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Global Stability Criteria for Differential Systems

By Lawrence MARKUS and Hidehiko YAMABE

Consider the real differential system
dX’ _ i o g —
Ef) HT“‘f(x, )x) ? 1727 ,n

with the real vector-valued function f(x) in class C' in the real vector
space R”. The local stability theorem of A. Liapounov [8, and 2, P. 3417
states that if the origin is a critical point,

f(0)=0,

and if the eigenvalues of the Jacobian matrix J(0), where

5w =L w,
have negative real parts, then each solution of ¢) which initiates near
the origin must approach the origin #—+ . We shall extend this result
to a global stability criterion which generalizes a theorem of N. N.
Krasovski [3, 4].
For the differential system &) consider the local eigenvalues

A oo, x™), e, A (2N -+, &™) which are the roots of the characteristic
polynomial

[ J(x) =N .
If

Reki(xl, e, x”)<0 { = ]_, 2’ EERI 4

everywhere in R”, then it has been conjectured [1] that each solution
curve of ¥) must approach a critical point of ¥) as f—>+oco. This is
clearly true for n=1 (when &) has a critical point) but it has been
established in only particular cases when n_>2.

Note that an affine coordinate change in R”,

¥y =Aix+a,  det A0,

transforms the system &) to
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#) D~ A5 A (—a)).

Thus the Jacobian matrix J(x) is replaced by
AL JEATY or AJ( A (y—a)A™,

which has the same local eigenvalues as has J(x). Thus, if ) has a
critical point P, we can choose affine coordinates to place P at the origin
and yet preserve the hypotheses on the local eigenvalues.

Theorem 1. Let JNU* be a connected complete Riemannian manifold
with a positive definete metric tensor g;i(x), say of class C”. Consider

ff) it = fi(xl’ ) x”) ’

a contravariant C' vector field on .
Assume that the tensor

fi’j+fj,i = f")j+gljf,asgis
has eigenvalues which all satisfy everywhere
Mx) < —v(p(x)),

where p(x) is the distance from x € " to a fixed reference point P € I
Here v(p) >0 is monotonic decreasing on 0<_p<_co, and

sw ef{:‘jgv(o’)a,v dp < oo,

for each constant E>0. Then ¥) has a unique critical point in " and
I* is homeomorphic with R". Then each solution curve x(t) of &) is
defined in N for all large t— + oo and the positive limit set of x(t) is
the unique critical point of &).

Proof.® Let x(f) be a solution of ¥) for an interval 0< <7< + oo,
We shall consider the tangential component of the acceleration along
this trajectory. Let v(¢) >0 be the speed and then

. ot = g ff7
2T = gy fouf* 1+ 8 f Fof*
Thus
Lot = (fot £ 708 * = Fo(Foyt f 0F

1) The unicity of the critical point was pointed out to the authors by Professor P. Hartman,
cf. [9].
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Using Riemann normal coordinates at a point where g:;=9;; we compute
L[ty 1< —ApNL@)].
Let »(0)=v, and then
ot) < v, exp (—(1/2) | wp(x(@do) on 0=t

Since »(p) >0, 0<<v(#)< v, and hence x(f) has bounded speed and 7= + co.
Also, letting p(x(¢))=p(f) and p(0)=p,,

p) < pot | 01
SO

P(t) < po+uit .
Then

PO < py0, || exp (—=(1/2) | otu)dido

On 0<<u<o we have v(p(u)) >v(p,+v.u).

Then

P < pot 0, | exp (= (1/2) | o, +o0)durde
or

t Pt voe

P < pytv, | exp(—(1/20) S W2)dz)do .

Thus
Po+2ot A

< pt | exp(—(1/20) [ sz,

But

[ exp(—ar200 | s2razran
Po Po
Py L A
< [exp 1/2v) S o(2) dz] S exp(—(1/2,) S w2)d2)dN < oo .
Thus p(¢) is bounded on 0<<#<  and x(¢) lies in a compact subset
K of Jw”.
But in K,
v(p(x(2))) >n >0
S0
lim,,. o) =0.
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Therefore, if K, K is the set of critical points of ¥) in K and if
N is any neighborhood of K, then x(¢) lies in N for all sufficiently large
t. The positive limit set of x(¢) thus consists of a subset of K, and
this is non-empty, compact and connected by the general theory of
dynamical systems.

At a critical point O of ¥) use geodesic coordinates with g;;=39;;.

Then J jzg—gis non-singular at O since J+ J” is negative definite. Thus

the critical points of ¥) are isolated. But the solution curves of ¥)
define a continuous map of JIT” onto the set of critical points of &).
Thus ¢) has just one critical point in J1T"

Now choose local coordinates around the critical point O so that &)
has a negative radial velocity on the coordinate unit sphere centered
at O. Each solution curve of ¥), other than O, intersects this unit
sphere in exactly one point. We use this intersection point on the
coordinate unit sphere and the f/-parameter along the solution curves
of ¥) to map JI" onto an open subset of R”. We map O to the origin
of R" and every other solution of ¥) is mapped onto a ray in R”. Thus
J* is homeomorphic with an open subset 7 of R” which is star-convex
from the origin.

Now the radial distance function from the origin to the boundary
of T is lower-semi-continuous as defined on the unit sphere in R”. But
a lower-semi-continuous function is the limit of a monotonic increasing
sequence of continuous functions. The concentric shells defined by this
monotonic sequence of continuous functions can be mapped homeomor-
phically (with fixed angular coordinates) onto shells between concentric
spheres. Thus J1* is homeomorphic with all R”. Q.E.D.

ReEmMArRk. The function ¥(p) :ﬂ_flT)E’

for each constant x_>0 and 0<{a<(1, satisfies the requirements of the
theorem.

Corollary. Let J1U"=R" be the number space with the flat metric g;;=

B;; where (B;;)=B is a constant, positive definite, symmetric matrix. Write

fiy =2 = 1),

and assume that each eigenvalue of

M = J*™B+BJ
everywhere satisfies
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AMx)< —v(p(x)), p(x)*=32_1(x%)% v(p) as in the theorem. Then each
solution curve of &) is bounded, as t— + oo, and approaches the critical
point of &).

Proof. Now

fi7j+fj’i = f‘.,i+B1]-fl,sB"s .
By this is just the matrix
J+B'JTB = B (BJ+J™B).

Since B™' and (BJ+J7B) are symmetric and B is positive definite, these
two matrices can be simultaneously diagonalized at each point x € R”.
Thus the eigenvalues of

fi,]_ +f]_,i
everywhere satisfy .
Mx) < —6&v(p(x)), for some & >0.

Using the Theorem 1, we obtain the corollary. Q. E. D.
In the case where »(p) is constant we obtain the theorem of Krasovski

[3, 4].
We now utilize only the Euclidean metric in R” and siate a result
which does not require the computation of the eigenvalues A;(x', ---, ™)

of J(x)+JT(x).
Theorem 2. Consider
¥) X = fi(x', -, 2") in C' in R”.
Assume that each eigenvalue of

M) = J)+]7(x), where Jix) = 2L,

is negative, and assume there exist constant bounds 3, >0, B, >0 for

| Trace M (x)|<_ B,
|det M(x)| >B,.

Then each solution x(t) of ¥) is bounded in R", as t—+ oo, and x(t)
approaches the critical point of ¥).

Proof. Now
M —TrMA'+ -+ (—1)"det M = 0.

Since each root A< 0, we have
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A< B, .
Also
AN, o X, | =|det M| >6,>0,

and hence

s
A 2,
| > Bt
Thus each eigenvalue everywhere satisfies
Mx) < —&, for some constant € >0. Q.E.D.

ExamprLE. Consider the system in R?

£ = —2x+cosy

y=sin*x—y.
Compute

M= J+]7= (—4 25inxco.sx—siny)

2sinxcosx—siny —2

Since

| Trace M| = —6
and

|det M| >4,

the Hurwitz criterion assures us that the eigenvalues of M are negative.
The corollary show that every solution tends towards the unique critical

point as #— + oo,

Theorem 1 and 2 deal with the symmetric matrix M=J+]J7. We
now turn to the consideration of stability criteria based directly on J.
The next example indicates that considerable caution is required here.

ExampLE. Consider

x=(—1+@3/2)cos’)x+(1—(3/2)cos tsint)y
y=(—1—(3/2)sin fcos H)x+(—1+(3/2)sin*t)y.

The instantaneous eigenvalues are

M) = —A/D+T/4H)v =1 and A, = —1/4)—-T/HV/ -1
)
ReA;(t) = —(1/4) for all £.

Yet there is a solution which grows exponentially

x = —(exp (¢/2))cost, y=(exp(t/2))sint.
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Now consider
= —z+w, w=—w
with a solution
z=tet, w=et.
Now form the infinite autonomous system
£, = [—1+(3/2) cos’ 2z, (x7:1+yms1) 1%,
+ [ —1—(3/2) cos 2, (471 +Yn+1) sin 2, (X741 +¥341) 19

9, =[—1—(3/2) sin 2, (x%,1+ y2+1) COS 2,, (X241 +¥2.1) ] %,
_l_ [_ 1 +(3/2) Sin2 zn(x3h+l +yfb+1):|yn >

2, = —2,tw,
w,= —w,
for n=1,2, 3, ---.

The eigenvalues of this ‘infinite Jacobian matrix’ all have negative
real parts, yet the solutions do not tend towards the unique critical
point as {— +oco. We cannot, as yet, construct such an example using
a finite set of equations.

Theorem 3. Consider
9) z = f(x, )

with f, g in C" in the (x, y)-plane R* and assume that the origin is the
unique critical point. Assume that

T(x, 3) = (fx fy)

8 &

has eigenvalues which have negative real parts everywhere in R*. Assume
that ome of the four functions f., f,, &, & vanishes identically in R°
Then every solution of &) approaches the origin as t— + co.

Proof. We can assume that either f,=0 or f,=0, for the other
cases reduce to these upon interchanging x and jy.

Case 1. f-=0
Here
= f(»)
y=g(x,y)
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= (0 fy)
g &
and g,<0, £,2.< 0 everywhere.
By replacing x by —ux, if necessary, we can assume that

SO

fy >0 and g,< 0 everywhere.

Thus
g0, » >0 for y< 0
g0, » <0 for y>0
g(x,0)>0 for x<0
g(x,0)< 0 for x>0
and

f(» >0 for y>0
f(») <0 for y<TO.

By the classical Liapounov stability criterion, there is a disc D, centered
at the origin, such that each solution of ¥) which intersects D must tend
to the origin as #— + oo,

Now let S(#) be a solution of ¥) with coordinates x(¢), y(¢) for
0<t< <+ co.

Suppose that S(#) does not intersect D.

If S(¢) passes through a point P, in the first quadrant of the (x, y)-
plane, then £(¢)”>0 and p(#)< 0 as long as S(¢#) remains in the first
quadrant. Also |#(¢#)| is bounded, on S(¢#) past P, in the first quadrant,
and y(#)< —#<0 for some 75_>0. Thus S(f) must enter the fourth
quadrant.

Note that the inequalities obtained for g(0, y), g(#, 0), and f(y) force
S(¢) to enter the quadrants 1, 4, 3, 2, 1 cyclically unless S(f) remains
eventually in just one quadrant or S(#) is unbounded for # >0.

If S(#) passes through a point P, in the fourth quadrant, then
2(t)< —9< 0 as long as S(¢) remains in the fourth quadrant. But, past
P, on S(¢) in the fourth quadrant, y(#) is bounded from below and so S(¢#)
must enter the third quadrant.

If S(¢) passes through a point P, in the third quadrant, then £(¢)<0
$(t)>0 as long as S(f) remains in the third quadrant. But [£(¢)] is
bounded, on S(¢) past P, in the third quadrant, and 5(¢) > _>0. So S(¢)
must enter the second quadrant.

If S(¢) passes through a point P, in the second quadrant, then £(¢) >0
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and y(¢) is bounded above as long as S(¢#) remains in the second quadrant.
Moreover x(f)_>7_>0 on S(¢) past P, in the second quadrant. Thus S(¢)
must enter the first quadrant.

Therefore each solution S(¢) of ¢), which does not intersect D,
encircles D clockwise infinitely many times. Let A, and A, be the y-
intercepts of successive intersections of the spiral S(#) with the positive
y-axis.

If A,=A,, then S(¢) is a periodic solution of ¥). This is impossible,
by Bendixson’s criterion, since the flow is area-decreasing. If A, >A,,
the area bounded by the spiral loop 71:/?2 and the line segment A,A, is
mapped by the flow onto an area which properly includes it. This is
impossible since the flow is area-decreasing.

Thus A,<A, and hence S(#) spirals towards a limit cycle of ¥). But
&) has no periodic solution (except the origin). Therefore the supposition
that S(¢) does not intersect D leads to a contradiction and the proof of
the theorem is completed in Case 1.

Casg 2. fy=0.

Here

% = f(x)

y=g(x,3)
SO

= (f, 0)

& &

and

f:+8 <0, f.8,>0.
Therefore

f-<0 and g,<0
everywhere.

Again there is a disc D, centered at the origin, such that each solu-
tion of ¢¥) which intersects D must approach the origin as #—+ . Also
there is a strip

Z: |x|<§&,

such that a solution of ¥) which intersects Z must eventually intersect
D.
Let S(¢#) be a solution of ¥) with coordinates x(¢), y(¢), for

0_<__t<'7‘£—|—oo,
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Suppose S(¢) does not intersect D\ JZ.

If S(¢) passes through a point P, in the right half-plane x>0, then
£2(#)< 0 as long as S(f) remains in the right half-plane. In fact
2(t) < —n <0 since S(¢) is bounded away from the y-axis. Since S(f)
does not intersect Z we must have y(f) >+ oo or y(¢)—— o along S(?).

In 0<x<P,(x), y>0 we have a finite upper bound for g(x,y),
and hence y(¢) cannot approach -+ oo along S(¢#). Also for 0<x< P, (%),
y<_0 we have a finite lower bound for g(x, y), and hence y(#) cannot
approach —oo along S(#). Therefore S(#) cannot lie in the right half-

plane.
Similary if S(¢) passes through a point P_ in the left half-plane

x<_0, then #(¢#) >0 as long as S(f) remains in the left half-plane. In fact
£(t)>n_>0 since S(¢) is bounded away from the y-axis. Using the same
type of bounds on y(f) as above, we see that y(¢#) remains bounded on
S(#). Hence we obtain a contradiction which shows that S(#) must in-

tersect D\JZ.
Therefore the theorem is proved in Case 2. Q. E.D.

Corollary. Consider
I+g(x,2)=0
with glx,y) in C' in R Assume
£0,0)=0, £.>0, g>0.
Then each solution x(t) is defined for all large t >0 and
lim,,, x() =0, lim,,,  2#) =0.
Theorem 4. Consider
9) = fix!, -, ¥ i=1,2, -, n
with f(x) in C' in R". Assume

1) f(x)=0 if and only if x=0
and

2) g_fx_;@):o for j<i

gj;: (x)<_0  for each i=1,2, -, n, everywhere in R".

Then each solution of ¥) is defined for all large t and tends to the
origin as t— + oo,
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Proof. The theorem is trivial if #=1 and holds by Theorem 3 when
n=2. Now we proceed by induction to prove the theorem in the general
case.

Suppose the theorem holds for differential systems satisfying the
hypotheses in R”™.

Consider
B =, & )
# = f, 2, oy 1)
&)
A" = f7(x")
which satisfies the hypotheses of the theorem in R”.
If (x3, 2%, -+, x%) is a point in R” at which

SA(x5, %3, o, 25) =0
f'(xg) =0,

then x2=0. Hence
L 0) =0

and since

o1 _ afn—l
f (0’ O) - 0 and axn—l < 0

we have x5 '=0. Similarly
X2 =0, #Mm3—=0, -, 22=0, x5=0.
Thus the last (#—1) equations of ¥) form a system

g/) Jaz :fZ(xZ’ x3’ ey xn)

.x’” — f”(x”)
which satisfies the hypotheses of the theorem in the R”' space x'=0.
Let S(#) with coordinates x'(¢), x%(¢), .-, x™(¥) on 0<¢< o< + oo be
a solution of ¥) in R*. Then x%¢), x°(¢), ---, x*(f) form a solution of ¥’)
and so can be extended over 0<#< co.
Moreover
|2 @)+ | @) |2+ 4 [ 2B |° = p(2)

is bounded on 0<{¢< e and
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limt—>+m xz(t) =0 ’ limt—>+mx3(t) = 0) B
and
lim,,  x"(f) =0

by the induction hypothesis.
Let K be a compact subset of the R" ' space x'=0 which contains
the curve
x%(t), x%(¢), -, x"() for 0<<t< oo,
Since
Ifl(oi x27 B xn)l
1
is bounded in K and since gf; - <0 in R”", we find that x'(#) can be ex-
tended over 0<C#< oo, so that solution S(¢) of ¥) exists on 0<#<oo.
Now there is a ball $, centered at the origin of R” such that S(¢)
approaches the origin if S(#) intersects 8. Moreover there is a tube in
R”

T: p@®)<p,
such that S(¢) intersects B if S(¢) intersects 7.
But
lim,,,  x%(¢) = lim,,,  x%(¢) =---= lim,,,. . x"(¢) = 0.

Hence S(f) must intersect 7. Therefore
lim,,, x(@) =0
and S(¢#) approaches the origin of R” as t—>+ . Q.E.D.
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