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Global Stability Criteria for Differential Systems

By Lawrence MARKUS and Hidehiko YAMABE

Consider the real differential system

y) W = fi(χl>'">χn) * = 1 > 2 , -,ιι

with the real vector- valued function f ( x ) in class C1 in the real vector
space Rn. The local stability theorem of A. Liapounov [8, and 2, P. 341]
states that if the origin is a critical point,

/(O) = 0 ,

and if the eigenvalues of the Jacobian matrix /(O), where

/ί<*> = !£<*>.
have negative real parts, then each solution of if) which initiates near
the origin must approach the origin t -> + °° . We shall extend this result
to a global stability criterion which generalizes a theorem of N. N.
Krasovski [3, 4].

For the differential system £f) consider the local eigenvalues
\(x*> •••, xn), •••, \(x1

9 •••, xn) which are the roots of the characteristic
polynomial

If

Reλ^1, ..-, #M)<0 / - 1, 2, •••, n

everywhere in Rn, then it has been conjectured [1] that each solution
curve of ίf) must approach a critical point of ίf) as ί->+oo. This is
clearly true for n = l (when ίf) has a critical point) but it has been
established in only particular cases when n^>2.

Note that an affine coordinate change in Rn,

y = A}xj + a1 , det A] φ 0 ,

transforms the system tf) to
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Thus the Jacobian matrix J(x) is replaced by

AIJIA^1 or AJ(A-\y-a)}A^ ,

which has the same local eigenvalues as has J(x). Thus, if if) has a
critical point P, we can choose affine coordinates to place P at the origin
and yet preserve the hypotheses on the local eigenvalues.

Theorem 1. Let 3\ίn be a connected complete Riemannian manifold
with a positive definete metric tensor &•/#), say of class C°°. Consider

if) t'=f<(X\~.,X*),

a contravariant C1 vector field on 3ΐίM.
Assume that the tensor

has eigenvalues which all satisfy everywhere

where p(x) is the distance from x e 3ϊlw to a fixed reference point P e 3\ln.
Here v(p)^>Q is monotonic decreasing on 0<jθ<^°°, and

for each constant £^>0. Then if) has a unique critical point in JΓtw and
3\ln is homeomorphic with Rn. Then each solution curve x(t) of tf) is
defined in JΓίw for all large t-^ + oo and the positive limit set of x(t) is
the unique critical point of tf).

Proof .υ Let x(t) be a solution of if) for an interval 0<£<T< + °°
We shall consider the tangential component of the acceleration along
this trajectory. Let v(t)^>0 be the speed and then

and

Thus

1) The unicity of the critical point was pointed out to the authors by Professor P. Hartman,
cf. [9].
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Using Riemann normal coordinates at a point where giJ = Sίj we compute

Let v(0) = v0 and then

v(t} < v0 exp (- (1/2) Γ »(p(x(σ)))dσ) on 0 < t < T .
Jo

Since K/°)^>0, 0<#00<^0 and hence #(/) has bounded speed and r = -f oo.
Also, letting p(x(f)) = p(f) and

P(t)<Po+(*1>(<r)d<r
Jo

so

Then

I < PO + v, Γ exp (-(1/2) Γ v(p(u))du)dσ.
Jo Jo

On 0<&<σ- we have
Then

or

But

< ^o + ^o \ exp ( - (1 /2) \ y(p0 + υ0u)du)dσ ,
Jo Jo

<^o + »o Γexp(-(l/2ι;0) p""^ v(z}dz}dσ .
Jo JPO

P(t)<P0+
 P θ +^exp(-(l/2^0)

λ v(z}dz}d\.

5 P0+v0t fλ
exp ( - (1 /2 ί;0) υ(

PO J P O

< Γexp (1/2 »0) (P° »(«)</«] (" exp (-(1/2 »„) Γ »(
L Jo J Jo Jo

oo .

Thus p(f) is bounded on 0<^<^oo and x(t) lies in a compact subset
of αnw.

But in K,

so

lim^+00 ι (ί) = 0 .
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Therefore, if KC(^K is the set of critical points of if) in K and if
TV is any neighborhood of Kcy then x(f) lies in N for all sufficiently large
t. The positive limit set of x(t) thus consists of a subset of Kc and
this is non-empty, compact and connected by the general theory of
dynamical systems.

At a critical point O of ίf) use geodesic coordinates with gij=§ij.

Then Jj = ̂ jis non-singular at O since /+/Γ is negative definite. Thus
C/ jC

the critical points of ίf) are isolated. But the solution curves of ίf)
define a continuous map of 3ϊln onto the set of critical points of ίf).
Thus ίf) has just one critical point in 3\ln.

Now choose local coordinates around the critical point O so that ίf)
has a negative radial velocity on the coordinate unit sphere centered
at O. Each solution curve of ίf), other than O, intersects this unit
sphere in exactly one point. We use this intersection point on the
coordinate unit sphere and the ^-parameter along the solution curves
of ίf) to map Jltw onto an open subset of Rn. We map O to the origin
of Rn and every other solution of ίf) is mapped onto a ray in Rn. Thus
JHW is homeomorphic with an open subset T of Rn which is star-convex
from the origin.

Now the radial distance function from the origin to the boundary
of T is lower-semi-continuous as defined on the unit sphere in Rn. But
a lower-semi-continuous function is the limit of a monotonic increasing
sequence of continuous functions. The concentric shells defined by this
monotonic sequence of continuous functions can be mapped homeomor-
phically (with fixed angular coordinates) onto shells between concentric
spheres. Thus 3Kn is homeomorphic with all Rn. Q. E. D.

REMARK. The function v(/>) = μ - ,

for each constant μ>0 and 0 <<*<!, satisfies the requirements of the
theorem.

Corollary. Let Jϊίn = Rn be the number space with the flat metric gjj=
BΪJ where (Bfj) = B is a constant, positive definite, symmetric matrix. Write

and assume that each eigenvalue of

M=JTB+BJ

everywhere satisfies
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— »(p(x)\ /°W2=Σ?=ι(^02> K/°) as in the theorem. Then each
solution curve of if) is bounded, as f-»-f oo, and approaches the critical
point of if).

Proof. Now

f'v+ff'-f'v + Bijf'vB' .

By this is just the matrix

J+B-1JTB = B-1 (BJ+JTB) .

Since B~l and (BJ+JTB) are symmetric and B~l is positive definite, these
two matrices can be simultaneously diagonalized at each point x G Rn.
Thus the eigenvalues of

everywhere satisfy

\ for some 6 > 0 .

Using the Theorem 1, we obtain the corollary. Q. E. D.
In the case where v(/o) is constant we obtain the theorem of Krasovski

[3, 4].
We now utilize only the Euclidean metric in Rn and state a result

which does not require the computation of the eigenvalues \(xl, •••, xn)

of J(x)+JT(x).

Theorem 2. Consider

if) x{ = f*(x\ -, xn) in C1 in Rn .

Assume that each eigenvalue of

M(x) = J(x)+JT(x), where /}(*) = |£J ,

is negative , and assume there exist constant bounds βl'^>Qy /^2^>0 for

det M

each solution x(t) of if) is bounded in Rn, as £-> + oo, and x(t)
approaches the critical point of if).

Proof. Now

λ"- TVMλ*-1-!- - + (- 1)* det Af = 0 .

Since each root λ<^0, we have
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Also

and hence

in*cos*-sinΛ
s x — siny —2)

Thus each eigenvalue everywhere satisfies

λ(*) < -£ , for some constant θ >0 . Q. E. D.

EXAMPLE. Consider the system in R2,

x = — 2# + cos;y

j = sin2* — y .

Compute

M = J+Γ=(~*
\2 sin x cos x

Since

I Trace M| = -6

and
|detM|>4,

the Hurwitz criterion assures us that the eigenvalues of M are negative.
The corollary show that every solution tends towards the unique critical
point as £-^ + oo.

Theorem 1 and 2 deal with the symmetric matrix M=J+JT. We
now turn to the consideration of stability criteria based directly on /.
The next example indicates that considerable caution is required here.

EXAMPLE. Consider

x = ( - 1 4- (3/2) cos2 f)x + (1 - (3/2) cos / sin ί)y

y = (-l-(3/2) sin / cos f )* + (-! + (3/2) sin2 t)y .

The instantaneous eigenvalues are

\(t}= _(l/4) + (7/4)vΊΓϊ and λ2 = -(1/4) -

so

Reλ,(/)= -(1/4) for all / .

Yet there is a solution which grows exponentially

x = - (exp (ί/2)) cos t , y= (exp (ί /2)) sin t .
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Now consider

z = —z + w , w = — w

with a solution

z = te~* , w = e~* .

Now form the infinite autonomous system

+ [ - 1 - (3/2) cos zn (Λ£+I +yϊ+ι) sin zn

A, = C - 1 - (3/2) sin zn (**+1 +yLι) cos *„

+ [ - 1 + (3/2) sin2 zn (*2+

for w = l, 2, 3, ••• .
The eigenvalues of this * infinite Jacobian matrix' all have negative

real parts, yet the solutions do not tend towards the unique critical
point as £-> + °o. We cannot, as yet, construct such an example using
a finite set of equations.

Theorem 3. Consider

if) x= f(x, y)

y = g(χ, y)

with /, g in C1 in the (x, y)- plane R2 and assume that the origin is the
unique critical point. Assume that

-.*-('• f'}
\& gy)

J(χ,

has eigenvalues which have negative real parts everywhere in R2. Assume
that one of the four functions fx> fyy gxy gy vanishes identically in R2.
Then every solution of if) approaches the origin as ί-> + oo.

Proof. We can assume that either fx=Q or fy=Q, for the other
cases reduce to these upon interchanging x and y.

CASE 1. Λ = 0
Here

* = f(y)

y = g(χ> y)



312 L. MARKUS and H. YAMABE

SO

'•): gy)

and gy<^Q, fygx<^ everywhere.
By replacing x by — x, if necessary, we can assume that

and gx<^Ό everywhere.

Thus

g(Q, y)>0 for ;y<0

g(Q, jO<0 for

g(x, 0)>0 for

g(x, 0)< 0 for * > 0

and

/00>0 for

/00<0 for

By the classical Liapounov stability criterion, there is a disc D, centered
at the origin, such that each solution of ίf) which intersects D must tend
to the origin as t-^ + °°.

Now let S(t) be a solution of ίf) with coordinates x(t\ y(t) for

Suppose that S(t) does not intersect D.
If S(t) passes through a point Pί in the first quadrant of the (x, y)-

plane, then £(t)^>0 and j>(*)<CO as l°ng as S(ί) remains in the first
quadrant. Also \£(t)\ is bounded, on S(t) past Pl in the first quadrant,
and y(t)<^ — η<^0 for some ^">0. Thus S(ί) must enter the fourth
quadrant.

Note that the inequalities obtained for g(0, y\ g(xy 0), and f ( y ) force
S(t) to enter the quadrants 1, 4, 3, 2, 1 cyclically unless S(t) remains
eventually in just one quadrant or S(t) is unbounded for ^^>0.

If S(t) passes through a point P4 in the fourth quadrant, then
Jt(t)<^ — ̂ ?<CO as long as S(t) remains in the fourth quadrant. But, past
P4 on S(t) in the fourth quadrant, y(t) is bounded from below and so S(t)
must enter the third quadrant.

If S(t) passes through a point P3 in the third quadrant, then x(t)<^0
y(t)^>0 as long as S(t) remains in the third quadrant. But \x(t)\ is
bounded, on S(t) past P3 in the third quadrant, and y(t)^>η^>Q. So S(t)
must enter the second quadrant.

If S(t) passes through a point P2 in the second quadrant, then
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and >'(/) is bounded above as long as S(t) remains in the second quadrant.
Moreover Λ(t)^>η^>0 on S(t) past P2 in the second quadrant. Thus S(t)
must enter the first quadrant.

Therefore each solution S(t) of if), which does not intersect Z),
encircles D clockwise infinitely many times. Let A1 and A2 be the y-
intercepts of successive intersections of the spiral S(t) with the positive
.y-axis.

If A1 = A29 then S(t) is a periodic solution of if). This is impossible,
by Bendixson's criterion, since the flow is area-decreasing. If

the area bounded by the spiral loop A^A^ and the line segment A2A1 is
mapped by the flow onto an area which properly includes it. This is
impossible since the flow is area-decreasing.

Thus A<C A and hence S(t) spirals towards a limit cycle of if). But
if) has no periodic solution (except the origin). Therefore the supposition
that S(t) does not intersect D leads to a contradiction and the proof of
the theorem is completed in Case 1.

CASE 2. fy = 0 .

Here

x = f(x)

y = g(*> y)
so

/ =
and

Therefore

Λ<0 and &,<0

everywhere.
Again there is a disc D, centered at the origin, such that each solu-

tion of if) which intersects D must approach the origin as ί->-foo. Also
there is a strip

Z: \x\<ξ,

such that a solution of if) which intersects Z must eventually intersect
D.

Let S(t) be a solution of if) with coordinates x(ί), y(t), for
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Suppose S(t) does not intersect D\J Z.
If S(t) passes through a point P+ in the right half -plane #>0, then

*00<CO as l°nβ as S(0 remains in the right half -plane. In fact
x (t) <^ — η <^ 0 since S(t) is bounded away from the jy-axis. Since S(t)
does not intersect Z we must have y(t] -> + °° or y(t} -> — oo along S(ί)

In 0<#<P+0*;), j>0 we have a finite upper bound for g(xy y\

and hence Xί) cannot approach +00 along S(f). Also for ().<#</+(#),
.y<CO we have a finite lower bound for g(x9 y)9 and hence j (ί) cannot
approach — oo along S(t). Therefore S(t) cannot lie in the right half-
plane.

Similary if S(t) passes through a point P_ in the left half-plane
, then £(t)^>Q as long as S(t) remains in the left half -plane. In fact

^>Q since S(t) is bounded away from the j-axis. Using the same
type of bounds on y(ί) as above, we see that y(f) remains bounded on
S(t). Hence we obtain a contradiction which shows that S(ί) must in-
tersect D\JZ.

Therefore the theorem is proved in Case 2. Q. E. D.

Corollary. Consider

x + g(x,£) = 0

with g(x, y) in C1 in R2. Assume

Then each solution x(t) is defined for all large t^>0 and

\imt++ΰθx(t) = 0 , Um^+ββi(ί) = 0 .

Theorem 4. Consider

ff) &=fi(χ\ -.., Jf) 1 = 1,2, .-,»

with f ( x ) in C1 in Rn. Assume

1) f(x) = Q if and only if x = Q

and

2) (*) = 0 for ;<ί

for each ί = l, 2, •••, w, everywhere in Rn.

Then each solution of ff) is defined for all large t and tends to the
origin as ί-» + oo.
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Proof. The theorem is trivial if n = ί and holds by Theorem 3 when
n = 2. Now we proceed by induction to prove the theorem in the general
case.

Suppose the theorem holds for differential systems satisfying the
hypotheses in Rn~\

Consider

*, χ\

if)

which satisfies the hypotheses of the theorem in Rn.
If (xly #o, •••, #o) is a point in Rn at which

/'(*§, xl, -, *5) = 0

/*(*!$) = 0 ,

then Λ^=0. Hence

/*-1(jcr1,0) = 0

and since

/"-i(0,0) = 0 and

we have Xo~l = Q. Similarly

xτ2 = o , *r8 = o , — , ΛΓ? = o , ΛΓJ = o ,
Thus the last (w— 1) equations of if) form a system

which satisfies the hypotheses of the theorem in the Rn~l space ^ = 0.
Let S(t) with coordinates x\t\ x\t}> — , Λr*(0 on 0</<r< + oo be

a solution of if) in /?". Then jt;2(ί), x\t\ — , ^n(/) form a solution of ST7)
and so can be extended over

Moreover

is bounded on 0<£<°° and
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lim/H>+ββ x\t] = 0 , linw^α) = 0, -,

and

lim,^ xn(t} = 0

by the induction hypothesis.
Let K be a compact subset of the Rn~l space Λr'^O which contains

the curve

x\t\ x\t)y -, *"(f) for

Since

is bounded in K and since - <ζO in 7?M, we find that je1^) can be ex-
ox

tended over 0</<^oo, so that solution S(t] of ί̂ ) exists on Of
Now there is a ball 33, centered at the origin of 7?w, such that S(t)

approaches the origin if S(t) intersects ft. Moreover there is a tube in
Rn

such that S(t) intersects ft if S(t) intersects T.

But

limίH,+ββ x\t) = lim^+00 x\t) = .- = lim^+00 ^
w(0 - 0 .

Hence S(f) must intersect T. Therefore

lim^+oo ^(/) - 0

and S(f) approaches the origin of Rn as ^-> + oo. Q. E. D.
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