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Mass Distributions on the Ideal Boundaries
of Abstract Riemann Surfaces, IT”

By Zenjiro KUrRAMOCHI

The present article is concerned with the equilibrium potential on
Riemann surfaces with positive boundary.

1. Let R* be a Riemann surface with positive boundary and let {R,}
(n=0, 1, 2, ---) be its exhaustion with compact relative boundaries {9R,}.
Put R=RF*—R,. Let N,(z, p) be a positive function in R,— R, harmonic
in R,—R, except one point p€ R such that N,(z, p) =0 on ©R,,
ON,(z, p)
on
bourhood of p. Then the x-Dirichlet integral of N,(z, p) taken over

R,—R, is D¥(N,(2, p))="U,(p), where U,(p)=1lim (N,(z, p)+log|z—pl)

and the x-Dirichlet integral is taken with respect to N,(z, p) +log|z-—p|
in the neighbourhood of p. For N,(z, p) and N,.;(z, p), we have

D¥,_r,(Nu(2, D), ,m(Z, p)) = R”+,—R0(Nn+i(z7 p)) =27U,.(p)”,

Dy, g,(N,(2, p)— N,.i(z, p)) = D}, Ro( 4(2, D)) — 2D, _g,(N,(2, p), N,+i(2, D))
+D}, r,(Nuii(2, D)) <D1>§,, ry(Na(2, D)) — D;k€”+,—Ro(Nn+i(z9 b))
= 27(U,(p)— Up1i(p)) -

=0 on 9R, and N,(z, p)+log|z—p| is harmonic in a neigh-

Hence {U,(p)} is decreasing with respect to #». Since af M—Z’p) ds =2

for every mn, limU p)>—oo, whence {U,(p)} converges. Therefore

Dy, i-ry(Nusi(2, p) N,(z, p)) tends to zero if # and 7 tend to oo, which
implies that {N,(z, p)} converges in mean. Further N,(z, p)=0 on 9K,
yields that {N,(z, p)} converges uniformly to a function N(z, p), which
clearly has the minimal *-Dirichlet integral over R, in every compact
ON(z, p) 4,

part of R. Clearly by the compactness of 9R,, we have af
Ry n

1) Resumé of this article appeared in Proc. Japan Acad. 32, 1956.
2) Let v,(p) be a circular neighbourhood of p with respect to the local parameter: v,(p)=

Blz€ R:|2=p|<r]. Then D*Wa(z, £), NysiCa )= ] (Nusu(a ) +log |2 p) 2N D s,

By letting » —0, we have D*(N,+;(z, p), N,(2, p))=2r U,+;(p). Clearly »-Dirichlet integral
reduces to Dirichlet integral when the functions have no pole.
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S lim?l”(———z’p)ds=27t. We call N(z, p) the *-Green’s function of R

9, 7w n
with pole at p.

As in case of a Riemann surface with null-boundary, we define for
F* the ideal boundary point, by making use of {N(z, p,)}, that is, if
{p;} is a sequence of points in R having no point of accumulation in
R+9R, for which the corresponding functions N(z, p;) (i=1,2,3, --)
converge uniformly in every compact set of R, we say that {p;} is a
fundamental sequence determining an ideal boundary point. The set of
all the ideal boundary points will be denoted by B and the set R+ B,
by R. The domain of definition of N(z, p) may now be extended by
writing N(z, p) =1lim N(z, p;) (2€ R and p € B), where {p;} is any funda-

mental sequence determining p. For p in B, the flux of N(z, p) along
OR, is also 2=. The distance between two points p, and p, of R is
defined by

_ N@z, p) _ Nz p)
5 _ _
b 2 =800 1T NG, 50 1+Na ) .

The topology induced by this metric is homeomorphic to the original
topology in R and we see easily that R—R,+9R,+ B and B are closed
and compact. Evidently, if {p,} tends to p in é-sense (with respect to
é6-metric), then N(z, p;) tends to N(z, p), that is N(z, p) is continuous
with respect to this metric and derivatives of N(z, p;) converges to
those of N(z, p) at every point z of R.

First, we shall prove the following

Lemma 1. Let G be a compact or non-compact closed set containing
a rvelatively closed set F' and suppose that there exists at least one harmonic
function U(z) such that U(z)=@ on OR,+9F and whose Dirichlet integral
taken over R—F is finite. Let Ug(z) be the harmonic function in R—F
having the minimal Dirichlet integval over R—F with boundary value ¢
on OR,+9F among all functioh {U,(2)} having the same boundary value
@ on OR,+OF. Let Ugz) be a harmonic function in R—G with the
boundary value Uy(z) on OG—+9OR, such that Ug(z) has the minimal Dirvichlet
integral taken over R—G among all functions with the boundary value
Up(z) on 9G+9R,. Then

Ug(z) = Uplz) .
Proof. Let U,)(z) be a harmonic function in R,—R,—G such that
U/ (z) =Upg(z) on 9G+9R, and ?%yz=0 on OR,—G. Then we see as
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in case of N(z, p) that {U,(z)} converges to a function U’(z) in mean
and that U’(z) has the minimal Dirichlet integral (we shortly it denote
by M.D.I) among all functions with boundary value Ug(z) on 9R,+9G.

Assume Dg_g(U'(2)) < Dg_c(Ux(2) (@=>0). Then Dg, g,_c(U, (2))<C
Dy _c(Up(2))—d (n=123,---). Now let U, (z) be a harmonic function in

R,— R,—F such that U, (z2)=Ug(z) on 9R,N(G—F)+9R, and U, (2)=U'(2)
on OR,—G. Then by Dirichlet principle, Dg,_g,-#(U, (2)) <Dg,_r,-c(U, (2))
+D(R,,—R0>m(G-F>(UF(z)) < Dg, g,-rlU(2))—d.

Choose a subsequence {U,/(2)} of {U, (2)} which converges uniformly
in every compact set of R—F to a function U*(z). Then we have also
Dg_s(U*(2)) ;th Dy, -r,(Uy(2)) <Dg_p(Up(2))—d. This contradicts the
minimality of Dg_p(Ur(z)). Hence Dg_c(U'(2))=Dg_c(Up(2)) and U'(z) is
clearly the harmonic continuation of Upg(z) by Dirichlet principle. On
the other hand, it is clear that such U'(z) is determined uniquely® by

)
the boundary value on 9R,+9G. Hence Ug(z) = U'(2z) = Ugz(z). Next, we
consider the Dirichlet integral of N(z, p).

Lemma 2. Put N™(z, p)=min[M, N(z, p)1p € R. Then the Dirichlet
integral of NM(z, p) over R satisfies

Dp(NM(z, p)) <2zM:M=0.

Proof. We shall prove the lemma in three cases as follows:

Case 1. p<ER and the set Vy(p)=E[2€ R: N(z, p)=M] is compact.
Case 2. p€R and Vy,(p) is non-compact.

Case 3. peB.

Case 1. pER and V,(p) is compact. Let N,(z, p) be a function in
R,—R, such that N,(z, p) is harmonic in R,—R, except p, N,(z, D)
+log|z—p| is harmonic in a neighbourhood of p, N,(z, p)=0 on OR,

and —aN—a(z—p)= 0 on 9R,. Let N,/(z, p) be a harmonic function in
n
R,— R,— V,(p) such that N, (z, p) =M on 9V,(p), N,/ (z, p) =0 on OR, and

aln'a@ﬁi):o on OR,. Then the Dirichlet integral is Dg,_g,-v (N, (2, D))
n M

= f M%,a(z’ﬂds. Clearly, {Dg,-r,-v,w(Ni' (2, p)} is increasing with
" f

R,

3) Let U;(2) (i=1,2) be a harmonic function in R— G such that U,(z) =U,(z) on 0G+9R,
and U;(z) bas the finitely minimal Dirichlet integrals over R—G. Then by the minimality of
D(U;(2)), we have D(U;(z), V(2))=0, where V(z) is a harmonic function in R—G such that
V(2)=0 on 0R,+0G and D(V(z))< cc. We can consider U,(2) —U,(2) as V(z). Hence

D(Uy(2) — Uy(2), Uy(2))=D(U,(2) - Uz(2), Ux(2))=0
whence D(U,(2) —U;(2))=0, ie. Uy(2)=U,(2).
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respect to #» and N,/(z, p) converges in mean and also converges uni-
formly in every compact set of R—V,(p) to a function N'(z, p) and
Dg_v,p>(N'(2, p))=27M and further N'(z, p) has M.D.I over R— Vy(p)
among all functions having the value M on 9V,(p) and zero on 9OR,.
Let R be a compact component of R bounded by 9R, and a compact
analytic curve ¢ which separates V,(p) from OR,. Denote by o*(z) a
harmonic function in R’ such that »*(z) =0 on 9K, and «*(z)=1 on ¢
and let ,(2) be a harmonic function in R,—R,— V,(p) such that o,(z)=1
8a)ﬂ(z) —

on aVM(p)) wn(z)‘:O on aRo and Tn——-o on aRo. Then clearly,

Dg,-ry-vpi0:(@4(2)) SDpr(@*(2)). On the other hand, by the maximum
principle

|N,,(Z, j])—N,,/(Z, p) |<8”(0”(2) ’

where 6,=max [ |N,(z, p)—-M|] on 9Vy(p).
Let n—o. Then N,(z, p) tends to M(=N'(z, p)) on 9V,(p) and con-
sequently 6,—0 as #—oco. Since 8,0,(2) >0 as n— o, we have N(z, p)

=N'(z, p) and De(N"(z, p)) = Dr-v,u»(N(z, p)) =lim M _f a__N,:(:, b) 45
=27M. o

Case 2. peR and Vy(p) is non-compact. Take M’ large so that
Vaur(p) is compact. Then since N(z, p)(p€ R has the M.DI over
R— V. (p), N(z, p) also has M.D.I over R— V,(p) by lemma 1. There-
fore N(z, p)=1ir§ N,/ (z, p) in R—V(p), where N,/(z, p) is harmonic in

R_RO-VM(p)) Nn/(27 p)=0 on aRO) N,,,(Z, p)=M on aVM(p) and

%8%_1)_):0 OR,— Vy(p). Hence

De(N™(z, 1)) = Dg-yyp lim N, (2, p)) =lim M _f 2Ne & D) gs — 2701
oo n—oo R, on

Case 3. peB. Let {p;} be afundamental sequence determiring 2.
Then for any given positive number & we can find a narrow strip
S* such that the interior of S contains 9V,(p)n(R,—R,) and that
DRn—RO—VM(p)—-S(N(z1 b)) ZDR,,-RO-VM(m(N(z, p))—¢€ and further (Vyp(p:)n
(R,—Ry) C(S+ Vy(p)) for any i>i,(S), where Vy(p,)=E[z€R: Nz, p,)
>M7] and ,(S) is a suitable number depending on S and &, because
N(z, p;) converges uniformly in every compact part of R to N(z, p).
On the other hand, since the derivatives of N(z, p,) converge to those
of N(z, p) uniformly in R,—R,, we have

4) S may consist of a finite number of components.
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DR,,-RO-V_,.,_,Cp)-s(N(z, D) gh%}} DR-VM<P,->(N(2, bi)) <2zM.

Hence, by letting £&—0 and then #— o,
Dg(NM(z, p)) = DR—VM@)(N(Z, ) <2=M.

In the present part, we consider only positive continuous function
U(z) such that U(z)=0 on 9R, and Dz(UM(z))< o for every M, where
UMz) =min[M, U(z)]. In what follows, in order to introduce the
harmonicity or superharmonicity in R, we make some preparations :

2. Capacity and the Equilibrium Potential of Relatively closed Sets
in R.
Let F be a compact or non-compact relatively closed set in R having
no common point with R,. Denote by w,(2) a harmonic function in
R,—R,—F such that ,(2)=0 on 9R,, w,(2)=1 on F except possibly a

subset of capacity zero of F and 8_%,42'_) =0 on 9R,—F. Then the
n

Dirichlet integral of ,(2) and ,,;(z) taken over R,—R,—F is Dg, g,-r
(CO”(Z)_CO”_H'(Z), mn(z))ZO) whence

DRn—RO—F(wn-H'(z)) —DR,, ~Rg- _rlo,(2 ))+DR,,-R0 Fl0,1:(2) —©,(2)) ,
DRn-Ro < DRn+,—R0 n+: < DRI—RO @ (Z)) ’

where w4(z) is a harmonic function in R,—R, such that »*(z)=0 on
OR, and o*(2)=1 on OR,. Hence {Dg, g, r(®.(2))} is convergent, which
implies that

DRn—Ro(wn+i(z)_mn(z>) = DRn—RO(wn-H'(z))_DRn—Ro(a’n(z)) ’

tends to zero as # and 7 tend to oo.

Hence o,(z) converges to a harmonic function ex(z) in mean. Since
0,(2)=0 on 9R,, »,(2) converges to wx(2) uniformly in every compact
set of R—F. Evidently, oz(2) has M.D.I over R—F among all functions
having the value 1 on F except possibly a subset of capacity zero of F.

We call such oz(2) the equilibrium potential of F and D(wg(z)) = { a—("a’:iz)ds
the capacity of #. Then we have the following ’
Theorem 1.
1) If F,1F, then wg,(2) 1 og(2) and Cap (F,) 1 Cap (F).

2) Let G, be the domain such that G,=E[2€ R: og(z) =1—¢&] and
let g, (2) be the equilibrium potential of G,. Then

wp(2) = (1—8)0’6,(2) .
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3) Let 9G, be the niveau curve of op(z) with height 1—¢&. Then there
exists a set H in the interval (0,1) such that mes H=1 and that 1—-6€ H
implies

Cap (F) = 22r&) g5 = 90 45
@, On 3R, On
Proof. Let wg(2) and wg,(2) be the equilibrium potentials of F' and

F, respectively. Then og(2)=wg,(2) and D(ep(2)) = D(wr,(2)). On the
other hand, clearly g (2) is increasing with respect to #» and li‘m or,(2)

attains 1 on F except possibly a subst of F of capacity zero. Since
o x(2) has the M.D.I, we have D(wg(2)) =lim D(p,(2)) and ox(z) =lim og,(2),

because such a function is determined uniquely by its boundary value
on F.

Proof of 2). If we replace Ug(z) in lemma 1 by wg(z) in this
Theorem, then we have at once 2).

Proof of 3). Let o,/(2) 'be a harmonic function in R,— R,—G, such
that e,/(z)=0 on OR,, o, (z)—=1—& on 3G, and 9“’5—@:0 on OR,—G,.
n

Then, since lim »,’(z) has M.D.I over R—G,, we have limco . (2) = wg(2)

7 =00

by 2). On the other hand, since J 2@ )ds— 194 (2) 4o
96, M(Ry,~ Ry an 3R, OM
9w, (2) %w,’ (2 )

>0 on 9G, and lim S j'hm @, (2 )ds, we have by
on n=co R, n 9By n=co an

Fatou’s lemma

L=/ 9r(2) g5 < lim fMdszfa_wp(_z)

%, On n=eo G,  ON ok, Onm

ds =L = D(wg(2)) .

Now we can take p+i¢=wg(2)+iws(2) as the local parameter at every
point of R—F, where wgx(z) is the conjugate function of wg(z). Then
Qwp(2) Owp(2)
=0 and —£
oq ane 73
Dirichlet integral is

b Dt = (P22 (o) vt = f .

If there were a set E of positive measure in (0, 1) such that 1—-6€F
implies L.<_L, we have D(wg(2))<_L. This is absurd. Hence we have 3).

=1 at every point of the niveau of wg(z) and the

Regular Domains. Let F be a compact or non-compact relatively
closed domain in R and let wg(2) be its equilibrium potential of F. If
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S Mds= S Mds, F is called a regular domain. We see at once
F  On 3B, O
by 3) of Theorem 1 that there exists a sequence of regular domains

G,=E[2€ R: wp(z) >1—&] which we call the regular domains generated
by the equilibvium potential, containing any closed set F of positive
capacity and that any compact closed domain with analytic relative
boundaries is always regular.

3. Definition of U,(2) for compact or non-compact Domain D.

Suppose a continuous function U(z) in R such that U(z) =0 on 9R,,

M(z))< oo and a domain D. Let U¥(z) be a harmonic function in
R—D such that Up(z)=U"(z) on 9R,+9D and U}(z) has M.D.I over
R—D. Then evidently, U¥(z) is determined uniquely. We define Up(2)
by }tlg}o UM(2).

Theorem 3. Let D be a regular domain and let NP(z, p) be a func-
tion in R—D such that NP(z, p) is harmoyic in R—D except p where
N(z, p)+loglz—p| is harmonic, NP(z, p)=0 on OR,+9D and NP(z, p)
has the minimal x—Dirichlet integral (it is taken with respect to N(z, p)
+log|lz—p| in a neighbourhood of p). Then we have the following

2) N2z, 2) g . (1)
2m oD on
Proof. Let w,(2) be a harmonic functionin R,—R,—D such that
©,(2)=0 on @R,, w,(z)—1 on @D and a%() —0 on R,—D and let
n
NP(z, p) be a harmonic function in R,— R,—D with one positive logarith-
mic singularity at p such that N?(z, p)=0 on 9R,+9Dn (R,—R,) and

‘D
W:O on 9R,—D. Then by the maximum principle there exist
n
constants M’ and z such that NZ?(z, p)<M’ for n>=mn, outside of a

neighbourhood of p. Hence there exists a constant M” such that
N2(z, p) <M’"(l1—w,(2)) in R,—R, outside of a neighbourhood of p for
aNE(Z, p) ”awn(z)
every n>n,, wWhence oga—<—M —2%/ on o9DN (R,—R,). Now
n on
since D is regular, we have faaé”( )ds fawD( )ds— fhm 8 w, (2) ds,

9R, n 9D 9D n=oo n
where o,(z) =lim v,(2) is the equilibrium potennal of D.
Assume that there exists a positive constant & such that for infinitely
many numbers m and n(n_>m) such thata S ds>8 Then

DR, ~ R, 8
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%w,(2)

aDN(R,-Rp On

ds< f 2eal@lgs_s

3DN(R,-R) On

Let n tend to . Then by Fatou’s lemma

Jwp(2 )ds <lim Jw,(2 >ds 0 <lim fMdS—S.

aDN(R,,~-Ry On #= ODM(R,~Rp ON n=co 3Ry, ON

Let m tend to co. Then [ a“’aD( ) ds </ a‘:iD( )ds—8. This contradicts

oD 3R, n
the regularity of D. Hence, for any given positive number &, there
exist numbers m and #,(€, m) such that 0< S 9o, (2) ds< ¢, for
AND( 8DM(R,~R,> ON

ON2@, D) g5 e, for n=n,. (2)

9DN(R,~Ry  On

Let UM(z) be a harmonic function in R,—R,—D such that UM(z2)
M
=UM(z) on 9R,+9D and 22%&=0 on OR,—D. Then by Green’s

n>n,. It follows that

formula "
UMp) =L p pmz) PR D) 4
27 3DM(R,- Ry n

Let # tend to . Then since UY(z) tends to U¥(z) and by (2), we have

UBtp) = - U N2 D
T oD n
Hence by letting M— oo, we have UD(p)_—1~ S U(Z)Mds
27 oD n

5. Harmonicity and Superharmonicity in R. If U(z) is superharmonic
in R-and further, for any compact domain D, if U(z) = Up(z) or

(2) > Up(2), we say that Ul(z) is harmonic or superharmonic in R
respectively.

Theorem 3. If U(z) and V(2) arve positive, U(z)=V(z)=0 on OR,
and harmonic in R and superharmonic in R, then for a domain D
1) Uplz) =U(2).

Uz) = V(2) implies Up(z) = Vp(2).

2)

3) Up(z)+ Vplz) =p(U+V)(2).

4) (CUp(2))=p(CU)(2)  for C=0.

5) Upp,(8) < Up, (2)+Up,(2) for two domains D, and D,.

6) If D,>D,, then p(Up,(2))=Up(2) and Up/(2)=Up,(2).

The first five assertions are clear by deﬁni_tion. We shall prove 6).
We see easily that UM(z) is superharmonic in R by the superharmonicity
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of U(z) in R. Assume D,>D,. Then by lemma 1 UY¥(z)=p,(U¥(2)).
Hence by letting M — co Up,(2) = p,(Up,(2)) <p,(U(2)) = Up,(2).

Another Definition of Up(z). If Ulz) is superharmonic in R, Up(2)
is given as follows: Put D,=Dn(R,—R,). Then

Proof. Up,(2) is increasing with respect to » by 6) of the above
Theorem. Hence {U,,(2)} converge. Since D(U¥(z)) < D(UM(z)) < oo,
for any given positive number & there exists a number #, such that
Dpr-ry(UM(2)) <& for n=n,(M). On the other hand, since U} (z) has
M.D.I over R—D, with boundary value UM(z)= UY (z) on 9D,

Di_pu(U,(2)) < Di_p,(U¥(2)) < Dg_p(UM(2))+& for nzm(M).

Let #— o and then €—0. Then
Dr_p(U¥(2) = llg.} (DR—D,,(U%‘(Z)) = Dz'e—z)('lli:fi1 Ul")‘,,(Z)) .

Hence lim UY (z) has M.D.I over R—D with boundary value UM(z) on

oD, whence lim U} (2)=U}(2) and lim Up,(2) = Up/(z). Let M— o,
Then

lim Up,(2) = Up(?)
Next, put M,= sup U(z). Then clearly U (2) =UMr(z) <UMY"(z). Let

2ER,~ R,

n—>oco. Then lim Up,(2) <Up(2). Thus we have lim Up,(2) = Up(2).

6. Equilibrium Potential of a closed subset A of B. Let A be a
8—closed set of B. Put A,,,=E[ze]?:8(z, A) ;—71;] Then RNA,, is a
relatively closed set of R and [5\0 A,=A. Let w,, (2) be a harmonic
function in R,—R,—A,, such that w,,h ,(2)=0 on 9K, w,, .(2)=1 on

o
24,, and M:O on 9R,—A,,. Then

on
2 (2
Dayeryt (@, @)y @a,onl2)) = 00 amrivnlZ) g
VAm~Fn-Rp  On
w i n\R '
— f _—AAE;nM—(—) dS — DRn—Ro-Am+i(wAm+i’”(z)) '

3Ati Ry~ Ry

Since D(wg,,,(2)) and D(wa,,,,(2) converge as n->co, we have
DR-RO-Am(a’Am+;,,,(Z); ©4,,(2))=Dg_g,-a,,,.:(®4,,;(2). Hence Dg_ry-4,,(©4,,(2)
- "’Am+;(z)) = DR—RO-Am(C"Am (2)) — 2DR—R0—Am (wAm(z) ’ C'JAm+,~(Z)) + Dr_gy-a,
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(C’-)Am+,'(z))<DR—RO-Am(‘°Am(z))—DR-RO-Am(wAm+i(z)) and DR—RO-Am(wAm(Z)) is
decreasing with respect to m. Therefore w,, (2) converges to a function
®4(2) in mean as m—oc. We call coA(z)=1i_m w4, (2) the equilibrium

potential of A. Suppose w,4(2) >0. Let V(z) be a harmonic function in
R—G such that V(z)=0 on 9R +9G and D(V(z))< oo, where G is a
relatively closed set containing A. Then by lemma 1 o4, (2) (4,,CG)
has M.D.I over R—G among all functions having the boundary value
®4,(2) on 9G. Hence

D(w,,(2) £ €V(2)) = D(w,,,(2)),

for every small positive number €. Since w, (2) converges to w4(2) in
mean,

D(@4,,(2) —w4(2), V(z)) < VD(w,,(2) —wa(2))D(V(2))

which implies D(V(2), ©4(2))=0. Since V(z) is arbitrary, o,(z) has also
M.D.I over R—G among all functions having the boundary value ,(z)
on OG. Therefore ,04(2) =w4(2). Hence if we take G,=[z2€ R: w4(?)
>1-¢&], 01’—“‘(%) is the equilibrvium potential of G,.

7. Integral Representation of Superharmonic Functions in R.

Definition of Uyx(2) for a 6-closed subset A of B. A,,,::E[ZER:
8(z, A)gi]. Then A,, is relatively closed set and clearly U,,(2) is
m

decreasing as m— . We define U,(z) by lim Uy, (2).

Theorem 4.
1) Nz, p) (p € R) is superharmonic in R and superharmonic in R, more

generally [Nz, p)dp(p) is superharmonic in R for p>0.
2) wp(2) and w4(2) are superharmonic in R.

Proof of 1). First, suppose p€ R. Since clearly N(z, p) is super-
harmonic in R, it is sufficient to prove that N(z, p) = Np(z, p) for every
compact domain D. Since N(z, p) has the minimal x-Dirichlet integral
over K, we have by Green’s formula and by Theorem 2

Nz, p)=or> L [ Nit, )25 2ds = Nz, p),

according as p€D or p¢D.

Next, consider p€ B. Let {p;} be a fundamental sequence deter-
mining p. Then N(z, p;) tends to N(z, p) on 9D, hence
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D
Niz, #) =lim Niz, p) = L /1im Nig, $) N8 2 ds = Nz, p).
imoo 2 D i=co on

Thus N(z, p)(p € R) is superharmonic in K.
The approximation to V(z)= S N(z, p)du(p) by a sequence of func-

tions V,(z) (n=1, 2, ) of the form V,(z)=3 1 ¢:N(z, p,) can be done

in every compact part of K. V,(z2)= 21” 34 V(&) aN (é‘, )ds, which im-

plies by letting n— oo V(z)= L 1 V() N2, 2 )ds=VD(z). Therefore
_ 2w oD on

V(z) is superharmonic in K.

Proof of 2). Let G be a compact domain and let w}(2) be a harmonic
function in R—R,—D such that «}(2)=0 on 9R,, wp(z)=1 on IDN(R,

—~R) and @aﬁ(i):o on @R,—D. Then
n
n n a nG )
o) = L wp(t) 2Nl 2) g
27 8GN (R,~ Ry on

where NE(¢, 2z) is the x—Green’s function of R,— R,—G with pole at z.
Let n— oo, Then

1 ONC(t, 2) ;.
©p(2) 25; a'£ wp(£) Tds = cop(2) .

Hence op(z) is superharmonic in R.
1

w0, (6)NE D s — o, (2) .

Put G=A,,. Then o, (2)=
m 2w 3G on

Let m— oo, Then wy(z )2 S 04(8) ON°IE, z)ds_—_ch(z) .
27 3G on

Thus w4(2) is also superharmonic in R.

_ Theorem 5. If Ulz) is positive harmonicin R and superharmonic in
R, then for a 6-closed subset A of B, we have
1) There exists a mass distribution p on A such that

Uale) = - [ Nz, p)dplp),

for all point z in R. The total mass p(A) is given by zi” Mf %@d&
2) a0ale) =wale) =3 [ N pldpl(p) for wa(z)>0.
2)) If p is an ideal boundary point such that o,(z) >0, then

,(2) = KN(z, p), K>0.
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3) Ulz) = %f Nz, p)du(p) .

B

Proof. Put A,,,=E[zeR: 3z, A) ;i] and A, =A,n(R—R).
m
Then by 5. UA(z)='1ni_m lim U,,, (2). Now Uiz) =2 U,,(2) = Uy, () for
2¢A,.,, Uz =U,, (2 for z€ A,,,(2) is continuous on A4,,,(z), whence
U,,, ,(2) is superharmonic at every point of A, ,. Hence it can be
proved by the method of F. Riesz-Frostmann that the functional

J0) =5 s £ Ne D Aup) die) =5 T U, (@) dul2)

7T 27 A,

is minimized by a unique mass distribution on #(4,,, on A,,, among
all non negative mass distributions. The function V(z) given by

—2—17—“1 J Niz, p)du(p) is equal to U(z) on A,,, except possibly a subset of
capacity zero of A,,, and has the M.D.I, because V(z) is a linear form
of N(z, p) (p€R). Therefore U,, ,(2)=V(z), where the total mass is
oU,,, .(2)
n
continuous function of p for fixed z and the total mass is less than

given by 2i S ds for every n and m. Since N(z, p) is a &-
T

5 af ( )ds #(A,.,) has an weak limit #(A4,,) on A,, as n—co. Hence
7T 3R,

Ua,,(2) =2— J N(z, p)dp(p) and by letting m—co, UA(Z)-—-l J Nz, p)du(p).
T A, 27 A

2) and 2') are clear by the property of w4(2) and 3) is also clear, if we
consider B as A.

8. Classifications of the Ideal Boundary Points.

Regular or Singular ideal Boundary Pont. Take an ideal boundary
point p as a closed subst A of B. Then we call p a regular or singular
ideal boundary point according as w,(2) =0 or w,(z) >0.

In what follows, we shall consider another classification. We shall
prove the following

Theorem 6. Let U(z) be a harmonic in R and superharmonic Sunction
in R and let A be a closed subset of capacity zero of R. Then

aUa(z) = Uyl(2) .
Proof. Let G be a compact domain in K. Then
Ulz) =Vg(2)+U'(2) for z€ R—G, (a)

where Vg(2) is a harmonic function in R—G such that V(z) = U(z) on
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9G+9R, and V(z) has M.D.I over R—G and U’(z) is a harmonic function
in R--G such that U’(z) =0 on 9G+9R, and U’(z) is superharmonic in

R—G. In fact, let D be a domain in K. Then since D+G > G, by Lemma
1, Vglz) =Vp, c(2), where V,,s(2) is a harmonic function in R—G—D
such that Vp,s(2) =Vg(2) on 9D+2G+92R, and Vp.¢(z) has M.D.I over
R—G—D. Now, since U(z) is superharmonic in R and Vg(2) =Vg.»n(2),

1 ON®*C(n, 2)

UR) =U'(2)+ Vg(2) = — S Ug) ———"ds
27 AG-D>+(OD-G> on
D+G
- (Vole) + U () P2 2 s = Vi p(2) + Up'(2)
7T BG-D)F@D-G) n
Hence Uiz = Uy, (b)

where U,/ (z) is a harmonic function in R—G—D such that U,'(z) =0

=U’(z) on 9G+9R,—D, Uy (2)=U’(z) on 9D—G and U’(z) has M.D.I

over R—G—D. This means that U’(z) is superharmonic in R—G.
Consider A,,,,=A,,N(R,—R,) as D in (a). Then by (a)

U, J2) =Va, (&) + U, (&) +(Vo—Va, )(z) for ze R—A

where V, .(2) is a harmonic func-
tion in R—G such that V,  (2)
=U,,,,(2) on OR +9G and V,_(2)
has M.D.I over R—G and U, ,(2) is
a harmonic function in R—G—A,,.,,
such that U} ,(2)=0 on 9OR,+9G
— A Ul, (2)=U’'(2z) on 24,,,—G
and U, ,(2) has M.D.I over R—G
—A,... Hence by (b) U, ,(2)<
U'(2).

And (Vg—V,, ,)(2) is a harmonic
function in R—G—A,,, such that (Vo—V,, ) (2)=0 on 9R,+9G—D,
(Ve—=Va,,,) () =Ve(2) =V, ,(2) (Vg(z) = U(z) and 9G) on 9A4,,, and
(Vo= Va,,, (2) has M.D.l over R—G—A,,,. Clearly since U(z) 2U,,, ,(2),
0= (Ve—Va,,,(2) Mo, ,(2), where M=max V(2) and o}, ,(2) is the

2€96
equilibrium potential of A,,, with respect to R—G.
Let n—oo. Then U, .(2) 1 Ui, (2), since U’(z) is superharmonic in
R—G. U,,, (2) 1 U,,(2) implies Vg, (2) 1 V4, (2). (Ve—V,, )(2)— (Ve
—Va,)(2). Here V,  (2) converges to V, (2) in mean, because

oV
Dg_c(Va,, ,(2)) = 3{ Va, .(2) _’%*!»_zt@

ds and 9G 1is compact. Hence
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Va,,(2) has also M.D.I over R—G with boundary value U,,(2) on 9G
and O on 9R,. Therefore

Ua,,(2) = Va,(2) + Uj,,(2) +(Ve—V,,) (2) . (d)
Let m—>oco. Then V, (2)| Uas(2), Va,(2) | Va(z), Ujs,(2) | Uaslz) and
0=}’i=r£ (Ve—Va4,)(2) Mo, (z2) =0. Hence
Ualz) = Va(2) + U4 (2) . (e)
By (d) and (e), we have
Ua,,(2) = Ua(2) = V 4,,(2) = Val2) +(Ua,(2) = U (2) + (Ve—V4,)(2),

where V, (2) =cU,,(2) and V4(2) =sU4(2) by definition and the last
two terms on the right hand side are non negative. Hence

UA,,,(Z)— Uulz) = G(UAm(z)— Ua(?)) .
Suppose G=A,,..» (W< m). Then by letting »'— o, we have
Ua,(2) —Ua(2) = 4,/(Ua,,(2) = Us(2)) . (f)

Proof of the theorem. Since U,(z) is representable in the form (e)
for any compact domain G, Uy(z) is clearly superharmonic in R, that
is Ugx(2) =cUal2) =V,4(2) for domain G. Hence ,,Ua(2) <U,(2) for
every m’ and ,U,(z) S U,(?).

Let z be a point of R. Then, since U, (2) | Ua(2) as m— oo, for
any given positive number &, there exists a number m, depending on z
such that

E>U,,, (2)—Ualz) >0 for m+i>=m,.

Then by (f)
0<C 4! (Ui i(2) — Ua(2)) < Uap,:(2)— Ual(2) < €.

On the other hand, by 6) of Theorem 3 4 /(U,, ;(2)=U,,, (2) for
m+i=m'. Hence

a/ (Uny,, i(2) +Up(2) = Uy, [(2) = Uy, (2)—¢€.
Thus by letting € =0, 4 /(Ua(2)) = Ua(2). Therefore ,Ujs(z) =Uj(2).
Putting A=g¢, we define the function ¥(g) of ¢ in B as

1 S _9:’_\/.‘1—(2’—4)(1& Then we have
2 3Ry on

Theorem 7.
1) ®(q) has only two possible values 1 and 0.
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2) Denote by B, and B, the sets of points of B for which ¥(q) =0 and
V¥ (q) =1 respectively. Then B=B,+ B, and B, is void or an F,.

We shall prove 1) in two cases as follows:

Case 1. ¢ is regular ideal boundary point, ie. o (z) 0.

Case 2. gq is a singular ideal boundary point, ie. o,(z) >O0.

Case 1. o,(2 )—O We have N,(z, q) =¥(q)N(z, q) by 2) of Theorem
5 and ,N,(z, g9 =¥(q) ( ) = V¥ (q)N(z2, g) = N,(2, q) by Theorem 6.
Hence we have ‘I’( )=0 o

Case 2. o,(2)>0. In this case we have N(z, q)= Kco 2)=N,(z, q)
=K,0,(2) =K¥(q)N,(2, g) by 2') of Theorem 5. Hence o,(z) >0 implies

Proof of 2). The set I',, is defined as the set (possible void) of all

. 1 ON4,5(2, 9) 1
points g of Bsuch that ¥(A4,,(q)) = az{ —an ds<— 5

¥(q) =0), where A,(q) =E[z€ R:38(z q) g%] Then clearly B":,,\JIF'”‘

We shall show that ¥(A,,(q)) is a lower semicontinuous function of gq.
By definition Na,»(2, ¢)=lim Ny, (2, g), Where A, ,(q)=A,(g)N

(R,—R,). Hence, for any given positive number &, there exists a number
oN , oN 3
» such that YA, () =L s Namwol2d e 1 ONanop(s 9 ;o
27 R, on 27 ok, on
—&=W¥(A,(q)—&. Suppose ¢;—>q. Then A, ,(g)—A,.(¢). Hence by

the compactness of A,,,(q)

(this means

ONAm, e
hm Na,, (2, ¢;) = lim f(,, )N(g, qi)—]\%ds

myn-"i

g NP ) s N, iz )

i= i=00

=S NE 9

Consequently Ll:’g V(A,(q)) =V(A,q)—¢&, whence by letting €—0
lim ¥ (A,(¢) = ¥(4,(q)

Therefore ¥(A,.(q)) is lower semicontinuous with respect to ¢, whence
I', is closed and B, is an F,.

9. Canonical Distributions. We shall consider properties of B, and B,.

Theorem 8.
1) Cap (B)=
2) If Ulz) is given by 2%: BfN(z, p)dp(p), Ug,(2)=0
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3) Every function U(2) which is harmonic in R and superharmonic in R
is representable by a mass distribution on B, such that

Ule) =L 1 Nz, p)dulp).

27w B,

Proof of 1). The set I',,, being closed and compact, may be covered
by a finite number of its closed subsets whose diameters are less than

7}1—. It is sufficient, by 5) of Theorem 4, to prove 1) for any closed
subset A whose diameter is less than —7}7, of I',,. Assume Cap(A)_>0.
Then O<AwA(z)=mA(z)=2~17; AfN(z, p)du(p) by 1) of Theorem 5. On
the other hand, since AmA(z)='lnig§ }1:{51 a,,.»4(2), for any given positive

number &, there exist numbers m and # such that
()
Cap (4) = s 2248 g < p Namn®a®)) yo o
3R, On 3R, "

where A,,=E[zezé: Sz, A)g%] and A,,,= A, (R,—R).

Now w,4(2) can be approximated on A,,, by a sequence of functions

Vi(2) =§i}c,—N(z, g:)(g:€A) (I=1,2, ---). Then by Fatou’s lemma
Cap (4) = fMds <lim faV’( ) g fam“‘( )ds+8
3R, On I== 3R, On 3R, On
=1 Cap (4)+¢,

because A,,<v,(q;) =E[z €R:8(z q) < —rlﬁ] for every g¢;€ A implies

S Mﬁ’«) f ON(Z, 4 45 This is absurd. Hence Cap (A) =0,
R on 2 R, On
(By) =

Cap(l',,)=0 and Cap
Proof of 2). As above, we have for ACL,, Ua(2) <U,,(2) and
fgl—]f‘—(—z-)dss S U, (2 )d <1 fag(z)ds, whence mass of UA(z)gé

R, On TR Onm 2 %R, On
mass of U(z) and mass of ,U,(2) g% mass of U,(z). On the other hand,

since Cap (A)=0, we have by Theorem 6 ,U,(z)=U,(z). Hence Uj,(z)
=0, Uy, (2) =0 and U (z) =0.

Proof of 3. Suppose U(z)=2L S N(z, p)du(p). Put P,,,,,,:E[zeB:

7T By

o(z, I‘m)g%]. Let z be a point R. Since U, (2)=0, for any given
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positive number &, there exists a number #(m) such that U, (2) < 2'“;

for n=n(m). For each m select I',/(=T,,,) in this fashion. Put C —-ZF /

Then C,, are closed and form a increasing sequence as m— co. Denote
by A, the closure of the complement of C, in B. Then the distance

between A, and I',, is at least —~ . Thus {A,}, which forms a des-

n(m)

cending sequence, has an intersection A which is closed and, having no
point in common with any I',,, is a subset of B,.

Now Ug,,( <2Ur/ <Z]2 ic <& Observing A, +C,=B, we

obtain
U(z) = Ugl2) = Ui, c,(2) < Uz, (2)+Uc,(2) < Usz,,(2) +€.

Let m — oo and then & —>0. Then N\ A4,cB, and U(z) = U(2) =

m>1

é— S N(z, p)dp(p). Thus U(z) is representable by a mass distribution
7T B
on B without any change of U(z).

Proof of 3). Suppose that U(z) is harmonic in R and super-
harmonic in R. Then Ul(z) =2i S Nz, p)dp(p) =2i J Niz, p)dp (D)
7T B
+l S N(z, p)dw,(p) by 3) of Theorem 5. As above f N(z, p)dmy(p)

T By

fN(Z p)dp/(p). Then Ulz )——2— J Nz, p)d(p+w) (17)- Thus we

have 3). We call such distribution on B canonical.

10. Minimal Functions. Let U(z) be a function which is harmonic in
R and superharmonic in R. If U(z)=V(z)=0 implies V(z)=KU(2)
(0<K<1) for every function V(z) such that both U(z)—V(z) and V(2)

are harmonic in R and superharmonic in R, U(z) is called a minimal
Sunction.

Theorem 9.
1) Let U(z) be a minimal function such that U,(z) >0 and U(z)— Ua(2)

are superharmonic function in R. Then Ulz) = (2~1~ \ Rf %@ds)N(Z, j2)
ok, Onm
(p€ A).

2) Every minimal function is a multiple of some N(z, p) (p € B,).
3) Nz, p) is minimal or not according as V(p)=1 or =0.

Proof of 1). Uy(z )_—— fN(z p) du(p) >0 implies #(A) >0 and

AnB,#0. Hence A has a closed subset A, for which (A4, >0. A,
being compact, can be covered by a finite number of its closed subsets,
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all of them having diameters less than some selected positive number.
At least one such subset has a positive g mass. We select a particular
such and call it 4,. By proceeding in this way inductively, it is possible
to construct a descending sequence A,, A4,, ---, of closed sets of A whose
diameters approach zero and each of which has a positive g mass.
Let p be the unique point common to all A, and B,. Now since

#(A,) >0, the integral Zi Af N(z, p)dp(A,) extended over A, instead of
T n

A represents a superharmonic function U,(z) such that mass of U(z) =
mass of U,(z) > mass of U,(z), because U(z)— U,(2) is superharmonic
in R, ie. Uz)—U,(z) is represented by a positive mass distribution.
Hence the minimality of U(z) implies U,(2) =C,U(z) (0<C,<1). If we

write u,/(e) zu-l, {m, (€)} has as an weak limit a point mass of amount

C.
1 S 9U—(z~)cz's located at p. Thus we have U(z2) =<i S oUlz) ds) N(z, p)
27 9R, O 2w 9R, On

(pe A).
Proof of 2). Take B as A. Then we have at once 2).

Proof of 3). Suppose pe€ B, and a function U(z) such that both
U(z) and 0<N(z, p)— U(z) =V(z) are harmonic in R and superharmonic
in R. Then

Ny(2, p) = U,(2) +V,(2) = Ulz) + V(2) = N(z, p),
U,(2) < U(z), V,(2) <V(z), whence U,z) = U(2) and V,(z) =V(z).

Hence by 1) of Theorem 5 U(z)=U,(2)=K,V(z, p) and V(z)=V,(2)
=K,N(z, p). Thus N(z, p) is minimal.

Next, suppose that p€ B, and N(z, p) is minimal. Then N(z, p) is
representable by 3) of Theorem 8 by a mass distribution on B,, that is
N(z, p) = Bf Nz, p)dp(p). If w is a point mass at g€ B, N(z p)

=N(z, ¢). This implies p=g€ B,. This is absurd. Hence g is not a
point mass. As 1) of this Theorem we can select a decesending sequence
of closed subsets {A4,} of B, such that u(A,) >0 and diameters of {A4,}
tend to zero as #n—>co. Then the restriction of # mass on A, represents
a superharmonic function V,(z) such that N(z, p)—V,(z) is superharmo-
nic in R. Hence as 1) we have N(z, p) =Nz, p*), i.e. p*=p, where
p¥= QOA,,C B,. This contradicts p€ B,. Hence N(2, p) is non-minial.

By preceeding paragraphs we have the shema as follows:
7 Regular 1.B.P T» B, (non-minim point)

Ideal boundary point 4 \
Singular I.BP — B, (minimal point)
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We see easily that if R¢0,,,” R has no singular ideal boundary
point and if R is a Riemann surface of finite connectivity, R has no
point of B,.

In what follow, we shall prove useful properties of points of R+ B,.

Theorem 10.
1) Let V,(p)=E[2€R: Nz, p=m] and v,,(p):E[zeE: 3z, p);l]
and suppose p€ R+ B,. Then "
V002, ) =N(z, p) for very m less than M*=sug N(z, p).
2€

Hence N(z, p) =mwy, 4 (2).
2) For every V,(p) pE€ R+ B, there exists a number n such that

Vau(b) > (RN, (p)) .

Proof. Since N(z, p) p€ R has the minimal *-Dirichlet integral over
R, 1) is clear for p€ R and since N(z, p) has its pole at p, 2) is also
evident for p€ R. Hence we have only to prove for N(z, p) p€ B,.

Proof of 1). First we remark that p€ B, and o,(z) =0 imply
SIEJI? N(z, p) =M*=co. In fact, suppose N(z, p) <M< oo and w,(z)=0.

Then N,(z, p) < Mw,(z) =0, whence p € B,.
Therefore we shall prove 1) in two cases as follows:
Case 1. p€B,, w,(2) =0 and sup N(z, p) = co.
ZER
Case 2. p€B, and w,(2) >0.
Case 1. p€ B, 0,(2)=0 and sup Nz, p)=co. Put im N,,cs,_v,.»>(2, )

=N'(z, p). Then, since v,(p) Dv,(p)—V,.(p), N'(z, p) has no mass excep
p. Hence N'(z, p) = KN(z, p) (0 < K< 1). But sgl? N(z, p) = o= and
sup N’(z, p) <m implies N’(z, p)=0. On the other hand, N(z, p)

ZER

=N,y(z, p) = 1i=m N,s~vpr(2 D) +N'(z, p) <Nz, p). Therefore
N(z, p) = Ny, (2, ) = }g? N,or~ v (2 D) = N (2, p),

whence N(z, p) =Ny, (2, D).

Case 2. p€B, and w,(2) >0. In this case N(z, p) =Kw,(z). Hence
our assertion is evident.

5) Og4p is the class of Riemann surfaces on which no non constant Dirichlet Bounded
analytic function exists.
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Proof of 2). Since Ny, (2, p)=N(z, p) has M.D.I over R—V,(p),
N—(fniﬂ can be considerd as the equilibrium potential of V,(p). Hence
we can suppose by 1) of Theorem 1 that V,(p) is regular, that is,
W, () an

Let g be a point R not contained in V,,(p). Let N,(z, p) be a harmo-
nic function in R,—R,— V,(p) such that N,(z, p) =0 on 9R,, N,(z, p)=m
on dV,,(p) and aﬁg(_z,p)zo on OR,—V,(p). Let N,z q) be a function

n
in R,—R, such that N,(z, g)=0 on 9R,, %ﬁzo on @R, and N, (2, q)
n
is harmonic in R,— R, except ¢ where N,(z, ¢) has a logarithmic singu-
larity. Then clearly lim N,(z, p) = N(z, p), because ZY(—;;—12)—=can(1,)(z).
N,(z, q) converges to a function N(z, gq).
By Green’s formula

Nz, 9 2Nel5 ) gs — 22N, p) .

W (PR~ Ry on

Since V,,(p) is regular and N,(z, q) is uniformly bounded on 9V,(p), we
have by letting #— o

Liim s N pNlEblgs— 1 N, gONE Dl
27 n= BV, (PR, R on 27 AV, on
= N(g, p) . (5)

Assume that 2) is fales. Then there exists a sequence of point {q,}
such that ¢;¢ V,.(p) and hm B(q,, p)_O. If M*——oo (resp. M*< oo

let wm' =2m (resp. m =m* : >m*>m+~, where 8=M2_m>
and suppose that V,.(p) is regular Then V (p ) > V,u(p) $q:. Since
ON(z, p)

ds=2=, there exists a number #», such that
W On

ON(z, p) 'ds > <resp. 27 —§&,, where 0<80<—7t8—8>
W (PR,~RY  ON z(m +_>
4
for n=>mn,,
Now by 5)
Nz a) N2 Las< s Nz ) 2N EL)ds = Nig, ) <m.
Wy (DI \Ryy ~RO OV () on

Hence there exists at least one point z; on 9V, (p) (R, —R,) such that

N(z, q,~)<%n<resp.<m<2”2jeo>§m+%>. Let ¢ tend o. Then we
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have N(z, p)<%ﬂ<resp.<m +IB>’ where 2z, is one of the limiting points

of {z;}. This contradicts N(z,, p)=m’'. Hence we have 2).

11. The x-Green’s Function N(z, q) in R.

We give definition of N(p, q¢) in three cases as follows :
Case 1. N(p, q) when p or g€ R.

Case 2. N(p, q) for pe (R+B,) and g€ R.

Case 3. N(p, q) for p€ B, and g€ R.

Definition of N(p, q) in case 1:p or q is contained in R. If two
points p and ¢ are contained in R, we have by definition N,(p, ¢)=N,(q, ),
where N,(z, p) and N,(z, q) are x~Green’s functions of R,— R, with poles
at p and ¢ respectively. Hence, by letting n— o, N(p, q)=DNlq, D).
Next, suppose p€ B and g€ R. Let {¢;} be one of fundamental sequences
determining p. Then, since N(p; q)=Nlq, p;) and since N(z, p;) con-
verges to N(z, p) uniformly in every compact set of R, N(p;, ¢) has a
limit denoted by N(p, ¢q) as p,—>p. More generally, suppose that a
sequence {p;} of R tends to p with respect to 8-metric and that ¢
belongs to R. Then we have N(g, p)=lim Nl(q, p;) = lim N(p;, q). Hence

N(z, q) (g€ R) has a limit when z tends to p€ R. In this case we define
the value of N(z, q) at p by this limit denoted by N(p, ¢). Thus we
have the following

Lemma 1. If at least one of two points p and q is contained in R,
then

N(p, q) = Nl(q, p) .

N(z, q) is defined in R for g€ R but N(z, ¢) has been defined only
in R for g€ B. In the sequel, we shall define N(z, ¢) in R for g€ B.
At first, consider case 2. For this purpose, we shall prove the following

Lemma. 2. Let V,(p) be the set E[z€ R: N(z, p)=m] for p€EB,.
Then V,,(p) may consist of at most enumerably infinite number of domains
D, (I=1,2, ). Then

1) The Dirichlet integral of N(z, p) taken over R--V,,(p) is 27m for
every m<M* = 516111?) Nz, p).

2) Let D, be a component of V,(p). Then D, contains a subset D; of
Vo p) for m' : m<m' <M*,
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3) For D, of regular domain V,(p), the Dirichlet integral of Nz, p)

taken over D,— D, is 2m(m'—m) u{ ai\/v(—:"”—jl)cz"s and
' n
lim aU”(z)ds=lim oU,(z )ds—— fhmaU( )d
n=c 9D ,MN(R,~Ry ON n=e 9D/M(R,~Ry ON Dy n

— abf li=m oU,(z) ds — f Nz, p) ds,

on ah;  On
where U,(2) is a harmonic function in (D,—D/)N(R,—R,) such that U,(z)
—m on D,, U,(z)=m’ on @D, and ?%on on 3R, (D,—D/).
n

Proof of 1). p€ B, implies by 1) of Theorem 10, that Ny (2, p)
=Nz, p). Hence Z_V_(%;L) is the equilibrium potential of V,(p). There-
fore, N(z, p):}‘i_rg U/ (z), where U/(z) is a harmonic function in R,— R,
—V,,(p) such that U,(z) =0 on 3R,, U,(z)=m on 3V,,(p) and 1%1?:0
on OR,N(R—V,,(p)). The Dirichlet integral of U,/(z) over R,—R,—V,,(p)

is m S oU,(z )ds Since D(U,/(z)) is increasing with respect to
AV (R,~Ry ON

n and U,/ (2) tends to N(z, p) as n— oo,

1im Dz, v, Uy (2)) = Die_v,n(Niz, 9)) = limm_f 2 () g

n=co R, OMN
=m [ ON(2, ) g5 — 27em .
ARy n

Proof of 2). Assume that D, has no point of V,,(p) (m'~>m). Put
N'(z, p)=m in D, and N'(z, p)=N(z, p) for z€ (R—D,). Then D(N'(z, p))

< D(N(z, ). This contradicts that lﬂ;—f’) is the equilibrium potential
of V,(p). Hence we have 2).

Proof of 3). Since %’——@ can be considered as the equilibrium

potential of V,(p), N(z, p) has M.DI over V,(p)—V.,'(p) among all
functions having the boundary values m on 2V,(p) and m' on 9V, (p)
respectively, whence N(z, p) has also M.D.I over D,—D, among all
functions with values m on 9D, and m’ on 9D/. Hence U,(z)— N(z, p)
as n—>oo, Since D(U,(z)) is increasing with respect to » and by Fatou’s
lemma, we have

. , . o
Doy (N (2, £)) =10 Do, s iyl Unl)) = (m —m) lim Ul g

n=e 9D,N(R,~Ry ON
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_——-_(m/__m) li_m aUn(z)ds;):(m/__m) f li_m a—UMds
n=co 9D/ M(R,~Ry) an oD, n=o an
=(m'—m) [ ———aNé:p)ds. (6)
I
Dp,_py(N(z, p)) = (m'—m) J lim Mds:(m’_m) S 9Nz, p) 45 .
8D, n=co on oD/  Onm

i

On the other hand, by 1) and by the regularity of V,(p) and V,.(p)

32 Do, oy (N2, 9)) = Dy,ycor-vpcr\N(2, p)) = 2 (' —m)
= (m'—m) [ —@(Lmds =m—-—m) [ ON(z, p) p)ds

R, on W On
=(m'—m) S aiv(z’_P)ds =(m—-w) [ ON(z, p)ds
W)  On 7 D1 on
= m—m)) fON&D) (7)
T D/ on

It Do, p/(N(z, $))>(m'—m) aNé—i"b)ds or (m'—m) [ @’é;’_f’)ds for

1] aDll
at least one D, or D,/ respectively, (6) will be a contradiction. Hence

Do,y (N(z, 2)) = (m'—m) f N D) s — (g —ym) g PN D)y

D, n by on

for every D, and D/. Therefore

. . (]
Dy, _py(Ni(z, p)) =1lim Dp,_p,(U,(2)) = (m’—m) lim OU,(2) 4
n=e n—c 9D,N(R,~Rp ON
= (m'—m) lim Mds = (m'—m) S ON(z, p)ds
n=co 9D/ M(R,~Ry) °on oD, on
— m'—m) [ 1lim 2Yu) gs = m'—m) [ lim 2UnlBlys |
W, n==  On aby 1o Om

Thus we have 3).
Lemma. 3. Suppose pE€ B, and g€ R. Let V,,(p) and V,/(p) be regu-
lar domains with m and m' such that sup N(z, p) >m' >m, ie. V,(p)D
ZER
VD). Then

2eNVwPlp, ) = S Nz ) N2Las> J Nz, g2 Lds

BV (P n AV

= 22N (p, q)

Proof. Let D be one of D, which is a component of V,(p) and D’
be the set of V,/(p) contained in D, Let N?(£, z) be the *-Green’s func-
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D
tion of DA (R,—R), that is, NP(¢, 2) =0 on DA (R,—Ry), aﬂ%f»_z)ds:o

on 9R,—D and NP(¢, z) is harmonic in DN (R,—R,) except a logarithmic
singularity at z. Then for given #n, there exist constants L and #, such
that N7(¢, 2) <L in DN (R, —R,) for n=n,.

Let U,(¢) be the function defined in 3) of lemma e, ie. U,(2)=m

on @D, U,(¢)=m' on D’ and %:0 on @R~ (D—D'). Then, since
n

U,(¢)—m=m'—m on D’ and SN},;(Q‘, z)ds_—_ag"(@:o on @R, (D—D),
n n
there exist suitable constants 6, and %, by the maximum principle such

that
L

Nf(§,2)<§(Un(§)-‘m) in DC(R,—R,) for n>=n/.

Hence

0§8N (£, 2 )<£M on 9DN(R, —R,) for n>mn/.
on 8 ©on °

Therefore by 3) of lemma 2
lim ONZIE ) gs — 1 1im D% oNElL, 2 gs (8)

n=co ADM(R,~ Ry on oD n=co

Suppose g€ R and let N, (2, q) be a harmonic function in DN (R,

—R,) such that Np_(z, ¢) =Nz, q) @D~ (R,—R,)+9R, and aNo.an_(Z»q)___o
n
on 9R,nD. Then N, (2, q) converges (converges in mean) to a function

Np(z, q) which is called the solution of the x—Divichlet problem with
boundary value N(z, q) on OD.

Since N(z, q) is uniformly bounded on 9DN(R—R,,), where n” is a
suitable number, it can be proved in the same manner as Theorem 2,
by (8) that

lim Np,lz, ¢) =lim = [ N, g

n=co 27 3D (R,~ Ry

) aN (C’ _2
on

1 ONP(¢, 2) 5. _
= o a{ N(g, Q)—an—ds——ND(z» q) .

where NP(¢, z)= lim NP(g, 2).

Now, since N(z, ¢g) has M.D.I or minimal x-Dirichlet integral over D
according as ¢¢D or g€ D, N(z, g)=lim N,/ (z, q), where N,/(z,q) is a
harmonic function in DN (R,—R,) or harmonic except a logarithmic

singularity at ¢ such that N,/(z, q) = N(2, q) on 9D (R,— R,) and %,é(z,_q_)
n
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=0 on 9R,ND. Hence Np(z, ¢)=1lim Np,(2, ¢)=1lim N,/(2, 9) =NI(z, q)
or <_N(z, q) =1i_m N,/ (2, q) according as ¢¢€ D or not. Thus

oNP
Niz, @) = Nz, ) = = _f Nit, 26 Zas, (9)

T oD on
Let {g;} be a fundamental sequence determining a point g€ B. Then,

since N(¢, ¢;) tends to N(¢, q¢) as {— oo, by Fatou’s lemma and by (9)

oONP ,
Nz, 4) =Nz, g =5 [ N& a) P2 as, (9)
7T oD n
where Np(z, q) is the solution of x—Dirichlet problem in D with boundary
value N(z, g) on 9D.
N¥ .(z, q) be a harmonic function in DN (R,—R,) such that N¥ ,(z, q)
M
— NMz, q) on OR,+3Dn(R,—R) and %gMzo OR,AD. Then
n
NM (z, q) converges to a function N¥(z, q) as n— . Clearly, as in case
of Ny(z, q), Nif(z, q) is given by
D
N¥(z, @) =-1 [ N¥(g, 2) 2N 2) g
27 @D on
i.e. N¥(z, q) is the solution of *-Dirichlet problem in D with boundary
value N™(z, q), whence }liin N¥M(z, q) = Npl(z, q).

The Dirichlet integral 23Dy, (NF, .(2, q)) <31 Dp,(N™(2, q)) <27 M.
I3 ]
Hence by letting n—co 2Dy (N¥(2, q)) <27M. For simplicity, we
I3

denote by N, (2, ¢) the function being equal to N3 (z, ¢) (solution of
x-Dirichlet problem in D,) in every domain D, with boundary value
NM(z, q). ‘

Next, as in 3) of Lemma 2, it is proved that N(z, p):gﬂim U,2) in

2 2
Valp) = Varlp), 292 ENED) on By, () +0V,,(p)
a_NL’ ?) ds=Ilim [ ——aU"(z) ds and
W)  On 1= 9V ()  ON
ONz B) gs—tim s 2Ula 4, (10)
Wa(p)  On n=co QV(p)  ON

where U,(z) is a harmonic function in (V,(p)—V,.(p))~(R,—R,) such

that U,(z)=m on 9V, (p), U(2)=m' on 9V, (p) and iU_n(i)=0 on

on
aR”f\ (Vm(p)_ Vm’(p))'



170 2. KURAMOCH!

Let NY 5. 4(2, 9 =N, .2, ¢) in every domain D;N(R,—R,). Then
we have by Green’s formula

oy, 5
N%n(ﬁ). n(z, Q) —& dS == f NVm(P) ( q) Un(z) ds ,
AV, (DI N(Ry— Ry an AV, (PINR,,— Ry an

because U,(z)=m and w' on 9V,(p) and °V,'(p) respectively and
ONy, 5. 4(2, q) ds — S ONY. v n(2, Q) ds = 0

and
WVl Ry~ R on RNV, (5D on

ONY, 0>, nl2, @) ds= [ ONY, 1> n(2, 4) ds=0. Let n— oo.
MV (OO NR,—R on 3R,V (2 on

Then by (10)
ON(z, p) 4o
5 ds f M

NVm(p)(z q) V(2 q)

AV D) " AWV, (p

ON(z, p)
oo blds. (1)

Therefore by letting M— M*, by (9) and (11) we have

2=NVmP(p, q)=_J Nz, p) aN(;, Pas

AV ()

= [ Nz ) o2 ds—2nNup(p, g).
V() .

Definition of N(p,q) in Case 2:for p€ R+B, and g€ R. Since
NV=®(p q) is increasing with respect to m, N"=?(p, q) has a limit
denoted by N(p, q) as mTM*_——-stlE N(z, p). We define the value of

N(z, q) at p€ B, by this limit. It is easily proved that, in case 1) this
definition of N(p, q) coincides with what has been given previously. In

fact, it is evident that N(p, ¢q)= 1 f Nz, p)Mds for peR
27 Wit on
and V,(p)5q¢ and that, by (5) N"<®(p, g)=_1  Niz, q) 2N 20) 4
2 (YD) on

= Nlg, p) =lim N(g, p;) =lim N(p;, g)=N(p, q) for p€ B and g€ R, where

{p;} is a fundamental sequence determining p.

Remark. Let V,(p) be a regular domain and let {Vm/(p)} be a se-
quence of regular domain with m; ' m. Then NV»?(p, q) =lim N"»®(p, q).

In fact, there exists a number #, for any given rpositive number §&,
such that

Niz, q) Zgz Dlgs> s Nea, )aivg:_ﬁds_e.

W HON(R, Ry OVl 2D

On the other hand, suppose z;€9Vm(p), 2,€9V,(p) and z;—z. Then
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ON@i, D) gg ,ON 2o, B) 45 and Niz;, q)— Niz,, q), hence
n on

lim J Nz, q)%dsglim S Niz, q) ON& B) 4

§=0 OV () n i=e 0V, (IR, =Ry on

— /N q)a—Na(—zn’Jl)dsgwf Nz, p)iN—a(;’—fl’ds—e.

BV (IR, ~ Ry

By letting &—0, im NV=®(p, q) = N"=?(p, q). Next, m;< m implies

NY=®(p, q) SN"P(p, q) and T N'»P(p, ) <N"=P(p, q). Thus we
have N'»%(p, g) =lim N'nP(p, q).

We define N"m'“’)(p, g) for any domain V,(p) by 11]3"1 NVm®(z p) as

above. This definition coincides with what has been defined previousely
for regular domain V,(p). Hence N'»?(p,q) is defined for every

m<_sup N(z, p).
2ER

Definition of Superharmonicity at a point p € R+ B,. Suppose a func-
tion Uz in R. If Up=-L s Uz MZ2) g5 holds for regular
27 3V, (p n

V..(p) of N(z, p), we say that U(z) is superharmonic in the weak sense at
a pont p. Thus we shall have the following

Theorem 11.
1). N(p, p)=sup N(z, p) for p€ R+B,.
2). Nz q)q€ R) is 8—lower semicontinuous in R+ B,.

)
3). Nz, q) is superharmonic in the weak sense at every point of R+ B,.
4). N(p, q)=Nlq, p) for two points p and q belonging to R+ B,.

Proof. 1) and 3) are clear by definition.

Proof of 2). Let {p;} be a sequence of points of R+ B, tending to
p. Since by the above remark NV»®(p, qg)=lim NY=?(p, q)(m’ } m),
there exists a number »’, for any given positive number & such that
V,»(p) is regular and NY»®(p, q) < NV»?(p, q)+&. Hence there exists
a number #x, such that

N¥wP(p, ) < -1 Lo o Na ) Mo asize  for nzn,.

= 271: W IR, ~ Ry

LetV,(p;) be a sequence of regular domains such that p,—p and
” 1 m. Replace Gy, (p, q) by NV?(p, q) in 3) of Theorem 1 of Part 1.
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Then N(@,, g) on dV,.(p;) tends to N(@, g) on @V,,(p) and wds

n
tends to aN(ac 2, p) ds, whence lim NV=®(p,, g) = lim NV»*>(p;, q)
= NP (p, q)— 28 and 11rn N(p;, 9) = N(p, q). Hence we have 2).

Proof of 4). Replace Gy, coolp, @) and Gy,,(q, p) by N"=?(p, g) and
NV»®(q, p) respectively and consider that {V,(p)} clusters at B as
m 1} M* =sup N(z, p). Then we at once 4), where V,(p) and V,(g) are

ZER

regular. Now we define N(z, q) not only in R+ B, but 2_1_150 in B,.
Definition of Nz, q) in Case 3: for p€ B, and g€ R. At first, if
pPEB,, Nz p) is represented by S N(z, p.) dp(p.)(ps € B,) by Theorem 8
By

for z€ R, where p(p,) is an weak limit and its uniqueness cannot be
proved by the present author.

Let pa,(€ R) (i=1,2,-) tend to p, with respect to 8-metric. Then,
since N(z, pa;) = N(2, p») on OV,(q) for g€ R+B,. Hence, by Fatou’s
lemma
1

27 AV (D

N¥s®(q, po) = Niz, ) 202 0) g

on
<lim [ N(z pa) 259 ds—lim N*»<®lq, p,) .

= OV (D

Hence NV»““(q, p,) is lower semicontinuous with respect to p, for
fixed g€R+B,. Since N"»®(q,p)1 Nl(q,p) at every point p,
lim S NV»(q, ps) Apt(pa) = S N(q, pa) d1e(pa) (M*’_‘S‘é,? (2, ¢)), whence

m->M*

Nig, p)=lim N"»®(g, p)=Tim = [ (/ (z,m%;"”dp(pm»ds

m>M* 27 9V,(@ B

— oL JUim [ NG p) P29 as) dplpa) = [ Nig, pa) dplps) . (13

27 B, m>M* 0V, (D
Hence the representation
Nz, p) = Bf N(z, pa) dp(pa) (14)

is valid not only in R but also in B,.

The value of N(q, p) (¢€ R+B, and p€ B,) does not depend on a
particular choice of distribution u(p,), because the left hand side of (13)
is given bymljrjlgl*N"m“’)(q, p), that is Nl(q, p) depends only on the value

of N(z, p) in R. Now (14) means that the potential of a unit mass on

p€ B, has the same behaviour in R+ B, as the potential of mass dis-

tribution [/ du(p,). From this point of view, we may consider that a
B,
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point p € B, is spanned by points p, € B, w_ith weight u(p,). Hence it is
natural to define the value of N(z, q)(g€ R) at z=p€ B, by

Bf N(par q) dpe(pa) - (15)
we shall prove the following

Theorem 12.

1). N(p, q)=Nl(q, p) for pe€R and q€ R+B,. Hence Niq, p) and
N(p, q) does not depend on a particular choice of distribution p(pa).

2). Nig, 2)(g€ R+ B) is 8-lower semicontinuous in R.
1). N(p, g =Nlq, p) for p and q belonging to R.
2') Nz, q)(q€ R) is S-lower semicontinuous in R.

Proof of 1). For p<€ R+ B, our assertion is evident by 4) of Theorem
11. We show for pe€ B,. In this case, since N(p,, q) =Nl(q, p,) by 4)
of Theorem 11, we have by (14) and (15)

Nig, p)= J Nig, po) dps(pa) = J N(pa, q) dps(pa) =N(p, q) -

Since N{q, p) does not depend on a particular distribution, N(p, ¢) also
does not depend on it.

Proof of 2). If p€ R+B,, is clear by Theorem 11. Let {p;} be a
sequence of points tending to p€B,. They by 1) of this theorem
Nig, p;) =N(p;, q) and N(p, g =N(p, g). On the other hand, by Fatou’s
lemma lim NV=®(q, p;) = N"»“(q, p), which implies lim N(g, p;) = N(q, p).

Hence
lgg N(p;, g) =lim N(q, p;) = N(q, p) =NI(p, q) .

i=oco

This completes the proof of 2).

Proof of 1’). If at least one of p and ¢ belongs to R+ B,, our asser-
tion is 1). Suppose that both p and ¢ belong to B,. In this case

Nz, p) =Bf N(z, p) dp(ps) and Nz, g) =Bf Nz, gg) dit(gs) (ps and gg € B,).
Hence by (14) and by 1) of the this theorem

Nlg, p) = J Nlgs, p) dr(gs)
= J (J (N(pa gp)) du(pa)) dpsge) = S N(p, qs) dir(ge) =N(p, q) .

It is proved as in 1) that N(p, ¢) does not depend on particular distribu-
tions
wps) and  p(gg) .
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Proof of 2'). Let {p;} be a sequence tending to p. Then for every
point gg, 1_1_rg N(p;, gs) = N(p, qs), which yields at once by Fatou’s lemma

grg N(p;, q) = ggz J N(p:, q) dp(gs) = S N(p, qs) dre(ge) =N(p, q) .

Remark. Let U(z) be a function given by J N(z, p) du(p)(p>0).
Then U(z) is lower semicontinuous in R.

12. Mass Distributions on R.

We have seen that N(z, p) has the essential properties of the loga-
rithmic potential : lower semicontinuity on R, symmetry and super-
harmonicity in the weak sense on R+B,. But there exists a fatal
difference between our space and the euclidean space, that is, in our
space there may exist points of B, where we cannot distribute any frue
mass. A distribution # on B, may be called a pseudo distribution in the
sense that Ug(2)=0 and x can be replaced, by Theorem 8, by a dis-
tribution on B,, where U(z):Bf N(z, p) du(p). In other words, even

0

when B, is not empty, B, behaves as an empty set for mass distributions.

Mass Distributions on R+ B,. Since N(z, p) has the above pro-
perties, it is easy to construct the potential theory on R+ B,.

The energy integral I(#) of a mass distribution # on a closed subset
F of R+ B, is defined as

I(w)= JJ Nig, p) du(p) dpslq) -

The *—Capacity xCap (F) and the transfinite diameter Dy of F are defined

*Cap (F)
2n

as follows : is defined as the least upper bound of total mass

of # on F whose potential is not greater than 1 on F.
DF=li_m .Dr, Where

1 1 . Z

- = (inf 3% Nip;, pJ)) -

Dr 27,C, pipjeF 1<)

We see easily the following

Lemma. Cap (F) >0 implies xCap (F) >0 for a closed susbet F of
R+B,.

In fact, if Cap (F) >0, 0x(2) = pog(2 >0 and wg(z)= {N(z, p) du(p).

Now the total mass of x is given by — [ Owp(2) ds and wg(z) <1,
27: R, Onm
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whence *Cap (F') >0.
Then we have as in space the following

Theorem 13. Let F be a closed subset of positive xCapacity of R+ B,.
Then there exists a unit mass distribution p on F whose energy integral
is minimal and its potential U(z) satisfies the following conditions :

1). Ulz) is a constant C on the kernel of the distribution, whence
I(p) =D(U(2)) =2=C.

2). Ulz)=Ug(2).

3). Uz)=C on F except possibly a subset of x—Capacity zero of F.

4). U(z)=Cowg(2).

Proof. 1) and 3) can be proved as in space.
Proof of 2). Since p€ R+B,, N(z,p)= vm(,)(z p) for every point of
R+B,, where uv,(p)=E[z€R: 8z, p) —] This implies Ng, (2, p)

=Nz, p), where F,,=E[z€ R: 8(z, F) g%—], because F, Duv,,(p). Hence
we have Ug(z) = U(z).

Proof of 4). Put U(z) =Cw*(2). Then by 2) z(w*(z))=w*(z) and not
greater than 1 on F. Hence o*(z )_hmw }Lm 0¥ .(2), where of, ,(2) is a
harmonic function in R,—R,—F,, ;uch that of ,(2)=o*(z) on
BF (R~ R), of,(2)=0 on 2R, and 222} —0 on OR,~F,,. On the
other hand, wgz(z )-hm hm ®,,, »(2), where o, ,(2) is a harmonic function

in R,—R,—F,, such that o,, ,(2)=1 on 9F,,n(R,—R,), ®,, ,(2)=0 on OR,
O, #(2)
on
n—>co andthen m— co, wg(2) =0w*(z). Next, the set A,=E[z€ R: v*(2)
<1—-\]NnF is clearly closed by the lower semicontinuity of «*(2).
*Cap (A,) =0 implies Cap(4,)=0 by Lemma. Hence 0=w4,(2)
=lim lim o4, m 4(2), Where A, ,,=E[z€ R: 8z, A) ;‘%J and wg,, . u(2)

M=c0 f=oco

and =0 on 9R,—F,. Hence w,, ,(2) = o} ,(2), whence by letting

is a harmonic function in R,—R,—A, ., such that wg,, ..(2)=1 on
aA}t,m, DAy, m, n( ) 0 on aR and amA)\am "( ) =0 on aR A)\ me Let
n

{\;} be a sequence such that A; | 0. Then
O #l2) F 20 @, n(2) Z O, n(2) -

Hence by letting #—>oc0 and then m— oo, 0*(2) >wx(2). Then o*(2)
=a)F(Z).
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Corollary. Cap (F)= for a closed subset of R+ B,.

p(F
U(z)

In fact, since wg(z)="22, *Cap (F)=2= 1 s oYz oU(z) ds—
4=* 2 C 27Cor, On c
=47 _ [ 99r2) 45 Hence *Cap (F)=Cap (F) and Cap (F)=1/I()

I(u) o7, On
where w© is the equilibrium distribution of total mass unity on F.

Theorem 14. (Extension of Evans-Selberg’s Theorem). Let F be a
closed subset of R+B,. Then Cap (F)=0, if and only if there exists a
unit mass distribution on F whose potential U(z) satisfies the following
conditions :

1). Uz)=0 on 9R,.

2). U(z)=co at every point of F.

3). Uz)=Ug2z) and gm(i) is the equilibvium potential of the set
G,=E[zeR: Ulz) =m] for every m.
Proof. If such U(z) exists, clearly Cap (F)=0. Next Cap (F)

=*Cap (F)=0 implies by 1) of Theorem 12 D,=0. Replace G(p;, p;)
by N(p;, p;) in Part I. Then we have 1) and 2). Since every point

mass of V"'(z):z—i”—i (i} N(z, p;)) is contained in F, Vp(z)=V™(z). This

implies U(2)

= Ug(z). Hence Ulz) is the equilibrium poten-
m

i=1

tial of G,,=E[z€ R: U(z) =m].

Remark 1. Let p bea point in B,. Then N(z, p)= [ N(z, pa) du(p,)

and U(p)= [ Ul(ps) du(pas). Hence U(z) may be infinite on a larger set F’
containing F.

Remark 2. Theorem 14 holds for an F, of R+ B, of capacity zero.

Remark 3. We cannot omit the condition that F€ R+B,, (See an
example).

Mass Distribution on R. Definition of *Cap (F) and D, for closed

subset F of R. Let F be a closed set of R. Then FN(R+B,) is a G;,
since B, is an F,. We define *Capacity and the transfinite diameter of

F as follows: Put F,=E[z€R: 8, F) —] and put *Cap (F,,)
=sur *Cap (F,) and Dy, =sup Dy, where F, is a closed subset of R+ B,

contained in F,,. Since clearly *Cap (F,,) and Dy, are decreasing with
respect to m. Put *Cap (F)=1i£n *Cap (F,,) and Dp=£i£n Dg,,. Then we
have the following - -
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Theorem 15. *Cap (F)=Cap (F) =47*D, for a closed set F of R.

In fact, let w,(2) be the equilibrium potential of F,. Since F,F
N(R+B,), r,©.(2) =w4(2) for every F,. We assume F, 1. Then og/(z2)
converges to a function &(z). Then g (6(2)) = 5,0z,(2) =o0g,(2) for every
a. On the other hand, clearly . (&(z)) <&(2), because &(z) is super-
harmonic in R. Therefore £, (6(2)) Z0(z). This implies that &(z) has
has M.D.I. over R—F. Hence &(z)=uw,(2), since ®(2)=1 on F,NR.
Hence Cap (F,,)=%*Cap (F,,), whence 4=*D,=%*Cap (F)=Cap (F). Par-
ticularly Cap (B,) =*Cap (B,)=0. Thus two capacities coincide each
other. We call them capacity. Since wp(2)=rpwz(2) and ox(z) is lower
semicontinuous, we can prove as 3) of Theorem 13 the following

Corollary. If wg(2)==0, wx(z) =1 except possibly a subset of capacity
zero of F.

Hence oz(z) has the characteristic property_of the equilibrium poten-
tial in space. The capacity of Borel sets of R is defined as usual.

An Example

We shall construct a Riemann surface with singular ideal boundary
points and points of B, and further we show that the condition of
theorem 13 is necessary.

Let 7, be a circle: |z|=7, (n=1, 2, ---), where r,<7r,<7,, -, 7,=1
and lim 7,=2. Denote by i?/,, a ring domain: 7,<|z|<7,., and let

A,, B,, C, ring domains such that A,: 7,. >|21>> ¥ a Bu: Ve >121 >
Vna, Cui?y g >12| >, with 7,<7, 5< 7y o< ps1-
{4,}. Let 'y, be a circle: |z|=+\/7,.,, 7, - Then there exists a con-

stant @, depending only on the modulus of A4,, i.e. log T»t1 such that
n o

max U(z) <Q, min U(z) for any positive harmonic function U(z) in A4,.

ZEPA,M ZEI‘A,n

Choose a sequence P, such that lim P, =oco, (Fig. 1).

N =00

{B¥}. In B, we make so many radial slits and connect them so that
every harmonic function |U(z)| <P, in B, satisfies the condition that

the oscillation of U(z) on I'y , is less than %, where I'y , is a circle in

B,such that Uy ,: [2]=+\/7, ,, 7, s- We make the above slits as follows.
Put B,=B, a=log7, , and B=log7, . Let J(OI, be a ring
domain such that

J: B+%B<log |z|<3+?(_“.3“_/3).
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Fig. 1

Let U(z) be a harmonic function in J such that |U(z)| <P,. Then U(2)

1 S U(§)?g(—§ﬁds, where G(¢, z) is the Green’s function of J with
27 81 on

pole at z. Since 8_G_(a_;‘n,_z_) is a continuous function of z in J for fixed ¢

and since U(z,)— U(z,) = 2% ajr’ Ue) <8GE(§1, z‘)—aG(g’; 22)> ds, there exists a

number m depending only on the modulus of J but on U(z) such that

|arg 2,—arg z,| _<_?n— implies | U(z,)— U(z,) [<% for every pair of points
2, and 2z, on the circle I'y ,.
Let H; and H/ (1=1,2, 3, -, m) be ring domains as follows :

H: a— 1) s>log|z| >a—2is,

B+ 1) s<log|z|< B +2is, where s=\2=8)
3:2m

Let S} and S! (j=1,2, 3, .--,2™) slits in H; and H/ respectively as
follows :

Si: a—(2i—1) s>log|z| > —2is, argz——%z{_.
/j. ; . . 277:]
Si: B+(2i—1) s >log|z|<B+2is, arg 2=-"3, .

where / is a large integer so that | U(z)| <P, and U(z) =0 on >} S} imply
1 7
)<z

;ona circle I'; for every harmonic function in H;— > S/.
m! 7
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’/
Clearly H;— > S{ and H/— >1S! (i=1,2, .-, m) are conformally equi-
J j /
valent. Hence IU( 2)| <P, in H; or H/ and U(z)=0 on >'S/ or XS/
7 7
imply | U(z))| <

circles as f ollows

on I'; and I'/ respectively, where I'; and I'/ are

[; :loglz|=a—(2i—1) s— %,
loglzl B+ (2/—1 )s+%

In H, and H/ identify the two edges of the slits S{ and Si
(/=1,2,3,.-,2™) lying symmetrically with respect to the real axis.

’
Next, in H, and H, identify the two edges of Sj and S} lying symmet-
rically with respect ta the imaginary axis. In H, and H,, in every

sector Aj: w<agr z<i7i identify two edges of slits S{ and S}
A A T
2 4

(t=1, 2, 3,4). Generally speaking, let A% be a sector as follows :

lying symmetrically with respect to the radius: argz=

A t=1,2,3,.,27".

2 -2
In every A! identify the two edgds of S! and S} lying symmetrically
with respect to the radius: arg zz(t;#*'%' Then we have a
Riemann surface {B¥} with only two boundary components lying on
log|z| =a and log|z|=48.

We shall show that {B}} has the property above stated. (Fig. 2).

Suppose a positive harmonic function |U(z)| <P,. Let T,(z) be a
transformation such that 7,(z) is the symmetric point of z with respect
to the real axis. Then U(z)— U(Tl(z)) is harmonic in B} and vanishes

on Z(S/+S/{), whence |U(z)— |< on circles I’ and I').
Hence by the maximum princ1p1e IU( )— |<

domain bounded by TI', and I')/. Let T,(2) be a transformatlon such that
T,(z) is the symmetric point of z With respect to the imaginary axis.

Then as above |U(z)— |<

and I';. Next, consider U( ) ina rmg domam I;: B+5s<log|z|< a—5s.
Let T3 be a transformation such that 7i(z) is the symmetric point of

z with respect to the radius: arg z—%. Then U(z)— U(T3(z)) is har-

in the ring

in the domain bounded by I,
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Bx, (m=3)
Fig. 2

monic in D, and U(z)~U(T3(2)) =0 on 2 (S{+S{n(As+A3). Hence
| Ulz)— U(T}(2)) [<~—1—‘ for ze (Al+A)N(L,+1Y), similarly |Ulz)
nem!

—U(Tj3(=z |< for ze (Ai+AHNn (1‘3+143), where T3 is a transfor-

mation with respect to argz_?:T”. Let z, and z, be two points in
A: and Aji such that 2z,=7Ti(z,). Then 2z,=7T3-T,-T,(z), where
T:-T,-T,(2z,) and 2z, are contained in A}. Hence by the property of

T., T,and T%| U((z,)— U(z,) |<2 I on I +T'/, whence by the maximum
nem!

principle

| Ul — U(THe) | <52 B
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in the domain bounded by I, and 1Y. In the sequel, we say that T}
has the deviation <

2n- m'
For every i, consider U(z) in a ring domain D, :

D;: B+(2i—1) s<logl|z|<<a—(2i—1)s

Let Ti(z) (t=1, 2, ---,2) be a transformation such that Ti(z) is the
2m(t—1) 4+ 7

2i-1 Qi-1 :
Then U(z)— U(Ti(z)) is harmonic in D;. On the other hand, we have as

above cases |U(z)—U(Ti(z))|<2—1—‘ on A;r\([‘i+f‘/) for every £. Now
nem!

symmetric point of 2 with respect to the radius: arg z=

let 2, and z, be two points not contained in A! such that T%(z,) =2z,.
Then there exists a system S, of transformations satisfying the
following conditions :

17 22

1°. S, ., is composed of at most i—1 transformations contained in
Tl) sz {Tg} {Tﬁ}
2°. S, ., has the form z,= TSITS2 e, T3 (TS:) TStz -, T35,
L

Ppty

L<i—1 and mn,==i for p=1,2, -,k k+2,--,L)

3. Tiw+T St4a, -, T 2(z) is contained in A% with the same index
k+2 k+3 L

s; as that of T:. Now suprose that the deviation of T'j is less than
]'
2n-m!
of of S,,,, is less than the sum of deviations of {7T;} contained in

. . . A .
S..z.,. Hence the deviation of T} is less than 3 L o that is |U(z)

i(2) l<2n“m' on I';+T/ for every £. This implies |U(2)— U(T:(2))|

<2 L ' in the ring domain bounded by I';+I'/. Hence the deviation

nem: -|

of T¢ is less than 2—2——' in J for every ¢ and #£. On the other hand,
n-m!

for every j<i—1 (this is clear for j=1, 2, 3). But the deviation

IU(zl)—U(zz)]<$ for 2z, and z, on T, , with |argz—arg zz|<-22%
Therefore the oscillation of U(z) on 'y , is less than %

Let R, be a domain bounded by I' (|z|=1) and I';,. Then [2\1R”
is a Riemann surface with one compact boundary component I' and_one
ideal boundary camponent.

Let {&,} be slits on the radius: arg z=0 in C, and let w,, ,.;(2) be
a harmonic function in R,,;,—k, such that w,,.;(z2)=0 on I'+9R,,;
(=Lg wti)y Wynii(2)=1o0nk,. Putw,(2)=limw,,(2). Letw} ,.(z) bea
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harmonic function in R, ;,—k, such that w¥ ,.;(2)=0 on I, w*% ,.;(2)=1

aw’g+i(2):0 on OR,.,. Put lim w* , ,(z)=w*(z). If we make
n i=eo
every k, sufficiently small, we have

on k, and

lim ( max 3 w,(2)) =0, (1)

7 =00 ZEPB,; n

fim ( max S wk(2)) < (2)

7 =00 ze]"B ” n

ua[»—a

Therefore we can suppose that {k,} have been chosen small so that
the above conditions are satisfied.

Riemann surface R. Let R’ be one more Riemann surface which is
identical to R. From now, we denote by V'(z),k, .- the function,
figure, ---, on R’ which corresponds to the function V(z), figure &, -

R respectively. Identify k, and k, for every n. Put R+R =R. Then

R is a Riemann surface with two compact boundary compenent I’ and
IV and has only one ideal boundary component. In what follows, we

show that R has the following properties, (Fig. 3).

\ .‘\

n.|| ‘H*
e ||l” 'HW
’HH';"
////l

‘ )
- 1
' 1
(
I
‘

" ' (K

N gt
' 1 ) "",l
' " e

Riemann surface R.
Fig. 3
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1). R has no unbounded positive harmonic functions.

Let R# be the compact surface of R bounded by I' and 1‘ 4. Clearly

\jRA R. Let VA( ) be a harmonic function in RA+RA such that
$4(z)=0 on T'+T' and VA(z)=1 on L'y ,+L's,. Then lim V(z)=V(2)

}gg'zz] in the ring domain: 1<|z|<(2. Hence V(z) t_ends to1las z
converges to the ideal boundary of R. Let V2 ,./(2) be a harmonic

nti

function in RA+RA,— Sk, such that V4,..(2)=0 on I'+T'+ 31k,

il
+Ty ,.; and VA  ..(2)=1o0onT,,. Consider VA ,.;(z) in R— .Zlki'
Then V32 ,..(z )2VA 2)— Zw(z. Hence by letting 7—>oc and then

n—oco we have lim lim V,,,,,+,-(z) =V4(z) = /I>(z)— 2 w,(z) in R— i‘{k"'

Therefore by (1) V4(z)>0. (Fig. 4)
Consider a positive harmonic function U(z) in R vanishing on I'+I".
Assume max U(z) =P, for infinitely many numbers #. Then min U(z)

P 2€T4 n P
gQ". Hence by the maximum principle U(z)ga'L (V4 ,.(2) in

R— ”Zk,-. Thus we have by letting {— o and then n”—><>o U(z) = oo.

This is absurd. Hence by the maximum principle U(z) < ma>§ Ulz)
2€B,+B,/

< ma)rc‘ U(z) = P, except for finitely many numbers. This implies
zEI‘A ntTAn

’
by the property of B} and B* the oscillations of U(z) on I'y , and I'y ,,
tend to zero as #n— co.

Let ﬁ,,(zlz be a harmonic function in R,+R,’ Asuch thAat f/,,(z) =A0 on
P+I and V,(2)=1 on 9R,+9R,’. Then lim V.(2) =V(z) = }‘LIE Vi(z).
Let V,.,..:(2) be a harmonic function in R +R,,+, Z; k/ such that
Vynsi(2)=0 on T'+IV+0OR, ;+ 21 k; and V,,.;(2)=1 on ©R,. Consider
Vanei(2) in R— f‘_, k;. Then as+ above, we have V(z)=1}g1 lim Vousi(2)
= V)~ 31 wy(2) in R— 31k, Therefore by (1) o

lim (min V(2)) =1. (3)

n=cc 2€TB p
Next, consider V(z) in R'— Z k;. Then also we have V(z) =lim limV,,(2)
gf‘, w;(2) in R'— Z_‘, k. Hence by (1)

lim (max V(z)) =0. (4)

n=w 2¢'p,
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We call such V(z) the harmonic measure of the ideal boundary deter-
mined by a non-compact domain G=R- Ew] k;, (Fig. 5).

|
-

R}
R, -—-ﬁ

L a, |
It AR RV RIVESY
i l\
I'Bn \ Tan
(
Vi ,i(2=0 Vi@ =1
r rA, ”
:l Ooooo O goooaaC
v
I V:. w+i(2) =0 s
v n-}-i(z)r 0 V;f ”-H(z]) =0

Fig. 4

If sup( Ulz)=o, max U(z) tends to co as #—oo, This implies
zéI‘B”+I‘/Bn

by property of B* and B} that at least one of M,= mim U(z) and
Z2€T'B 4

M, = mim U(z) tends to oo as #—oco. Assume M, 1 co. Then clearly
2€B

)

Ul2) = M(V,uiile) = B wlz)  in R—31k;,

1

whence we have by letting i— co and then #— oo, U(z)=co. There-
fore U(z) is bounded <M in R.

2) There exist only two linearly independint positive harmonic functions

vanishing on T'+1". Consider Ulz) in R— 3 k;. Put L=Ilim ( max U(2))
1 n=e 2€D'p ,

=lim (mim U(2)). Then for any given positive number &, there exist
n=co 2€T'R

infinitely many numbers »# such that

L+¢&>max U(z) > min U(z) > L—¢€.
zGI‘B,, ZGI‘Bn

oo

Slnce U >O L+6( nn+x( +2w( ZU( ) (L—-(S)( nn+z Z

1

in R, Let i—> o and then #—co and further let €0, Then
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L(V(z)+ 32 w,(2) = Ule) = L(V(z) = 3 w)(2) .

Hence by (1) and (3) we have lim ( max U(z))=1im( min U(z)) = L. Similarly

n=c 2€T'B p n=c 2€T'B y
we have lim (max U(z))=1lim (min U( N=L.
#=o0 zeran ooz EI‘B”

Consider U(z) in R. Then by (1), (3) and (4) we have as above,
for any given positive number &,

(L+&)V(2) + (L' +&)V'(2) = Ulz) = (L—&)V(z)+ (L'=€)V'(2),,

where V'(z) is the harmonic measure of the ideal boundary determined
by . Hence U(z)=LV(2)+L'V'(z). Thus we have

3) There exists no function N(z, p) such that sup Nz, p)=oo.
ZER

4) There exists at least two singular ideal boundary poants€ B,. Let

V* () be a harmonic function in Rj.;+R,— z k; such that V¥,.(z) =0

on '+1", V* .(z)=1 on 9R, and —V':a_”ﬂ—o 34 k,+0R..;. Put V¥(2)
n

n+1

= lim lim V*,.,(z). V*(2) is called the equilibrium potential of the ideal

j=o0 M=o0

boundary determined by non-compact domain G and it is proved as
wg(z) is superharmonic in R (R+B). Clearly V*(z)>V(z),, whence

lim ( min V(2)) =1. On the other hand, since V*(z) < fj wk(z) in
n=e 26Tp, 1
1

—Z;”}k,-', we have by (4) lim ( max V*(z)) <Z' Hence V*(2)==V"*(2),

n=co zeTBy

(Fig. 5). Now V*(z) and V*(z) are superharmonic in R that is V*(z)

V. wi@D =V, (D=1

Ideal boundary
determined

oR,

e L by 6=R-2k,

r
n n+;(2) V,, i (Z) T Oooo -0 0 ook

'\ﬁ V.. n+i(z)/ =0

r‘/

2 . ‘ n4-i
Vo ni(2) - | Ideal boundary
on determined
by G'= R-Zk;
Vn, » +i(Z) =0
° V:, n+i(z )
om0

Fig. 5
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=Bf N(z, pa)du(ps) V'*(2) =Bf N(z, ps)di (ps). Hence by the symmetric

structure of R there must exist at least two singular points p, and p, in
B, such that N(z, p,)==N(z, p.) and N(z, p,) = N(T(2), p,), where T (2) is

the symmetric point of z with respect to i k;. On the other hand, by 2),

Nz, p.)=N(z, p.))=AV(2) +pV'(2) and N(z, p;)=pV(2) +MV'(2) A=Fp, p=0,
A=0).

5) There exists at least one ideal boundary point belonging to B,.
Let {p{} and {pi} be fundamental sequences determining p, and p,

respectively. Then {pi} and {pi} are not contained in f} k;, because
the symmetric structure of R implies N(z, p,)=N(z, p,). Connect p{ and
pt with a curve C’. Then there exists a point p{ on k;. Choose a
subsequence {pi} for which N(z, pi) converges to a function N(z, p;).

Then Nz, p3>=§(N(z, £)+N(z, p,)), because Nz, p,)=N(T(z), ps), ie.

Niz, p) = K(V(2)+V'()) and S %ds=2n (i=1,2,3). Then
0 n

N(z, p;) and N(z, pa)—%N(z, p) = %N(z, p.) are superharmonic and
N(z, p,) is not a multiple of N(z, p,). Hence N(z, p;) is not minimal, i.e.
s € B,.

0=Cap (B,)=Cap (p;) and p, is a closed set. But there exists no

unbounded positive superharmonic function in R. Therefore the condition
of Theorem 14 that F C R+ B, is necessary.
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