Some Remarks on Quasi-Frobenius Modules

Yoshiki Kurata

Recently Azumaya [1] introduced the concept of quasi-Frobenius two-sided modules to establish certain duality theorems for injective modules and also showed that it is a natural extension of the notion of quasi-Frobenius rings.

The purpose of the present note is to supplement the above paper by giving some characterizations of quasi-Frobenius modules. These results are regarded as generalizations of the known properties of quasi-Frobenius rings.

The writer wishes to express his gratitude to Professor G. Azumaya for his helpful suggestions.

§1. Quasi-Frobenius Modules.

Let A and A^* be two rings with unit elements and Q a two-sided $A-A^*$ -module. Let M be a left A-module. Then the set M^* of all A-homomorphisms of M into Q forms a right A^* -module under the following definitions:

$$x(\varphi + \psi) = x\varphi + x\psi^{1}$$
, $x(\varphi a^*) = (x\varphi)a^*$

for $x \in M$ and $a^* \in A^*$. This module is called the *right-dual module* of M with respect to Q. We may similarly define the *left-dual module* for any right A^* -module. Now, Azumaya calls Q a *quasi-Frobenius two-sided* $A-A^*$ -module if i) Q is faithful (with respect to both A and A^*) and ii) for every maximal left ideal I of A and for every maximal right ideal r of A^* the right annihilator $r_Q(I)$ and the left annihilator $l_Q(r)$ of I and r in Q are A^* -irreducible and A-irreducible respectively, provided they are non-zero.

It should be noted that the above condition ii) is equivalent to the following condition: ii') for every irreducible A-submodule L of Q and for every irreducible A^* -submodule R of Q the right- and the left-dual

¹⁾ Let M_1 and M_2 be two left A-(or right A^* -)modules. For any A-(or A^* -)homomorphism $\varphi: M_1 \to M_2$ and any element $x \in M_1$, we denote by $x\varphi$ (or φx) the image of x by φ . If further ψ is an A-(or A^* -)homomorphism of M_2 into a third left A-(or right A^* -)module M_3 , then we shall denote by $\varphi \circ \psi$ (or $\psi \circ \varphi$) the composite mapping $x \to (x\varphi)\psi$ (or $x \to \psi(\varphi x)$).

modules of L and R with respect to Q are A^* - and A-irreducible respectively.

THEOREM 1. Let Q be a quasi-Frobenius two-sided $A-A^*$ -module. Then Au, $u \in Q$, is A-irreducible if and only if uA^* is A^* -irreducible, and moreover, in this case, they are isomorphic to the dual modules of each other.

Proof. Suppose that Q is quasi-Frobenius and Au is A-irreducible. Since Au is isomorphic to the factor module $A-l_A(u)$, $r_Q(l_A(u))$ must, as the right-dual module of $A-l_A(u)$, be A^* -irreducible and hence necessarily coincides with uA^* .

THEOREM 2. Let Q be a quasi-Frobenius two-sided A-A*-module and M an irreducible left A-module such that its right-dual module M* with respect to Q is non-zero. Then the A-endomorphism ring of M is isomorphic to the A*-endomorphism ring of M*.

Proof. With each A-endomorphism φ of M we can associate an A^* -endomorphism φ^{*2} of M^* by setting $\varphi^*g = \varphi \circ g$, $g \in M^*$, that is,

(*) $x(\varphi^*g) = (x\varphi)g \qquad x \in M, g \in M^*.$

And it is easy to see that $(\varphi \circ \psi)^* = \varphi^* \circ \psi^*$ holds for any *A*-endomorphisms φ and ψ of *M*. Thus the mapping $\varphi \rightarrow \varphi^*$ is a homomorphism of the *A*-endomorphism ring of *M* into the *A**-endomorphism ring of *M**. Since *M* is *A*-irreducible and *M** is non-zero whence *A**-irreducible, *M* may be looked upon as the left-dual module of *M** with respect to *Q*, and therefore the above equality (*) shows that φ coincides with the dual-mapping of φ^* . Thus, the above homomorphism gives an isomorphism between the *A*-endomorphism ring of *M* and the *A**-endomorphism ring of *M**.

From now on, we shall assume the left and the right minimum conditions for A and A^* respectively unless otherwise stated. Then it should be noted, according to [1, Theorem 6], that every quasi-Frobenius two-sided A- A^* -module always contains an isomorphic image of every irreducible left A-module as well as that of every irreducible right A^* -module.

We first prove the following

THEOREM 3. Let Q be a faithful two-sided $A-A^*$ -module. Then Q is quasi-Frobenius if and only if every irreducible left A-module and every

²⁾ φ^* is called the dual mapping of φ with respect to Q.

irreducible right A^* -module are isomorphic to their double dual modules³) with respect to Q respectively.

Proof. The "only if" part is clear. To prove the "if" part, consider an irreducible left A-module M and let M_1 be a maximal A^* -submodule of M^* (the existence of M_1 being assured by the right minimum condition for A^*). Then, since $l_M(M_1)$ is isomorphic to the left-dual module of the irreducible A^* -module M^*-M_1 , it follows $l_M(M_1) \neq 0$ whence $l_M(M_1) = M$. But this implies evidently $M_1 = 0$, that is, M^* is A^* -irreducible. Similarly, the left-dual module of every irreducible right A^* -module is A-irreducible, and this shows that Q is quasi-Frobenius.

Next, we shall give another characterization of a quasi-Frobenius two-sided $A-A^*$ -module, which may be regarded as a generalization of [2, Theorems 6 and 8].

THEOREM 4. Let Q be a faithful two-sided $A-A^*$ -module. In order that Q is quasi-Frobenius it is necessary and sufficient that for every irreducible left A-submodule L and for every irreducible right A^* -submodule R of Q the annihilator relations

$$l_{\mathcal{Q}}(r_A^*(L)) = L$$
 and $r_{\mathcal{Q}}(l_A(R)) = R$

hold. And, if this is the case, for any $u \in Q$ the left A-submodule Au and the right A*-submodule uA^* of Q are isomorphic to the dual modules of each other.

Proof. The necessity of the first part follows from [1, Corollary to Proposition 2].

To prove the sufficiency, we consider a maximal left ideal \mathfrak{l} of A such that $r_Q(\mathfrak{l}) \neq 0$. Let R be an irreducible right A^* -submodule of $r_Q(\mathfrak{l})$. Then $l_A(R) = \mathfrak{l}$, since $l_A(R)$ is a proper left ideal containing \mathfrak{l} . Hence, $r_Q(\mathfrak{l}) = r_Q(l_A(R)) = R$, and thus $r_Q(\mathfrak{l})$ is A^* -irreducible. Similarly, $l_Q(\mathfrak{r})$ is either 0 or A-irreducible for every maximal right ideal \mathfrak{r} of A^* .

If we put $l = l_A(u)$, then Au is A-isomorphic to the factor module A-I. Thus, the right-dual module of Au is A^* -isomorphic to $r_Q(I)$. Take any non-zero element v from $r_Q(I)$. Then the mapping $au \rightarrow av$, $a \in A$, is obviously an A-homomorphism of Au into Q, and hence by [1, Theorem 6] there exists an element a^* of A^* such that $ua^* = v$. Thus $uA^* = r_Q(I)$, and this proves our theorem.

³⁾ Let M be a left A-module and M^* the right-dual module of M with respect to Q. Then by the double dual module of M we mean the left-dual module $(M^*)^*$ of M^* with respect to Q. The double dual module of a right A^* -module is defined similarly.

Let N and N* be the radicals of A and A* respectively. Then, as is well-known, for any two-sided $A-A^*$ -module Q the A-socle of Q, that is, the sum of all irreducible left A-submodules of Q coincides with $r_Q(N)$. Similarly, the A*-socle of Q coincides with $l_Q(N^*)$.

Then we have the following theorem which corresponds to [2, Theorem 9].

THEOREM 5. Let Q be a quasi-Frobenius two-sided A-A*-module and let N and N* be the radicals of A and A* respectively. Then $r_Q(N^{\nu})$ = $l_Q(N^{*\nu})$ for every $\nu = 1, 2, \cdots$.

Proof. We shall prove this theorem by induction on ν . For $\nu = 1$, this was shown in [1, Theorem 1]. Let $\nu > 1$ and assume that $r_Q(N^{\nu-1}) = l_Q(N^{*\nu-1})$. Evidently $l_Q(N^{*\nu})N^* \subseteq l_Q(N^{*\nu-1})$. Hence $N^{\nu-1}l_Q(N^{*\nu})N^* \subseteq N^{\nu-1}l_Q(N^{*\nu-1}) = N^{\nu-1}r_Q(N^{\nu-1}) = 0$, $N^{\nu-1}l_Q(N^{*\nu}) \subseteq l_Q(N^*) = r_Q(N)$, and $N^{\nu}l_Q(N^{*\nu}) \subseteq Nr_Q(N) = 0$, that is, $l_Q(N^{*\nu}) \subseteq r_Q(N^{\nu})$. Similarly we have $r_Q(N^{\nu}) \subseteq l_Q(N^{*\nu})$, whence $r_Q(N^{\nu}) = l_Q(N^{*\nu})$.

Let A denote the (semi-simple) factor ring A/N, and let $\bar{A} = \bar{A}_1 \oplus \bar{A}_2 \oplus \cdots \oplus \bar{A}_k$ be its direct decomposition into orthogonal simple two-sided ideals \bar{A}_{κ} . Let \bar{e}_{κ} be, for each κ , a primitive idempotent element in \bar{A}_{κ} . Then the k modules $\bar{A}\bar{e}_1, \bar{A}\bar{e}_2, \cdots, \bar{A}\bar{e}_k$ exhaust, up to isomorphisms, all irreducible left A-modules. There exists, for each κ , an idempotent elements e_1, e_2, \cdots, e_k are all primitive and non-isomorphic, and any primitive idempotent element of A is isomorphic to one of them. Furthermore, if we denote by $f(\kappa)$ the capacity of $\bar{A}\bar{e}_{\kappa}$, A is as left A-module isomorphic to the direct sum $\sum_{\kappa=1}^{k} \oplus (Ae_{\kappa})^{f(\kappa)}$. Similarly, we shall denote by e^{*_1} , e^{*_2}, \cdots, e^{*_l} a complete system of non-isomorphic primitive idempotent elements in A^* and by $g(\lambda)$, for each $\lambda = 1, 2, \cdots, l$, the capacity of the irreducible right A^* -module $\bar{e}^*_{\lambda}\bar{A}^*$.

LEMMA. Let Q be a two-sided A-A*-module. Then the right- and the left-dual modules of the irreducible left A- and the irreducible right A*-modules $\overline{Ae_{\kappa}^{*}}$ and $\overline{e^{*}}_{\lambda}\overline{A}$ with respect to Q are isomorphic to $e_{\kappa}r_{Q}(N)$ and $l_{Q}(N^{*})e^{*}_{\lambda}$ respectively.

Proof. If we put $I_{\kappa} = A(1-e_{\kappa}) + N$ then I_{κ} is a maximal left ideal of A such that $A - I_{\kappa}$ is A-isomorphic to $\overline{A}\overline{e}_{\kappa}$. Hence $r_Q(I_{\kappa}) = r_Q(1-e_{\kappa})$ $\cap r_Q(N) = e_{\kappa}Q \cap r_Q(N) = e_{\kappa}r_Q(N)$ is A^* -isomorphic to the right-dual module of $\overline{A}\overline{e}_{\kappa}$ with respect to Q. Similarly, $I_Q(N^*)e^*_{\lambda}$ is, for each λ , A-isomorphic to the left-dual module of $\overline{e^*_{\lambda}}\overline{A}^*$. This proves our lemma.

From this lemma it follows now immediately

THEOREM 6. Let Q be a faithful two-sided A-A*-module. Then Q is quasi-Frobenius if and only if $e_{\kappa}r_Q(N)$ and $l_Q(N^*)e^*_{\lambda}$ are, for each κ and λ , A*- and A-irreducible respectively.

Now, let Q be a quasi-Frobenius two-sided $A-A^*$ -module. If we associate with each irreducible left A-module its right-dual module with respect to Q, we have a one-to-one correspondence between irreducible left A-modules and irreducible right A^* -modules. This means that k=l and, if we order $e^*_1, e^*_2, \dots, e^*_k$ suitably, $\overline{e^*_{\kappa}}\overline{A}^*$ is, for each κ , isomorphic to the right-dual module of $\overline{A}\overline{e}_{\kappa}$. We shall henceforth retain such ordering of e^*_{κ} . It follows then from the above lemma that

$$e_{\kappa}r_{Q}(N) \simeq \overline{e^{*}_{\kappa}}\overline{A}^{*}, \quad l_{Q}(N^{*})e^{*}_{\kappa} \simeq \overline{A}\overline{e}_{\kappa}$$

for each κ . On the other hand, since $r_Q(N) = l_Q(N^*)$ (Theorem 5), $e_{\kappa}r_Q(N) = e_{\kappa}l_Q(N^*)$ and $l_Q(N^*)e^*_{\kappa} = r_Q(N)e^*_{\kappa}$ are necessarily unique simple A^*_{-} and A-submodules of $e_{\kappa}Q$ and Qe^*_{κ} respectively. These facts together give a second proof of the necessity of [1, Theorem 12].

Let Q be a quasi-Frobenius two-sided $A-A^*$ -module. Suppose that a left A-module M and a right A^* -module M^* form an orthogonal pair⁴ with respect to Q, and suppose further that either M or M^* satisfies both the maximum and the minimum conditions for A- or A^* -submodules respectively. Then, for any A-submodules M_1 and M_2 of M such that $M_1 \supseteq M_2$, the factor modules $M_1 - M_2$ and $r_{M^*}(M_2) - r_{M^*}(M_1)$ form also an orthogonal pair with respect to Q in the natural manner, and hence, by [1, Proposition 2], they are the dual modules of each other (for this, we may not necessarily assume the minimum conditions for A and A^*).

In particular, if M_2 is a maximal A-submodule of M_1 and $M_1 - M_2 \approx \bar{A}\bar{e}_{\kappa}$ then $r_{M^*}(M_1)$ is a maximal A^* -submodule of $r_{M^*}(M_2)$ and $r_{M^*}(M_2) - r_{M^*}(M_1) \approx \overline{e^*_{\kappa}}\bar{A}^*$, which is a generalization of [2, Theorem 9].

§2. Frobenius Modules.

We shall call, following G. Azumaya [1], a quasi-Frobenius two-sided $A-A^*$ -module Q to be *Frobenius* if, for any irreducible left A-module M, the capacity of M coincides with that of the right-dual module M^* of M with respect to Q, that is, $f(\kappa) = g(\kappa)$ for each κ .

$$(x+x')y = xy+x'y,$$
 $x(y+y') = xy+xy',$
 $a(xy) = (ax)y,$ $(xy)a^* = x(ya^*)$

⁴⁾ Let M be a left A-module and M^* a right A^* -module. Suppose that for any $x \in M$ and $y \in M^*$ there corresponds a product xy in Q such that

for $x, x' \in M$; $y, y' \in M^*$; $a \in A$; $a^* \in A^*$, and moreover $xM^* = 0$, $x \in M$, and My = 0, $y \in M^*$, imply always x = 0 and y = 0 then we shall, following Azumaya [1], say that M and M^* form an *orthogonal pair* with respect to Q.

Y. KURATA

Let L be an irreducible left A-module. Then we denote by $d_A(L)$ the capacity of L, that is, $d_A(L) = f(\kappa)$ if $L \simeq \overline{A}\overline{e}_{\kappa}$. And generally, for any left A-module L having a composition series

$$L = L_0 \supset L_1 \supset \cdots \supset L_{s-1} \supset L_s = 0,$$

we put

$$d_A(L) = \sum_{i=1}^{s} d_A(L_{i-1} - L_i)$$
.

It is clear that for any A-submodule L' of L we have $d_A(L) = d_A(L-L') + d_A(L')$. For an A^* -module R possessing a composition series we may also define $d_A^*(R)$ in the similar manner.

THEOREM 7. Let Q be a quasi-Frobenius two-sided $A-A^*$ -module. If Q is Frobenius, then for every finitely generated left A-module M we have $d_A(M) = d_{A^*}(M^*)$, where M^* is the right-dual module of M with respect to Q. Conversely, if the above equality holds for every irreducible left A-module M, then Q is Frobenius.

Proof. Suppose that Q is Frobenius and M is a finitely generated left A-module. Then, by [1, Theorem 8], the right-dual module M^* of M with respect to Q is also finitely generated with respect to A^* and M coincides with the left-dual module of M^* with respect to Q. Let

$$M = M_0 \supset M_1 \supset \cdots \supset M_{s-1} \supset M_s = 0$$

be a composition series of M. Then, as we have seen at the end of the preceding section,

$$M^* = r_{M^*}(M_s) \supset r_{M^*}(M_{s-1}) \supset \cdots \supset r_{M^*}(M_0) = 0$$

gives a composition series of M^* , and moreover, if $M_{i-1}-M_i$ is A-isomorphic to $\overline{A}\overline{e}_{\kappa}$ then $r_{M^*}(M_i)-r_{M^*}(M_{i-1})$ is A^* -isomorphic to $\overline{e^*_{\kappa}}\overline{A^*}$. Thus we have

$$d_A(M_{i-1}-M_i) = f(\kappa) = g(\kappa) = d_A * (r_M * (M_i) - r_M * (M_{i-1})),$$

and hence $d_A(M) = d_{A^*}(M^*)$.

The converse part is clear.

Now we have the following theorem which corresponds to [2, Theorem 7].

THEOREM 8. Let Q be a quasi-Frobenius two-sided $A-A^*$ -module. Then Q is Frobenius if and only if either

$$d_A(\mathfrak{l}) + d_{A^*}(r_Q(\mathfrak{l})) = d_{A^*}(Q)$$

218

holds for every irreducible left ideal 1 of A or

$$d_{A^*}(\mathfrak{r}) + d_A(l_Q(\mathfrak{r})) = d_A(Q)$$

holds for every irreducible right ideal x of A^* .

Proof. Suppose that Q is Frobenius and \mathfrak{l} is a left ideal of A. If we apply Theorem 7 to $M=\mathfrak{l}$ whence $M^*=Q-r_Q(\mathfrak{l})$, then we have $d_A(\mathfrak{l})+d_A^*(r_Q(\mathfrak{l}))=d_A^*(Q)$. Similarly, we have $d_A^*(\mathfrak{r})+d_A(l_Q(\mathfrak{r}))=d_A(Q)$ for every right ideal \mathfrak{r} of A^* .

The converse part is almost evident from (the second half of) Theorem 7.

Finally, we shall give a characterization of a Frobenius two-sided $A - A^*$ -module.

THEOREM 9. Let Q be a two-sided $A-A^*$ -module. Then Q is Frobenius if and only if

- i) $d_A(l) + d_A * (r_Q(l)) = d_A * (Q)$,
- ii) $d_{A^*}(\mathfrak{r}) + d_A(l_Q(\mathfrak{r})) = d_A(Q)$,
- iii) $d_A(L) + d_{A^*}(r_{A^*}(L)) = d_{A^*}(A^*)$,
- iv) $d_{A^*}(R) + d_A(l_A(R)) = d_A(A)$

hold for every left ideal 1 of A, for every right ideal x of A^* , for every left A-submodule L of Q and for every right A^* -submodule R of Q.

Proof. The "only if" part can be proved in the similar way as in Theorem 8.

Conversely, let L be a left A-submodule of Q. Then, $r_{A^*}(L)$ is a right ideal of A^* , and hence by ii), $d_{A^*}(r_{A^*}(L)) + d_A(l_Q(r_{A^*}(L))) = d_A(Q)$. On the other hand, by putting $r = A^*$ in ii), we have $d_{A^*}(A^*) = d_A(Q)$. These, combined with iii), yield $d_A(L) = d_A(l_Q(r_{A^*}(L)))$. But since $l_Q(r_{A^*}(L))$ $\supseteq L$, we have necessarily $l_Q(r_{A^*}(L)) = L$. Similarly we have $r_Q(l_A(R)) = R$ for every right A^* -submodule R of Q.

Now, if we put L = Q in iii), then we have $d_A(Q) + d_{A^*}(r_{A^*}(Q)) = d_{A^*}(A^*)$. Since $d_A(Q) = d_{A^*}(A^*)$, it follows $d_{A^*}(r_{A^*}(Q)) = 0$, that is, $r_{A^*}(Q) = 0$. Thus Q is faithful with respect to A^* . Similarly, Q is also faithful with respect to A. Hence Q is quasi-Frobenius by Theorem 4. Our theorem now follows from Theorem 8.

Department of Mathematics, Hokkaido University.

(Received September 15, 1958)

Y. KURATA

References

- [1] G. Azumaya: A duality theory for injective modules, forthcoming.
- [2] T. Nakayama: On Frobeniusean algebras, II, Ann. Math. 42 (1941), 1-21.
- [3] K. Morita and H. Tachikawa: Character modules, submodules of a free module, and quasi-Frobenius rings, Math. Zeitschr. **65** (1956), 414-428.