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On the Imbedding Problem of Algebraic Number Fields

By Nobuo NoBusawa

The purpose of this note is to give another proof of Akagawa’s
theorem [1] on the imbedding problem of algebraic number fields: the
imbedding problem for a Galois extension with a Galois group of order
I" (/ is a prime) in case a relative Galois group is of order / can be
solved if the corresponding local imbedding problem at each place of the
ground field is solved; moreover we can find a solution such that its
local completions coincide with the solutions given in advance of local
problems at a finite number of places and that the mappings of local
Galois groups to the global Galois group coincide with the canonical ones.
The proof in this note, using Richter’s “Monodromiesatz”, seems to be a
little simpler.

1. Local and global imbedding problems

Throughout this paper, let ¢ be a Galois group of order /”*' of a
Galois extension K over a finite algebraic number field &, let & be a
group of order /”, and let N be a normal subgroup of & of order / such
that @& is a central extension of 9 by g:

¢)) s/nZg.

The imbedding problem P(K/k, @/%——Zg) is then to find a larger field L
containing K such that L/k is a Galois extension with the Galois group
@ and that the homomorphism @*=@A of & onto g (A is the canonical

homomorphism : & —-®/MN) coincides with the natural mapping of ® onto
g gained by the restriction of the Galois group ® of L to the subfield K.

A local imbedding problem corresponding to P(K/k, @/%ig) at a
place (a prime divisor) p of k is defined as follows: Let T be a place
of K over p, and let 33 be the decomposition group at PB. g is con-
sidered to be the Galois group of Kg/kp. Let Bg be a group and let vg
be an isomorphism of Bg into ® such that @*vg(Bg)=35. If the kernel
of p*ug is Ny, we have
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'
2 Ba/Ng = 3p,
where +r is gained naturally from @*vg. An imbedding problem
P(Kgy/kyp, Sgg/mig%) is called a local imbedding problem corresponding

to P(K/k, @/%gg) at a place p. This is of course not uniquely deter-
mined. ‘

Now we recall the Brauer-Richter-Reichardt’s theory. Let N be a
generator of . The group extension (1) is uniquely determined by a
factor set {N“#?} since it is a central extension, where # and v € g and «,,
are rational integers. On the other hand, let £ be a primitive /-th root
of the unity. Assume K> ¢ (and hence £>¢), and {{"*?} is a factor set
of K/k. Then we can make a crossed product A of K/k by g with a factor
set {¢“#?}. The next theorem is a special case of Brauer’s theorem [2].

Theorem 1. Assume that the group extension (1) does mnot split.
When K>¢, the imbedding problem P(K|/k, @/%gg) is solved if and only
if the crossed product A splits.

From this theorem, a special case of Richter’s theorem [5] is gained:

Theorem 2. Assume K>¢. P(K/k, (&/%gg) is solved if and only
if at least a local imbedding problem P(Kg/ky, Ba/ %,Bigg;) corresponding
to it at each place p of k is solved.

When K # ¢, we put k=k(¢) and K=K(¢). Then K/k is a Galois exten-
sion with the Galois group g. Denote by A a crossed product of K/k
by g with the factor set {{“#?}. The proof of the next theorem is gained
by Reichardt [4].

Theorem 3. Assume (1) does not split. If A splits, then P(K/k,
&/NLq) is solved.

The next theorem is a natural consequence of the above three theorems.

Theorem 4. P(K/k, @/%gg) is solved if and only if at least a
local problem corresponding to it is solved at each place of k, whether K
contains ¢ or not.

Proof. The theorem is clear when K> ¢. If (1) splits, P(K/k, &/ %ng)
is always solved. Hence assume that K # ¢ and that (1) does not split.

If P(Kg/ky, 83/%53;353) is solved, then P(Eg/ky, Sg/%%igg) is solved,
as is easily seen. By Theorem 2, P(K/E, @/%ig) is solved, and hence
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A splits by Theorem 1, that is, P(K/k, @/%gg) is solved by Theorem 3.

2. The exact imbedding problem
According to Akagawa [1], the exact imbedding problem is defined

as follows: Let P(K/k, @/%ig) be a global imbedding problem, and
let S be a set of a finite number of places p of k. We assume that a

local imbedding problem P(Kg/ky, 853/9&5323%) is given and has a solu-
tion Fy at each place p of S. Then arises a problem to find a solution
L of P(K/k, @/%ig) such that its Y-completion Lg is isomorphic to Fy
and that vq coincides with the canonical mapping (the inclusion mapping
as a decomposition group) of the Galois group By of Lg/kp (which
we may identify with Fg/kp) into the Galois group & of L/k This
problem is called an exact imbedding problem and will be denoted by

7]
P(®/N=g; Bg, vp, Fr). (We always fix K and a set S).
Corresponding to the definition of the product of group extensions
(that is, the multiplication in 2-cohomology groups), we define a product

of two exact imbedding problems P(@i(‘)/% ‘q; 3P, P, FP) and
P((&‘Z’/%gg; BE, v, F) as follows : Put (8@ x §®)g= {(A®, A®) with
AP e B and A® e &® such that pF(A®)=@F(A®)}. Then (B x&G®),
contains a normal subgroup 9t which is generated with (N, N). Put

BP = (B x B®)g/N. G contains (N x N)/N, which is isomorphic with
N by the natural way and we identify with . Then we have

so/m 2 g,

where ¢, is defined such that @,((A™, A®) mod N)=pF (AP) (=pF(A®)).
We shall next determine 3%, »§ and F§. Put Fg=F§ UF# and
Ba=@FPVFP/ky) (the Galois group of Fg§ VF$/ky). Let vg be an
isomorphism of 8¢ into (B x &®), defined such that, for an element A

of Bg, vg(A)=F (AP), v (A®)) where A® are elements of 3% gained
by the restriction of A to F§. Now let F$ be the fixed subfield of
FPUF® of g (ox(Ba)nN), let 3% be the Galois group &(FE/ky),
and let v{ be the isomorphism of 3§ into &® gained naturally from og.
In this case, we put

P(@(l)/% 2 g; S(D, p%), F(D)—FP(@(Z)/% ~ g : 8(2) (2) Frz))
_ P(@(”/% N q; f <'5) <3> F(3)
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It will be verified that all exact imbedding problems (for fixed K and S)
form an additive group by this product.

Theorem 5. When the group extension (1) splits, every exact im-

bedding problem P((&i/gﬁig; B, ve, Fp) has infinitely many solutions for
arbitrary Bg, vy, and Fy.

Proof. Since @/%Zg splits, S =Ax N with ==g. It suffices to find
a field k&, such that K and k, are independent over k, that k,/k is a Galois
extension with the Galois group 3 and that Kk, suffices the condition of
a solution. Then we may assume 2(=zq) is the Galois group of K/k.
First, assume vg(8g) DON. Then =3 XN with vg(8)CA and vy (N')
=N, and Fy=Kgyx k) where Kg is the invariant field of 9’ and ky of
8’. From the assumption, vy is uniquely determined for each element
of B’ (the canonical mapping). So the problem is reduced to find a field
k, independent of K over k£ such that k,/k is a Galois extension with the
Galois group 9N, that its completion kip=£kj, and that the mapping vg
of the Galois groug 9 of kip/kp (=ky/kpy) onto N coincides with the
canonical one. Next, assume that vq(8g) DRN. Then By=3g, and hence
Fa=Kg. If we put va(Bg)=U, W=3p or 3" has index / in 3p. Let
kp be the invariant subfield of 3N A'. We can define an isomorphism
vy of the Galois group ®&(k}/kp) into N such that, if A’ is an element
of & (k;/kp) gained by the restriction of A € & (Fy/ky), we put vy(A’)=N"*
where vg(A)=(A, N)eAxN. vi is then defined independent of the
choise of A as is seen from the definition of k3. (When 33=2, v4 is the
trivial mapping of the unity.) In this case, the problem is reduced to
find a field %k, independent of K over k such that k,/k is a Galois ex-
tension with the Galois group 3, that its local completion k:p is isomorphic
to ky, and that the mapping »§ coincides with the canonical one. To
find k, of these properties at a finite number of places is always possible
by infinitely many ways by Hasse [2]. (Cf. also [1].)

Theorem 6. Let
PO@/R 2 g; BY, o, FO)+ PO/ Zg; 88, 4, FP)
= PO°/R % g; 88, 4, F).
Ir P@/R2q; 89, v, FY) and P& /RZq; 8%, v, F) have solu-
tions independent of each other, then the third problem P(G® /%Z:)?g;

B, &, F®) has a solution.

Proof. If L, and L, are independent solutions of the first and second
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problems, then L,wL, is a Galois extension with the Galois group
(B xE®). If L, is the invariant subfield of N (T (S® x B®),), then L,
is a solution of the third problem.

Now we conclude this paper with Akagawa’s theorem.

Theorem 7. [f S contains all ramified places at K|k, then every

exact imbedding problem P(@/%gg; Bs, vn, Fp) has infinitely many solu-
tions.

Proof. The existence of Bg, vy and Fg at all ramified places implies
the solvability of a local imbedding problem at each place of %, since
the solvability at unramified places is clear. Then by Theorem 4 the

global imbedding problem P(K/k, @/Eﬂig) has a solution L. If we
denote the decomposition group, the canonical mapping and the local

completion of L by Bg(L), ¢ and Lg, then P(@/Sf&gg; Ba(L), tg, Lg)
has a solution L. Put
P P
PSR = g; Bp(L), i, La)—P(S/N = g; Bg, va, Fa)
- PG/ 2 g; B, 5, FY).

Then G©/N ifog splits, and hence by Theorem 5 and 6 we can find in-
finitely many solutions of P((Sia’)/i)}(é’g ; 3P, v, FY) and also infinitely
many solutions of P(@/‘R:—Zg; Bs, va, Fp).
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