.B B.B FL AH
St 48.248 28510 9.286 20.294 1.696 9.135 15.244 1129 16.550 14.027
IH 19413 5423 10.386 0.744 4.656 8.848 0.508 8460  6.464
B,B 3191 4360 -—0.192 1.875 3,517 —0.150 3.633 1571
LL 9.941 —1.623 3.404 6.544 1.056 7.352  3.873
HL 50.443 —1.885 6.192 4.039 6.615 11.654
HB 27.635 14.250 3.789 10.654  3.962
B.B 19.693 5.173 11.250  4.558
B.B 6.404 3904 0.827
FL 29.808  3.000
AH 35.885

measurement are 1 cm for the first four items and 1 mm for the others.
As was expected, every diagonal element of ﬁl is much smaller than the
corresponding element of ﬁ'z. The eigenvalues given by

12,22 =0

were computed after the fashion of Rao [24]. Actual computation per-
formed by the relay computer FACOM 128 A under supervision of Mr.
Tutomu Komazawa, the Institute of Statistical Mathematics, yields the
largest eigenvalue

A, = 19.631
and the corresponding eigenvector

. = 0.5107x,+0.0719x,—0.0244x,+ 0.2447x,— 0.1138x;
—0.0563x,—0.0613x,—0.3238x,—0.0378x,—0.0074x,, ,

where the coefficients are so standardized that y, follows N(0, 1) for the
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population /7,, that is, y, is the first canonical component. The second
largest eigenvalue is

A, = 8.990
and the corresponding eigenvector or the second canonical component is

v, = 0.1384x,—0.7441x,+ 0.0967x,+ 0.5291 x, + 0.0619x;
+0.0673x,+ 0.0579x,+ 0.1337x,+ 0.2836x,+ 0.0122x,, .

It is seen that in y, the term of x, is dominant and is followed by x,
and x,, while in y, the term of x, is dominant, followed by x, and x,.
In either of y, and y, both x, and x,, contribute almost negligible and x,
and =z, follow them. Most of these results agree well with those of
Kato [15] who investigated the resemblance of twins by the method
of “relative deviation”, using the same data as ours.

The procedure of discrimination of an observation x is as follows.
We assume equal weight w,=w, and equal prior probability =,==,. If
the number ¢ of dimensions utilized is one, we assign x to I, or to II,
according as

(1—5)sr<k or >k,

where k=Fk,,=1.436 for the minimax case and k=£kz=2.977 for the Bayes.
For the former either probability of error of two kinds is 0.2187 while
for the latter P(2|1)=0.0766 and P(1|2)=0.3107. Note that two probabili-
ties for the Bayes case differ markedly. If ¢=2, then we assign x to
II, or to II, according as

1 1
(1-p) st (1) st <<k or >k,

where k=Fk,,=3.642 or k=ky=>5.173. For the minimax case P(2|1)=
P(1]2)=0.1378 and for the Bayes case P(2]|1)=0.0560 and P(1]|2)=0.1894.
Thus the efficiency improves considerably when ¢=2, compared with the
case g=1. Such a sharp increase of efficiency will not be expected when
g changes from 2 to 3, since the third eigenvalue A,=5.435 is not so
large.

These values of the probability of error are exact only if 19.631 and
8.990 are the true values of the population eigenvalues A, and A,. Since
in fact they are nothing but estimates based on the random samples we
can fathom the reliability of the data by calculating P(2|1) and P(1|2)
along the line described in Section 9. From the theoretical limitation

mentioned there we consider only the case ¢=1, obtaining the results
below.
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P(2|1) P(1]2)
Minimax | Bayes l Minimax Bayes
1st approx. 0.2187 0.0765 1st approx. 0.2187 0.3107
Term due to B 0.0465 0.0305 Term due to D —0.0039 —0.0062
Term due to A2 0.0020 0.0022 Term due to C? \ —0.0004 —0.0006
Total Total
(2nd approx.) 0.2672 0.1092 (2nd approx.) \ 0.2144 0.3039

Since each of the eight correction terms shows small value, compared
with the first approximation, except perhaps for the term due to B in
the Bayes P(2|1), it might be said that discrimination procedure advocated
here, either Bayes or minimax, enjoys the respective optimum property
in a rather good approximation.

The author would like to thank Prof. J. Ogawa, Nihon University,
for his keen interest and encouraging guidance during the development
of this work, Prof. M. Kohama for permission to use his data and Dr.
S. Kato as well as Mr. M. Tanaka for helpful suggestions. My thanks
are also due to many members of the Institute of Statistical Mathematics
and of Nippon Electric Company for computational assistance.
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