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§ 0. Introduction.

The purpose of the present paper is to investigate construction of
finite semilattices and compositions of semigroups which will play an
important part in the theory of construction of finite s-decomposable
semigroups. The theory of compositions of special semigroups is already
included in the result obtained by Clifford [1].

A semilattice is the synonym of a commutative idempotent semi-
group i.e. the multiplication system T satisfying

for all σ, T, pG T. We have known that a semigroup S is decomposed
to a semilattice T, that is to say,υ

where this s-decomposition of S is greatest. (Cf. [3]) The study of a
semilattice is indispensable for the theory of construction of a semigroup.
In this paper we shall restrict ourselves to finite semilattices and we

1) Σ denotes the set union.
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shall show that all semilattices of order2) n are obtained if ones of
order at most n—1 are done.

If T is of order I>2 in the greatest s-decomposition of S, then S is
called s-decomposable and if T is of order 1, then S is called s-inde-
composable. Further if S is homomorphic to a semilattice T such as
(0.1), where this decomposition may not be greatest, then S is called a
composition of semigroups Sτ(τ e T) by T. In case of no fear of confusion,
we shall omit "by T." Now the following problems arise.

When a semilattice T and semigroups Sτ(τ e T) are given arbitrarily,
does a composition of Sτ(τ e T) by T exist ? How are all the composi-
tions of Sτ(τ£ T) by T constructed?

As it is difficult to treat a general case, the problems in this paper
are restricted within a special case where T is finite. We shall show
that there is always one composition at least if T is a finite chain or
if both all Sτ and T are finite but it does not always hold in the other
cases. Furthermore we shall conclude finally that the study of s-
decomposable semigroups is reduced to that of s-indecomposable semi-
groups.

§ l Compositions in the Case where T is of Order 2.

In these paragraphs § 1, § 2, we assume T to be a semilattice of
order 2, i.e. T = { 0 , 1} with multiplication 02 = 0, 01 = 10 = 0, Γ = l. By
a composition S of two semigroups So and S1 (by {0, 1} ), we shall mean

S=f]Si where S J C S . , Sc&CSo, SΛCSo

1. Existence theorem. First we shall show a necessary and
sufficient condition fulfilled by a composition S of semigroups So and S^.
Let us denote by letters x,y,z,-~ elements of So and by a, β, ••• elements
of S2. The associative law we need in S is written as follows, since
the law already holds in So and S1. Later we shall prove independency
of these conditions.

(1.1")
(1. 2")
(1.3")
(1.4")

(1. 5")
(1.6")

If we let Ψa

(xy)a
ct(xy)
(x<x)β

oc{βx)

= χ{yoc)y

= {ocχ)y,

= x(<xβ),

= {ccβ)χ,

(aχ)β=a(χβ) ,
(χa)y

>(χ)=χ

= x(ay) .

ct and ψΛ(x)=and irΛ(x)=aχ, then (1.1")~(1. 6") are formulated as

2) The order of a semigroup means the number of elements of the semigroup.
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a. 10
(1.20
(1.30
(1.40
(1.50
(1. 60

φΛxy) =
ΨΛxy) =
(pa(Pa{x) =z=:

tya&βix) ~=z

ψβψΛx) =

<p«(χ)y =

xψΛy),

ψ«(x)y y

<p«β(χ) P

ψ«β(x) ,

ψ«<pβ(χ),

xψΛy) -

Let Φ0={φΛ; aeS,} and Ψ 0={ψ Λ; tfeSJ. Φo and Ψo are semigroups
with the usual multiplication of mappings. According to the terminology,
(1.10~(l. 60 are expressed in other words:

(1.1) φΛ is a right translation of So,
(1. 2) ψa is a left translation of So,
(1. 3) Si is dually homomorphic to4) Φo,
(1.4) Sx is homomorphic to Ψo >
(1. 5) every element of Φo commutes with every element of Ψo,
(1.6) the substituted semigroup of So by ψ^ is equal to that of So

by φΛ. (See [4])

Of course Φo is a dually homomorphic image of Sx into the right trans-
lation semigroup Φ, and Ψo is a homomorphic image of S1 into the left
translation semigroup Ψ.

Conversely if there exist subsemigroups Φo and Ψo of Φ and ψ
respectively which fulfil (1.1)~(1. 6), then a composition S of So and S1

is obtained. We see that Φo and Ψo exist in reality, for example, so is
the set composed of only identical mapping [4]. In fact, if <pΛ and ψay

for all oceS19 are identical mappings of So, they satisfy the conditions
(1.1)~(1.6). Thus we have

Theorem 1. If semigroups So and S1 are arbitrarily given, there exists
at least one composition S of So and Slm In order to construct S, we find
subsemigroups Φo and ΨQ of the translation semigroups Φ and Ψ respec-
tively such that Sj is dually homomorphic to Φo, and S1 is homomorphic to
ΨOy furthermore Φo and Ψo satisfy (1.5) and (1.6). Then the product of
xeSQ and aeS^^ is defined as χa — φa(χ) and ax = ψa(χ).

Since a pair of Φo and Ψo determines a composition S of So and S1}

we must find all possible pairs of Φo and Ψo in order to obtain all com-
positions of the given So and S19 but it happens that different pairs
(Φo> Ψo) and (Φo', Ψ0

7) determine isomorphic compositions. The isomor-
phism problem of compositions is to be solved in the later paragraph.

3) Pβφ*W(.Pβp*X)Pβ(p(:))
4) We shall use the word "homomorphism to" as the synonym of " homomorphism onto."



4 T. TAMURA

2. Independency of six conditions. Let us give the six examples
where each Example i satisfies the conditions (1. j)9 jφi> but does not
(1./). Regarding translations, see [4] and

Example 1. Let So = {a, ft, c} with multiplication xy = a for all
x9 y€S0, and let S1={d}9 Now φd and ψd are defined as <pd(x) = c for
all x£S0y and ψd(χ)=χ for all xeS0. Then it is clear that φd is not a
right translation of So.

Example 2. We may consider the dual form of Example 1.

Example 3. Take So, S19 and ψd same as in Example 1, and let φd

be a right translation such that φd(a)=a, φd(b)=cy <pd{c)=b. Then ψd

is not idempotent.

Example 4. Consider the dual form of Example 3.

Example 5. Let So and Sx be same as in Example 1. φd and ψd

are given such that

φd(a) = tf , 9>rf(6) = φd(c) = b , ψd(a) = ψd(c) = a , ψd{b) = ft .

Obviously

Example 6. Let us define So, S19 φd and ψrf as following. Let
So = {a, ft, c} with multiplication

a for yφft ,

ft for y = b,

S1={d}y φd{x)=a for all xeSoy ψd(a)=a, ψd(b)=ψd(c)=b. Then the
substituted semigroup of So by ψd is different from that by ψd. (See
[4].) Thus we have

Theorem 2. The conditions (1.1)—(1.6) are independent.

§ 2. Various Propositions.

1. By a partially symmetric composition of So and S1 we mean a
composition of So and Sx (by T of order 2) which fulfils <pa — Ya for all

We have easily.

Theorem 3. 4̂s far as a partially symmetric composition is concerned,
the six conditions in § 1 are equivalent to

(2.1) φΛ(xy) = xψΛy) = ψAx)y , for x, y £ So,

(2. 2) ψaψβ = ^ β ^ Λ == ̂ Λ 8 ,

in other wordsy letting Φ o ^ ί ^ ; ^ ^ S J ,
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(2. Γ) φΛ is a right translation as well as a left translation of So,

(2. 20 Si is homomorphic to a commutative subsemigroup Φo o/Φr\ψ. 5 )

After such Φo is gotten, the product of xeS0 and aeSλ is given as:
χa = aχ = φΛ(χ).

Corollary 1. // So is commutative and S is partially symmetric, then
the six conditions are equivalent to

(2. 3) φΛ(xy) = xφΛy) y Ψ«Ψβ = ΨβΨ* =

Theorem 4. A commutative composition S of the two commutative
semigroups So and Sx is determined by a homomorphism of Sx into the
translation semigroup Φ of Sn.

2. When S2

0 = S0, the conditions (1.1)~(1. 6) becomes simpler. The
following lemma is pointed out without proof by A. H. Clifford in § 3
of

Lemma 1. If Sl = S0, then the condition (1.5) can be excluded, for it
is naturally satisfied.

Proof. φβψΛ{z) = ψβψΛxy) = <Pβ(ψ»(χ)y) = ψΛχ)ψβ(y) = ψ*(χ<pβ(y))

Theorem 5. If So is commutative and Sl = S0, then a composition S
of So and any Sx is partially symmetric. S is determined by Φ o ~ {φa a e SJ
in which each φΛ fulfils (2.3).

Proof. Any element z of So is expressed as z = xy for some x, y € SQ.
By commutativity of So, and the conditions in § 1.

φΛz) = φΛxy) = χφ*(y) = <p«(y)χ=yψ*{χ) = ψ»(χ)y=ψ»(χy) = ψ«(z),

hence S is partially symmetric.

Corollary 2. A composition S of two semilattices So and S1 is a
semi lattice.

Proof. So is commutative and idempotent so that So = So. By
Theorem 5, we have ψa^ψ* for all oceSly and so S is commutative.
Idempotency of S is evident.

Theorem 6. If So has a two-sided unit, then a composition S of So

5) Γ) means intersection.
6) We remark "right" or "left" translations used by us correspond to "left" or "right"

ones used by him respectively.
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and any Sx is determined by a homomorphism f of S1 into So. In detail,
their composition S is determined by

φΛ{x) = χf(a) , ψΛ(χ) =f(a)χ .

Proof. Since So has a two-sided unit e, Φ and Ψ coincide with the
inner right and left translation semigroups respectively £4]. Therefore,
for any a e S1, there are elements f(a) and g(a) in So such that

ψΛx) = xf(oc) , ψΛ(x) = g{a)χ .

Setting x = e especially, <pΛ{e)—ef{a)=f(a)y

 <γΛ(e)=g{oί)e = g{oc). Since
φΛ(e) = φΛ(e)e = eψΛ(e)=ylrΛ(e) according to (1.&), we have f(a) = g(a).
Next we shall prove that / is a homomorphism. By (1.10 a n ( i (l 30>
for all x€S0>

hence we have f{ocβ)==f(a)f(β)9 Conversely it is easily seen that
φΛ(x)=xf(a) and ψΛ(x) =f(a)x fulfil (1. Γ ) ~ ( l . 67). Thus the theorem has
been proved.

3. We provide the following condition for a semigroup So.

Condition A7. If xa — χb for all Λ; in So, then a = b.

This condition is stronger than Condition A in [1] due to Clifford. Let
R be the set of all the inner right translations fa of So:

R={fa; ae So} where fa(x) = xa . (Cf. [4])

Condition A' means that the correspondence a-+fa is one to one. Of
course RC^Φ. (cf. § 1) Now we can find a subsemigroup Φx of Φ which
contains if as a two-sided ideal. In detail, Φx is defined as

Φ1={φ; <peΦy RψdR and φRCiR} .

Though it is our main purpose to point out that a composition of So

and a semigroup S1 is constructed under some conditions simpler than
(1.1)—(1.6) when So satisfies Condition A', we shall discuss the more
general case i.e. the extension of So in the sense of Clifford [1] under
Condition A7. U denotes a semigroup with a two-sided zero 0*, £/* the
set of all non-zero elements of U> and S the extension of So by U in
the sense of Clifford. Further we denote by (<£\: R) the difference
semigroup of Φλ modulo R in the sense of Rees [Z].

Theorem 7. We assume that So satisfies Condition A. A dual
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homomorphism of U into (Φ1: R) determines completely an extension of So

by U in the Clifford's sense. In other words, if there is given a mapping
a-><Pa of the elements of U* into Φx such that, for a, β£ £/*, φa<Pβ — φβa

if βae U*, and φΛψβ £R if βa = O*. Then there exists a unique extension
S of the given So by the given U such that χaz=φa(χ) for x€S0, ae [/*.

Proof. Since R is a two-sided ideal of Φ19 for any xeS0 and any
a £ £/*, there is y in So such that fxφΛ =fy. This y is unique because
So satisfies Condition A'. Now, in order to determine the product ax of
aeU* a n d # e S 0 , we define ψa{x) as follows: y = ψΛ(x). This definition
is equivalent to

(2.4) φΛ(z)x = zψΛ(x) for all zeSOy any a e [/* .

Then we shall prove

(2. 5) ψa(XiX2) = ΨAXi)x2 for every x19 x2eS0y

(2.6) ψΛβ = ψ«ψβy

(2.7) φΛβ = Ψβ<P*

The proof of (2.5). Using (2.4),

for all zeSOy whence ψΛ(x1)X2 = ψΛ(XiX2)'
The proof of (2.6). Since φ(Λβ = φβφΰύ> by (2.4),

for all z£S0. Hence ψΛβ(x) = tφΛψβ(x) for all x£S0.
The proof of (2.7). Since φa and φβ are right translations of So,

zfβ(φΛ(x)) = <Pβ(z)φΛ(x) = φΛ(φβ{z)x) = φa(zψβ(x)) = zφΛ(ψβ(x))

for all z 6 So, and so ψβφΛ(x)=φΛψβ(x) for every x£S0, whence we have
ψβΨa^Ψa'ψβ. Now we define the product ax as ccχ = ψΛ(x) where
ae [/*, x£S0. In the case where aeU*, βeU*, and aβ = 0 in £/*,
φβφa = φaβeR and hence there is a unique yGSo such that ψβφΛ=fy.
Then we define the product aβ of elements a and β of S as aβ=y.
Thus the multiplication in the extension of So by U is uniquely deter-
mined, for φa and ψa have been shown to satisfy the conditions due to
Clifford (Cf. §4 in [1]), q. e. d.

If a semigroup So satisfies Condition A', a composition of So and a
semigroup Sx by T={0, 1} is easily obtained as the result of the above
theorem. It is stated as follows:
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Corollary 3. A dual-homomrphίsm of Sλ into Φx determines completely
a composition of So and Sx. In detail, if we are given {φΛ\ ^ G S J such
that ΨaΦβ^Φβcύy a> β€Si> then there is only a composition of So and Sλ

such that χoί = φa(x) for x€Soy cceS^
If we suppose the following Condition A" in stead of Condition A',

we have similarly a theorem and a corollary parallel to the above
theorem and the corollary.

Condition A". If ax = bx for all x£SOy then a = b.

4. Let (So, Uy φa) denote the extension of So by U as described in
Theorem 7. Consider the extensions (So, Uy φΛ) and (So', U\ φr

ai) of So

and So respectively. Under what condition is (So, U, φa) isomorphic to
(So', U'y φ'Λi) ? However we do not expect to solve this problem comple-
tely here, but we shall find what condition is necessary and sufficient
for existence of an isomorphism ξ of S=(SOy Uy φa) to S/ = (S0

/ U'\ φ'Λi)
such that ξ(S0)=S0\ £(£/*)= £/'*. At first suppose that such ζ exists.
Let ξ be the contraction of f to So, i.e. ξ(χ) = ζ(χ)=χ\ xeS0. ξ is an
isomorphism of So to So', and let η be the isomorphism of ί/to U' such
that rj maps the zero of U to the zero of U' and η{a) =ζ(a) = a' for
cce [/*. Since ξ is an isomorphism, and χcceSoy

=ξ(x)v(a) =Ψ^

for every xeS0; and hence ξφΛ=φf

gWξ or

(2.8) Φ^^ = ξφjt'1 for ever a 6 I/*.

Conversely suppose that ξ is an isomorphism of So to So', η is an
isomorphism of U to U' and (2. 8) is fulfilled. fx and /gCjc0 denote inner
right translations of So and So' respectively. By the definition given in
the proof of Theorem 7, y = ψΛ(x) implies fxΨa^fy, and so

or we get ξ(y)='ψ!η^ξ(x) and then ξψΛ(x) = ψ'rjcΛ^(x) for every xeS0.
Hence ξψa = ψ'vc«£, that is,

(2.9) ψ^^ξψj'1 for every ae t/*. It is clear by [4] that if φΛ

is a right translation, ξφ^"1 is so and if ψa is a left translation ξψjt"1

is so. Now, a mapping ζ of S to S' is defined as follows.

M ; \η(z) if zeu*.

We shall prove that ζ is an isomorphism. It goes without saying that
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it is one to one. Firstly, for any xeS0 and any a e [/*,

ξ(x)ζ(CL) =ξ (X)η(a) =q/«J(x) ^ξφaξ-'ξ{x) = ξφa{x) =ξ{xa) = ζ(χa)

and similarly ζ{aχ) = ζ{a)ζ(χ) by means of (2.9). Next, if a, βeU*
with aβeSoy then η(a)η(β)€S0' and

Since ζ(aβ) = ξ(aβ)9 ζ(cc)ς(β)=v(a)v{β)9 we get ξ{x)ζ(aβ) = ξ(x)ζ{a)ζ{β)
for every xeS0 i.e. every ξ(x)eS0'. Hence ζ(aβ) = ζ(a)ζ{β) because of
Condition A'. As / and g are isomorphisms, the proof is not required
in the case where x, ye So or <xy βe U* with aβe £/*. Therefore we
have

Theorem 8. Let ξ and η be isomorphisms of So and U to So and U'
respectively, and let S = (S0J Uy <pa) and S' = (S0', U\ φ'J). In order that
between S and S' there is an isomorphism which preserves ξ and η on So

and U respectively, it is necessary and sufficient that φh=ζφjί~1 for every
ae £/*, where ot =

§ 3. Fundamental Properties of a Semilattice.

In this paragraph a semigroup means a semilattice which is not
assumed to be finite. Let a, b be elements of a semilattice S. If a^>b
is defined to mean ab — a, S is a partly ordered set in which ac is a
least upper bound of a and c for any a, ceS. Conversely if S is a
partly ordered set admitting a least upper bound of any pair of elements,
then S is a semilattice under the multiplication ac defined to mean the
least upper bound of a and c. The following lemma has been already
known. See [6] or Ex. 1, p. 18 in [8].

Lemma 2. A semilattice is characterized by a partly ordered set in
which there is a least upper bound of any pair of elements.

By the way, the condition "ab = a" is equivalent to "xb — a for
some x". We shall often see an inequality a^>b which means a^b and
a^b and if neither a^Jb nor a<Lb, a and b are said to be incomparable
otherwise a and b are called comparable. Of course we may say that
a semilattice is a partly ordered set in which there is a least upper
bound of any finite number of elements.

A homomorphism of a semilattice S to a semilattice S/ is defined as
a mapping of S onto S' which preserves multiplication if a homomor-
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phism is one to one, it is called an isomorphism of S to S' (or between
S and SO especially we mean by an automorphism an isomorphism of
S onto S itself.

Lemma 3. An isomorphism of a semilattice S to a semilattice S' is
characterized by a mapping f of the partly ordered set S onto the partly
ordered set Sf which fulfils the following conditions.

(3.1) f is one to one,

(3.2) x^>y in S if and only if f(x)^>f(y) in S\ where (3.2) is equiva-
lent to (3. 20 under (3.1) :

(3. 20 x>y in S if and only if f(x)>f(y) in S'.

Proof. Suppose that / is an isomorphism of S onto S\ From
x^>y> x=yz for some zeS, so that f(x)—f(y)f(z) hence f{x)^f(y).
Conversely suppose that / is a mapping which fulfils (3.1) and (3.2).
It is well known that such a mapping must preserve least upper bounds
whenever they exist [8]. Hence / is an isomorphism between S and S'.
Since/is one to one, x=y if and only if f(χ)=f{y) accordingly, under
the condition (3.1), *>;y if and only if /(*)>/( jy). Thus (3.1) and (3. 2)
are equivalent to (3.1) and (3.20.

However a homomorphism is not characterized by a mapping / of
S onto S' satisfying

(3.3) x>,y in S implies f(x)^f(y) in S'

also an isomorphism is not characterized by a one-to-one mapping / of
S onto S' satisfying (3.3). The following example shows this fact.

Example. Two semilattices S and S' are given as

S'

a
a
a
a
a
a

a!

et
a'
a'
a'
a'

b
a
b
a
a
a

V
a'
V
a!
V
a'

c
a
a
c
c
c

c'
a'
a!

c'
d

d e
a a
a a
c c
d c
c e

d'e'
a' a'
b'a'
d c'
d'd
d d

a

b
/

d
Fig.

a'
/ x

V
\ /

d'
Fig.

c
' \

e
1.

\

d

e
2.

V
d
d'

Let / be a mapping of S = {a, b, c, d) onto S'= {a', b', d, d'} such that
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f(a)=za\ f(b) = b', f(c)=<f, f(d) = d'. Although / is one-to-one and x^y
implies f(x)^f(y) for x, jGS, / is not an isomorphism between the two
semilattices, for

fφd) =f{ά) =cfφb' = Vdf =fφ)f{d) .

The following lemma is very easily proved.

Lemma 4. (3.4) A subsemigroup of a semilattice is a semilattice.

(3.5) The non-empty intersection of sub semilattices of a semilattice
is a subsemilattice.

(3. 6) A homomorphic image of a semilattice is also so.

As well known, an ideal / of a semilattice S is a subset which
satisfies ISC^I. Obviously

Lemma 5. A subset I of a semilattice S is an ideal if and only if
xel and x^Ly imply y£l.

Corollary 4. (3.7) The non-empty intersection of ideals of S is an
ideal of S.

(3. 8) The set union of ideals of S is also an ideal of S.

Especially the ideal {x a<x) is called a principal ideal, denoted
by Ia. It is shown that the correspondence a->Ia is one to one and Iab

is the intersection of Ia and Ib [6]. Let Qί be the system composed of
all principal ideals of S. The multiplication in $ is defined as inter-
section of principal ideals. Then S is isomorphic onto 3>. Thus a
semilattice is faithfully represented by the system of some subsets of a
set under the multiplication of set-intersection [7]. We may say in
other words as follows.

Theorem 9. Let fa be an inner translation of a semilattice S: fa(x)
= xa = ax for any x£S. The inner translation semigroup R={fa; a£S}
of a semilattice S is isomorphic to S. In other words, a semilattice satis-
fies Condition A in § 2.

Now we shall define a terminology "a cut" Let S be a semilattice
which contains two elements at least, and let a be an element of S
which is not greatest. Further let S ^ ί * ; x<La} and So — S—Si which
means the set So of all elements belonging to S but not to Slβ

Lemma 6. Sτ is a sub semilattice of S, and So is an ideal of S.

Proof. If x and y are elements of S19 ax = ay = a and a{xy) = (ax)y
z=ay = a whence xyeSlu By (3.4) of Lemma 4, Sx is a subsemilattice
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of S. Next we shall prove that b^a implies bx^a for all xeS.
Suppose bx<,a, then b<Lbx<La. This contradicts with b^a. Thus it
has been proved that So is an ideal of S.

We have obtained a decomposition of S to a semilattice T={0, 1} :
S = SQ\JS1. This decomposition of S is called a cut of the semilattice S
from a and further So and Sx are called the upper class and the lower
class in the cut of S from a respectively. If ad^by then there is a cut
of S such that a is contained in the upper class So and b in the lower
class Slβ In fact, a cut of S from b is so.

§ 4. Finite Semilattice.

In this paragraph S denotes a finite semilattice. If a^>b and
a^>x^>b for no x, we say "a covers b" The structure of S is graphically
represented by the so-called "diagram" [8] in which a segment is drawn
from a to b whenever a covers b, and a is placed higher than b or we
write sometimes a to be placed on the left-side of b whenever a^>b.
Since S is finite, it has the greatest element and minimal elements
the former is called a zero 0.

1. By the hight d\_x~\ of an element x of S we mean the maximum
length d of chains xo<Cxi<Cx2

<C '" <C%d = % where x is greatest, x0 is
minimal, and x{ covers jcl _1(/ = l, •••, d). Of course d\_x~] = 0 if and only
if x is a minimal element. From the definition of height, we have

Lemma 7. y^>x implies d\_y]^>d[x~\.

Proof. Let d = d\_x~\. We have a chain

*o<C*i<C ••• <C#rf = *<!#rf+i<C ••• <^xd+k=y fo r a certain k, k^l.
Hence d[*] = rf<rf+*^rf[>], so d[

When neither Λ ; ^ nor #;>.)>, we say that two elements x and
are mutually incomparable. From Lemma 7, we directly have

Corollary 5. dCjyl^dfVI implies that either y = x, or y and x are
incomparable.

By the dimension or height d[S~\ of S we mean the maximum of
heights of elements of S: d£S] = Max d[x~\. So far as S contains two

elements at least, rf[S]^l. Also the dimension c/[t/] of a subsemilattice
U of S is similarly considered.

Lemma 8. rf[S] = </[#] if and only if χ = 0.
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Proof. From x<^0 for every non-zero xeS, it follows that d[x]<^
d[0~]. Therefore J[0] is the maximum of d[x~] for xeS.

L e m m a 9 . Let d[ά] = m. There are elements x { (ί = 0y 1, •••, m) of

S such that-d[xi~] = i (ί = 0, 1, •••, m) and x { covers x{_x (i = l , •••, m ) .

Proof. By the definition of d{a\> there is a chain

where x0 is minimal and x{ covers xi_1 (/ = 1, « ,m). It is clear that
d[xi'} I> i since there exists a chain x0 <^ xx <^ <] xi . Suppose j = i/[^] ]> /,
then we must have

so that d[a~\^j+rn — i^>m because j^>i, contradicting with d\cϊ\ = m.

Corollary 6. Let ί/[S]=w. There is a chain

where x0 is minimal and x { covers x { _ x (ί = l , •••, n).

Lemma 10. x<^y and d[y] = d[x'] + l imply that y covers x. But
the converse is not true.

Proof. Suppose that y does not cover x. There is z at least such
that x<Cz<Cy.
By Lemma 7, rfM<rf[*]<rf[jG or rfM + l^rf[*]<rf[jQ.
Hence we have d^xli + K^d^y], contradicting with the assumption.
Falseness of the converse is shown by the example which has already
been given in §3, Fig. 1. Though a covers δ, d\β~\ = 2,

Suppose that two finite semilattices S and S' are isomorphic and let
/ be that mapping of S onto S\ If 0 is a zero in S, /(0) is a zero in
S'. By Lemma 3, we have easily

Lemma 11. If x is minimal in S, then f(x) is minimal in S'. If x
covers y, then f(x) covers f(y).

Lemma 12. d M

Let / be an automorphism of a semilattice S.

Lemma 13. xφf(x) implies #<£/(*) and

Proof. Suppose x<f(x). Then rfM<rf[/(jt)] by Lemma 7. This
contradicts with Lemma 12. Similarly x^>f(x) is also false.
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Lemma 14. Let x and y be two incomparable elements. If a covers
x and y, then a is the least upper bound of x and y.

Proof. Since a is an upper bound of x and yy x<,xy<La. From the
assumption that a covers x, it follows that either x = xy or χyz=a. On
the other hand, sinc~ x and y are incomparable, we must have xy = a}

that is, a is the least upper bound of x and y.

We obtain the following lemma immediately from the uniqueness
of a least upper bound.

Lemma 15. Let x and y be two incomparable elements. If a covers
x and y, and also b covers x and y, then a = b.

2. Special Semilattices. If the dimension of a finite semilattice S
is 1, S is called an elementary semilattice. In such a semilattice, 0 covers
every element different from 0.

Lemma 16. Let S be a finite semilattice of order:>2. S is an
elementary semilattice if and only if the multiplication is given as

_(χ if χ=y,
Xy~~\θ if xφy.

Pioof. Suppose, at first, that S is an elementary semilattice. It is
sufficient only to discuss a product xy of xφO and yφO such that xφy.
In an elementary semilattice, 0 covers every element different from 0,
so that xφy, #ΦO, and yφO imply that x and y are incomparable. By
Lemma 14, 0 is the least upper bound of x and y: xy = 0.

Conversely, suppose that the multiplication is given as

xy = x if x=y; xy = 0 if xΦy.

From this, it follows that x<^0 for every JCΦO, and so we have no chain
such as x<Cy<Cβ- Hence J[S] = 1. The associative law is easily proved.

Remark. We can define an elementary semilattice as the above-
mentioned multiplication system, even if it is not finite.

Theorem 10. The structure of a finite elementary semilattice is
completely determined by its cardinal number. In other words, there is
isomorphically only one elementary semilattice of any given cardinal, and
the multiplication is defined as in Lemma 16.

Theorem 11. A finite semilattice S is a lattice if and only if S has
the least element i.e. unit.
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Proof. Assume that S has the least element 1. For any elements
a and b of S, the two subsets {x x<La} and {y; y<b} are subsemi-
lattices of S by Lemma 6, and the two sets intersect, for 1 at least
belongs to both. Since the intersection D is a subsemilattice of S (cf.
(3. 5) of Lemma 4), D contains the greatest element of D. Hence it has
proved that there is the greatest lower bound of a and b. Conversely
it is clear that a finite lattice has the least element.

Theorem 12. // and only if xφy implies dlxΊΦd^y], then the
partly ordered set S is a chain i.e. a linearly ordered set.

Proof. It is clear that if S is a chain there is a one-to-one corres-
pondence between the elements of S and their heights. We shall prove
the converse. If the correspondence x-+d\_x~] is one-to-one, the only one
element xQ, the height of which is 0, is obviously minimal in S. Let
xx be the only one element such that d[x1~] = l. If there is y<Cxlf then
d[.y]<Cd[Xi'] by Lemma 7, so that y = x0. Assume that #0<C*i<C'"'<Ocί-i
where d[_x/]=j (j = 0, 1, •••, i — 1), then the only one element x{ whose
height is i covers x4_x. Because the existence of elements y, O'=O, 1,
—, i—1), j o < J i < < ^ -i, whose heights are j (j = 0, 1, •••, i—1)
respectively, is assured by Lemma 9, and, for any {yj} such as above,
we have yj = Xj U=0, 1, •••, /—I) by the assumption of the one-to-one
mapping x-+d[x~]. Therefore #o<C*i<^ •'• <Cχi-i<Cχi- Repeating this
procedure, we have xo<Zxλ<i ••• < X <C "* <CΛ» = 0 where x{ covers xi_1

(i = l , •••, ή)f and at last all the elements of S are picked up successively.
The proof of the theorem has been completed.

§ 5. Translations of a Semilattice.

1. As defined in [4] or [1], a right translation φ of a semilattice
S is a mapping of S into itself satisfying

for every x, yeS.

Since we consider S as a semilattice, we need no distinction between
"right" and "left", and hence φ fulfils

(5.1) φ(xy) = xφ(y) = φ(y)x = φ(yx) = yφ(x) = φ(x)y .

Lemma 17. (5.2) φ is idempotent: φ2 = φ

(5.3) any translation φ commutes with any translation ψ: φψ =

(5.4) φψ(x) = φ(x)ψ(x).

Proof. From φ(x)=φ(x2) = xφ(x), we get (5.2):
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φ2(χ) = φ(χφ(χ))=φ{χ)φ(χ)=φ(χ) by (5.1).

The proof of (5.3) is included in Lemma 1. (5.4) is proved in the
following manner : φψ(x) = φψ(x?) = φ(xψ(x)) = φ(x)ψ(x).

Lemma 18. A translation of a semilattice S is a homomophism of S
into itself.

Proof. Using (5.1) and idempotency of φ9

φ(χy) = <p2(χy) = φ(xφ(y)) = φ(x)φ(y) .

Lemma 19. If φ is a translation of a semilattice S, then

(5. 5) <p(x) ^ x for all xeS,

(5.6) xI>y implies φ(x)

Proof. From x = x2

y φ(x) = φ(x2) = xφ(x)>x. If x^y i.e. x =
then φ(x) = φ(xy) = xφ(y)

Remark. Let us consider a mapping φo = (arC e\ in the semilattice

S:

S abode a

a a a a a a
bed

a
a
a
a
a

a
b
a
a
b

a
a
c
a
c

a
a
a
d
d

a
b
c
d
e

e

This φ0 is a homomorphism of S into itself and satisfies (5.2), (5.5),
and (5. 6), but φ0 is not a translation, (cf. [4]) Consequently the con-
verse of Lemma 18 is not true, and the three conditions (5.2), (5.5),
and (5. 6) are not sufficient condition for φ to be a translation.

We add that the conditions (5. 5) and (5. 6) are equivalent to

φ(xy)>:xφ(y) for every xy y.

2. Translation Semigroup. According to Lemma 17, the translation
semigroup Φ of S is a semilattice under the multiplication φψ. Denote
by <P^Lψ the ordering in the semilattice Φ, that is, φψ = φ. φ(S) is the
set of all images φ{x) of x £ S under the translation φ. Then we have

Lemma 20. The following three inequalities are equivalent.

(5.7)

m e a n s a m a p p i n g w h i c h a s s o c i a t e s *i w i t h
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(5.8) φ(x)^f(x) for all xeS.

(5.9) <p(S)CΨ(S).

Proof. (5.7)^(5.8): Since φψ = φ, φ(x)=φ(ψ{x))^ψ(x).
(5. 8)->(5.9) : Take any zeφ(S), then z = φ(x) for some xeS.
Using (5.8) i.e. φ(x) =φ(x)ψ(x) and Lemma 17, we get

Z = φ(χ) = φ(x)ψ(x) = φψ(x) = ψφ(x) = ψ(φ(x)) £ ψ(S)

whence φ(S)Cψ(S).
(5. 9)->(5. 7) : By (5.9), for any x, there is y such that φ(χ) = <>\r(y) and
so ψ(φ(x))=ψ2(y) = ψ(y)=:φ(x). Hence we have ψφ = φ.

Let us consider a mapping which associates φeΦ with the subset
<p(S) of S. From (5. 9) and (5.7) of Lemma 20, we get directly

Corollary 7. φ(S) = ψ(S) implies φ = ψ, that is, φ^φ(S) is on-to-one,

Corollary 8. φ(S) = S if and only if ψ is the identical mapping of S.

Lemma 21. φψ(S)^=φ(S) r\ψ(S) where r\ means the intersection.

Proof. By Lemma 20, <pf(S)C<P(S) and φψ(S)CZψ(S) since φψ^>φ
and φψ>^ψ. Hence φψ(S)CZ<p(S) r\ψ(S). On the other hand, letting any
zeφ(S)r\ψ(S), z = φ(x) = ψ(y) for some x and yeS. Then z = φ(x)=φ2(x)
= φψ(y) £φψ(S) whence φ(S)r\ψ(S)CZ<Pψ(S). This completes the proof.

Combining the above lemmas, we have

Theorem 13. The translation semigroup Φ of a semi lattice S is also
a semi lattice with unit under the ordering defined by one of (5.7), (5,8),
and (5. 9). Φ is ismorphic to a lattice composed of some subsets of S with
multiplication of intersection.

3. Finite Case. In particular, the translation semigroup of a finite
semilattice is finite and has a unit. Accordingly we have by Theorem 11

Theorem 14. The translation semigroup Φ of a finite semilattice S
is a lattice.

Theorem 15. If S is a finite lattice, then Φ is isomorphic to S.
Conversely if S is a finite semilattice and Φ is ismorphic to S, then S is
a lattice.

Proof. If S is a finite lattice, S has a unit and hence Φ coincides
with the inner translation semigroup R (Cf. [4]). By Theorem 9, R is
isomorphic to S, after all Φ is isomorphic to S. Conversely if S is a
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finite semilattice, Φ is a lattice by Theorem 14, and, since Φ is assumed
to be isomorphic to S, S is a lattice.

4. Elementary Semilattice. Let us consider Φ of an elementary
semilattice which is not necessarily finite.

Theorem 16. The translation semigroup Φ of an elementary semilattice
S consists of φ defined as φ(x) = x or 0. Φ is isomorphic to the lattice
composed of all subsets of S which contain 0 with multiplication of inter-
section.

Proof. At first, let φ be a translation of S. We have

(5.10)
(0

if x=φ(x)
if Xφφ(x)

because S is an elementary semilattice. (Cf. Lemma 16)
Hence φ(x)=x or 0, in particular, 9>(0) = 0.

Conversely we shall prove that such φ is a translation of S. If
xφy, then φ(χy)=φ(0) = 0, while χφ(y)=0 because <p(y)=y or 0. If
χ = y and φ(χ)=0y then φ(χ2) = φ(χ)z=0 and xφ(x) = 0; if x = y and
9>(#)=f=0, then <p(x2) = φ(x) = x and χφ(χ) = χ2 = χ. After all we have
φ(xy) = xφ(y). For any subset M containg 0, there is φ such that
φ(S) = M. By Corollary 7 and Lemma 21 or Lemma 20, we see that Φ
is isomorphic to the lattice of all subsets containing 0. The proof of
the theorem has been finished.

Corollary 9. Let S be the elementary semilattice of order n + 1. Then
the translation semigroup Φ is of order 2n and of dimension n and Φ

n\contains -r-
(n-i)\i\

Example.

S

elements heights of which are i.

Φ {aaaa)

Kabaά) {aaca) yaaad)

Kabad) (abca) {aged)

(abed)

where, for example, (abad) means

5. Construction of Translations. Let So be a finite semilattice and
let Si be a semilattice which consists of only one element p: S1 = {p}
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and S denotes a composition of So and Sλ by Ύ— {0, 1}. (Cf. §1) By
Corollary 2 in § 2, we have known that S is also a semilattice. Let
φp(x)z=χp for x£S0, and φp(χ)=χp for xeS; φp is a translation of So

and φp is an inner translation of S.
For an element a£S which fulfils φp(a)=a, we choose a translation

ξ of So such that

(5.11) φpξ = ψpfa

where fa is a translation of So: fa{x)=xa, xeS0. There exists certainly
one ξ at least, for we can take fa as ξ. For such ξ, a mapping ψ of S
into itself is defined as follows.

(5.12) φ(x) = i _

We must prove that φ(x) is a translation of S. At first if x=y=py

φ(p2)=φ(ρ) = a=pa=pφ(p) if both x and jy belong to So, it is clear
that φ(xy) = xφ(y) because ξ is a translation of So. Lastly, we prove
φ(xp)=:χφ(p) for x£S0. Since xpeS0 and ξφp = φpξ by Lemma 17, and
since φύ is a translation of S, we have

(5 13) [
\Xφ(p) = Xφp(a) = ^(ΛΛ) = φp(xa) = φpfa(x) .

According to (5.11), we obtain φ(xp) = xφ(p). Thus every a and f
fulfilling (5.11) construct a translation φ. Conversely if φ is any trans-
lation of S, we denote a = φ(p) and let I be a contraction of φ to So.
The equality ^(«) =ap = a follows from <p(p2) = φ(p) =pφ(p). Since
φ(xp) = χφ(ρ)y we have (5.11) under the consideration of (5.13); and
consequently any φ is determined by suitable a and ξ.

Summarizing the above description,

Theorem 17. Every translation of the composition S of semilattices
So and S1 = {p} is determined by an element a of S and a translation ξ
of So which satisfy

φp {a) = a and φpξ = φpfa .

If we denote by (a; ξ) a translation of S which a and ξ determine,
we get easily

Lemma 22. (a ξ) = (6 )̂ i/ ##d (w/y //* a = b and ξ =

The translations of S seem to depend on So and p according to
Theorem 17, but we point out the following remark.
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Remark (5.14). If S is a composition of So and {p} and at the
same time a composition of So' and {p'}. The translation semigroup
constructed from So and {p} coincides with that constructed from So'
and {p'}. For, the translation semigroup of S depends only on S itself.

Remark (5.15). In (5.11) all the translations of So can not be ξ,
namely, not become a contraction of a translation φ to So. For example,

S is a composition of So and {5}, and φ5 is (n i 9 3 0/' Although (n 1 2 0 0/
is a translation of So, it can not be a contraction of a translation of S.

§ 6. Decompositions of a Semilattice.

1. In construction of finite semilattices we shall meet the problem
of seeking for all the representations or all the homomorphisms of a
finite semilattice S into another finite semilattice S'. In order to solve
this problem, it is important to find all the decompositions of S (Cf. [3])
or all the congruence relations in S.

In the following lemma, S is not assumed to be finite.

Lemma 23. If u^v is a congruence relation in a semilattice S, then
x~y for all x, y in the interval [uy uυ~\ or [vy uv~\ where \u, uυ\ denotes
the subset {z u<^z<Luv}.

Proof. We treat the case [u, uυ\, the other case treated similarly.
From u—v, we get u = u2~uυ and so x = ux^(uv)x = uv shxce x£[u, uv\.
Similarly y-^uv, whence x~y.

If a semilattice S is homomorphic to a semilattice T, we have a
decomposition of S: S = Σ Sτ. By Lemma 23, each Sτ has the property

that it contains with a> b, a<^b> all elements between a and b Sτ is
said to be convex.

2. Terminology. Before the main discussion, we shall define new
terms which are applied to also a general case. Let H be a semigroup,
and / be a proper ideal of H. Suppose that / is homomorphic to a
semigroup L where
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(6.1) 7 = Σ / τ

and the decomposition is defined by δ. Now an equivalence relation
x~y in H is defined as follows.

x—y means that either (6.2) or (6. 3) holds.

(6. 2) there is r such that xelτ and y€lT.

(6.3) x = yeH-I.

If the equivalence relation x~y is a congruence relation, then we
say that the decomposition (6.1) δ of / or the homomorphism of the
ideal / to L is extensible to H. In such a case, the factor semigroup G
of H due to the congruence relation is called (/, L)-semίgroup of H or
(/, 8)-semi group of H. Let 80 denote the decomposition of / in which each
class is composed of only one element, and let δ2 one which gathers all
the elements of /into a class. Then (/, δ0)-semigroup of H is isomorphic
to H9 and (/, δ2) -semigroup of H is the difference semigroup of H modulo
/. In the former, δ0 is said to be trivially extensible to H. Whenever
H is homomorphic to another semigroup H with a proper ideal if,
there is an ideal / of H such that the homomorphism of / to K! is
extensible to H.

Next we shall explain another term. Let K and K! be proper ideals
of semigroups H and Ή! respectively. Suppose that H is homomorphic
to Ή! and K is isomorphic to Kf under the homomorphism of H to H\
Then we say that the homomorphism of H to Ή! fixes the ideal K (or
the ideal Kf)> and that the decomposition of H isolates K.

3. Again come back to a finite semilattice S and suppose that S
is homomorphic to a semilattice T = {0, 1, ••• , m}> m^2 where 0 is the

zero. Then ξ denotes the decomposition of S, S=^Si9 where each S,
»=0

is a finite convex subsemilattice, and, in particular, So is an ideal of S.
Let Tf be any proper ideal of T and K be the inverse image of T
under the homomorphism of S to T. K is a proper ideal of S and we
have the decomposition 8 of K

8: K=ΈSi.

Then we get

Lemma 24. The homomorphism of K to Tr is extensible to H.

Proof. The relation x~y is defined accrding to (6.2) and (6.3).
For xeSi9 yeSiy ie T and zeSjy je Ί\ it holds that xzeSiSjcZSί and
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i for some / e Γ because S is homomorphic to T and K is
an ideal of S. In the case of (6.2), #~jy implies xz~yz; in the case of
(6. 3), #~:y, or x=y, implies xz=yz. Hence the relation is a congruence
relation. Thus the lemma has been proved.

So we can consider (K, 7v)-semilattice G of S. Let η denote the
decomposition of S given by the homomorphism of S to G. Then η^ξ
in the sense of § 5 in [3], and hence G is homomorphic to T. The
homomorphism of G to T fixes the ideal T', in other words, the decom-
position of G isolates T'.

Lemma 25. (Ky T)-semilattice of S is homomorphic to T fixing T.
Consequently we must solve the following problems.

(6.4) Find all decompositions of ideals / which are extensible to S.

(6. 5) Find all decompositions of S which isolate /.

4. Let / be a proper ideal of a finite semilattice S. We assume
that there is a decomposition of S isolating the ideal /, and then we
denote the congruence relation by #~jy, that is,

(6. 6) if x~y and x or y belongs to 7, then x = y.

Now let us consider an element a of S which has the property that

(6. 7) a £ I and a<^y imply y e 7.

(6.7) is equivalent to (6. T) if S* denotes the difference semigroup of S
modulo I where 0* denotes the zero of S* and x* the image of an element
x of S-I into S*.

(6. 7') a* is covered by 0* in S* .

Such an element a will be called an element of S covered by the ideal 7.

Lemma 26. If a is an element of S covered by 7, a—x implies x<La.

Proof. It is sufficient to prove that ax^>a if a~x, because always
ax^a. Suppose ax^>a for some xeS, then axel by (6.7), while a~x
implies a~ax, arriving at ax~a because of (6.6). This is contradictory
with the assumption ax^>a. Therefore we have proved ax^\>a i.e.
ax = a, or x<a.

Lemma 27. Let a be an element covered by 7. If a~xy then x is
incomparable with any element b which is incomparable with a, in other
words, x<Lb implies b<^a or a<Lb.
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Proof. By Lemma 26, a—x implies x<La. Since a is incomparable
with δ, we see b<ζ^x, a<^aby and hence abel by (6.7). We must prove
x<^b. Suppose x<^b for some x~a. From a~xy we get ab~xb = b
and so ab = b by (6.6), which means that a<Jby contradicting with the
assumption. Thus the proof has been finished.

For each element u of the finite semilattice S, C(u) is defined as
the set of all elements x of S such that

(6. 8) x<u,

(6.9) x<Lb implies b<Lu or u<Lb .

C(u) is not empty, for it contains u at least.

Summarizing Lemmas 23, 26, and 27, we have

Lemma 28. Let I be a proper ideal of a finite semilattice S, and let
aly a2, ,aλ be all the elements covered by I. If a congruence relation
x~y is defined in S such that (6.6) holds, then a subset Sai={z; ai^z}
satisfies the following conditions.

(6.10) Sai contains a{,

(6.11) Sβ.CC(a,.),

(6.12) Sai is convex.

We add that any Sai does not intersect with S«y (iφj) since a{ and
dj are incomparable.

5. On the other hand, the converse of the above lemma holds.

Lemma 29. l^t 1 be a proper ideal of a finite semilattice S, and let
a19-" ,aλ be all the elements covered by I. For each a( we choose arbi-
trarily a subset Sai of S which satisfies the three conditions (6.10), (6.11)
and (6.12). Let us define x~y as follows, x—y and xφy if and only
if both x and y belong to a same Sar Then the relation becomes a con-
gruence relation in S.

Proof. We shall prove that a^x implies a^^xz or a{z = xz for
any zeS. Since x<Lxz and x<a{ because of (6.10), (6.11), and (6.8),
xz and a( are comparable: xz^a{ or xz<La{ (Cf. (6.11) and (6.9)). In
the case xz^>aiy we get directly xz^a{z while x^a^aiZ and z<=βiZ lead
to xz<LaiZ'y hence xz^a^el. In the case xz<La{: Since x^xz<aέ and
<Z,~Λ;, the condition (6.12) shows <Z;~#z, while a^ — ai because
z<Jcz<Lai', hence we have xz~a£z. The proof of this lemma has been
completed.



24 T. TAMURA

6. Theorem 18. Let S be any finite semilattice. Find a sequence
of ideals I{ of S

where /t. = /t _ 1

u 2 S, y (ί = 1, ••• , A6) tfwd w # choose S{j such t h a t aily ••• , # , λ /

#r# covered by Ii_1 and

(6.100 a f,.eS f i,

(6.110 S^ C C ^ ),

(6.12r) S£j is convex.

Then we have a decomposition of S, S = Σ S, , , where λo = O, I0 = S00.

Conversely any decomposition of S is obtained by such a process.

§ 7. Construction of Finite Semilattices.

With respect to construction of semilattices, we have already a few
fundamental theorems, for example, Theorem 4 and Corollary 2. Con-
sider the difference semigroup S* of a semilattice S modulo a proper
ideal /. Since a semilattice fulfils Condition A\ S is constructed from
/, S* and a system of suitable translations of I (Cl Theorems 7, 8). But
our important problem is to discuss how to describe construction-method
and isomorphism-condition in simple words as possible.

All the semilattices of order <I5 were obtained in [9]. In this
paragraph we shall discuss how all the finite semilattices are theoretically
constructed. We shall show two methods: one by induction on the
order, the other by induction on the dimension.

1. First Method. Let So be any semilattice of order n—1 and φ
be any translation of So. S denotes a composition of So and a new one-
element semilattice {p} determined by φ: pχ = χp = φ(χ). Then S is a
semilattice of order n in which p is a minimal element. Possibility of
construction of such a semilattice S is assured by (5. 2) of Lemma 17,
Theorem 4, and Corollary 2. Conversely let S be any semilattice of
order n and p be a minimal element of S. Consider a cut of S from p,
where So is the upper class, and the lower class Sx is {p}y i.e. S is a
composition of So and {p} (Cf. § 4)

Theorem 19. A translation φ of a finite semilattice So determines a
composition S of So and {p}.

Accordingly, if all the semilattices So of order n — 1 are given, we can
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construct all semilattices S of order n by means of all the translations
of all So, since the translations have been obtained by Theorem 17. S is
denoted by (So; φ, p). It happens that (So; φ, p) and (So', φ', p') are iso-
morphic. We shall find a necessary and sufficient condition.

(1) First consider the case where there is an isomorphism / of
(So; φ,p) to (So7; q/,ff) such that /(S0) = S0

/, so f(p)=p'. Then, since
Theorem 8 is applied to this case,8) we have

Lemma 30. Let f be an isomorphism of So to So'. S=(S0; φy p) is
isomorphic to S' = (S0'; φ',p') under the extension off to S, if and only

(2) Secondly suppose that / is an isomorphism of S=(S0; φ> p) to
S'=(S0'; φ\ q)> but So and So' are not isomorphic under /. Then p is not
mapped to q but to pr in So', and q is not mapped by f'1 to p but to q'
in So. Since p and q are minimal, p' and qr are also so. Let S0 = S— {p}
- W), S0' = S'- {p'} - {q}. So and So' are ideals of S and S' respectively,
and So is isomorphic to So' by /. Then S^S^ {q'} u {p}y S'^S,^ {p'}
^ {q} where q'peS0J p'q^Sό and so S and S' are decomposed to an
elementary semilattice of order 3. By Theorem 8, denoting S0=(S0'> φ, qf),
S0

/ = (S0

/; φ', pf), we have as a necessary and sufficient condition

(7.1) φ'=fφΓ\ ψ'=fφf-\

where φ and ψr are considered as translations of So and So'. Conse-
quently we have the following lemma.

Lemma 31. Let So=(S o; φ, q')> S0

/ = (S0

/; φ',p')> and let f be an
isomorphism of So to So', and, φ and φ' be translations of So and So',
respectively. If and only if φ=f~γφrf and φ' =fφf~\ then there is an
isomorphism h of S=(S0; φ, p) to S' = (S0'; φ\ q) such that h is the exten-
sion of fy and h(p)=pf> h(ςf) = q.

Summarizing the two lemmas,

Theorem 20. (So; φ, p) is isomorphic to (S0

7; φ'9 q) if and only if
either

(7. 2) So is isomorphic to SJ by a mapping f, and q/=fφf~1,
or (7.3) there are ideals So, So', and minimal elements q'yp' such that
S0=(S0; φ, #0, So

f = (So'y φ',p')> and, So is isomorphic to So' under /, ςf
is mapped to q> p is mapped to pf under /, and

8) U in Theorem 8 is considered here as the semilattice of order 2.
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By the way, if S0 = S0\ f is considered as an automorphism of So

2. Second Method. Let S be a "finite semilattice whose dimension
n is larger than 1. By Lemma 9 there certainly exists an element b of
S such that d[b'] = n — 1. / denotes the set of all elements a such that
d{a~\^n — l. Since d\Qf\ = n by Lemma 8, / contains 0, and / is not only
a proper subset but also an ideal of S. Because, for xβl, y€S, d^xy']
^d^xl^n — 1 by Lemma 7. Let S*=(S:/) be the difference semigroup
of S modulo / in Rees' sense [2]. We denote by x* the image of x of
S into S* under the homomorphism of S to S*. All the elements of /
are mapped to a zero 0* of S*: z* = 0* for all z £ I. Of course S* is a
semilattice by Lemma 4, and the correspondence x->x* is one to one
as far as rf[VK» —1. According to Lemma 10, / is a subsemilattice
of dimension 1.

Lemma 32. / is an elementary semilattice. (cf. § 4)

Lemma 33. If d[x~]φn — 1, x<Cy in S, then x*<^f in S*. Conver-
sely if x*<Cy*y d[y~\<^n—l in S*, then x<Cy in S.

Proof. Let us, first, prove the former half. We may assume
rf[XK« —1, for d\jc\ = n implies x = 0 and so there is no y^>x. In the
case where d\_y]^n—1, this theorem is clear. It is sufficient to treat
only a case d\_x~\<^d[v~\<^n—l. (See Lemma 7). Now jy — xε for some
zeS, where we see rf(XK« — 1 . For, d[V]<id[jΓ]<w — 1 . Since S is
homomorphic to S*, j ; * = #*2* so that #*<!);* in S*. But we conclude
^ * φ j ; * from #φj> because of the one-to-one correspondence x->x* in
the range of x, d[_x"]<^n — l. Hence we obtain x*<^y* in S*.

Conversely assume jc*< ĵy* and d [ j T K « — 1 . There is z*£S* such
that y*z=x*z* consequently y = xz in S, where we see d[z~\<^n—l,
d\_x\<^n—ly and we can easily show yφx. Therefore we have x<Cy.
Thus this lemma has been proved.

As consequence of the above lemma, we have

Lemma 34. Let d{_x\<ln-Ί. If and only if x is minimal in S, x*
is minimal.

Lemma 35. Let d\β~] = n. If and only if xQ<^Xi<i'" <^Xm in S
where x0 is minimal, d^x^^n—l, and x{ covers Xι_λ (i = l9 ••• ,m)} then
Xo*<C.x*<i ••• <C^W* in S* such that x0* is minimal\ #OT*H=0*, and x?
covers xf^ (i = l, •••, m).
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Immediately from these lemmas,

Theorem 21. Let S be a finite semilattίce whose dimension is
If S is given, then I and S* are uniquely determined in the above men-
tioned manner, and the height of each element x* of S* is given as

Λ-l, d[**]==rf[>] if OφxeS. Consequently

Conversely, suppose that an elementary semilattice / and a semilat-
tice S*, whose dimension is n— 1, are given. Since / satisfies Condition
A in § 2, Theorem 7 is applied to this case and hence S is obtained as
the extension of / by S* in the Clifford's sense. However we should
remark that the following condition is added.

Lemma 36. For any non-zero xel7 there is a non-zero aeS* such
that φa(x) = x.

For, since d[x~] = n—1, there is non-zero tf* = # e S * such that d\β\
= n—2, a<^x, so ax = x. Conversely if this condition is satisfied, then
Lemma 35 makes us see that all the elements of / are of height *>n — 1
in the extension of /by S*.

Theorem 22. Suppose that the following three factors are given: a
semilattice S* of dimension n—1, an elementary semilattice I, and a system
of the translations <pa of /, where 0*φα:eS*, as seen in Theorem 7 and
Lemma 36.9) Then a semilattice S is uniquely determined such that S con-
tains the ideal I all the elements of which are of height ^>n — l and the
difference semigroup (S:I) is isomorphic to S*.

For simplicity, we shall denote S=(/, S*, φΛ). Thus we have a
construction method by induction on the dimension, while there remains
the isomorphism problem of the above extensions, but Theorem 8 solves
this problem. Let us consider S = (/, S*, φΛ) and S'=(Γ, S'*, q/J). Sup-
pose that S is isomorphic to S'. By Lemma 12, / is isomorphic to Γ
and so S* is isomorphic to S'* under any isomorphism ζ of S to S'. We
can apply Theorem 8 to any ξ.

Theorem 23. (/, S*, φj is isomorphic to (/, S7*, φf

Λf) if and only if

(7. 4) there is an isomorphism ξ of I to ΐ ,

(7. 5) there is an isomorphism η of S* to S7*,

(7.6) ^cαo = f̂ «£~1 for every non-zero aeS* .

9) We note that the sense of the mark * of U* in Theorem 7 differs from that of * of
S* here.
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We shall be able to state the condition (7.6) in other words because
of speciality of /. For simplicity, we assume I=Γ, S* — S'* without
loss of generality. Firstly let us research automorphisms of a finite
elementary semilattice /. Reminding us of Lemma 11, we have easily
the following lemma, in which / may be not finite.

Lemma 37. A mapping ξ of I onto itself is an automorphism of I
if and only if ξ maps 0 to itself and causes a permutation of all the
non-zero elements.

Next, we shall find a relation between translations φa and ξφ^ξ'1 of
/. According to Theorem 16, φa{χ) = 0 or x for xeL For φΛ the sub-
sets XΛ and YΛ of / are defined as

X(ψΛ) = {*i 9>M = 0, X € /} , Y(φa) = I- X(φa) = {y; φjy) =y, y G /}

where X(φa) is non-empty.

Lemma 38. x G X(φΛ) implies ξ(x) G X(ξφΛξ~τ) ,

ye Y(φΛ) implies ξ(y) G YgφJ-1).

Proof. If xeX(φΛ), then ξφJ-1ξ(χ)=ξφΛ(χ)=ξ(0)=0; if yeY(φΛ),
then ξφΛξ-1Hy)=ξφΛ{y)=ξ(y).

Therefore we have

Corollary 10. (/, S*, φa) is isomorphic to (/, S*, φΛi) if and only if

(7. 7) there is an automorphism ξ of /,

(7. 8) there is an automorphism η of S*,

(7.9) X(<Pvw) = HX(<pJ) for all non-zero aeS*.

0

§ 8. Compositions in the Case where T is Finite.

We shall again investigate compositions of semigroups in succession
to §1. Let T = {τ0, τ19 ••• ,τw_1} be a semilattice of order n, where τ
is the zero, and suppose that there is given a system of semigroups
Sτ, τ6 T, which are not necessarily finite. Let us consider a composition
S of Sτ (T G T) by T. As far as the construction method is concerned,
we wish to apply Theorem 1 to this case repeatedly.

1. Suppose that a composition S of Sτ by T is obtained. Let rn_1

be any minimal element of T and let X=(T 0 , 7, r ^ ) where
T o = {τ0, rly ••• ,τw_2} is the upper class in the cut of T from %_!, and
7 is a right translation of To: rί{τ)=ττn_ι for τeT0y Letting
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^(8.1) S0=^Ti
i=0

So is an ideal of S and we have a decomposition S^^SQ^S^^. We can
consider S as a composition of the two semigroups So and STn_ί.

Here we shall use similar notations as in § 1 : denote by xf y, •••
elements of So, by ay βy • •• elements of S T w l , by Φ and Ψ the right and
left translation semigroups of So respectively. Further, σ denotes the
homomorphism of So to To due to the decomposition (8.1). Then the
right translations φa of So used in construction of a composition fulfils
σφΛ~ηo because

σ{φΛ(x)) = σ{χa) = σ{x) σ(<X) = σ (*) τ | | _ i = 7(σ(*)) for all X e SQ .

Φ denotes the set of all right translations φ of So which fulfil <r<p=7(r,

Ψ the set of all left translations ψ of So which fulfil σψ = yσ. By
Theorem 1, we have easily the following theorem, in which, however,
there is enough ground for improvement. We wish to describe the
condition by means of a method of no induction.

Theorem 24. In order that there is a composition of Sr by T, it is
necessary and sufficient that

(8.2) for a cut of T from any minimal element τn_ly there exists a
composition So of Sτy τeT0, by the upper class To,

(8. 3) the following subsemigroups Φ and Ψ are not empty.

Φ — {φ oψ = γσ, φ G Φ} , ψ = {ψ σψ = γσ, ψ 6 Ψ } .

(8.4) /άβrβ are subsemigroups Φo β r̂f Ψo of Φ ŵrf Ψ respectively
which fulfil the following conditions:

(8.4.1) there is a dual homomorphism cc->φa of STnl to Φo, and
there is a homomorphism a->ψa of ST|I_1 to Ψ o ,

(8.4.2) ^ ψ β = ψβφa for all φa e Φo, ψβe Ψo,

(8.4. 3) <pa(x)y=xψjy) for all x,yeS0y all φa e Φo, f Λ e Ψ 0 . 4̂wj;
composition of Sτ by T is determined by ψΛ and ψa as above-mentioned.

Thus we have seen that the existence of a composition of Sτ by T
is generally not assured. (See the later example.)

2. The case where T is a chain. Suppose that Γ = {r0, r^ ••• , τM_J
is particularly a finite chain, and each Sτ is not necessarily finite.

Theorem 25. If T is a finite chain, and semigroups Sτ (T G T)

arbitrarily given, then there exists a composition S of Sτ by T.
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Proof. We shall use induction on the order n and use the same

notations as in the proof of Theorem 24. If So is assumed to be obtained,

Φ and Ψ are not empty, because, since γ is an identical mapping of To

in the present case, Φ and ψ contain not only the identical mapping of
So but some inner translations of So. Φo and Ψo exist certainly, for ex-
ample, we may choose as Φo and Ψo one-element semigroup which is
composed of only the identical mapping. The existence of composition
of Sτ by T is proved by Theorem 24, for Φo and Ψo fulfil the conditions.

Remark. If all Sτ are finite, we can choose as Φo and Ψo semigroups
which are composed of some inner right translations and some inner
left translations of So respectively.

Remark. Even if T is an infinite chain, a composition S of Sτ (r 6 T)
exists. Let xτy yr be elements of S τ. The multiplication xτ Xμ, in S is
defined as follows.

(XrXτ if τ = μ

l#mβ*Cτ.μ> l f

Let us prove associative law: (#Tiyμ)2v = Λ;τ
In the case where r, μ, v are all distinct,

In the case where only two are equal,

if
if

if

if

if

In the case where τ = μ = p, that law is clear. Thus the proof is finished.

3. The case where every Sτ is finite. The following theorem is
obtained as a special case of Theorem 1 of Yamada's paper

Theorem 26. If a semilattice T and finite semigroups Sτ (T e T) are
arbitrarily given, then there is a composition of Sτ (r e T) by T. Of course
T may be infinite.

Although the existence of a composition is thus assured in the case
where T is finite, there remains the question if there exist Φo and Ψo
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fulfilling (8.4.1), (8.4.2), and (8.4.3), when each Sτ is finite.
If we get an affirmative answer to the problem, all the compositions

of ST. {i = 0y 1, ••• , n—1) by T will be constructed by the successive
procedure as stated in 1.

We can not solve the problem completely here, and shall discuss it
in another paper. If T has a special property, then the problem is
affirmed.

Theorem 27. If the translation semigroup Φ of To is composed of the
identical mapping and all the inner translations of To, then the problem
is affirmed.

Proof. If γ is an inner translation of To, ry(τ)=τrf. for a suitable
rf e To. Let e{ be an idempotent element of Sτ.: σ{et) = τf.. Then Φo

and Ψo are defined as the sets of only one φ and ψ respectively:

φ(x) = xe{, ψ{x) = e{x for x e So

if γ is an identical mapping, then

φ(x) = χ9 ψ(χ) = χ for x e So.

We see that Φo and Ψo satisfy the conditions of Theorem 23.

Corollary. If To is a finite lattice or a semi lattice of order 3, then
the problem is affirmed.

Corollary. In T=(TOy γ, rrn_1)y if the minimal element τn_1 is covered
by only one element, then Theorem 27 holds.

Proof. Let τ be the only one element which covers τΛ_1# Since
rn_1 is minimal, rn_1<^ττn_1 for any reT0. Using the assumption, we
can easily prove that rri^ττn_1 and hence rr^rr^^ while we get
TTn-i^LTTi from τn_1<^τi. Hence we obtain <γ(τ)—τrn_1 = rτi for all
T G To, namely γ is an inner translation of To.

Corollary. Even if T is a finite lattice. Theorem 27 holds.

Proof. Let τn_1 be the least element of T, then γ is the identical
mapping of To and hence Theorem 27 holds.

Any semilattice of order at most 5 is either a lattice or a semilattice
having minimal element which is covered by only one element. (Cf. [9]
or § 10) If T is of order at most 5, Theorem 27 holds.

4. Especially if Sτ (r £ T) are all finite s-indecomposable semigroups,
every composition S of Sτ by a finite semilattice T has T as the greatest
s-homomorphic image of S. (Cf. [3]) On the other hand, if an
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s-decomposable semigroup S is a set-union of s-indecomposable sub-
semigroups in its greatest s-decomposion. (Cf. [3]) Hence we have

Theorem 28. Any finite s-decomposable semigroup S is obtained as
a composition of finite s-ίndecompsable semigroups Sτ (T e T) by a finite
semilattice T.

As far as construction of compositions is concerned, Theorems 24
and 27 etc. are, of course, applied to this case, but we remark the
following properties.

Lemma 39. Suppose that a semigroup So is decomposed to a semilat-
tice To: So = ^SOry and Sx is an s-indecomposable semigroup. The trans-

τ£τ0

lations φa, ψa of So which determine a composition of So and S2 satisfy
the following condition.

For x,yeS0, σ(x) = σ(y) implies σ(φΛ(x))=σ{ψβ(y))=σψΛ{x))=σ(yJrβ(y))
for every ccy β^Sly where σ is the homomorphism S0τ£x->τe To.

Proof. According to the proof of Theorem 24, σφa and <r\frΛ are
translations of the semilattice To, and hence the set Φo = {σφa a e SJ
is a subsemilattice of the translation semilattice of To by Theorem 13
and Lemma 4, while Φo must be one-element semilattice because S1 is
s-indecomposable. Therefore σ-φa(x) = σ-φβ(x) for every a^eS± and
xeS0. Combining this result with Lemma 16 in [3], we obtain the
present lemma.

In this paper we let the study of s-indecomposable semigroups un-
touched. More precise research of construction of ήnte s-decomposable
semigroups will be performed after the theory of finite s-indecomposable
semigroups is completed. Finite s-indecomposable semigroups will be
discussed in Part III ~ Part VI.

5. Remark. Unless all Sτ are finite, Theorem 26 is not always
valid, even if all Sτ are s-indecomposable. Although we see this fact
from Theorem 24, we shall verify it by an example of the three semi-
groups, which have no composition. (Cf. [12])

Let T= {0, 1, 2} be a semilattice with multiplication

nm = 0 for nφm, n2 = n , where n, m = 0, 1, 2

let S o = {1, 2, ••• , n, •••} be an additive semigroup of all positive integers,
and let S1 and S2 denote the semigroups composed of only p and q
respectively:

Si={p}> S2={q} where p2 = p, q2 = q.
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Since an idempotent translation of So is only the identical mapping
according to Example 1 of § 3 in [5], a composition Uo of So and S1 is
nothing but So with a two-sided unit p adjoined. (See Theorem 1) Mean-
while, the identical mapping is only one idempotent translation of Uo

because Uo has a unit. (Cf. [4]); and so we can find no idempotent
translation φ of Uo such that φ(p)eS0. Consequently it is concluded
that there is no composition of So, Sly and S2 by the given T = {0, 1. 2}
(Cf. Theorem 24). Further we add that So is s-indecomposable, for So

is shown to be i-indecomposable as follows. Let g(n) be the greatest
i-homomorphic image of n of So. Since w = l + ••• + 1 , we have

gin) = g( l )+ ••• +g(l) = g(l). n

n

§ 9. The Isomorphism Problem of Compositions.

1. In the final paragraph of composition theory of semigroups,
we shall call the isomorphism problem to account, that is, the problem
to discuss a condition for compositions Σ Sτ and 2 S/ to be isomorphic,
and it is convenient to consider the problem in connection with the
greatest s-decomposition. Here the problem of isomorphism between
s-indecomposable semigroups remain unsolved, which will be argued in
another paper. In this paragraph, Sτ and S/ are not necessarily finite.

2. First of all, let us add a few theorems to the preceding paper
[3] for the preparation of the argument of the title.

Theorem 29. If two semigroups S and S' are isomorphic, then the
greatest μ-homomorphic images of S and Sf are isomorphic.

Proof. Let T and Ύ' be the greatest μ-homomorphic images of S
and S' respectively. Since T is considered as a μ-homomorphic image
of S: S->S'-*T\ and so T is homomorphic to V. (Cf. [3]) Similarly
T is a homomorphic image of S'. Suppose that the homomorphism of
T to T' is not an isomorphism, then it is concluded that T is a greater
μ-homomorphic image of S' than T'. This arrives at the contradiction
with the assumption that T' is the greatest μ-homomorphic image of S'.

Corollary 11. Suppose that two semigroups S and S' are isomorphic.
If S is s-indecomposable, then S' is also so.

Theorem 30. Let T and Tf be the greatest s-homomorphic images
of the semigroups S and Sf respectively:

(9.1) S = Σ S T 0.2) S'= Σ s;,,
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where Sr and S'τr are all s-indecomposable. (See Theorem 7 in [3]) If S
and S' are isomorphic y then there is an isomorphism r-^τ' between T and
T such that Sτ and S'r, are isomorphic under the isomorphism between
S and S'.

Proof. Let / be an isomorphism of S to S' and let f(Sτ) denote the
image of Sτ under /. Since the mapping, which associates the elements
of /(Sτ) with r, is a homomorphism of S' to T, we get an s-decomposi-
tion S' = Σ/(ST). This is the greatest s-decomposition of S' by Theorem

7 in [3], since f(Sτ) is s-indecomposable because of Corollary 11. Con-
sequently the s-decomposition S '=Σ/(S T ) must coincide with (9.2).

Then there is an isomorphism r-^r' between T and T' such that
S'τ,=f(Sτ). Thus the theorem has been proved.

Corollary 12. Suppose that the greatest s-decompositions of two semi-

grouos S and S' are given: S = Σ S T , S ' ^ ^ S / . If S and S' are iso-

morphky there is an isomorphism f of T to V such that, for any sub-
semilattice U of T, Sv=^lSr is isomorphic to Sv/= 2 Sτr where

U'={f(r); reU}.

3. Suppose that T= {0, 1} is a semilattice where 02 = 01 = 10 = 0,
12 = 1, and the semigroups S, and S/ are isomorphic (ί = 0, 1). Let S be
the composition of So and S1 constructed by the translations ψΛ and ψΛ

of So for a £ S1, and Sx be the composition of So' and S/ constructed by
ψβ and ψβ of So for βeS/. Then we have, if exists,

Lemma 40. We assume that any isomorphism between S and Sf causes
isomorphisms between S( and S/ (ί = 0, 1). The compositions S and S' are
isomorphic if and only if there are isomorphisms f of So to So

/ and g of
Sx to Si such that

(9.3) φf

g,Λ^fφJ-\ •V**=WJ-X for all aeSx.

Proof. First suppose that S is isomorphic to S'. Let / and g be
isomorphisms of So and St to S0

7 and S/ respectively, which are caused
by the isomorphism of S to S'. Immediately we get

(9.4) f(χa)=f(x)g(a)9 fi<xχ)=g(a)f(χ) .

Rewriting them,

f(φΛ(χ))=φ'**>f(χ) > ΆΨM)=ψ'g^f(χ) for all x e So,

so that fφa = φ'g^fy fψΛ = ψ'gcΛif, whence we get (9.3).
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Conversely if there are given isomorphisms / of So to So', g of S1 to
S/, and translations φΛy ψay Ψgc^y 'ψy*) such that the equalities (9.3) are
satisfied, then we get easily (9.4). Hence S and S' are isomorphic
under the mapping k of S to S' defined as k(x) =f(x) for xeSOy

k(α)=g(α) for αeS,.

4. Let T= {0, 1, •••,/}, ί^>l, be an elementary semilattice: ij=i
if i = j9 ij=0 if iφj. As lemma 37 shows, an automorphism of such a
semilattice T is a permutation of {0,1, •••,/} which fixes 0, and it
follows that any subset of T which contains 0 is a subsemilattice of T.
Suppose that S is a composition of semigroups S{, ieTy and S' is a
composition of semigroups S/ ί 6 Ty where So and So' are isomorphic and
all S£ and S/ are mutually isomorphic. Consider the sequence {S, } of
the compositions Sz (i = 0, 1, ••• , f) which are contained in S and are
defined as the following manner: S0 = S0> St = S, and Sz is the composi-
tion of So, S19 ••• , S, . S, is considered as a composition of S ^ and S,-,
and we assume that S, is determined by the translations ^ ' ~ υ , ψcj~1:> of
Sf_i where ^GS,-. Similarly S/, ^CJ"1)/ and ψ^"1 5 ' are also defined.

Lemma 41. Suppose that an isomorphism of S to Sf causes an isomor-
phism of So to SQ as well as isomorphisms of S{ to some S'£/. Such com-
positions S and S; are isomorphic if and only if there are a permutation
p of {1, ••• , t}, an isomorphism f0 of So to So'. and isomorphisms fitPco of
S{ to Spco such that, for any l < j € T, and any

(9. 5) f rti pci**^*) =foΨ^foΎ(x) > for x£SOy

(9.6) fΛ°(Λ=Λ1(^P(Λ/,^(«)) for βesjy
I θ9 1 β

Proof. By the assumption, the mapping /->/' determines a permuta-
tion of {1, * ,ί} The formulas (9.5) are obtained by rewriting the
images of xa and aχy xeSQy <xe S{, and the formulas (9. 6) are similarly
obtained from the images of aβ and βa where oceSiy βeSj. This
lemma is proved as easily as the previous lemma.

5. Now, again, let T be a finite semilattice of order :>2. Consider
two systems {Sτ}, {S/} of s-indecomposable semigroups where reT.
Let S denote the composition of Sτy τeTy and let S' denote the com-
position of Sτ\ reT. The main problem is to find a necessary and
sufficient condition for S and S' to be isomorphic. The method adopted
here is induction with to the order of T.
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At first, let us treat the case where T is of oroder 2: S —
S'= So'wS/. Since So, Sly So', and S/ are s-indecomposable, these
s-decompositions are all greatest because of Theorem 7 in [3]. If S is
isomorphic to S', then So and Sx are isomorphic to So

/ and S/ respec-
tively under the isomorphism of S to S'. (cf. Theorem 30) In this case,
Lemma 40 is applicable and hence the condition (9. 3) is necessary and
sufficient.

Next we must treat the case where the order of T is r under the
assumption that the case, where T is of order <V, is solved. Let
M= {σ-J be the set of all minimal elements of T. In the set My we
define ap. equivalence relation σ 1 ~σ 2 meaning that

(9.7) there is an automorphism p of T such that σ1^=p(σ 2)y

(9.8) Sσ i and Sσ2 are isomorphic.

By this relation M is decomposed into the sum of classes of the equivalent
elements : M= Σ M{.

By Lemma 37, each element of M^ is mapped to an element of the
same class M{ under an automorphism of T. We can consider the two
cases: one case where one class M{ at least contains only one element,
and the other case where every class M{ contains more than one element.
The former will be called Case I, and the latter Case II.

In case I, suppose that Mλ contains of only one element σλ. Consider
the cut of T from σλ in which To denotes the upper class of T, then
the s-decompositions of S and S' are defined as in the following manner.

(9.9) S=S0^Sσi> S'^

where So= Σ Sτ, So ; = Σ &/, and To is of order<>. By Theorem 30

and the above remark, it follows that any isomorphism of S to S' maps
So to So' and mapsS σ i to S'σi. Accordingly Lemma 40 is applied to this
case.

In Case II, let Mi = {<rly •• ,<rί}, C>1, and consider a decomposition
of T which is given as

τ = T o w T i w . . . KJTf w h e r e Γ , = {σ,}, 1 = 1, .. ,f, .

and To is the set of elements of T beside σly ••• , σt. The factor semi-
lattice of T given by this decomposition is an elementary semilattice.
Then

(9.10) S=
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where So= Σ Sτ, So' = Σ s/> and To is of order<>.

It is easily seen that any isomorphism of S to S' makes So correspond
to So' and makes Sσ. correspond to some Sίy, that is, a permutation of
{1, ••-,/} is caused. Hence the result of Lemma 41 is applied to this
case.

Summarizing the above description,

Theorem 31. Let T be a finite semilattice and let S and S' be com-
positions of s-indecomposable semigroups {Sr}, reT, and {S/}, reT,
respectively. The necessary and sufficient condition for S and S' to be
isomorphic is by induction on the order of T stated that

in Case I, we obtain the decompositions (9. 9) of S and Sf such that
So and So are isomorphic, Sσi and SvKO are isomorphic, and
(9. 3) is satisfied,

in Case II, we obtain the decompositions (9.10) of S and S' where So

and So are isomorphic, and there is a permutation p of
{1, -" , t} such that Sσi and S/a-Pci:) are isomorphic, and

further (9. 5) and (9. 6) are satisfied.

§ 10. Examples of Computations.

Example 1. Let So be a semilattice denoted by 1244 in [9]

a
a
a
a

a
b
a
b

a
a
c
a

a
b
a
d

124 4

Find all the compositions of So and {e}. By Thiorem 17, its trans-
lations are obtained as following

aaaa, abab, abad, aaca, abcb, abed

These determine semilattices respectively :

a

b-d

c — e

• b >

c

b^

c

d

•d

e

b-d-e

c



38 T. TAMURA

which are isomorphic to 11495, 11515, 11565, 11525, 11505 and 11535 res-
pectively. Since 1244 has no automorphism except the identical mapping,
these 6 semilattices are not isomorphic mutually (Cf. [9~]).

Example 2. Find all the semilattices of order 5 according to Theorems
22 ond 23. All the possible cases of the order of / and S* which appear
in Theorem 22 are as follows.

/

s*

CD
5

1

(2)

4

2

(3)

3

3

(4)

2

4

In the case (1) we get, at once, the elementary semilattice 11465. In
/b

the cade (2), letting / b e a (— c and e? be a non-zero element of S*,
d

we have only φe=(abcd), so that S is nothing but 11475.

In the case (3): / a < b

If S* is 0*—rf*—e*, then φd = φe = (abc), obtaining 11545, and if S* is

0*<C *> then we have the three isomorphically distinct semilattices

Ψd

Ψe

Result

aaa

abc

1148s

aba

abc

1150
5

aba

aac

1152
5

In the case (4) : / a—b

s*

Ψc

Ψd

Ψe

Result

122
4

\e*

ab

ab

ab

1155
5

aa

ab

ab

1151
5

aa

aa

ab

H 4 9
5

123
4

ab

ab

ab

1157
5

aa

ab

ab

1153
5

124
4

0*<

ab

ab

ab

1158
5

ab

aa

ab

H 5 6
5

125
4

ab

ab

ab

1159
5

126
4

0*—c*—d*—e*

ab

ab

ab

1160
5

Example 3. Find all compositions of s-indecomposable semigroups
So and Sx

S1={e]

a
a
a
a

b
b
b
b

c
c
c
c

d
d
d
d
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Since ψe=(abcd), the conditions (1.2), (1.4), (1.5), (1.6) are satisfied.
For (1.1) and (1.3), we may consider all idempotent translations of So.

Without proof, the following properties are arranged.

(10.1) The right translation semigroup Φ of the right singular
semigroup So consists of all the mappings of So into So.

(10.2) All the mappings of So into itself are automorphisms of So.

Now let us decompose all the right translations into five classes by
the relation φe~φ'e meaning that <pe=f<p*'ef~

x for some automorphism
/ of So. Thus we have five types:

Ψe

Result

aaaa

387

abaa

388

abab

389

άbca

390

abed

391

Example 4. Find all the compositions of the two s-indecomposable
semigroups SQ and Sx:

a b d e
a a a
a a
a a

So
3
3

a
a
b

d
e
d d
d d

s
12
2

All the right and left translations of So are

aaay aaby abc.

Considering (1.3) and (1.4), all pairs of (<Pd\> o r (Ψd\ a r e
\Ψe)

ίaaa\ laaa\ ίabc\
\aaaj \aabj \abc)

Then

ψ \

laaaλ
\aaa)

(aaa\
{aabj

(abc)
\abc)

(aaa\
\aaa)

312
5

anti-isomorphic
to 313

5

none

ίaaa\
\aab)

313
5

314
5

none

(abc\
\abcl

none

none

315
5

For pairs written "none", (1.6) is not satisfied.
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Example 5. Find all compositions S of So, Slt S2, and S3 by T:

a b
a b S2={d}, S3={e}.

At first, all the compositions of So and Sly by 0—1, are

a
a
a

b
b
b

a
b
c

a
a
a

b
b
b

b
b
c

11, 12s

Secondly, let us find all compositions of So, S1 ( aud S2.

For 113, aba
abb
a b c

c
c
d

while a right translation φd of 113 which fulfils
φd(c) = c9 is only (abc). ψd is als similar.

Hence we have 1124.

For 123, abb
abb
abc

c
c
d

of 123 is only (abc)

the translations <pd of 123, which fulfil φd(c) = c, are only

(Λ6C) , (bbc) .

Thus we have a
a
a
a

b
b
b
b

b
b
c
c

a
b
c
d

a
a
a
a

b
b
b
b

b
b
c
c

b
b
c
d

1134 H44

At last we shall find S.

abode
a

b
c
d
e

113
or 114
or 112

Ψr

e

where

φβ{x)=a or b = a or b
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For 112, the required idempotent translations are

φe = (aaaa), (bbbb) ψe = (abaa), (abbb)

Hence

41

Ψe ^ \

abaa

abbb

aaaa

1048
5

none

bbbb

none

none

where "none" means "(1.6) is not fulfilled."

For 113,

For 114,

\ . Ψe

abba

abbb

aaaa

1052
5

none

bbbb

none

1053
5

\ Ψe

abbb

aaaa

1049
5

abbb

1050s

bbbb

1051
5
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