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§ 0. Introduction.

The purpose of the present paper is to investigate construction of
finite semilattices and compositions of semigroups which will play an
important part in the theory of construction of finite s—-decomposable
semigroups. The theory of compositions of special semigroups is already
included in the result obtained by Clifford [1].

A semilattice is the synonym of a commutative idempotent semi-
group i.e. the multiplication system 7 satisfying

(e p=0c(Tp), oT=70, =0

for all o, 7, p€ T. We have known that a semigroup S is decomposed
to a semilattice 7, that is to say,”

0.1) S=3S., S*CS., $5,.CS. =S,
TET

where this s—-decomposition of S is greatest. (Cf. [3]) The study of a
semilattice is indispensable for the theory of construction of a semigroup.
In this paper we shall restrict ourselves to finite semilattices and we

1) ) denotes the set union.
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shall show that all semilattices of order® x are obtained if ones of
order at most #—1 are done.

If T is of order =2 in the greatest s—decomposition of S, then S is
called s-decomposable ; and if 7 is of order 1, then S is called s—inde-
composable. Further if S is homomorphic to a semilattice T such as
(0.1), where this decomposition may not be greatest, then S is called «
composition of semigroups S.(r€ T) by T. In case of no fear of confusion,
we shall omit “by 7.” Now the following problems arise.

When a semilattice 7 and semigroups S,(r € T) are given arbitrarily,
does a composition of S,(r€T) by T exist? How are all the composi-
tions of S,(r€ T) by T constructed ?

As it is difficult to treat a general case, the problems in this paper
are restricted within a special case where T is finite. We shall show
that there is always one composition at least if 7 is a finite chain or
if both all S, and T are finite; but it does not always hold in the other
cases. Furthermore we shall conclude finally that the study of s-
decomposable semigroups is reduced to that of s-indecomposable semi-

groups.

§1. Compositions in the Case where 7T is of Order 2.

In these paragraphs §1, §2, we assume 7 to be a semilattice of
order 2, i.e. T={0, 1} with multiplication 0°=0, 01=10=0, 1°=1. By
a composition S of two semigroups S, and S, (by {0, 1}), we shall mean

S=3S; where SICS;, S,S,CSs, S5

1. Existence theorem. First we shall show a necessary and
sufficient condition fulfilled by a composition S of semigroups S, and S,.
Let us denote by letters x, y, 2, --- elements of S, and by «, 8, --- elements
of S,. The associative law we need in S is written as follows, since
the law already holds in S, and S,. Later we shall prove independency
of these conditions.

1.17)  w)a=x(yq),
(1.2")  alxy) =(ax)y,
1.3") (ro)B==x(aB),
(1.4") a(Bx) = (aP)x,
1.5") (ax)B=a(xp),
(1.6”") (xa)y =x(ay) .

If we let ¢,(x)=xa and +r,(x)=ax, then (1.1”)~(1. 6”) are formulated as

2) The order of a semigroup means the number of elements of the semigroup.
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(1.Y)  @uxy) = x94(y),
(1.2)  alxy) = alx)y,
(1.3) PpPul®) = Pup(x) ,»
(1.4)  AraPrp(x) = Yrap(x) ,
(1.5) @pa(x) = Yapp(x) ,
(1.6)  @ux)y = xya(y) .

Let ®,= {p,; a€S;} and ¥V,={y,; a€S;}. P, and ¥, are semigroups
with the usual multiplication of mappings. According to the terminology,
(1.1’)~(1.6’) are expressed in other words:

1.1) ¢, is a right translation of S,,

(1.2) A, is a left translation of S,,

(1.3) S, is dually homomorphic to* P,,

(1.4) S, is homomorphic to ¥,,

(1.5) every element of ®, commutes with every element of ¥,,

(1.6) the substituted semigroup of S, by ¢, is equal to that of S,
by V. (See [4])

Of course @, is a dually homomorphic image of S, into the right trans-
lation semigroup ®, and ¥, is a homomorphic image of S, into the left
translation semigroup V.

Conversely if there exist subsemigroups ®, and ¥, of ® and ¥
respectively which fulfil (1.1)~(1.6), then a composition S of S, and S,
is obtained. We see that &, and ¥, exist in reality, for example, so is
the set composed of only identical mapping [4]. In fact, if @, and ,,
for all @€ S,, are identical mappings of S,, they satisfy the conditions
(1.1)~(1.6). Thus we have

Theorem 1. If semigroups S, and S, are arbitrarily given, there exists
at least one composition S of S, and S,. In order to construct S, we find
subsemigroups ®, and ¥, of the translation semigroups P and ¥V respec-
tively such that S, is dually homomorphic to ®,, and S, is homomorphic to
V,, furthermore ®, and ¥, satisfy (1.5) and (1.6). Then the product of
x€S, and « €S, is defined as xa=,(x) and Ax=1p,(x).

Since a pair of ®, and ¥, determines a composition S of S, and S,,
we must find all possible pairs of ®, and ¥, in order to obtain all com-
positions of the given S, and S,, but it happens that different pairs
(®,, ¥,) and (®,/, ¥,/) determine isomorphic compositions. The isomor-
phism problem of compositions is to be solved in the later paragraph.

3)  ¢pPu(x)=(¢pPa)(2)=¢p(Palx)).
4) We shall use the word “homomorphism to” as the synonym of ‘“homomorphism onto.”
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2. Independency of six conditions. Let us give the six examples
where each Example ¢ satisfies the conditions (1. j), j==¢, but does not
(1.7). Regarding translations, see [4] and [5].

Example 1. Let S,={a, b, ¢} with multiplication xy=a for all
x, y€S,, and let S,={d}, Now @, and 4, are defined as @,(x)=c for
all x€S,, and V,(x)=x for all x€S,. Then it is clear that ¢, is not a
right translation of S,.

Example 2. We may consider the dual form of Example 1.

Example 3. Take S,, S,, and 4, same as in Example 1, and let ¢,
be a right translation such that ¢@,(@) =a, ¢,(0)=c, @,(c)=0>. Then ¢,
is not idempotent.

Example 4. Consider the dual form of Example 3.

Example 5. Let S, and S, be same as in Example 1. ¢, and
are given such that

pa)=a, P;0)=pic)=b, Yu@)=v,c)=a, V0 =b.
Obviously PaVa=FVaPy .
Example 6. Let us define S,, S,, ¢, and 4, as following. Let
S,= {a, b, ¢} with multiplication
{a for y==0b,
xy=
b for y=b,

S,=1{d}, psx)=a for all x€S,, Y (a)=a, ¥,(0)=+,(c)=>b. Then the
substituted semigroup of S, by ¢, is different from that by +,. (See
[4]) Thus we have

Theorem 2. The conditions (1.1)~(1.6) are independent.

§ 2. Various Propositions.

1. By a partially symmetric composition of S, and S, we mean a
composition of S, and S, (by T of order 2) which fulfils ¢,=+, for all
aeS,. We have easily.

Theorem 3. As far as a partially symmetric composition is concerned,
the six conditions in §1 are equivalent to

2.1) Pu(xy) =2xpu(y) =Pa(x)y, for x, y€S,,
(2. 2) PoPp = PPu=— Pag »
in other words, letting O,= {p,; €S},
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2.1) @, is a right translation as well as a left translation of S,,

(2.2 S, is homomorphic to a commutative subsemigroup @, of DN\Y>
After such ®, is gotten, the product of x€S, and «€S, is given as:
X=X = Py(x).

Corollary 1. If S, is commutative and S is partially symmetric, then
the six conditions are equivalent to

(2.3)  Pulxy) =2Pu(y) , PaPs=PsPu=Pap -

Theorem 4. A commutative composition S of the two commutative

semigroups S, and S, is determined by a homomorphism of S, into the
translation semigroup ® of S..

2. When S3=3S,, the conditions (1.1)~(1.6) becomes simpler. The
following lemma is pointed out without proof by A. H. Clifford in §3
of [1].°

Lemma 1. If Si=S,, then the condition (1.5) can be excluded, for it
is naturally satisfied.

Proof. @pyra(2) = @pra(xy) = P (¥a(%) y) = Y (X) Pp(3) = Vra(x@e(3))
"Paﬂ’ﬂ (xy) = "1[%775 (2).

Theorem 5. If S, is commutative and S3=S,, then a composition S
of S, and any S, is partially symmetric. S is determined by ®,={p,; €€ S;}
in which each p, fulfils (2.3).

Proof. Any element z of S,is expressed as z=2xy for some x, y€S,.
By commutativity of S,, and the conditions in § 1.

Pal(2) = Po(xy) = 2Pa(9) = Pl 3) 2 = 3Pa(®) =Va(X)y=",(x3) ="a(2) ,
hence S is partially symmetric.

Corollary 2. A composition S of two semilattices S, and S, is a
semilattice.

Proof. S, is commutative and idempotent so that Si=S,. By
Theorem 5, we have @,=+, for all «¢€S,, and so S is commutative.
Idempotency of S is evident.

Theorem 6. If S, has a two-sided unit, then a composition S of S,

5) () means intersection.
6) We remark “right” or “left” translations used by us correspond to “left” or “right”
ones used by him respectively.
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and any S, is determined by a homomorphism f of S, into S,. In detail,
their composition S is determined by

PaX) =2f(@),  Pulx)=Fla)x.

Proof. Since S, has a two-sided unit ¢, ® and ¥ coincide with the
inner right and left translation semigroups respectively [4]. Therefore,
for any a€S,, there are elements f(a) and g(«) in S, such that

Pu(®) =xf(),  Yulx) =g(X)x.

Setting x=-e especially, @.(e)=-ef(a)=,(a), Va(e)=g(@)e=g(a). Since
Pale) = pole)e =er,(e) =r,(e) according to (1.6'), we have f(a)=g(q®).
Next we shall prove that f is a homomorphism. By (1.1") and (1.3,
for all x€S,,

2 (AB) = Pas () = PP, (%) = Pp(2f (@) = 2pp(f (@) = 2/ () f(B) ,

hence we have f(aB)=f(q)f(B). Conversely it is easily seen that
@,(x) = xf () and r,(x) =f(c)x fulfil (1.1)~(1.6). Thus the theorem has
been proved.

3. We provide the following condition for a semigroup S,.
Condition A’. If xa=uxb for all x in S,, then a=5.

This condition is stronger than Condition A in [1] due to Clifford. Let
R be the set of all the inner right translations f, of S,:

R={f,; aeS,} where f,(x)=xa. (Cf.[4]

Condition A’ means that the correspondence a—f, is one to one. Of
course R ®. (cf. §1) Now we can find a subsemigroup ®, of ® which
contains R as a two-sided ideal. In detail, ®, is defined as

O, ={p; pe®, RpCR and pRCR} .

Though it is our main purpose to point out that a composition of S,
and a semigroup S, is constructed under some conditions simpler than
(1.1)~(1.6) when S, satisfies Condition A’, we shall discuss the more
general case ie. the extension of S, in the sense of Clifford [17] under
Condition A’. U denotes a semigroup with a two-sided zero 0%, U* the
set of all non-zero elements of U, and S the extension of S, by U in
the sense of Clifford. Further we denote by (®,: R) the difference
semigroup of ®, modulo R in the sense of Rees [2].

Theorem 7. We assume that S, satisfies Condition A'. A dual
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homomorphism of U into (®,: R) determines completely an extension of S,
by U in the Clifford’s sense. In other words, if there is given a mapping
a—q@, of the elements of U* into ®, such that, for a, B U*, ¢, pg=pg,
if Bae U*, and ¢, pp€ R if Ba=0*. Then there exists a unique extension
S of the given S, by the given U such that xa=@,(x) for x€S,, a€ U*,

Proof. Since R is a two-sided ideal of ®,, for any x€ S, and any
a € U*, there is y in S, such that f,¢,=f,. This y is unique because
S, satisfies Condition A’. Now, in order to determine the product ax of
ae U*and x€ S,, we define vr,(x) as follows: y=q,(x). This definition
is equivalent to

(2. 4) @ () x=2zV,(x) for all z€S,, any ae U*.
Then we shall prove

(2.5) Y (X,x,) =V, (x)x, for every x,, x,€S,,
(2. 6) "!’w.ﬂ = ‘!’u“Ps s
(2- 7) ¢w"[fB = #’B(pw .

The proof of (2.5). Using (2.4),

2(Yrg (2,)%0,) = (23 (%)) X, = (P, (2) 2,) X, = P, (2) (%,%,) = 2r , (%,%,)

for all z€ S,, whence Y, (x,)x,= Y, (x,%,).
The proof of (2.6). Since @,z=psp,, by (2.4),

28 (%) = Ppp(2) X = Pp(P4(2)) X = P, (2)Yrp (%) = 24, (g (%))

for all z€S,. Hence Y,5(x) =+,ys(x) for all x€S,.
The proof of (2.7). Since @, and @g are right translations of S,,

2 (P4 (X)) = Pa(2) Py () = Py (Pp(2) X) = Py (21 (%)) = 2P, (Vrp(x))

for all z€ S,, and so Vg, (*) =@, Ys(x) for every x € S,, whence we have
PP, =@, g. Now we define the product ax as ax=+,(x) where
ae U*, x€S,. In the case where ac U* B¢ U* and aB=0 in U¥,
PPy = Pue € R and hence there is a unique y€ S, such that psp,=Ff,.
Then we define the product afB of elements a and B of S as aB=y.
Thus the multiplication in the extension of S, by U is uniquely deter-
mined, for ¢, and 4, have been shown to satisfy the conditions due to
Clifford (Cf. §4 in [1]), q.e.d.

If a semigroup S, satisfies Condition A’, a composition of S, and a
semigroup S; by T=1{0, 1} is easily obtained as the result of the above
theorem. It is stated as follows:
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Corollary 3. A dual-homomrphism of S, into D, determines completely
a composition of S, and S,. In detail, if we are given {p,; a€ S} such
that @, Pp= Ppa, A&, BES,, then there is only a composition of S, and S,
such that xa=qo,(x) for x€S,, a€S,.

If we suppose the following Condition A’ in stead of Condition A’,
we have similarly a theorem and a corollary parallel to the above
theorem and the corollary.

Condition A”. If ax=0bx for all x€S,, then a=5b.

4. Let (S,, U, ¢, denote the extension of S, by U as described in
Theorem 7. Consider the extensions (S,, U, ¢,) and (S/, U’, ¢,) of S,
and S,/ respectively. Under what condition is (S,, U, ®,) isomorphic to
S/, U, ¢.n? However we do not expect to solve this problem comple-
tely here, but we shall find what condition is necessary and sufficient
for existence of an isomorphism ¢ of S=(S,, U, ¢,) to S'=(S,/ U’, @)
such that &(S)=S/, ¢(U¥)=U"*. At first suppose that such ¢ exists.
Let £ be the contraction of ¢ to S,, ie. Ex)=¢(w) =4, x€S,. £ is an
isomorphism of S, to S/, and let  be the isomorphism of Uto U’ such
that » maps the zero of U to the zero of U’ and #(a)={(a)=a’ for
aec U*, Since ¢ is an isomorphism, and xa € S,,

Ep,(2) =E(xa) = (x) =L (0)§ (@) = E(x) n(Q) = Prarf (1)
for every x€S,; and hence &ép,=¢/,,.& or
(2.8) Pheyy=Ep,E" for ever ae U*,
Conversely suppose that & is an isomorphism of S, to S/, # is an
isomorphism of U to U’ and (2.8) is fulfilled. f, and f%., denote inner

right translations of S, and S, respectively. By the definition given in
the proof of Theorem 7, y=1r,(x) implies f,¢,=f,, and so

fé(x)@;(w)=ffxg_1£¢m - ::Efxq)wg“l ’:é:fyg_1 =fé(y)

or we get £(y) =Vhwf(x) and then &y, (x) =h,,E(x) for every x€S,.
Hence &, =m,.£, that is,

(2.9) A, =EP,E? for every a€ U*. It is clear by [4] that if ¢,
is a right translation, £p,£7* is so; and if v, is a left translation &yr&7*
is so. Now, a mapping ¢ of S to S’ is defined as follows.

§(z) if ze€S,,

é’(z):{n(z) if ze U*,

We shall prove that ¢ is an isomorphism. It goes without saying that
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it is one to one. Firstly, for any x€ S, and any a e U*,
E)E (@) =E (@) n(a) = Pref () =Ep ETE(x) =Ep, (x) =E(xa) = {(xa) ;

and similarly ¢(ax)=¢(@)¢(x) by means of (2.9). Next, if «, B¢ U*
with aB€ S,, then n(a)y(B) €S,/ and

E)E(aB)y=E(x(aB)=E(p,e(x))=E(pap, (%)) ,
E(x) () 7(B) = Plrcumepst () = Phycps Pyt (£) = E@pE ) EPof ) =EPpp, (%) .

Since (aB)=E&(aB), L(@EB)=rn(®)y(B), we get EE(aB)=EX)L(@E(RB)
for every x€S, ie. every &(x) €S,/. Hence &(aB)=¢(q)¢(B) because of
Condition A’. As f and g are isomorphisms, the proof is not required
in the case where x, y€ S, or a, B¢ U* with aBe U*. Therefore we
have

Theorem 8. Let & and 7 be isomorphisms of S, and U to S, and U’
respectively, and let S=(S,, U, ¢,) and S'=(S,, U, ¢.). In order that
between S and S’ there is an isomorphism which preserves & and n on S,
and U respectively, it is necessary and sufficient that ¢ly==Ep,E™" for every
aec U*, where o = ().

§ 3. Fundamental Properties of a Semilattice.

In this paragraph a semigroup means a semilattice which is not
assumed to be finite. Let a, b be elements of a semilattice S. If a=>b
is defined to mean ab=a, S is a partly ordered set in which ac is a
least upper bound of ¢ and ¢ for any a, c€S. Conversely if S is a
partly ordered set admitting a least upper bound of any pair of elements,
then S is a semilattice under the multiplication ac defined to mean the
least upper bound of @« and c¢. The following lemma has been already
known. See [6] or Ex. 1, p. 18 in [&].

Lemma 2. A semilattice is characterized by a partly ordered set in
which there is a least upper bound of any pair of elements.

By the way, the condition “ab=a” is equivalent to “xb=a for
some x”. We shall often see an inequality ¢”>b which means ¢>b and
a==b ; and if neither a>b nor a<b, a and b are said to be incomparable ;
otherwise @ and b are called comparable. Of course we may say that
a semilattice is a partly ordered set in which there is a least upper
bound of any finite number of elements.

A homomorphism of a semilattice S to a semilattice S’ is defined as
a mapping of S onto S’ which preserves multiplication; if a homomor-
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phism is one to one, it is called an isomorphism of S to S’ (or between
S and S'); especially we mean by an automorphism an isomorphism of
S onto S itself.

Lemma 3. An isomorphism of a semilattice S to a semilattice S’ is
characterized by a mapping f of the partly ordered set S onto the partly
ordered set S’ which fulfils the following conditions.

(3.1) f is one to one,

B.2) x=yin S ifand only if f(x)=f(y) in S, where (3. 2) is equiva-
lent to (3.2) under (3.1) : ‘

(.2) x>y in S if and only if f(x)>f(y) in S'.

Proof. Suppose that f is an isomorphism of S onto S. From
x>y, x=yz for some z€S, so that f(x)=r(»f(2); hence f(x)=r(y).
Conversely suppose that f is a mapping which fulfils (3.1) and (3. 2).
It is well known that such a mapping must preserve least upper bounds
whenever they exist [8]. Hence f is an isomorphism between S and S'.
Since f is one to one, x=y if and only if f(x)=f(y); accordingly, under
the condition (3.1), x>y if and only if f(x) >f(»). Thus (3.1) and (3. 2)
are equivalent to (3.1) and (3.2).

However a homomorphism is not characterized by a mapping f of
S onto S’ satisfying

(3.3) x=y in S implies f(x) >f(y) in S';

also an isomorphism is not characterized by a one-to-one mapping f of
S onto S’ satisfying (3.3). The following example shows this fact.

Example. Two semilattices S and S’ are given as

S abcde a
ala aaaa VAN
bla baaa b ¢
claaccc AN
dlaacdc d e
elaacce Fig. 1.

SI a/ b/ CI d/ e/ al
adladaaddaddad
blababa v
dladad ccc ANPZN
d’ a/ b/ cl dl Cl d/ el
eglaacce Fig. 2.

Let f be a mapping of S={a, b, c, d} onto S'={a, ¥, ¢/, d’} such that



The Theory of Construction of Finite Semigroups II 11

flay=d, fb)="V, flc)=¢, f(dy=d'. Although f is one-to-one and x>y
implies f(x)=>f(y) for x, y€S, f is not an isomorphism between the two
semilattices, for

fbd)=f(a)=d ==b'=b'd =fb)fd) .
The following lemma is very easily proved.

Lemma 4. (3.4) A subsemigroup of a semilattice is a semilattice.

(3.5) The non-empty intersection of subsemilattices of a semilattice
is a subsemilattice.

(3.6) A homomorphic image of a semilattice is also so.

As well known, an ideal I of a semilattice S is a subset which
satisfies ISCI. Obviously

Lemma 5. A subset I of a semilattice S is an ideal if and only if
xel and x<y imply ye L.

Corollary 4. (3.7) The non-empty intersection of ideals of S is an
ideal of S.

(3.8) The set union of ideals of S is also an ideal of S.

Especially the ideal {x; a<x} is called a principal ideal, denoted
by I,. It is shown that the correspondence a—I, is one to one and [,
is the intersection of I, and I, [6]. Let I be the system composed of
all principal ideals of S. The multiplication in & is defined as inter-
section of principal ideals. Then S is isomorphic onto & Thus a
semilattice is faithfully represented by the system of some subsets of a
set under the multiplication of set-intersection [7]. We may say in
other words as follows.

Theorem 9. Let f, be an inner translation of a semilattice S: f,(x)
=xa=ax for any x€S. The inner translation semigroup R={f,; ac S}
of a semilattice S is isomorphic to S. In other words, a semilattice satis-
fies Condition A’ in §2.

Now we shall define a terminology “a cut.” Let S be a semilattice
which contains two elements at least, and let ¢« be an element of S
which is not greatest. Further let S;={x; x<a} and S,=S—S, which
means the set S, of all elements belonging to S but not to S,.

Lemma 6. S, is a subsemilattice of S, and S, is an ideal of S.

Proof. If x and y are elements of S,, ax=ay=a and a(xy) = (ax)y
=ay=a whence ¥y€S,. By (3.4) of Lemma 4, S, is a subsemilattice
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of S. Next we shall prove that b+« implies bx£a for all x€S.
Suppose bx <a, then b <bx <a. This contradicts with &a. Thus it
has been proved that S, is an ideal of S.

We have obtained a decomposition of S to a semilattice 7={0, 1} :
S=S,uS,. This decomposition of S is called a cut of the semilattice S
from a; and further S, and S, are called the upper class and the lower
class in the cut of S from a respectively. If a £b, then there is a cut
of S such that « is contained in the upper class S, and & in the lower
class S,. In fact, a cut of S from b is so.

§4. Finite Semilattice.

In this paragraph S denotes a finite semilattice. If @ >b and
a_>x_>b for no x, we say “a covers b.” The structure of S is graphically
represented by the so-called “diagram” [8] in which a segment is drawn
from a to b whenever a covers b, and a is placed higher than b or we
write sometimes @ to be placed on the left-side of b whenever a_>b.
Since S is finite, it has the greatest element and minimal elements;
the former is called a zero O.

1. By the hight d[x] of an element x of S we mean the maximum
length d of chains x,<x,<x,<---<x,=x where x is greatest, x, is
minimal, and x; covers x;_,(¢=1, :--, d). Of course d[x]=0 if and only
if ¥ is a minimal element. From the definition of height, we have

Lemma 7. y >x implies d[ y] >d[x].
Proof. Let d=d[x]. We have a chain

2, 2, < v < Xy =2< Xy < o < %4.,=y for a certain k, k>1.
Hence d[x]=d<d+Fk <d[ y], so d[x]<d[ y].

When neither x <y nor x>y, we say that two elements x and y
are mutually incomparable. From Lemma 7, we directly have

Corollary 5. d[ y]l=d[x] implies that either y=x, or y and x are
incomparable.

By the dimension or height d[S] of S we mean the maximum of
heights of elements of S: d[S]=Maxd[x]. So far as S contains two
ZGS

elements at least, d[S]>1. Also the dimension d[ U] of a subsemilattice
U of S is similarly considered.

Lemma 8. d[S]|=d[x] if and only if x=0.
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Proof. From x< 0 for every non-zero x €S, it follows that d[x]<C
d[0]. Therefore d[0] is the maximum of d[x] for x€S.

Lemma 9. Let d[al=m. There are elements x; ((=0,1, .-, m) of
S such that d[x;1=1i (=0, 1, ---, m) and x; covers x;_, (=1, ---, m).

Proof. By the definition of d[a], there is a chain
x4, - <X =a

where x, is minimal and x; covers x;,_, ({=1, ---, m). It is clear that
d[x;]1=1 since there exists a chain x,<7x,<:--<x;. Suppose j=d[x;]1>1,
then we must have
Yo <o L9j=2 %, <Xy =a
so that d[a]=j+m—i_>m because j >i, contradicting with d[a]=m.
Corollary 6. Let d[S|=mn. There is a chain

1oy e Ly =0

where x, is minimal and x; covers x;,_, (=1, ---, n).

Lemma 10. x<y and d[yl=d[x]+1 imply that y covers x. But
the converse is not true.

Proof. Suppose that y does not cover x. There is z at least such

that x<7z<{y.

By Lemma 7, d[#]1</d[2]<_d[y] or d[x]+1=<d[2]<d[].

Hence we have d[x]+1<{d[y], contradicting with the assumption.
Falseness of the converse is shown by the example which has already
been given in § 3, Fig. 1. Though a covers b, d[a]=2, d[b]=0.

Suppose that two finite semilattices S and S’ are isomorphic and let
f be that mapping of S onto S’. If 0 is a zero in S, f(0) is a zero in
S’. By Lemma 3, we have easily

Lemma 11. If x is minimal in S, then f(x) is minimal in S'. If x
covers y, then f(x) covers f(y).

Lemma 12. d[x]=d[ f(x)].
Let f be an automorphism of a semilattice S.
Lemma 13. x==f(x) implies x<{ f(x) and xpf(x).

Proof. Suppose x<_f(x). Then d[x]<d[f(x)] by Lemma 7. This
contradicts with Lemma 12. Similarly x> f(x) is also false.
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Lemma 14. Let x and y be two incomparable elements. If a covers
x and y, then a is the least upper bound of x and y.

Proof. Since a is an upper bound of x and y, x<xy<a. From the
assumption that @ covers x, it follows that either x=xy or xy=a. On
the other hand, since x and y are incomparable, we must have zy=a,
that is, @ is the least upper bound of x and jy.

We obtain the following lemma immediately from the uniqueness
of a least upper bound.

Lemma 15. Let x and y be two incomparable elements. If a covers
x and y, and also b covers x and y, then a=>.

2. Special Semilattices. If the dimension of a finite semilattice S
is 1, S is called an elementary semilattice. In such a semilattice, 0 covers
every element different from O.

Lemma 16. Let S be a finite semilattice of order>=2. S is an
elementary semilattice if and only if the multiplication is given as

B _{x if x=y,
Y=o if x=ky.

Proof. Suppose, at first, that S is an elementary semilattice. It is
sufficient only to discuss a product xy of x==0 and y==0 such that x=-y.
In an elementary semilattice, 0 covers every element different from O,
so that x4=y, x==0, and y==0 imply that x and y are incomparable. By
Lemma 14, 0 is the least upper bound of x and y: xy=0.

Conversely, suppose that the multiplication is given as
xy=x if x=ypy; xy=0 if x==y.
From this, it follows that x< 0 for every x==0, and so we have no chain

such as ¥<y<0. Hence d[S]=1. The associative law is easily proved.

Remark. We can define an elementary semilattice as the above-
mentioned multiplication system, even if it is not finite.

Theorem 10. The structure of a finite elementary semilattice is
completely determined by its cardinal number. In other words, there is
isomorphically only one elementary semilattice of any given cardinal, and
the multiplication is defined as in Lemma 16.

Theorem 11. A finite semilattice S is a lattice if and only if S has
the least element i.e. unit.



The Theory of Construction of Finite Semigroups IT 15

Proof. Assume that S has the least element 1. For any elements
a and b of S, the two subsets {x; x <a} and {y; y <b} are subsemi-
lattices of S by Lemma 6, and the two sets intersect, for 1 at least
belongs to both. Since the intersection D is a subsemilattice of S (cf.
(3.5) of Lemma 4), D contains the greatest element of D. Hence it has
proved that there is the greatest lower bound of @ and b. Conversely
it is clear that a finite lattice has the least element.

Theorem 12. If and only if x=Fy implies d[x]==d[y], then the
partly ordered set S is a chain i.e. a linearly ordered set.

Proof. It is clear that if S is a chain there is a one-to-one corres-
pondence between the elements of S and their heights. We shall prove
the converse. If the correspondence x—d[x] is one-to-one, the only one
element x,, the height of which is 0, is obviously minimal in S. Let
x, be the only one element such that d[x,1=1. If there is y< x,, then
d[ y]< d[x,] by Lemma 7, so that y=x,. Assume that x,<x,< .- <x;_,
where d[x;1=j (=0, 1, ---, i—1), then the only one element x; whose
height is ¢ covers x; ,. Because the existence of elements y, (=0, 1,
e, 1—1), 9, << oo <¥i.,, whose heights are j (7=0, 1, -, i—1)
respectively, is assured by Lemma 9, and, for any {y;} such as above,
we have y,=ux; (=0, 1, ---, i—1) by the assumption of the one-to-one
mapping x—d[x]. Therefore x,<7x,<---<x;,<x;. Repeating this
procedure, we have x,<x,< - <x;< - <x,=0 where x; covers x;_,
(=1, ---, m), and at last all the elements of S are picked up successively.
The proof of the theorem has been completed.

§ 5. Translations of a Semilattice.

1. As defined in [4] or [1], a right translation ¢ of a semilattice
S is a mapping of S into itself satisfying

@(xy) =xp(y) for every x, y€S.

Since we consider S as a semilattice, we need no distinction between
“right” and “left”, and hence ¢ fulfils

(6.1) @) =1xp(y) =P()xr=p(yx) = yp(x) = Px)y.
Lemma 17. (5.2) ¢ is idempotent: ¢p*=¢
(5.3) any translation ¢ commutes with any translation \r: ¢\r=pp.

(5.4) PYx) =Pp(x)Yr(x).
Proof. From ¢(x) =¢@(x%) =xp(x), we get (5.2):
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P (1) = p(xp(x)) = p(X)P(x) =p(x) by (5.1).

The proof of (5.3) is included in Lemma 1. (5.4) is proved in the
following manner: @y (x) =@y (x*) = @(xr(x)) = P (%) (x).

Lemma 18. A translation of a semilattice S is a homomophism of S
into itself.

Proof. Using (5.1) and idempotency of ¢,
P(xy) = P*(x3) = Pxp()) = P(x)P(y) .

Lemma 19. If @ is a translation of a semilattice S, then

5.5 @ =x for all x€ S,
(5.6) x=y implies p(x) =p(v).

Proof. From x=21° @& =e@)=xpx)=x. If x>y ie. x=2xy,
then @(x) = @(xy) = x9(y) = @(3).

. . __(abcde\" . e
Remark. Let us consider a mapping ¢,=— abeae) the semilattice
S:
S abcecde a
ala aaaa b/é\d
bla paatyp
claacac \é/
dlaaadd
elapcde

This @, is a homomorphism of S into itself and satisfies (5. 2), (5.5),
and (5. 6), but @, is not a translation. (cf. [4]) Consequently the con-
verse of Lemma 18 is not true, and the three conditions (5.2), (5.5),
and (5. 6) are not sufficient condition for ¢ to be a translation.

We add that the conditions (5.5) and (5.6) are equivalent to

P(xy) = xp(y) for every x, 3.

2. Translation Semigroup. According to Lemma 17, the translation
semigroup ® of S is a semilattice under the multiplication @yr. Denote
by @ >+ the ordering in the semilattice ®, that is, pyr=¢p. @(S) is the
set of all images @(x) of x€ S under the translation ¢. Then we have

Lemma 20. The following three inequalities are equivalent.

5.7 P>

X1 Xy v g . . . — )
7 (¢(x1) (ﬂ(xz)---(o(x,.)) means a mapping which associates x; with ¢@(x;).
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(5.8) @) =+(x) for all x€S.
(5.9 P(S)TY(S).

Proof. (5.7)—(5.8): Since pyr=, @(x)=@@r(x)) == (x).
(5.8)—(5.9): Take any z€ @(S), then z=¢(x) for some x€S.
Using (5. 8) i.e. ¢(x) =@x){Jr(x) and Lemma 17, we get

2= @(x) = Px)P(x) = PYPr(x) = Y@ (x) = Y(P(x)) € Y(S)

whence @(S) C 4(S).
(5.9—(5.7): By (5.9), for any x, there is y such that ¢(x) =+(y) and
so P(@(x)) =v*(3) =(y) = @(x). Hence we have yrp=ap.

Let us consider a mapping which associates @€ ® with the subset
@(S) of S. From (5.9) and (5.7) of Lemma 20, we get directly

Corollary 7. @(S)=(S) implies p=rr, that is, p—p(S) is on-to-one.
Corollary 8. @(S)=S if and only if @ is the identical mapping of S.
Lemma 21. o (S)=@(S) N\ (S) where N means the intersection.

Proof. By Lemma 20, @yr(S)C @(S) and @yr(S) Cy(S) since @p> @
and @y >+. Hence oy (S) @(S)ny(S). On the other hand, letting any
2 € P(S) N (S), z=p(x)=1(y) for some x and y€S. Then z=p(x)=@*(x)
= pr(y) € pYr(S) whence @(S)NY(S) @yr(S). This completes the proof.

Combining the above lemmas, we have

Theorem 13. The translation semigroup © of a semilattice S is also
a semilattice with unit under the ordering defined by ome of (5.7), (5, 8),
and (5.9). D isismorphic 1o a lattice composed of some subsets of S with
multiplication of intersection.

3. Finite Case. In particular, the translation semigroup of a finite
semilattice is finite and has a unit. Accordingly we have by Theorem 11

Theorem 14. The translation semigroup ® of a finite semilattice S
is a lattice.

Theorem 15. If S is a finite lattice, then ® is isomorphic to S.
Conversely if S is a finile semilattice and ® is ismorphic to S, then S is
a lattice.

Proof. If S is a finite lattice, S has a unit and hence ® coincides
with the inner translation semigroup R (Cf. [4]). By Theorem 9, R is
isomorphic to S, after all ® is isomorphic to S. Conversely if S is a
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finite semilattice, ® is a lattice by Theorem 14, and, since @ is assumed
to be isomorphic to S, S is a lattice.

4. Elementary Semilattice. Let us consider ® of an elementary
semilattice which is not necessarily finite.

Theorem 16. The translation semigroup © of an elementary semilattice
S consists of @ defined as p(x)=x or 0. D is isomorphic to the lattice
composed of all subsets of S which contain 0 with multiplication of inter-
section.

Proof. At first, let @ be a translation of S. We have

x if x=op)

(5.10) cz»(x):sv(x):xq’(x’:{o if x=4=p()

because S is an elementary semilattice. (Cf. Lemma 16)
Hence @(x)==x or 0, in particular, ¢(0)=0.

Conversely we shall prove that such ¢ is a translation of S. If
x4y, then @(xy)=@(0)=0, while xp(y)=0 because @(y)=y or 0. If
=y and @@)=0, then @P**)=¢x)=0 and xpx)=0; if x=y and
@(x)==0, then @\)=¢x) =x and xp(x)=1s*=x. After all we have
@(xy) =x9(y). For any subset M containg O, there is ¢ such that
@(S)=M. By Corollary 7 and Lemma 21 or Lemma 20, we see that ®
is isomorphic to the lattice of all subsets containing 0. The proof of
the theorem has been finished.

Corollary 9. Let S be the elementary semilattice of order n+1. Then
the tramslation semigroup © is of order 2" and of dimension n and

!
contains — "2 elements heights of which are i.
(mn—i)! !
Example.
S a o (aaaa)
/ l\ abid taaca g
abaa aaca)  \aaac
b ¢ d ) A~/
tabad) (@bca) (@acd)
L
(abcd)

where, for example, (¢bad) means <ZZZZ>

5. Construction of Translations. Let S, be a finite semilattice and
let S, be a semilattice which consists of only one element p: S,={p};
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and S denotes a composition of S, and S, by T={0, 1}. (Cf. §1) By
Corollary 2 in §2, we have known that S is also a semilattice. Let
p,(x)=2xp for x€S,, and @, (x)=xp for x€S; @, is a translation of S,
and ¢, is an inner translation of S.

For an element a€ S which fulfils ¢,(@)=a, we choose a translation
£ of S, such that

(5.11) @pf = q)pfa

where f, is a translation of S;: f,(x)==xa, x€ S,. There exists certainly
one £ at least, for we can take f, as £, For such &, a mapping @ of S
into itself is defined as follows.

E(x) if x€S,,

5. 12) Q(x) = {@P(Q)Za i i=p.

We must prove that @(x) is a translation of S. At first if x=y=p,
p(p) =p(p)=a=pa=pp(p); if both x and y belong to S,, it is clear
that @(xy)=2x9(y) because & is a translation of S,. Lastly, we prove
p(xp) =xp(p) for x€S,. Since xp€ S, and ép,=¢,& by Lemma 17, and
since ¢, is a translation of S, we have

P(ap) = E(xp) =E£(p, (%)) = p,£(x)

(5.13) { _ o
2P (p) = xP,(a) = P, (xa) = P, (xa) = P, ,(x) .

According to (5.11), we obtain @(xp)=x@(p). Thus every a and &
fulfilling (5.11) construct a translation . Conversely if @ is any trans-
lation of S, we denote a=@(p) and let £ be a contraction of ¢ to S,.
The equality ¢,(@)=ap=a follows from @(p*)=q(p)=7pp(p). Since
pxp)=xp(p), we have (5.11) under the consideration of (5.13); and
consequently any ¢ is determined by suitable ¢ and &.

Summarizing the above description,

Theorem 17. FEvery translation of the composition S of semilattices
S, and S,={p} is determined by an element a of S and a translation &
of S, which satisfy

p,l@)=a and @E=aq,f,.

If we denote by (a; &) a translation of S which ¢ and & determine,
we get easily

Lemma 22. (a; & =(b; n) if and only if a=0b and E=1.

The translations of S seem to depend on S, and p according to
Theorem 17, but we point out the following remark.
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Remark (5.14). If S is a composition of S, and {p} and at the
same time a composition of S,/ and {p'}. The translation semigroup
constructed from S, and {p} coincides with that constructed from S,
and {p'}. For, the translation semigroup of S depends only on S itself.

Remark (5.15). In (5.11) all the translations of S, can not be &,
namely, not become a contraction of a translation ¢ to S,. For example,

Q 0
1 2 3 4
\‘L.l)/
S S,

. .. . (01234 01234
S is a composition of S, and {5}, and ¢, is <O 123 O)' Although (O 120 0)

is a translation of S,, it can not be a contraction of a translation of S.

§ 6. Decompositions of a Semilattice.

1. In construction of finite semilattices we shall meet the problem
of seeking for all the representations or all the homomorphisms of a
finite semilattice S into another finite semilattice S'. In order to solve
this problem, it is important to find all the decompositions of S (Cf. [3])
or all the congruence relations in S.

In the following lemma, S is not assumed to be finite.

Lemma 23. If u~v is a congruence relation in a semilattice S, then
x~y for all x, y in the interval [u, uv] or [v, uv] where [u, uv] denotes
the subset {z; u <z <uv}.

Proof. We treat the case [#, uv], the other case treated similarly.
From u~v, we get u=u’~uv and so x =wux~uv)x=uv since x € [u, uv].
Similarly y~uv, whence x~y.

If a semilattice S is homomorphic to a semilattice 7, we have a
decomposition of S: S=3>1S.. By Lemma 23, each S, has the property

Ter
that it contains with a, b, a<b, all elements between @ and &; S, is
said to be convex.

2. Terminology. Before the main discussion, we shall define new
terms which are applied to also a general case. Let H be a semigroup,
and I be a proper ideal of H. Suppose that I is homomorphic to a
semigroup L where
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(6. 1) I=§I-r

and the decomposition is defined by 6. Now an equivalence relation
x~y in H is defined as follows.

x~y means that either (6.2) or (6.3) holds.

(6.2) there is = such that x€ I, and ye ..
6.3) x=yeH-I.

If the equivalence relation x~py is a congruence relation, then we
say that the decomposition (6.1) & of I or the homomorphism of the
ideal I to L is extensible to H. 1In such a case, the factor semigroup G
of H due to the congruence relation is called (I, L)-semigroup of H or
(I, 8)—semigroup of H. Let 8, denote the decomposition of I in which each
class is composed of only one element, and let 6, one which gathers all
the elements of I into a class. Then ([, §,)-semigroup of H is isomorphic
to H, and (I, §,)-semigroup of H is the difference semigroup of H modulo
I. In the former, §, is said to be trivially extensible to H. Whenever
H is homomorphic to another semigroup H’ with a proper ideal K,
there is an ideal I of H such that the homomorphism of I to K’ is
extensible to H.

Next we shall explain another term. Let K and K’ be proper ideals
of semigroups H and H’ respectively. Suppose that H is homomorphic
to H and K is isomorphic to K’ under the homomorphism of H to H'.
Then we say that the homomorphism of H to H' fixes the ideal K (or
the ideal K’), and that the decomposition of H isolates K.

3. Again come back to a finite semilattice S and suppose that S
is homomorphic to a semilattice 7= {0, 1, ---, m}, m>2 where 0 is the

zero. Then & denotes the decomposition of S,S:éSi, where each S;
i=0

is a finite convex subsemilattice, and, in particular, S, is an ideal of S.
Let 7’ be any proper ideal of T and K be the inverse image of T’
under the homomorphism of S to 7. K is a proper ideal of S and we
have the decomposition & of K
6: K=35;.
i€1”

Then we get
Lemma 24. The homomorphism of K to T’ is extensible to H.

Proof. The relation x~y is defined accrding to (6.2) and (6.3).
For x€S;, yeS,, i€ T and z€S;, je T, it holds that xz€ S,;S;S, and
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y2€S,;S;S, for some /€ T’ because S is homomorphic to 7 and K is
an ideal of S. In the case of (6.2), x~y implies xz~yz; in the case of

(6.3), x~y, or x=y, implies xz=yz. Hence the relation is a congruence
relation. Thus the lemma has been proved.

So we can consider (K, 7”)-semilattice G of S. Let 7 denote the
decomposition of S given by the homomorphism of S to G. Then 5>£
in the sense of §5 in [3], and hence G is homomorphic to T. The
homomorphism of G to T fixes the ideal 77, in other words, the decom-
position of G isolates 7.

Lemma 25. (K, T")-semilattice of S is homomorphic to T fixing T’ .
Consequently we must solve the following problems.

(6.4) Find all decompositions of ideals I which are extensible to S.
(6.5) Find all decompositions of S which isolate I.

4. Let I be a proper ideal of a finite semilattice S. We assume
that there is a decomposition of S isolating the ideal I, and then we
denote the congruence relation by x~y, that is,

(6.6) if x~y and x or y belongs to I, then x=y.
Now let us consider an element a of S which has the property that
(6.7) a€l and a<y imply y€l.

(6.7) is equivalent to (6.7’) if S* denotes the difference semigroup of S
modulo I where 0* denotes the zero of S* and x* the image of an element
x of S—1I into S*.

(6.7") a* is covered by 0¥ in S*.
Such an element a will be called an element of S covered by the ideal I.
Lemma 26. If ais an element of S covered by I, a~x implies x<a.

Proof. It is sufficient to prove that ax }a if a~x, because always
ax>a. Suppose ax >a for some x€ S, then axel by (6.7), while a~x
implies a ~ax, arriving at ax=a because of (6.6). This is contradictoty
with the assumption ax_>a. Therefore we have proved ax}a ie.
ax=a, or x=a.

Lemma 27. Let a be an element covered by I. If a~x, them x is
incomparable with any element b which is incomparable with a, in other
words, x<b implies b=<a or a<b.



The Theory of Construction of Finite Semigroups II 23

Proof. By Lemma 26, a~x implies x<a. Since a is incomparable
with b, we see b<{_x, a<ab, and hence abe I by (6.7). We must prove
x<4b. Suppose x<_b for some x~a. From a~=x, we get ab~xb=0b
and so ab=>b by (6.6), which means that ¢<b, contradicting with the
assumption. Thus the proof has been finished.

For each element # of the finite semilattice S, C(#) is defined as
the set of all elements x of S such that

6.8) x=<u,
(6.9) x<b implies b<u or u=<b.

C(u) is not empty, for it contains # at least.
Summarizing Lemmas 23, 26, and 27, we have

Lemma 28. Let I be a proper ideal of a finite semilattice S, and let
a,, a,, - ,a, be all the elements covered by I. If a congruence relation
x~y is defined in S such that (6.6) holds, then a subset S,,= {z; a,~z}
satisfies the following conditions.

(6.10) S,; contains a;,
(6- 11) Sa,'<c(ai) ’
(6.12) S,; is convex.

We add that any S,; does not intersect with Sa; (i==j) since @; and
a; are incomparable.

5. On the other hand, the converse of the above lemma holds.

Lemma 29. Let I be a proper ideal of a finite semilattice S, and let
a,, - ,ax be all the elements covered by I. For each a; we choose arbi-
trarily a subset S,; of S which satisfies the three conditions (6.10), (6.11)
and (6.12). Let us define x~y as follows. x~y and x==y if and only
if both x and y belong to a same S,;,. Then the relation becomes a con-
gruence velation in S.

Proof. We shall prove that a,~x implies a,z~=xz or a;,2=xz for
any z€S. Since ¥<xz and x<a; because of (6.10), (6.11), and (6. 8),
xz and q; are comparable: xz=>a; or xz2<a; (Cf. (6.11) and (6.9)). In
the case xz=a;, we get directly x2>a,z while x<a;<a;z and z<a;z lead
to xz2<a,z; hence xz2=a;z€ . In the case xz=<a;: Since ¥<xz=<a; and
a,~x, the condition (6.12) shows a;~xz, while a@,z=a; because
z=<xz<a; hence we have xz~a;z. The proof of this lemma has been
completed.
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6. Theorem 18. Let S be any finite semilattice. Find a sequence
of ideals I, of S

L L L -
Ad
where I,=1,_,V 2 Si; @=1, -+, ) and we choose S;; such that a;, -, a;,

are covered by I,_, and

(6 10/) a,‘j S Sij )
(6. 11/) S,‘j(c(aij) ’

6.12)) S;. is convex.

ij

Then we have a decomposition of S, S= 23 S;;, where N\y=0, I,=3S,,.

1<T=A

=0

0<ih
Conversely any decomposition of S is oblained by such a process.

§7. Construction of Finite Semilattices.

With respect to construction of semilattices, we have already a few
fundamental theorems, for example, Theorem 4 and Corollary 2. Con-
sider the difference semigroup S* of a semilattice S modulo a proper
ideal I. Since a semilattice fulfils Condition A’, S is constructed from
I, S* and a system of suitable translations of I (Cf. Theorems 7, 8). But
our important problem is to discuss how to describe construction-method
and isomorphism-condition in simple words as possible.

All the semilattices of order <5 were obtained in [9]. In this
paragraph we shall discuss how all the finite semilattices are theoretically
constructed. We shall show two methods: one by induction on the
order, the other by induction on the dimension.

1. First Method. Let S, be any semilattice of order »—1 and ¢
be any translation of S,. S denotes a composition of S, and a new one-
element semilattice {p} determined by ¢: px=xp=@(x). Then S is a
semilattice of order » in which p is a minimal element. Possibility of
construction of such a semilattice S is assured by (5.2) of Lemma 17,
Theorem 4, and Corollary 2. Conversely let S be any semilattice of
order # and p be a minimal element of S. Consider a cut of S from p,
where S, is the upper class, and the lower class S, is {p}, ie. S is a
composition of S, and {p} (Cf. §4)

Theorem 19. A translation @ of a finite semilattice S, determines a
composition S of S, and {p}.

Accordingly, if all the semilattices S, of order »—1 are given, we can
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construct all semilattices S of order # by means of all the translations
of all S,, since the translations have been obtained by Theorem 17. S is
denoted by (S,; @, p). It happens that (S,; @, p) and (S, ¢/, p’) are iso-
morphic. We shall find a necessary and sufficient condition.

(1) First consider the case where there is an isomorphism f of
(Se; @, p) to (S); ¢, p) such that f(S)=S/, so f(p)=p". Then, since
Theorem 8 is applied to this case,® we have

Lemma 30. Let f be an isomorphism of S, to S/. S=(S,; @, p) is
isomorphic to S'=(S,; @', p') under the extension of f to S, if and only
if ¢'=rfef™

(2) Secondly suppose that f is an isomorphism of S=(S,; @, p) to
S'=(S,; ¢, @), but S, and S,” are not isomorphic under f. Then p is not
mapped to ¢ but to p’ in S,, and ¢ is not mapped by f ' to p but to ¢
in S,. Since p and ¢ are minimal, » and ¢ are also so. Let S,=S— {p}
—1{q}, S/=S"—{p'}—1{qg}. S, and S, are ideals of S and S’ respectively,
and S, is isomorphic to S by f. Then S=S,V {¢}V {p}, S'=S8/V {p’}
Vg where ¢p€S,, p'g€S, and so S and S’ are decomposed to an
elementary semilattice of order 3. By Theorem 8, denoting S,=(S,; @, ¢),
S, =(5,; ¢, '), we have as a necessary and sufficient condition

(7.Y) ¢=for™, ¢=fof7,

where @ and ¢’ are considered as translations of S, and S,/. Conse-
quently we have the following lemma.

Lemma 31. Let S,=(S,; @, ¢), S/ =(S/; ¢, ), and let f be an
isomorphism of S, to S/, and, ¢ and ¢ be translations of S, and S/,
vespectively. If and only if p=f"'¢'f and ¢ =fpf, then there is an
isomorphism h of S=(S,; @, p) to S'=(S,; ¢/, q) such that h is the exten-
sion of f, and h(p)=1p', hig)=q.

Summarizing the two lemmas,

Theorem 20. (S,; @, p) is isomorphic to (S); ¢, q) if and only if
either

(7.2) S, is isomorphic to S, by a mapping f, and ¢’ =fpf*,
or (1.3) there are ideals S,, S/, and minimal elements ¢, p such that
Se=1(Ss; ?, @), S/ =(S/; &, p), and, S, is isomorphic to S, under f, ¢
is mapped to q, p is mapped to p under f, and

8) U in Theorem 8 is considered here as the semilattice of order 2.
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p=f"9'f, ¢ =fpf.
By the way, if S,=S,/, f is considered as an automorphism of S,.

2. Second Method. Let S be afinite semilattice whose dimension
n is larger than 1. By Lemma 9 there certainly exists an element b of
S such that d[d]=n—1. I denotes the set of all elements « such that
dlal=n—1. Since d[0]=n by Lemma 8, I contains 0, and I is not only
a proper subset but also an ideal of S. Because, for x€ 1, y€S, d[xy]
=>d[x]=n—1 by Lemma 7. Let S*=(S:I) be the difference semigroup
of S modulo 7 in Rees’ sense [2]. We denote by x* the image of x of
S into S* under the homomorphism of S to S*. All the elements of I
are mapped to a zero 0% of S*: z¥=0%* for all z€ 1. Of course S* is a
semilattice by Lemma 4, and the correspondence x-—>x* is one to one
as far as d[x]<z—1. According to Lemma 10, I is a subsemilattice
of dimension 1.

Lemma 32. [ is an elementary semilattice. (cf. §4)

Lemma 33. If d{x]==n—1, x<y in S, then x*<y* in S*. Conver-
sely if x*¥<y*, d[y]l<n—1 in S*, then x<y in S. '

Proof. Let us, first, prove the former half. We may assume
d[x]<n—1, for d[x]=n implies x=0 and so there is no y_>x. In the
case where d[ y]=>=n—1, this theorem is clear. It is sufficient to treat
only a case d[x]<d[v]<n—1. (See Lemma 7). Now y==xz for some
z€S, where we see d[z]<n—1. For, d[z]<d[ y]J<n—1. Since S is
homomorphic to S*, y*=x%2z* so that x*<y* in S*. But we conclude
x*==y* from x==y because of the one-to-one correspondence x— x* in
the range of x, d[x]<n—1. Hence we obtain x*< y* in S*.

Conversely assume x*< y* and d[ y]<n—1. There is 2* € S* such
that y*=x*2* consequently y==xz in S, where we see d[z]<n—1,
d[x]<mn—1, and we can easily show y==x. Therefore we have x<y.
Thus this lemma has been proved.

As consequence of the above lemma, we have

Lemma 34. Let d[x1<n—1. If and only if x is minimal in S, x*
is minimal.

Lemma 35. Lel d[S]l=n. If and only if x,<x,<_--<4%, in S
where x, is minimal, d[ x,,\<n—1, and x; covers x;_, (=1, ---,m), then
xF¥<la¥< oo <x,¥ in S* such that x* is minimal, x,*==0% and x*
covers x¥, (i=1,---,m).
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Immediately from these lemmas,

Theorem 21. Let S be a finite semilattice whose dimension is n>>1.
If S is given, then I and S* are uniquely determined in the above men-
tioned manner, and the height of each element x* of S* is given as
d[0*|=n—1, d[x*¥]=d[x] if O==x€S. Consequently d[S*]=n-—1.

Conversely, suppose that an elementary semilattice 7 and a semilat-
tice S*, whose dimension is #—1, are given. Since I satisfies Condition
A’ in §2, Theorem 7 is applied to this case and hence S is obtained as
the extension of I by S* in the Clifford’s sense. However we should
remark that the following condition is added.

Lemma 36. For any non-zero x€ I, there is a non-zero & € S* such
that @,(x) ==x.

For, since d[x]=n—1, there is non-zero a*=«a € S* such that d[a]
=n—2, a<x, so ax=2x. Conversely if this condition is satisfied, then
Lemma 35 makes us see that all the elements of I are of height >n—1
in the extension of I by S*.

Theorem 22. Suppose that the following three factors are given: a
semilattice S* of dimension n—1, an elementary semilattice I, and a system
of the translations @, of I, where 0*s=a € S*, as seen in Theorem T and
Lemma 36.° Then a semilattice S is uniquely determined such that S con-
tains the ideal I all the elements of which are of height >n—1 and the
difference semigroup (S:I) is isomorphic to S*.

For simplicity, we shall denote S={(I, S*, ¢,). Thus we have a
construction method by induction on the dimension, while there remains
the isomorphism problem of the above extensions, but Theorem 8 solves
this problem. Let us consider S= (I, S*, ¢,) and S'=(I’, S'*, ¢/,). Sup-
pose that S is isomorphic to S’. By Lemma 12, I is isomorphic to I’
and so S* is isomorphic to S’* under any isomorphism ¢ of S to S’. We
can apply Theorem 8 to any ¢&.

Theorem 23. (I, S*, @,) is isomorphic to (I', S'*, ¢.,) if and only if

(7.4) there is an isomorphism & of I to I',
(7.5) there is an isomorphism =z of S* to S'*,
(7.6) Pheur=EPp,E™ for every non-zero a€ S* .

9) We note that the sense of the mark * of U* in Theorem 7 differs from that of * of
S* here.
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We shall be able to state the condition (7.6) in other words because
of speciality of I. For simplicity, we assume I=1I, S*=S* without
loss of generality. Firstly let us research automorphisms of a finite
elementary semilattice /. Reminding us of Lemma 11, we have easily
the following lemma, in which / may be not finite.

Lemma 37. A mapping & of I onto itself is an automorphism of I
if and only if & maps O to itself and causes a permutation of all the
non-zero elements.

Next, we shall find a relation between translations ¢, and &p, &7 of
I. According to Theorem 16, ¢,(x)=0 or x for x€I. For ¢, the sub-
sets X, and Y, of I are defined as

X(p,)=1{x; p,(x)=0, x€l}, Y(p,)=I—X(p,) =1y ®.(9)=2, y€I}
where X(p,) is non-empty.

Lemma 38. x¢ X(p,) implies £(x) € XEp,£7Y),
y€ Y(p,) implies E(y) € YEp E7Y).

Proof. If x€ X(p,), then &p £76(x)=E&p,(x) =£(0)=0; if ye Y(p,),
then £@E7E(y) =Ep,(y) =E(y).

Therefore we have
Corollary 10. (I, S*, @,) is isomorphic to (I, S*, ¢,) if and only if

(7.7) there is an automorphism & of I,
(7.8) there is an automorphism 5 of S¥*,
(7.9)  X(Puw) =E(X(p,)) for all non-zero aec S*,

§ 8. Compositions in the Case where T is Finite.

We shall again investigate compositions of semigroups in succession
to §1. Let T={w, 7, ,7,.,} be a semilattice of order n, where 7,
is the zero, and suppose that there is given a system of semigroups
S,, 7€ T, which are not necessarily finite. Let us consider a composition
S of S,(reT) by T. As far as the construction method is concerned,
we wish to apply Theorem 1 to this case repeatedly.

1. Suppose that a composition S of S, by T is obtained. Let 7,_,
be any minimal element of 7 and let T=(T7, v, 7,.,) Where
Ty= {7y, 71, -+, T,_,} is the upper class in the cut of T from =,_,, and
v is a right translation of T,: y(r)=wr,_, for 7€ T,, Letting
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8.1 S,=3's,,,

S, is an ideal of S and we have a decomposition S=S,VYS, . We can
consider S as a composition of the two semigroups S, and S,, .

Here we shall use similar notations as in §1: denote by x, 3, -
elements of S,, by «, 8, --- elements of S, , by ® and ¥ the right and
left translation semigroups of S, respectively. Further, o denotes the
homomorphism of S, to 7, due to the decomposition (8.1). Then the
right translations ¢, of S, used in construction of ‘a composition fulfils

op,=ryo because
(P, (%)) =0 (x0) =0(x) o(@) =a(¥) T, ,=qlo(x)) for all x€S,.

® denotes the set of all right translations @ of S, which fulfil @ =qo,

¥ the set of all left translations 4 of S, which fulfil oyp=yo. By
Theorem 1, we have easily the following theorem, in which, however,
there is enough ground for improvement. We wish to describe the
condition by means of a method of no induction.

Theorem 24. In order that there is a composition of S, by T, it is
necessary and sufficient that

8.2) for a cut of T from any winimal element «,_,, there exists a
composition S, of S,, € T,, by the upper class T,,
8.3) the following subsemigroups ® and ¥ are not empty.
D= {p; op=00, PEP}, V={}; op=qo, yEV}.
(8.4) there are subsemigroups ®, and ¥, of ® and V¥ respectively
which fulfil the following conditions:

(8.4.1) there is a dual homomorphism o— @, of S
there is a homomorphism a—-, of S, . to ¥,,
(8. 4, 2) ¢7m’\ll'5 = WlfﬁQm for all Py € CI)O’ ’\1/‘5 € \Fo s

8.4.3) @, (x)y=2x,(y) for all x,y€S,, all p,€ P, Y, €¥V,. Any
composition of S, by T is determined by ¢, and , as above-mentioned.

to ®,, and

Tn-1

Thus we have seen that the existence of a composition of S, by T
is generally not assured. (See the later example.)

2. The case where T is a chain. Suppose that T= {r,, 7, -+, 7,_.}
is particularly a finite chain, and each S, is not necessarily finite.

Theorem 25. If T is a finite chain, and semigroups S, (€ T) are
arbitrarily given, then there exists a composition S of S, by T.
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Proof. We shall use induction on the order » and use the same
notations as in the proof of Theorem 24. If S, is assumed to be obtained,
® and ¥ are not empty, because, since v is an identical mapping of 7,
in the present case, ® and ¥ contain not only the identical mapping of
S, but some inner translations of S,. @®, and ¥, exist certainly, for ex-
ample, we may choose as ¥, and ¥, one-element semigroup which is
composed of only the identical mapping. The existence of composition
of S, by T is proved by Theorem 24, for ®, and ¥, fulfil the conditions.

Remark. If all S, are finite, we can choose as ®, and ¥, semigroups
which are composed of some inner right translations and some inner
left translations of S, respectively.

Remark. Even if T is an infinite chain, a composition S of S, (r€ T)
exists. Let x., y. be elements of S,. The multiplication x.-x, in S is
defined as follows.

XXy if T=p®

Xr* Xy = ; .
\ xmax('r,y-) lf 'r:i: M

Let us prove associative law: (x,3.)2, =x,(y.2,).
In the case where =, x, v are all distinct,

(xf'xp.) Xy= xmaxC'r.u.) Xy = xmax(r,y-,v) = x'r 'xmax(u.‘w‘) = x’r' (xya 'xV)
In the case where only two are equal,
if r>p, ®Gy)a=x9.=x.y.2)
if v<lp, @9)2.=2,=%,2,=%(9:2,)

if 'T>,ll;’ (x'rzlb)y‘r:xfy'r:x'r(zMyf)
if 'T<,ll', (x‘rzlb)y'r: BuYr =Ry =X%,= x'r(zpyr)

if 'r>,u, (2 X))y, =%, 3. = Zu(xTyT)
if ~<lp, (ux)y.=2.9.=2,=2.2.3,)

In the case where ==y, that law is clear. Thus the proof is finished.

3. The case where every S, is finite. The following theorem is
obtained as a special case of Theorem 1 of Yamada’s paper [11].

Theorem 26. If a semilattice T and finite semigroups S, (r€T) are
arbitrarily given, then there is a composition of S, (€ T) by T. Of course
T may be infinite.

Although the existence of a composition is thus assured in the case
where T is finite, there remains the question if there exist ®, and ¥,
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fulfilling (8.4.1), (8.4.2), and (8.4.3), when each S, is finite.

If we get an affirmative answer to the problem, all the compositions
of S, ¢1=0,1,--,n—1) by T will be constructed by the successive
procedure as stated in 1.

We can not solve the problem completely here, and shall discuss it
in another paper. If 7 has a special property, then the problem is
affirmed.

Theorem 27. If the translation semigroup ® of T, is composed of the
identical mapping and all the inner tramslations of T,, then the problem
is affirmed.

Proof. If ¢ is an inner translation of T,, y(r)=wr; for a suitable
7,€T,. Let ¢; be an idempotent element of S, : o(e¢,)=7;. Then &,
and ¥, are defined as the sets of only one @ and + respectively:

P(x)=xe;, Y(x)=ex for xe€S,;
if 4 is an identical mapping, then
Px)=2x, Yx)=2 for x€S,.
We see that &, and ¥, satisfy the conditions of Theorem 23.
Corollary. If T, is a finite lattice or a semilattice of order 3, then
the problem is affirmed.

Corollary. In T=(T,, v, 7,_)), if the minimal element T,_, is covered
by only one element, then Theorem 27 holds.

Proof. Let 7; be the only one element which covers 7, ,. Since
T,_, is minimal, 7, < 77, , for any 7€ T,. Using the assumption, we
can easily prove that 7, <er,, and hence vr;<+r, ,, while we get
77, <rr; from =, < r;., Hence we obtain «(r)=77,,=7r; for all
7€ T,, namely v is an inner translation of T,.

Corollary. Even if T is a finite lattice, Theorem 27 holds.

Proof. Let 7,_, be the least element of T, then ¢ is the identical
mapping of T, and hence Theorem 27 holds.

Any semilattice of order at most 5 is either a lattice or a semilattice
having minimal element which is covered by only one element. (Cf. [9]
or §10) If T is of order at most 5, Theorem 27 holds.

4. Especially if S, (r€ T) are all finite s-indecomposable semigroups,
every composition S of S, by a finite semilattice 7 has T as the greatest
s-homomorphic image of S. (Cf. [3]) On the other hand, if an
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s—decomposable semigroup S is a set-union of s—indecomposable sub-
semigroups in its greatest s-decomposion. (Cf. [3]) Hence we have

Theorem 28. Any finite s—decomposable semigroup S is obtained as
a composition of finite s—indecompsable semigroups S, (r€T) by a finite
semilattice T.

As far as construction of compositions is concerned, Theorems 24
and 27 etc. are, of course, applied to this case, but we remark the
following properties.

Lemma 39. Suppose that a semigroup S, is decomposed to a semilat-
tice Ty: S, =2)S,., and S, is an s—indecomposable semigroup. The trans-
TET,

lations @,, V¥, of S, which determine a composition of S, and S, satisfy
the following condition.

For x,y€S,, olx)=0c(y) implies o(p,(x))=0(rs(y))=0,(x))=0(s(y))
Sfor every a, BES,, where o is the homomorphism S,, € x—T€ T,.

Proof. According to the proof of Theorem 24, o@, and o, are
translations of the semilattice 7,, and hence the set ®,= {o,; @€ S;}
is a subsemilattice of the translation semilattice of 7, by Theorem 13
and Lemma 4, while ®, must be one-element semilattice because S, is
s—indecomposable. Therefore o@,(x)=ocpg(x) for every «, €S, and
x€S,. Combining this result with Lemma 16 in [3], we obtain the
present lemma.

In this paper we let the study of s-indecomposable semigroups un-
touched. More precise research of construction of finte s—decomposable
semigroups will be performed after the theory of finite s-indecomposable
semigroups is completed. Finite s-indecomposable semigroups will be
discussed in Part III~Part VI.

5. Remark. Unless all S, are finite, Theorem 26 is not always
valid, even if all S, are s-indecomposable. Although we see this fact
from Theorem 24, we shall verify it by an example of the three semi-
groups, which have no composition. (Cf.[12])

Let T=1{0, 1, 2} be a semilattice with multiplication

nm=0 for n==m, n*=mn, where n, m=0,1, 2;

let S,=1{1, 2, ---, n, ---} be an additive semigroup of all positive integers,
and let S, and S, denote the semigroups composed of only p and gq
respectively:

S;={p}, S.=1{q} where p’=p, ¢=gq.
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Since an idempotent translation of S, is only the identical mapping
according to Example 1 of §3 in [5], a composition U, of S, and S, is
nothing but S, with a two-sided unit p adjoined. (See Theorem 1) Mean-
while, the identical mapping is only one idempotent translation of U
because U, has a unit. (Cf. [4]); and so we can find no idempotent
translation @ of U, such that @(p)€S,. Consequently it is concluded
that there is no composition of S,, S;, and S, by the given T= {0, 1. 2}
(Cf. Theorem 24). Further we add that S, is s-indecomposable, for S,
is shown to be i-indecomposable as follows. Let g(n) be the greatest
i-homomorphic image of » of S,. Since =1+ --- +1, we have
———————

gn)y=g)+ - +g(1)=g(Q). n

n

8§9. The Isomorphism Problem of Compositions.

1. In the final paragraph of composition theory of semigroups,
we shall call the isomorphism problem to account, that is, the problem
to discuss a condition for compositions >}S, and >3 S,” to be isomorphic,
and it is convenient to consider the problem in connection with the
greatest s—decomposition. Here the problem of isomorphism between
s—indecomposable semigroups remain unsolved, which will be argued in
another paper. In this paragraph, S, and S, are not necessarily finite.

2. First of all, let us add a few theorems to the preceding paper
[3] for the preparation of the argument of the title.

Theorem 29. If two semigroups S and S’ are isomorphic, then the
greatest p—homomorphic images of S and S’ are isomorphic.

Proof. Let T and 7’ be the greatest p—~homomorphic images of S
and S’ respectively. Since 7" is considered as a p—homomorphic image
of S: S—»S"—T’, and so T is homomorphic to 7. (Cf. [3]) Similarly
T is a homomorphic image of S’. Suppose that the homomorphism of
T to T’ is not an isomorphism, then it is concluded that T is a greater
p—homomorphic image of S’ than 7’. This arrives at the contradiction
with the assumption that 7" is the greatest u-homomorphic image of S'.

Corollary 11. Suppose that two semigroups S and S’ are isomorphic.
If S is s—indecomposable, then S’ is also so.

Theorem 30. Let T and T' be the greatest s-homomorphic images
of the semigroups S and S’ respectively:

9.1 S=3S, 9.2 =S,

TET Ter’
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where S, and S, are all s—indecomposable. (See Theorem 7 in [3]) If S
and S’ are isomorphic, then thereis an isomorphism T—7' between T and
T’ such that S, and S, are isomorphic under the isomorphism between
S and S'.

Proof. Let f be an isomorphism of S to S’ and let f(S,) denote the
image of S, under f. Since the mapping, which associates the elements
of f(S,) with =, is a homomorphism of S’ to 7, we get an s—decomposi-
tion $'=317(S,). This is the greatest s—decomposition of S’ by Theorem

Ter
7 in [3], since f(S,) is s-indecomposable because of Corollary 11. Con-
sequently the s—decomposition S'= >'f(S,) must coincide with (9. 2).
TeT

Then there is an isomorphism T—7" between T and 7’ such that
S, =f(S,). Thus the theorem has been proved.

Corollary 12. Suppose that the greatest s—-decompositions of two semi-
grouos S and S’ are given: S=3S,, S'=3"S,. If S and S’ are iso-

TET Ter’
morphic, there is an isomorphism f of T to T’ such that, for any sub-
semilattice U of T, Sy=>1S, is isomorphic to Sy= 1S, where
TEU ey’

U = {f(r); v€ U}.

3. Suppose that T={0, 1} is a semilattice where 0°=01=10=0,
1=1, and the semigroups S; and S, are isomorphic (=0, 1). Let S be
the composition of S, and S, constructed by the translations @, and +,

of S, for «€ S,, and S’ be the composition of S, and S, constructed by
@g and g’ of S/ for B€S/. Then we have, if exists,

Lemma 40. We assume that any isomorphism between S and S’ causes
isomor phisms between S; and S; (1=0, 1). The compositions S and S’ are
isomorphic if and only if there are isomorphisms f of S, to S, and g of
S, to S, such that

(9- 3) ¢;(m) =f¢u,f~1 ’ 'l!f;-(m) :‘f"!’wf—l f07' all ac Sl .

Proof. First suppose that S is isomorphic to S’. Let f and g be
isomorphisms of S, and S, to S,/ and S, respectively, which are caused
by the isomorphism of S to S’. Immediately we get

9.4) flxa)=sf(x) glq), fax)=g(®) f(x).
Rewriting them,
F(@a(x)) = Ppcarf (1), Flfra(®) =y f(x) for all xeS,,
so that f@,=@,»f, f¥rs=vVywf, whence we get (9.3).
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Conversely if there are given isomorphisms f of S, to S/, g of S, to
S/, and translations @,, ¥, P, Vi such that the equalities (9.3) are
satisfied, then we get easily (9.4). Hence S and S’ are isomorphic
under the mapping 2 of S to S’ defined as k(x)=f(x) for x€S,,
k(o) =g(a) for a€s,.

4, Let T=1{0,1,.--,t}, t>>1, be an elementary semilattice: ij=1
if i=j, ij=0 if i==j. As lemma 37 shows, an automorphism of such a
semilattice T is a permutation of {0, 1,---,#} which fixes 0, and it
follows that any subset of 7 which contains 0 is a subsemilattice of 7.
Suppose that S is a composition of semigroups S;, i€ T, and S’ is a
composition of semigroups S,/ i€ T, where S, and S, are isomorphic and
all S; and S; are mutually isomorphic. Consider the sequence {S;} of
the compositions S; ((=0, 1, ---,#) which are contained in S and are
defined as the following manner: S,=3S,, S,=3S, and S; is the composi-
tion of S,, S,,-+,S;. S, is considered as a composition of S;_, and S;,
and we assume that S; is determined by the translations @&, % of

S;., where a€S;. Similarly S/, ¢ and ¢~ are also defined.

Lemma 41. Suppose that an isomorphism of S to S’ causes an isomor-
phism of S, to S/ as well as isomorphisms of S; to some S;. Such com-
positions S and S’ are isomorphic if and only if there are a permutation
pof {1, 18}, an isomorphism f, of S, to S;. and isomorphisms f; ,; of
S; to Sy, such that, for any 1<i€T, and any a€S,,

9. 5) ¢.,firp(i)(m)(x) :fo¢fj‘) El(x) , for xe SO,
Vi peixad®) =ForS  f o (%)

©. 6) { PP(B) =F 5 (F.p p(B) fi peir (X)) for BeS,; 1<j<i.
YO(B) =0 (Si.px(X) [ 5 5(B))

Proof. By the assumption, the mapping 7 — ¢’ determines a permuta-
tion of {1,---,%}. The formulas (9.5) are obtained by rewriting the
images of xa and ax, x€S,, acS;, and the formulas (9. 6) are similarly
obtained from the images of a8 and Ba where acS;, B€S;. This
lemma is proved as easily as the previous lemma.

5. Now, again, let T be a finite semilattice of order >2. Consider
two systems {S,}, {S,/} of s—indecomposable semigroups where e T.
Let S denote the composition of S,, 7€ T, and let S’ denote the com-
position of S, 7€ T. The main problem is to find a necessary and
sufficient condition for S and S’ to be isomorphic. The method adopted
here is induction with to the order of 7.
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At first, let us treat the case where T is of oroder 2: S=S,VS,,
S'=S/VS/. Since S,, S;,, S/, and S,/ are s-indecomposable, these
s—decompositions are all greatest because of Theorem 7 in [3]. If S is
isomorphic to S’, then S, and S, are isomorphic to S,/ and S, respec-
tively under the isomorphism of S to S’. (cf. Theorem 30) In this case,
Lemma 40 is applicable and hence the condition (9.3) is necessary and
sufficient.

Next we must treat the case where the order of T is » under the
assumption that the case, where T is of order<(r, is solved. Let
M= {s;} be the set of all minimal elements of 7. In the set M, we
define an equivalence relation o,~ o, meaning that

(9.7) there is an automorphism p of T such that o,= p(s,),
(9.8) S, and S,, are isomorphic.

By this relation M is decomposed into the sum of classes of the equivalent
elements: M=>M,.

By Lemma 37, each element of M, is mapped to an element of the
same class M; under an automorphism of 7. We can consider the two
cases: one case where one class M; at least contains only one element,
and the other case where every class M; contains more than one element.
The former will be called Case I, and the latter Case II.

In case I, suppose that M, contains of only one element o,. Consider
the cut of T from o, in which 7, denotes the upper class of 7T, then
the s-decompositions of S and S’ are defined as in the following manner.

9.9 S=§0US¢1, S'=S,/VS;,
where 5,=31S,, S/=>1S/, and T, is of order<'r. By Theorem 30

TET, TET
and the above‘a) remark, it 0follows that any isomorphism of S to S’ maps
S, to S, and maps S,, to Si,. Accordingly Lemma 40 is applied to this
case.
In Case II, let M= {0\, -, o3}, t >1, and consider a decomposition
of T which is given as

T=T,VT,N - VT, where T,={o}, i=1, -, ¢,

and 7, is the set of elements of T beside o, -+, o;. The factor semi-
lattice of T given by this decomposition is an elementary semilattice.
Then

9.10) S§=5,VS, VY - VS,,, §=§/VS,V . VSi
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where S,=3>S,, §/=31S,, and 7, is of order< 7.
€T,

‘TETO _
It is easily seen that any isomorphism of S to S’ makes S, correspond
to S, and makes S,; correspond to some S;;, that is, a permutation of

{1, ---, ¢} is caused. Hence the result of Lemma 41 is applied to this
case.

Summarizing the above description,

Theorem 31. Let T be a finite semilattice and let S and S’ be com-
positions of s-indecomposable semigroups {S,}, €T, and {S/}, 7€ T,
respectively. The necessary and sufficient condition for S and S’ to be
isomorphic is by induction on the order of T stated that
in Case 1, we obtain the decompositions (9.9) of S and S’ such that
S, and S, are isomorphic, S, and S:, ., are isomorphic, and
9. 3) is satisfied,

in Case 11, we oblain the decompositions (9.10) of S and S’ where S,
and S, are isomoyphic, and there is a permutation p of
{1, -, 8} such that S,; and S:,, are isomorphic, and
Surther (9.5) and (9.6) are satisfied.

§10. Examples of Computations.
Example 1. Let S, be a semilattice denoted by 124, in [9]

aaaa b—d
abayd a<
aaca c
abad

124,

Find all the compositions of S, and {e¢}. By Thiorem 17, its trans-
lations are obtained as following

aaaa, abab, abad, aaca, abch, abcd

These determine semilattices respectively :

e
N e N

_ /4 _
a/b d a/b\e a/b d\e
Ne—_e Ne/” S~
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which are isomorphic to 1149,, 1151,, 1156, 1152, 1150, and 1153, res-
pectively. Since 124, has no automorphism except the identical mapping,
these 6 semilattices are not isomorphic mutually (Cf. [9]).

Example 2. Find all the semilattices of order 5 according to Theorems
22 ond 23. All the possible cases of the order of I and S* which appear
in Theorem 22 are as follows.

w|l®|®|w
I 5 4 3 2

s* | 1 213 4

In the case (1) we get, at once, the elementary semilattice 1146,. In
b

the cade (2), letting I be a{c and ¢* be a non-zero element of S*,
d

we have only @,= (abcd), so that S is nothing but 1147;.

In the case (3): 1 a<2

If S* is 0*—d*—e* then ¢,=@,= (abc), obtaining 1154,, and if S* is

%
O*<Z*, then we have the three isomorphically distinct semilattices

[ aaa aba aba

@e abc abc aac

l Result | 1148; 11505 11525

In the case (4): I a—b

122, 123, 124, 125, 126,
S* 0*_/_3; 0*/0*\9* O*/C*he* 0*__6*/d* OF—c¥— ¥ — gk
Ne* AN d*/ AN d* AN o*
/5 ab aa aa ab aa ab ab ab ab
[ ab ab aa ab ab ab aa ab ab
©e ab ab ab ab ab ab ab ab ab
Result | 11555 | 11515 | 11495 | 11575 | 11535 11585 | 11565 11595 11605

Example 3. Find all compositions of s-indecomposable semigroups
S, and S,

S,={e}.

A%
N
O O

S oo
U
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Since +,= (abcd), the conditions (1.2), (1.4), (1.5), (1.6) are satisfied.
For (1.1) and (1.3), we may consider all idempotent translations of S,.
Without proof, the following properties are arranged.

(10.1) The right translation semigroup ® of the right singular
semigroup S, consists of all the mappings of S, into S,.
(10.2) All the mappings of S, into itself are automorphisms of S,.

Now let us decompose all the right translations into five classes by
the relation ¢,~¢’, meaning that ¢,=f¢’ f for some automorphism
f of S,. Thus we have five types:

75 aaaa abaa abab abca abecd

Result 387 388 389 390 391

Example 4. Find all the compositions of the two s—indecomposable
semigroups S, and S, :

abc de
ala aa d;dd
blaaa eldd
claayp

So S,
33 22

All the right and left translations of S, are
aaa, aab, abc.

Considering (1.3) and (1.4), all pairs of ((pd> , or (\h) are
P Ve

(Gee) (Gas) (Goc)
NG

“““) 312, 313, | none

Then

to 313, none

none none 3155

aa) anti-isomorphic 314,

For pairs written “none”, (1.6) is not satisfied.
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Example 5. Find all compositions S of S,, S,, S,, and S, by T:
1-2

0<3
ab
Ss=41ab s=}, Ss={a, Ss={g.

At first, all the compositions of S, and S,, by 0—1, are

abpa Iabb
abb labb
abc abc
11, 12,

Secondly, let us find all compositions of S,, S;, aud S,.

For 113 ,

apbpa
apbd while a right translation ¢, of 11, which fulfils
abc|c @,(c)=c, is only (abc). +r; is als similar.

cld

Hence we have 112,.

For 12,, abb
abb i
abcle Y, of 12, is only (abc)
cld

the translations @, of 12,, which fulfil ¢,(c)=c¢, are only

(abc) , (bbc) .

Thus we have

abba abbd
abbbd abbd
apcec abpcc
abcd abcd
113, 114,
At last we shall find S.
apcde
a 113 where
2 or 114 o, Px)=a or b Y, (x)=a or b
d or 112 ¢ ¢
el Y. le]




The Theory of Construction of Finite Semigroups IT 41

For 112, the required idempotent translations are

@, = (aaaa), (bbbD); ~r,= (abaa), (abbb)

e
\ aaaa bbbb
Ve

abaa 10485 none

Hence

abbb none none

where “none” means “(1.6) is not fulfilled.”

For 113,
@e
\ aaaa | bbbb
Ye
abba 10525 none
abbb none 10535
For 114,
@e
\ aaaa | abbb | bbbb
v,
abbb 1049, | 10505 | 1051, See [10].

(Received January 25, 1957)
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